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Abstract

We review the question of whether the fundamental laws of nature limit our ability to
probe arbitrarily short distances. First, we examine what insights can be gained from thought
experiments for probes of shortest distances, and summarize what can be learned from different
approaches to a theory of quantum gravity. Then we discuss some models that have been
developed to implement a minimal length scale in quantum mechanics and quantum field
theory. These models have entered the literature as the generalized uncertainty principle or
the modified dispersion relation, and have allowed the study of the effects of a minimal length
scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics
and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation
of a minimal length scale in short-distance physics.
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Minimal Length Scale Scenarios for Quantum Gravity 5

1 Introduction

In the 5th century B.C., Democritus postulated the existence of smallest objects that all matter
is built from and called them ‘atoms’. In Greek, the prefix ‘a’ means ‘not’ and the word ‘tomos’
means ‘cut’. Thus, atomos or atom means uncuttable or indivisible. According to Democritus’
theory of atomism, “Nothing exists except atoms and empty space, everything else is opinion.”
Though variable in shape, Democritus’ atoms were the hypothetical fundamental constituents of
matter, the elementary building blocks of all that exists, the smallest possible entities. They were
conjectured to be of finite size, but homogeneous and without substructure. They were the first
envisioned end of reductionism.

2500 years later, we know that Democritus was right in that solids and liquids are composed
of smaller entities with universal properties that are called atoms in his honor. But these atoms
turned out to be divisible. And stripped of its electrons, the atomic nucleus too was found to be a
composite of smaller particles, neutrons and protons. Looking closer still, we have found that even
neutrons and protons have a substructure of quarks and gluons. At present, the standard model
of particle physics with three generations of quarks and fermions and the vector fields associated
to the gauge groups are the most fundamental constituents of matter that we know.

Like a Russian doll, reality has so far revealed one after another layer on smaller and smaller
scales. This begs the question: Will we continue to look closer into the structure of matter, and
possibly find more layers? Or is there a fundamental limit to this search, a limit beyond which we
cannot go? And if so, is this a limit in principle or one in practice?

Any answer to this question has to include not only the structure of matter, but the structure of
space and time itself, and therefore it has to include gravity. For one, this is because Democritus’
search for the most fundamental constituents carries over to space and time too. Are space and
time fundamental, or are they just good approximations that emerge from a more fundamental
concept in the limits that we have tested so far? Is spacetime made of something else? Are there
‘atoms’ of space? And second, testing short distances requires focusing large energies in small
volumes, and when energy densities increase, one finally cannot neglect anymore the curvature of
the background.

In this review we will study this old question of whether there is a fundamental limit to the
resolution of structures beyond which we cannot discover anything more. In Section 3, we will
summarize different approaches to this question, and how they connect with our search for a
theory of quantum gravity. We will see that almost all such approaches lead us to find that
the possible resolution of structures is finite or, more graphically, that nature features a minimal
length scale – though we will also see that the expression ‘minimal length scale’ can have different
interpretations. While we will not go into many of the details of the presently pursued candidate
theories for quantum gravity, we will learn what some of them have to say about the question.
After the motivations, we will in Section 4 briefly review some approaches that investigate the
consequences of a minimal length scale in quantum mechanics and quantum field theory, models
that have flourished into one of the best motivated and best developed areas of the phenomenology
of quantum gravity.

In the following, we use the unit convention c = ~ = 1, so that the Planck length lPl is the
inverse of the Planck mass mPl = 1/lPl, and Newton’s constant G = l2Pl = 1/m2

Pl. The signature
of the metric is (1,−1,−1,−1). Small Greek indices run from 0 to 3, large Latin indices from 0
to 4, and small Latin indices from 1 to 3, except for Section 3.2, where small Greek indices run
from 0 to D, and small Latin indices run from 2 to D. An arrow denotes the spatial component of
a vector, for example ~a = (a1, a2, a3). Bold-faced quantities are tensors in an index-free notation
that will be used in the text for better readability, for example p = (p0, p1, p2, p3). Acronyms and
abbreviations can be found in the index.

We begin with a brief historical background.
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6 Sabine Hossenfelder

2 A Minimal History

Special relativity and quantum mechanics are characterized by two universal constants, the speed
of light, c, and Planck’s constant, ~. Yet, from these constants alone one cannot construct either
a constant of dimension length or mass. Though, if one had either, they could be converted into
each other by use of ~ and c. But in 1899, Max Planck pointed out that adding Newton’s constant
G to the universal constants c and ~ allows one to construct units of mass, length and time [265]:

tPl ≈ 10−43 s

lPl ≈ 10−33 cm

mPl ≈ 1.2× 1019 GeV . (1)

Today these are known as the Planck time, Planck length and Planck mass, respectively. As we
will see later, they mark the scale at which quantum effects of the gravitational interaction are
expected to become important. But back in Planck’s days their relevance was their universality,
because they are constructed entirely from fundamental constants.

