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SUMMARY

i ,

; A graph is k-arc-connected if it is necessary to remove
gt least k arcs in order to disconnect the graph. This

paper solves the problem of determining the least number of
%rcs required in a k-arc-connected graph on n nodes by
éescribing constructions that produce such graphs having

gﬁ arcs (for kn even) or kn;l arcs (for kn odd). These

iesults have application to the practical problem of syn-

thesizing minimum cost, "k-reliable" communication networks.
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{INIMAL k—ARC—CONNECTED GRAPHS"

1. INTRODUCTION

| In considering the synthesis of reliable communication
%networks with respect to link failure, the following question
Eseems a natural one to raise. Suppose given the complete,

'unoriented graph G on n nodes N = {x y,z,.- }; and let

‘each arc (x,y) of G! have assoc1ated w1th it a nonnegatlve
'number c¢(X,y), to be thought of as the cost of installing
ia communication link between stations x and y. For each

k = 1 2, ...,‘n—lf find a ﬁinimum'cost k—erc—connected

spanning subgraph of G[ Here the cost of a subgraphgggﬁjgi

;_Nhe,sum,of the numbers c(x y) corre3pond1ng to arcs of H,

'a spanning subgraﬁhfof G‘ 1s a subgraph that has the same

node set N as G does, and a k—arc—connected~graph is omne

in which at 1east k arcs must be suppressed in order to.
"1 disconnect the graph. Thus k might be thought of as the
reliability 1evel" of the communicatlon network and the
\°,ﬁipraetical problem is to minimize cost subJect to achieV1ng

”i”,fa stipulated reliability level

: This paper was written in 1961 but never published
‘f‘¢,because ‘the authors became aware that Harary was preparing
| a paper which solved the more- general problem of determining
| the 1east number of arcs required for k-node-—connectivit
| Harary's paper later on appeared under the title '‘The Max~‘
| imum Connectivity: of a Graph' in Proc. Nat. Acad. Sci. 48
 1(1962), 1142-1146. The authors of the present paper feel
- | that the method of proof, which is quite different from f
| Harary's proof of the ‘more. general result, may be of some.
interest.; , ; V -




.for»’h = 1, the problen'becomes thathof finding a
%minimum cost spanning subtree of G; there are simple methods
iknown for doing this [2,3]; But for k > 1, the situation
‘seems to be quite different; Here we need only mention the
gfact that, with k = 2 and all arc costs 1 or o, the\
éproblem includes that of determining whether a given graph
é(the subgraph of unit cost arcs) contains a Hamiltonian
Ecycle‘ Even with all arc costs unity, an interesting graph-
7theoret1c problem emerges- to determine the mintmum number
of arcs required for a k~arc~connected graph on n nodes.

}Here, for k > 2, there 1s an obv1ous lower bound for the

 kn+l
2

4 (for odd kn), and 1t is reasonable to ask 1f this bound is

'number of arcs needed namely jf (for even kn) or

'always achleved We answer thls afflrmatlvely by descrlblng

~two constructlons that produce graphs hav1ng the minlmUm

v

number of arcs, one of these constructions is appllcable for

i even k, the other for odd k

Slmilar problems arlse if one cons1ders k—connectedness

‘j'not w1th respect to arcs. but rather w1th respect to nodes.

'f’Thus, for example, one can ask for the smallest number of

':”]p'arcs rEquired in a k—node—cbnnected graph on n,‘nodes : Theg

z”hsrfiower bound mentloned above is unchanged but very littlef

‘“‘appears to be known about the problem for nodes (cf [1],,

k J~:1Appendix IV, Problem 11) Since a graph that is k~connected

:]with respect to nodes is k—connected w1th respect to arcs,'

s *In the 11terature on graphs, the phrase "k—connected
~:/jgraih

" refers to nodes, see [1,4].
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but not always conversely, the fact that the lower bound is

‘achievable in the arc problem is a weaker assertion ‘than the
"