The idea of a minimal length was predated by that of the “chronon,” a smallest unit of time,
proposed by Robert Lévi [200] in 1927 in his “Hyphothèse de l’atome de temps” (hypothesis of time
atoms), that was further developed by Pokrowski in the years following Lévi’s proposal [266]. But
that there might be limits to the divisibility of space and time remained a far-fetched speculation
on the fringes of a community rapidly pushing forward the development of general relativity and
quantum mechanics. It was not until special relativity and quantum mechanics were joined in the
framework of quantum field theory that the possible existence of a minimal length scale rose to
the awareness of the community.

With the advent of quantum field theory in the 1930s, it was widely believed that a fundamental
length was necessary to cure troublesome divergences. The most commonly used regularization
was a cut-off or some other dimensionful quantity to render integrals finite. It seemed natural to
think of this pragmatic cut-off as having fundamental significance, an interpretation that however
inevitably caused problems with Lorentz invariance, since the cut-off would not be independent
of the frame of reference. Heisenberg was among the first to consider a fundamentally-discrete
spacetime that would yield a cut-off, laid out in his letters to Bohr and Pauli. The idea of a
fundamentally finite length or a maximum frequency was in these years studied by many, including
Flint [110], March [219], Möglich [234] and Goudsmit [267], just to mention a few. They all had
in common that they considered the fundamental length to be in the realm of subatomic physics
on the order of the femtometer (10−15 m).

The one exception was a young Russian, Matvei Bronstein. Today recognized as the first to
comprehend the problem of quantizing gravity [138], Bronstein was decades ahead of his time.
Already in 1936, he argued that gravity is in one important way fundamentally different from
electrodynamics: Gravity does not allow an arbitrarily high concentration of charge in a small
region of spacetime, since the gravitational ‘charge’ is energy and, if concentrated too much, will
collapse to a black hole. Using the weak field approximation of gravity, he concluded that this leads
to an inevitable limit to the precision of which one can measure the strength of the gravitational
field (in terms of the Christoffel symbols).

In his 1936 article “Quantentheorie schwacher Gravitationsfelder” (Quantum theory of weak
gravitational fields), Bronstein wrote [138, 70]:

“[T]he gravitational radius of the test-body (GρV/c2) used for the measurements should
by no means be larger than its linear dimensions (V 1/3); from this one obtains an upper
bound for its density (ρ . c2/GV 2/3). Thus, the possibilities for measurements in
this region are even more restricted than one concludes from the quantum-mechanical
commutation relations. Without a profound change of the classical notions it therefore
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Minimal Length Scale Scenarios for Quantum Gravity 7

seems hardly possible to extend the quantum theory of gravitation to this region.”1

([70], p. 150)2

Few people took note of Bronstein’s argument and, unfortunately, the history of this promising
young physicist ended in a Leningrad prison in February 1938, where Matvei Bronstein was exe-
cuted at the age of 31.

Heisenberg meanwhile continued in his attempt to make sense of the notion of a fundamental
minimal length of nuclear dimensions. In 1938, Heisenberg wrote “Über die in der Theorie der
Elementarteilchen auftretende universelle Länge” (On the universal length appearing in the theory
of elementary particles) [148], in which he argued that this fundamental length, which he denoted
r0, should appear somewhere not too far beyond the classical electron radius (of the order 100 fm).

This idea seems curious today, and has to be put into perspective. Heisenberg was very worried
about the non-renormalizability of Fermi’s theory of β-decay. He had previously shown [147]
that applying Fermi’s theory to the high center-of-mass energies of some hundred GeV lead to
an ‘explosion,’ by which he referred to events of very high multiplicity. Heisenberg argued this
would explain the observed cosmic ray showers, whose large number of secondary particles we know
today are created by cascades (a possibility that was discussed already at the time of Heisenberg’s
writing, but not agreed upon). We also know today that what Heisenberg actually discovered
is that Fermi’s theory breaks down at such high energies, and the four-fermion coupling has to
be replaced by the exchange of a gauge boson in the electroweak interaction. But in the 1930s
neither the strong nor the electroweak force was known. Heisenberg then connected the problem
of regularization with the breakdown of the perturbation expansion of Fermi’s theory, and argued
that the presence of the alleged explosions would prohibit the resolution of finer structures:

“If the explosions actually exist and represent the processes characteristic for the con-
stant r0, then they maybe convey a first, still unclear, understanding of the obscure
properties connected with the constant r0. These should certainly express themselves
in difficulties of measurements with a precision better than r0. . . The explosions would
have the effect. . . that measurements of positions are not possible to a precision better
than r0.”