.corresponding one for nodes. -

‘2. CUT SETS OF ARCS

Throughout this and the following sections, a graph is

‘an unoriented one without 1 or 2—circuits, that is, at most

|

one arc joins a pair of nodes and all arcs join distinct

énode,set N and arc set «&. Nodes are denoted by x,y,z,

nodes. We write G = [N; @] to mean that the graph G has

ety

';’éahdfarcsoby unordered”pairs‘of hodes,.(x,y),'(x z),.,;

V"‘f‘LetitG,‘ [N, d] be a graph on n nodes, n > 2. A

5subéet “M‘g'd is a cut set of arcs in G provided that the

graph G' = [N; a - R] obtained from G by supressing arcs

of N is dlsconnected A graph G 1s k—arc~connected 1f

 f“"every cut set of arcs in G has at 1east k members, here
;’0 < k < n In deallng with k—arc—connectedness, attentlon
jcan be restrlcted to cut sets of arcs of the follow1ng klnd
"ﬁ:, 1et X ‘and X = N — X be a partition of the nodes of G
'“f 1nto two non—empty sets, and 1et (X,X) denote the set ofi
'7Eh;fparcs in G that have one end in X,kthe other end in X.
fhh?Thus (X,X) is a cut set of arcs in G separating the nodes
fin x from those in X Moreover, given any cut set K c a,' |
xone can determlne X C N so that (X X) et n by the recurS*

v‘ive rule"

(a) select;a nooe"x"hand’put X hih; X;

',see~thé7fi£sthboth¢te; o



f@hi;arbitrarllyfln G, then Suppress nodes

">»farcs, to obtaln G'k' Now each node of G'

—ly—

(b) if x is in X and (x,y) is in @ - X, then
put y in X.

éThe set X = N — X thus defined cannot be emp&y, since ¥

;is a cut set of arcs; it is also clear that (X,i) C ¥. Thus

iit suffices to consider cut sets of the form (X,i), and we
‘shall do this..

3. THE CASE k_EVEN

We glve a simple construction which furnlshes an induc-—
tlve proof on mn, for fixed even k that there are k—arc—

, connected graphs on n nedes hav1ng TT arcs.
S Lemma 3.1 below will be used in the constructlon Call

a set of arcs of G 1ndependent 1f no two arcs of the set

have a node in common. The egree of a node x in G is

, the number of arcs on: X.

o Vleast k > 0 then env arc of

f,@} Lemma 3 .1. 1_ each dg hﬁ,_ graph G has _ggggg at
G

is contai

‘[k+ J 1ndependent arcs.

% Here [E-—] denotes the biggest 1nteger in L A

‘proof can he mede by induction on k.
|

, \obv1ously valld for k =1, 2. Suppose G

The conc1u31on is

~is a graph eadh'

iof whose nodes has degree 2k >2. Select ahfarc (x,y)

k‘,y,: and thElr f'
has degree .
‘k,_,2 >,0 | Slnce lk > 2 ,G'd COntains at 1east one;‘déh
‘z‘ arc, hence by the 1nduction assumptlon,L G'yycontains a(;§

‘ set of [ 1ndependent,arcs. The,arc (x;y) of G,



together with these, gives a set of [k+l independent arcs

ofG

The conclusion of Lenma 3 1 is very weak, but suffices
jfor our purposes in this section. In treating odd k, a
%strengthened form of Lemma 3.1 will be used. The version
égiven here has the advantage that the construction implicit
%in its proof is extremely simple: any maximal set of inde-

gpendent arcs will do.

‘}TEEEEEEM37§:i Let ‘n be a p031t1ve 1nteger and k an

seven integer satisfving 2 k < n. Then there is a gragh

'on n ' nodes that is k-arc—cennected and has kzarcs.

'LetVVk = 2p.: If ‘n = kf+~1, the complete graph on n
ifnodes‘SErves; We noWﬁprOCeed"by induction on n, holding k
. rflxed 7Thuailet G be a k—arc—connected graph on n nodes

’:a,haV1ng np. arcS.,aThen;each'node of G has degree k aﬁd

“:{akhence by Lemma 3 1 G contalns P 1ndependent arcs, say

c31) o (xl,y1>, <x2,y2>,,-,-“-;s' <x AN

VT@NOW 1et G be the graph on n + 1 nodes obtalned fromf G

i‘by deletlng the arcs (331),rthen,add1ng;node»‘z ,and;the‘arcs

'°‘ftﬁfheagraph‘*c' has np + Zp'— p = (n + 1)p arcs we assert

| eﬁthat=“G' is k»arc-connected | For suppose not, and let (X,X)

i by a cut set of arcs in G | containingk'k~* 1 or fewer arcs.

:7?]gue may suppose z is in X. flfaaxc»cohsiSts of the single
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node ‘e;‘then (X;i) has k members. Thus X contains a
énode of G. The cut (X,X) in G then produces a cut
‘é(Y,?) in G, by taking Y = X — {z}. But the number of arcs
;in (Y,Y) 1is less than or equal to the number in (X,X),
fsince to each arc (xg;yi) of the deleted set (3;1) that
Eis also in (Y,Y), there corresponds at least one of the |
iadded arcs (3;2), either (z,xi) or (z,yi), which is in
'E(X,T(). Thus (Y,-Y'5 has at most k-1 gmembers, ycontradicting
gthe'fact that G 1is k—arc—connected. This proves Theorem

53.2.7

b L};_E CASE. k_ODD
Sl For the case of odd k, say k = 2p + 1, the analogue ‘
‘jOf the above‘constructlon can fail. The dlfflculty comes

1n attempting to make the tran51t10n from odd n to even

‘n + l. Here one would start w1th a k—arc—connected graph

'*ee¥G;‘having ‘kn%l arcs, so that some node of G has degree

"u1 /fk‘+t1 ‘éil Others have degree; k Lemma 3.1 can be used

to select p + 1 1ndependent arcs, one of which is on the

~p:f;tn€node xl of degree k + 1 If it could be shown that the'

tvnggraph G'; obtained from G by deletlng the 1ndependent f

(xl;yl),‘;} (xp+1’\7p+1)’ then addlng node z"and

‘t | the arcs (z’;’ V2f1)" . . o (Z’XP+1) s (Z yl) 3w (Z, Yp+1) 3 Were

o k~arc-connected, a proof for odd Ik W°“1d be obtained. k;mt

‘~this 1s false, as the following example for k = 3 shows" |

o Let e be the graph of Flg. 4 1 below, s has the minlmum




e

‘tiumber of arcs and it can be checked that G is 3—-arc—~

Fig. 4.1.
icgnnected, Let (xl,yl);V(xz,yé)'Be'the candidates for
”*élimination One then ObtalnS the graph G ~ of Fig. 4.2,

whlch is only Z-arc—connected

Fortunately, the troublesome feature exhlblted by the

”7”77Mefpreeeding example can be av01ded by employing a construction

:tf that adds two nodes to the graph at each step, 1nstead of

:’eﬁf;eene.i Fbr this we first need to strengthen Lemma 3 1

In Lemmas 4 1 and 4 2 k- may be elther even or odd,

'althcugh we use them only for odd k.



"7f;to of u1;’°f type (a), and let y be the nelghbor of u1 for
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"Lemma 4.1. If each node of a graph G on n nodes has

‘degree at least k, then G contains at least min ([%],k)

giggependent arcs.

Let M <c @ be a maximum set of independent arcs in
%G = [N;@], i,e., one of maximum cardinality. Say that x in
?N is covered in M if x 1is the end of some member of 7,

*uncovered otherw13e. If G contains at most one uncovered

7node, then 7 has [2] members. Suppose that G has at
. least two uncovered nodes, and let ul, u2 be two such Since