3 ([148], p. 31)

In hindsight we know that Heisenberg was, correctly, arguing that the theory of elementary
particles known in the 1930s was incomplete. The strong interaction was missing and Fermi’s
theory indeed non-renormalizable, but not fundamental. Today we also know that the standard
model of particle physics is renormalizable and know techniques to deal with divergent integrals
that do not necessitate cut-offs, such as dimensional regularization. But lacking that knowledge,
it is understandable that Heisenberg argued that taking into account gravity was irrelevant for the
existence of a fundamental length:

“The fact that [the Planck length] is significantly smaller than r0 makes it valid to leave
aside the obscure properties of the description of nature due to gravity, since they –
at least in atomic physics – are totally negligible relative to the much coarser obscure

1 “[D]er Gravitationsradius des zur Messung dienenden Probekörpers (GρV/c2) soll keineswegs größer als seine
linearen Abmessungen (V 1/3) sein; daraus entsteht eine obere Grenze für seine Dichte (ρ . c2/GV 2/3). Die
Messungsmöglichkeiten sind also in dem Gebiet noch mehr beschränkt als es sich aus den quantenmechanischen
Vertauschungsrelationen schliessen läßt. Ohne eine tiefgreifende Änderung der klassischen Begriffe, scheint es daher
kaum möglich, die Quantentheorie der Gravitation auch auf dieses Gebiet auszudehnen.”

2 Translations from German to English: SH.
3 “Wenn die Explosionen tatsächlich existieren und die für die Konstante r0 eigentlich charakeristischen Prozesse

darstellen, so vermitteln sie vielleicht ein erstes, noch unklares Verständnis der unanschaulichen Züge, die mit
der Konstanten r0 verbunden sind. Diese sollten sich ja wohl zunächst darin äußern, daß die Messung einer den
Wert r0 unterschreitenden Genauigkeit zu Schwierigkeiten führt. . . [D]ie Explosionen [würden] dafür sorgen. . . , daß
Ortsmessungen mit einer r0 unterschreitenden Genauigkeit unmöglich sind.”
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8 Sabine Hossenfelder

properties that go back to the universal constant r0. For this reason, it seems hardly
possible to integrate electric and gravitational phenomena into the rest of physics until
the problems connected to the length r0 are solved.”4 ([148], p. 26)

Heisenberg apparently put great hope in the notion of a fundamental length to move forward
the understanding of elementary matter. In 1939 he expressed his belief that a quantum theory
with a minimal length scale would be able to account for the discrete mass spectrum of the
(then known) elementary particles [149]. However, the theory of quantum electrodynamics was
developed to maturity, the ‘explosions’ were satisfactorily explained and, without being hindered
by the appearance of any fundamentally finite resolution, experiments probed shorter and shorter
scales. The divergences in quantum field theory became better understood and discrete approaches
to space and time remained unappealing due to their problems with Lorentz invariance.

In a 1947 letter to Heisenberg, Pauli commented on the idea of a smallest length that Heisenberg
still held dearly and explained his reservations, concluding “Extremely put, I would not be surprised
if your ‘universal’ length turned out to be a mere figment of imagination.” [254]. (For more about
Heisenberg’s historical involvement with the universal length, the interested reader is referred to
Kragh’s very recommendable article [199].)

In 1930, in a letter to his student Rudolf Peierls [150], Heisenberg mentioned that he was trying
to make sense of a minimal length by letting the position operators be non-commuting [x̂ν , x̂µ] 6= 0.
He expressed his hope that Peierls ask Pauli how to proceed with this idea:

“So far, I have not been able to make mathematical sense of such commutation rela-
tions. . . Do you or Pauli have anything to say about the mathematical meaning of such
commutation relations?”5 ([150], p. 16)

But it took 17 years until Snyder, in 1947, made mathematical sense of Heisenberg’s idea.6

Snyder, who felt that that the use of a cut-off in momentum space was a “distasteful arbitrary
procedure” [288], worked out a modification of the canonical commutation relations of position
and momentum operators. In that way, spacetime became Lorentz-covariantly non-commutative,
but the modification of commutation relations increased the Heisenberg uncertainty, such that a
smallest possible resolution of structures was introduced (a consequence Snyder did not explicitly
mention in his paper). Though Snyder’s approach was criticized for the difficulties of inclusion of
translations [316], it has received a lot of attention as the first to show that a minimal length scale
need not be in conflict with Lorentz invariance.

In 1960, Peres and Rosen [262] studied uncertainties in the measurement of the average values
of Christoffel symbols due to the impossibility of concentrating a mass to a region smaller than its
Schwarzschild radius, and came to the same conclusion as Bronstein already had, in 1936,

“The existence of these quantum uncertainties in the gravitational field is a strong
argument for the necessity of quantizing it. It is very likely that a quantum theory
of gravitation would then generalize these uncertainty relations to all other Christoffel
symbols.” ([262], p. 336)

4 “Der Umstand, daß [die Plancklänge] wesentlich kleiner ist als r0, gibt uns das Recht, von den durch die
Gravitation bedingten unanschaulichen Zügen der Naturbeschreibung zunächst abzusehen, da sie – wenigstens in der
Atomphysik – völlig untergehen in den viel gröberen unanschaulichen Zügen, die von der universellen Konstanten r0
herrühren. Es dürfte aus diesen Gründen wohl kaum möglich sein, die elektrischen und die Gravitationserscheinungen
in die übrige Physik einzuordnen, bevor die mit der Länge r0 zusammenhängenden Probleme gelöst sind.”

5 “Mir ist es bisher nicht gelungen, solchen Vertauschungs-Relationen einen vernünftigen mathematischen Sinn
zuzuordnen. . . Fällt Ihnen oder Pauli nicht vielleicht etwas über den mathematischen Sinn solcher Vertauschungs-
Relationen ein?”

6 The story has been told [313] that Peierls asked Pauli, Pauli passed the question on to his colleague Oppen-
heimer, who asked his student Hartland Snyder. However, in a 1946 letter to Pauli [289], Snyder encloses his paper
without any mention of it being an answer to a question posed to him by others.
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Minimal Length Scale Scenarios for Quantum Gravity 9

While they considered the limitations for measuring the gravitational field itself, they did not study
the limitations these uncertainties induce on the ability to measure distances in general.

It was not until 1964, that Mead pointed out the peculiar role that gravity plays in our attempts
to test physics at short distances [222, 223]. He showed, in a series of thought experiments that
we will discuss in Section 3.1, that this influence does have the effect of amplifying Heisenberg’s
measurement uncertainty, making it impossible to measure distances to a precision better than
Planck’s length. And, since gravity couples universally, this is, though usually negligible, an
inescapable influence on all our experiments.

Mead’s work did not originally attain a lot of attention. Decades later, he submitted his
recollection [224] that “Planck’s proposal that the Planck mass, length, and time should form a
fundamental system of units. . . was still considered heretical well into the 1960s,” and that his
argument for the fundamental relevance of the Planck length met strong resistance:

“At the time, I read many referee reports on my papers and discussed the matter
with every theoretical physicist who was willing to listen; nobody that I contacted
recognized the connection with the Planck proposal, and few took seriously the idea of
[the Planck length] as a possible fundamental length. The view was nearly unanimous,
not just that I had failed to prove my result, but that the Planck length could never
play a fundamental role in physics. A minority held that there could be no fundamental
length at all, but most were then convinced that a [different] fundamental length. . . , of
the order of the proton Compton wavelength, was the wave of the future. Moreover, the
people I contacted seemed to treat this much longer fundamental length as established
fact, not speculation, despite the lack of actual evidence for it.” ([224], p. 15)

But then in the mid 1970s then Hawking’s calculation of a black hole’s thermodynamical
properties [145] introduced the ‘transplanckian problem.’ Due to the, in principle infinite, blue shift
of photons approaching a black-hole horizon, modes with energies exceeding the Planck scale had
to be taken into account to calculate the emission rate. A great many physicists have significantly
advanced our understanding of black-hole physics and the Planck scale, too many to be named
here. However, the prominent role played by John Wheeler, whose contributions, though not
directly on the topic of a minimal length, has connected black-hole physics with spacetime foam
and the Planckian limit, and by this inspired much of what followed.

Unruh suggested in 1995 [308] that one use a modified dispersion relation to deal with the
difficulty of transplanckian modes, so that a smallest possible wavelength takes care of the contri-
butions beyond the Planck scale. A similar problem exists in inflationary cosmology [220] since
tracing back in time small frequencies increases the frequency till it eventually might surpass the
Planck scale at which point we no longer know how to make sense of general relativity. Thus,
this issue of transplanckian modes in cosmology brought up another reason to reconsider the pos-
sibility of a minimal length or a maximal frequency, but this time the maximal frequency was
at the Planck scale rather than at the nuclear scale. Therefore, it was proposed [180, 144] that
this problem too might be cured by implementing a minimum length uncertainty principle into
inflationary cosmology.

Almost at the same time, Majid and Ruegg [213] proposed a modification for the commutators
of spacetime coordinates, similar to that of Snyder, following from a generalization of the Poincaré
algebra to a Hopf algebra, which became known as κ-Poincaré. Kempf et al. [175, 174, 184,
178] developed the mathematical basis of quantum mechanics that took into account a minimal
length scale and ventured towards quantum field theory. There are by now many variants of
models employing modifications of the canonical commutation relations in order to accommodate
a minimal length scale, not all of which make use of the complete κ-Poincaré framework, as will
be discussed later in Sections 4.2 and 4.5. Some of these approaches were shown to give rise to a
modification of the dispersion relation, though the physical interpretation and relevance, as well
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10 Sabine Hossenfelder

as the phenomenological consequences of this relation are still under debate.
In parallel to this, developments in string theory revealed the impossibility of resolving arbi-

trarily small structures with an object of finite extension. It had already been shown in the late
1980s [140, 10, 9, 11, 310] that string scattering in the super-Planckian regime would result in a
generalized uncertainty principle, preventing a localization to better than the string scale (more on
this in Section 3.2). In 1996, John Schwarz gave a talk at SLAC about the generalized uncertainty
principles resulting from string theory and thereby inspired the 1999 work by Adler and Santi-
ago [3] who almost exactly reproduced Mead’s earlier argument, apparently without being aware
of Mead’s work. This picture was later refined when it became understood that string theory not
only contains strings but also higher dimensional objects, known as branes, which will be discussed
in Section 3.2.