~m is a maximum independent set, each node X that neighbors
‘ an uncovered node must be covered Let u:L have degree

k > k i = 1 2, ,and separate the k ‘neighbors of ul
‘1nto two types' r(a) those joined together 1n palrs by

arcs of m, (b) those not so JOlned Let x be a nelghbor
“; which (x,y) is in M. Then ‘x cannot neighbor u2 for
'H'otherw1se the set m of arcs obtained from m by deletlng

b f(x,y) and addlng the arcs ‘(ul,,y), (x, u2) 1s independent‘

'and contains more members than M, a contradlctlon- Hence

1f ml is the number of arcs of)mﬁthat JOln type (ﬂ

-

‘~ﬁ_‘neighbors of u., 1 =1, 2, then m contalns at 1east

‘e'ml +-m2 +-max(k 2m1, k2~2m2) > k members. Thus, in any

£ event, \m has at 1east mln([f}, k) members, prOV1ng

| h’: Lemma 4. l

we need one other prellminary 1emma before proceedlng '

to the proof of Theorem 4 3
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Lemma 4.2. Lf each node of a graph G on n nodes

i ———— T ——— v—— —

has degree at least k > f’ then G 1is k—arc-connected.

Hence for such k,n there are k—arc—connected graphs on

kn+1"
Z.J arcs.

n nodes having [

To prove Lemma 4.2, let (X,X) be a cut in G; Let X
have h members; We have 1 < h and may assume h < %;
Hence by hypothesis, 1 < h < k. It follows thatﬁ-:’
ka—h)(h—l) > 0, and hence

,(4;1> | kh — h(h-1) '3 k.

But the number of arcs in (X X) is greater than or equal to
the left hand side of 4. 1), s1nce each node of X has degree
at 1east k, “and hence atyleast krlh + 1 arc3'301n1nglr5

to members of X. This proves the first part of the lemms.

To prove the second part, we need only establlsh the exist—
‘ﬂsence of graphs on n nodes hav1ng Eg arcs. (for kn even)
,dor' 5%;1 arcs (for kn odd), wlthfeaCh‘node having degree‘
'tfzyk. ThrS“can,be‘aecomplished infvarious ways; For ekample;:'
the construCtion‘ofsthe_precedingyseetion:does this‘for‘even

'k, and an‘entirelyeanalogous,construction worksffor'odd,fk.‘

‘Theorem;4f3 Let n be a 2051tive 1nteger and k g_

Qodd 1nteger satlsfvlng 3 <k < n. Then there is a grap onke
hkn nodes that is k—arc—connected and has ,gk%?l' ~arCS;‘_

:‘I follows from Lemma 4. 2 that for n in the range d

k + 1 <n < 2k, Theo@em 4.3 is valid. The constructlon



described below increases n by two at each step. If
n > 2k 1is even, we may start the induction at 2k in
order to reach n; if n > 2k 1is odd, we may start at
2k — 1. We now describe the inductive step.

Suppose n > 2k — 1 and let G be a k—arc¥connected
graph on n nodes having the minimum number of arcs. By
LemmaEZT1;( G contains at least k — 1 independent arcs,
say |

(4.2) (xl,yl), ey (xp,yp), (ul,vl), v (upévp)t

‘Here k =2p + 1. Now form G' by deleting the arcs (4.2),

then adding FﬁBl@bdes z,w together with the arcs

(4-3) e ’(Z,Xi),hr--: (’Z,Xp), (Z:Y]_): ooy ,(z:yp)a\
Ge) s e (g, (), e (Y,
?(4.5)‘- e “’(z -

Observe that G' has ‘k more arcs than G does, _so that
_the arc count has gone up appropriately The proof,that -
G' is k-arc—connected is similar to that glven in the
keproof of Theorem 3. 2 L (X X) be a cut set of arcs in 1
¢' and suppose, contrary to what we w1sh to show, that
kl(X,X) has k—l or~fewer members If both nodes 'z and
‘rw are on one s1de of this cut, say ‘z‘ and ‘w are 1n X;‘fk
{then X must surely contaln nodes of‘ G. As betore, the‘

cut (Y,Y) in G 1nduced by taklng Y X —\{z w} can

have at most k — 1 members, a contradlctlon If z and

——
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'w are on opposite sides of the cut, say z 1is in X,

%w in X, then both X and X contain nodes of G, since

.z and w each have degree k in G'. Again the cut

(%,%) induced in G by defining Y = X — {2z}, ¥ = Xi~= (w},|

\ﬁagﬁﬁoiﬁEféiéfés than does (X,X), and we have a contradiction.

t

\Tﬁisgggﬁbletes the proof of The;;em 4.3.
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