In the following years, a generalized uncertainty principle and quantum mechanics with the
Planck length as a minimal length received an increasing amount of attention as potential cures
for the transplanckian problem, a natural UV-regulator, and as possible manifestations of a funda-
mental property of quantum spacetime. In the late 1990s, it was also noted that it is compatible
with string theory to have large or warped extra dimensions that can effectively lower the Planck
scale into the TeV range. With this, the fundamental length scale also moved into the reach of
collider physics, resulting in a flurry of activity.7

Today, how to resolve the apparent disagreements between the quantum field theories of the
standard model and general relativity is one of the big open questions in theoretical physics. It is
not that we cannot quantize gravity, but that the attempt to do so leads to a perturbatively non-
renormalizable and thus fundamentally nonsensical theory. The basic reason is that the coupling
constant of gravity, Newton’s constant, is dimensionful. This leads to the necessity to introduce
an infinite number of counter-terms, eventually rendering the theory incapable of prediction.

But the same is true for Fermi’s theory that Heisenberg was so worried about that he argued
for a finite resolution where the theory breaks down, and mistakenly so, since he was merely
pushing an effective theory beyond its limits. So we have to ask then if we might be making the
same mistake as Heisenberg, in that we falsely interpret the failure of general relativity to extend
beyond the Planck scale as the occurrence of a fundamentally finite resolution of structures, rather
than just the limit beyond which we have to look for a new theory that will allow us to resolve
smaller distances still?

If it was only the extension of classical gravity, laid out in many thought experiments that will
be discussed in Section 3.1, that had us believing the Planck length is of fundamental importance,
then the above historical lesson should caution us we might be on the wrong track. Yet, the
situation today is different from the one that Heisenberg faced. Rather than pushing a quantum
theory beyond its limits, we are pushing a classical theory and conclude that its short-distance
behavior is troublesome, which we hope to resolve with quantizing the theory. And, as we will see,
several attempts at a UV-completion of gravity, discussed in Sections 3.2 – 3.7, suggest that the role
of the Planck length as a minimal length carries over into the quantum regime as a dimensionful
regulator, though in very different ways, feeding our hopes that we are working on unveiling the
last and final Russian doll.

For a more exhaustive coverage of the history of the minimal length, the interested reader is
referred to [141].

7 Though the hope of a lowered Planck scale pushing quantum gravitational effects into the reach of the Large
Hadron Collider seems, at the time of writing, to not have been fulfilled.
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3 Motivations

3.1 Thought experiments

Thought experiments have played an important role in the history of physics as the poor the-
oretician’s way to test the limits of a theory. This poverty might be an actual one of lacking
experimental equipment, or it might be one of practical impossibility. Luckily, technological ad-
vances sometimes turn thought experiments into real experiments, as was the case with Einstein,
Podolsky and Rosen’s 1935 paradox. But even if an experiment is not experimentally realizable in
the near future, thought experiments serve two important purposes. First, by allowing the thinker
to test ranges of parameter space that are inaccessible to experiment, they may reveal inconsisten-
cies or paradoxes and thereby open doors to an improvement in the fundamentals of the theory.
The complete evaporation of a black hole and the question of information loss in that process is a
good example for this. Second, thought experiments tie the theory to reality by the necessity to
investigate in detail what constitutes a measurable entity. The thought experiments discussed in
the following are examples of this.

3.1.1 The Heisenberg microscope with Newtonian gravity

Let us first recall Heisenberg’s microscope, that lead to the uncertainty principle [146]. Consider a
photon with frequency ω moving in direction x, which scatters on a particle whose position on the
x-axis we want to measure. The scattered photons that reach the lens of the microscope have to lie
within an angle ε to produce an image from which we want to infer the position of the particle (see
Figure 1). According to classical optics, the wavelength of the photon sets a limit to the possible
resolution ∆x

∆x &
1

2πω sin ε
. (2)

But the photon used to measure the position of the particle has a recoil when it scatters and
transfers a momentum to the particle. Since one does not know the direction of the photon to
better than ε, this results in an uncertainty for the momentum of the particle in direction x

∆px & ω sin ε . (3)

Taken together one obtains Heisenberg’s uncertainty (up to a factor of order one)

∆x∆px &
1

2π
. (4)

We know today that Heisenberg’s uncertainty is not just a peculiarity of a measurement method
but much more than that – it is a fundamental property of the quantum nature of matter. It does
not, strictly speaking, even make sense to consider the position and momentum of the particle
at the same time. Consequently, instead of speaking about the photon scattering off the particle
as if that would happen in one particular point, we should speak of the photon having a strong
interaction with the particle in some region of size R.

Now we will include gravity in the picture, following the treatment of Mead [222]. For any
interaction to take place and subsequent measurement to be possible, the time elapsed between
the interaction and measurement has to be at least on the order of the time, τ , the photon needs
to travel the distance R, so that τ & R. The photon carries an energy that, though in general tiny,
exerts a gravitational pull on the particle whose position we wish to measure. The gravitational
acceleration acting on the particle is at least on the order of

a ≈ Gω

R2
, (5)
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12 Sabine Hossenfelder

Figure 1: Heisenberg’s microscope. A photon moving along the x-axis scatters off a probe within an
interaction region of radius R and is detected by a microscope (indicated by a lens and screen) with
opening angle ε.

and, assuming that the particle is non-relativistic and much slower than the photon, the acceleration
lasts about the duration the photon is in the region of strong interaction. From this, the particle
acquires a velocity of v ≈ aR, or

v ≈ Gω

R
. (6)

Thus, in the time R, the acquired velocity allows the particle to travel a distance of

L ≈ Gω . (7)

However, since the direction of the photon was unknown to within the angle ε, the direction of the
acceleration and the motion of the particle is also unknown. Projection on the x-axis then yields
the additional uncertainty of

∆x & Gω sin ε. (8)

Combining (8) with (2), one obtains

∆x &
√
G = lPl . (9)

One can refine this argument by taking into account that strictly speaking during the measurement,
the momentum of the photon, ω, increases by Gmω/R, where m is the mass of the particle. This
increases the uncertainty in the particle’s momentum (3) to

∆px & ω

(
1 +

Gm

R

)
sin ε , (10)

and, for the time the photon is in the interaction region, translates into a position uncertainty
∆x ≈ R∆p/m

∆x & ω

(
R

m
+G

)
sin ε , (11)

which is larger than the previously found uncertainty (8) and thus (9) still follows.
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Adler and Santiago [3] offer pretty much the same argument, but add that the particle’s mo-
mentum uncertainty ∆p should be on the order of the photon’s momentum ω. Then one finds

∆x & G∆p . (12)

Assuming that the normal uncertainty and the gravitational uncertainties add linearly, one arrives
at

∆x &
1

∆p
+G∆p . (13)

Any uncertainty principle with a modification of this or similar form has become known in the
literature as ‘generalized uncertainty principle’ (GUP). Adler and Santiago’s work was inspired
by the appearance of such an uncertainty principle in string theory, which we will investigate in
Section 3.2. Adler and Santiago make the interesting observation that the GUP (13) is invariant
under the replacement

lPl∆p↔
1

lPl∆p
, (14)

which relates long to short distances and high to low energies.
These limitations, refinements of which we will discuss in the following Sections 3.1.2 – 3.1.7,

apply to the possible spatial resolution in a microscope-like measurement. At the high energies
necessary to reach the Planckian limit, the scattering is unlikely to be elastic, but the same consid-
erations apply to inelastic scattering events. Heisenberg’s microscope revealed a fundamental limit
that is a consequence of the non-commutativity of position and momentum operators in quantum
mechanics. The question that the GUP then raises is what modification of quantum mechanics
would give rise to the generalized uncertainty, a question we will return to in Section 4.2.

Another related argument has been put forward by Scardigli [275], who employs the idea that
once one arrives at energies of about the Planck mass and concentrates them to within a volume
of radius of the Planck length, one creates tiny black holes, which subsequently evaporate. This
effects scales in the same way as the one discussed here, and one arrives again at (13).

3.1.2 The general relativistic Heisenberg microscope

The above result makes use of Newtonian gravity, and has to be refined when one takes into account
general relativity. Before we look into the details, let us start with a heuristic but instructive
argument. One of the most general features of general relativity is the formation of black holes
under certain circumstances, roughly speaking when the energy density in some region of spacetime
becomes too high. Once matter becomes very dense, its gravitational pull leads to a total collapse
that ends in the formation of a horizon.8 It is usually assumed that the Hoop conjecture holds [306]:
If an amount of energy ω is compacted at any time into a region whose circumference in every
direction is R ≤ 4πGω , then the region will eventually develop into a black hole. The Hoop
conjecture is unproven, but we know from both analytical and numerical studies that it holds to
very good precision [107, 168].

Consider now that we have a particle of energy ω. Its extension R has to be larger than the
Compton wavelength associated to the energy, so R ≥ 1/ω. Thus, the larger the energy, the
better the particle can be focused. On the other hand, if the extension drops below 4πGE, then
a black hole is formed with radius 2ωG. The important point to notice here is that the extension
of the black hole grows linearly with the energy, and therefore one can achieve a minimal possible
extension, which is on the order of R ∼

√
G.

8 In the classical theory, inside the horizon lies a singularity. This singularity is expected to be avoided in
quantum gravity, but how that works or doesn’t work is not relevant in the following.

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2013-2

http://www.livingreviews.org/lrr-2013-2


14 Sabine Hossenfelder

For the more detailed argument, we follow Mead [222] with the general relativistic version of
the Heisenberg microscope that was discussed in Section 3.1.1. Again, we have a particle whose
position we want to measure by help of a test particle. The test particle has a momentum vector
(ω,~k), and for completeness we consider a particle with rest mass µ, though we will see later that
the tightest constraints come from the limit µ→ 0.

The velocity v of the test particle is

v =
k√

µ2 + k2
, (15)

where k2 = ω2 − µ2, and k = |~k|. As before, the test particle moves in the x direction. The
task is now to compute the gravitational field of the test particle and the motion it causes on the
measured particle.

To obtain the metric that the test particle creates, we first change into the rest frame of the
particle by boosting into x-direction. Denoting the new coordinates with primes, the measured
particle moves towards the test particle in direction −x′, and the metric is a Schwarzschild metric.
We will only need it on the x-axis where we have y = z = 0, and thus

g′00 = 1 + 2φ′ , g′11 = − 1

g′00
, g′22 = g′33 = −1 , (16)

where

φ′ =
Gµ

|x′| , (17)

and the remaining components of the metric vanish. Using the transformation law for tensors

gµν =
∂(x′)κ

∂xµ
∂(x′)α

∂xν
g′κα , (18)

with the notation x0 = t, x1 = x, x2 = y, x3 = z, and the same for the primed coordinates, the
Lorentz boost from the primed to unprimed coordinates yields in the rest frame of the measured
particle

g00 =
1 + 2φ

1 + 2φ(1− v2)
+ 2φ , g11 = − −1 + 2φv2

1 + 2φ(1− v2)
+ 2v2φ, (19)

g01 = g10 = − 2vφ

1 + φ(1− v2)
− 2vφ , g′22 = g′33 = −1 , (20)

where

φ =
φ′

1− v2
= −Gω

R
. (21)

Here, R = vt − x is the mean distance between the test particle and the measured particle. To
avoid a horizon in the rest frame, we must have 2φ′ < 1, and thus from Eq. (21)

− 2φ′ = 2
Gω

R
(1− v2) < 1 . (22)

Because of Eq. (2), ∆x ≥ 1/ω but also ∆x ≥ R, which is the area in which the particle may
scatter, thus

∆x2 &
R

ω
& 2G(1− v2) . (23)
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We see from this that, as long as v2 � 1, the previously found lower bound on the spatial resolution
∆x can already be read off here, and we turn our attention towards the case where 1 − v2 � 1.
From (21) we see that this means we work in the limit where −φ� 1.

To proceed, we need to estimate now how much the measured particle moves due to the test
particle’s vicinity. For this, we note that the world line of the measured particle must be timelike.
We denote the velocity in the x-direction with u, then we need

ds2 =
(
g00 + 2g10u+ g11u

2
)
dt2 ≥ 0 . (24)

Now we insert Eq. (20) and follow Mead [222] by introducing the abbreviation

α = 1 + 2φ(1− v2) . (25)

Because of Eq. (22), 0 < α < 1. We simplify the requirement of Eq. (24) by leaving u2 alone on
the left side of the inequality, subtracting 1 and dividing by u− 1. Taking into account that φ ≤ 0
and v ≤ 1, one finds after some algebra

u ≥ 1 + 2φ(1 + α)

1− 2φv2(1 + α)
, (26)

and

u

1− u
≥ −1

2
(1 + 2φ) . (27)

One arrives at this estimate with reduced effort if one makes it clear to oneself what we want to
estimate. We want to know, as previously, how much the particle, whose position we are trying
to measure, will move due to the gravitational attraction of the particle we are using for the
measurement. The faster the particles pass by each other, the shorter the interaction time and, all
other things being equal, the less the particle we want to measure will move. Thus, if we consider
a photon with v = 1, we are dealing with the case with the least influence, and if we find a minimal
length in this case, it should be there for all cases. Setting v = 1, one obtains the inequality
Eq. (27) with greatly reduced work.

Now we can continue as before in the non-relativistic case. The time τ required for the test
particle to move a distance R away from the measured particle is at least τ & R/(1 − u), and
during this time the measured particle moves a distance

L = uτ & R
u

1− u
&
R

2
(−1− 2φ) . (28)

Since we work in the limit −φ� 1, this means

L & Gω , (29)

and projection on the x-axis yields as before (compare to Eq. (8)) for the uncertainty added to the
measured particle because the photon’s direction was known only to precision ε

∆x & Gω sin ε . (30)

This combines with (2), to again give

∆x & lPl . (31)

Adler and Santiago [3] found the same result by using the linear approximation of Einstein’s
field equation for a cylindrical source with length l and radius ρ of comparable size, filled by a
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radiation field with total energy ω, and moving in the x direction. With cylindrical coordinates
x, r, φ, the line element takes the form [3]

ds2 = dt2 − dx2 − dy2 − dz2 + f(r, x, t)(dt− dx)2 , (32)

where the function f is given by

f(r, x, t) =
4Gω

l
g(r)θ(x− t)θ(t− x− l) (33)

g(r) =

{
r2/ρ2 for r < ρ
1 + ln(r2/ρ2) for r > ρ

. (34)

In this background, one can then compute the motion of the measured particle by using the
Newtonian limit of the geodesic equation, provided the particle remains non-relativistic. In the
longitudinal direction, along the motion of the test particle one finds

d2x

dt2
=

1

2

∂f

∂x
. (35)

The derivative of f gives two delta-functions at the front and back of the cylinder with equal
momentum transfer but of opposite direction. The change in velocity to the measured particle is

∆ẋ = 2G
ω

l
g(r) . (36)

Near the cylinder g(r) is of order one, and in the time of passage τ ∼ l, the particle thus moves
approximately

2Gω , (37)

which is, up to a factor of 2, the same result as Mead’s (29). We note that Adler and Santiago’s
argument does not make use of the requirement that no black hole should be formed, but that the
appropriateness of the non-relativistic and weak-field limit is questionable.

3.1.3 Limit to distance measurements

Wigner and Salecker [274] proposed the following thought experiment to show that the precision of
length measurements is limited. Consider that we try to measure a length by help of a clock that
detects photons, which are reflected by a mirror at distance D and return to the clock. Knowing
the speed of light is universal, from the travel-time of the photon we can then extract the distance
it has traveled. How precisely can we measure the distance in this way?

Consider that at emission of the photon, we know the position of the (non-relativistic) clock to
precision ∆x. This means, according to the Heisenberg uncertainty principle, we cannot know its
velocity to better than

∆v =
1

2M∆x
, (38)

where M is the mass of the clock. During the time T = 2D that the photon needed to travel
towards the mirror and back, the clock moves by T∆v, and so acquires an uncertainty in position
of

∆x+
T

2M∆x
, (39)
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which bounds the accuracy by which we can determine the distance D. The minimal value that
this uncertainty can take is found by varying with respect to ∆x and reads

∆xmin =

√
T

2M
. (40)

Taking into account that our measurement will not be causally connected to the rest of the world
if it creates a black hole, we require D > 2MG and thus

∆xmin & lPl . (41)

3.1.4 Limit to clock synchronization

From Mead’s [222] investigation of the limit for the precision of distance measurements due to the
gravitational force also follows a limit on the precision by which clocks can be synchronized.

We will consider the clock synchronization to be performed by the passing of light signals from
some standard clock to the clock under question. Since the emission of a photon with energy
spread ∆ω by the usual Heisenberg uncertainty is uncertain by ∆T ∼ 1/(2∆ω), we have to take
into account the same uncertainty for the synchronization.

The new ingredient comes again from the gravitational field of the photon, which interacts with
the clock in a region R over a time τ & R. If the clock (or the part of the clock that interacts with
the photon) remains stationary, the (proper) time it records stands in relation to τ by T = τ

√
g00

with g00 in the rest frame of the clock, given by Eq. (20), thus

T = τ

√
1− 4Gω

r
. (42)

Since the metric depends on the energy of the photon and this energy is not known precisely,
the error on ω propagates into T by

(∆T )2 =

(
∂T

∂ω

)2

(∆ω)2 , (43)

thus

∆T ∼ 2Gτ

r
√
1− 4Gω/r

∆ω . (44)

Since in the interaction region τ & R & r, we can estimate

∆T &
2G√

1− 4Gω/R
∆ω & 2G∆ω . (45)

Multiplication of (45) with the normal uncertainty ∆T & 1/(2∆ω) yields

∆T & lPl . (46)

So we see that the precision by which clocks can be synchronized is also bound by the Planck scale.
However, strictly speaking the clock does not remain stationary during the interaction, since it

moves towards the photon due to the particles’ mutual gravitational attraction. If the clock has a
velocity u, then the proper time it records is more generally given by

T =

∫
ds ∼ τ

√
g00 + 2g01u+ g11u2 . (47)

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2013-2

http://www.livingreviews.org/lrr-2013-2


18 Sabine Hossenfelder

Using (20) and proceeding as before, one estimates the propagation of the error in the frequency
by using v = 1 and u ≤ 1

∣∣∣
dT

dω

∣∣∣ & τ
8G

r

1√
1 + 4Gω/r

, (48)

and so with τ & R & r

∆T & τ
G

R
∆ω & G∆ω . (49)

Therefore, taking into account that the clock does not remain stationary, one still arrives at (46).

3.1.5 Limit to the measurement of the black-hole–horizon area

The above microscope experiment investigates how precisely one can measure the location of a
particle, and finds the precision bounded by the inevitable formation of a black hole. However,
this position uncertainty is for the location of the measured particle however and not for the size
of the black hole or its radius. There is a simple argument why one would expect there to also
be a limit to the precision by which the size of a black hole can be measured, first put forward
in [91]. When the mass of a black-hole approaches the Planck mass, the horizon radius R ∼ GM
associated to the mass becomes comparable to its Compton wavelength λ = 1/M . Then, quantum
fluctuations in the position of the black hole should affect the definition of the horizon.

A somewhat more elaborate argument has been studied by Maggiore [208] by a thought ex-
periment that makes use once again of Heisenberg’s microscope. However, this time one wants
to measure not the position of a particle, but the area of a (non-rotating) charged black hole’s
horizon. In Boyer–Lindquist coordinates, the horizon is located at the radius

RH = GM

[
1 +

(
1− Q2

GM2

) 1

2

]
, (50)

where Q is the charge and M is the mass of the black hole.
To deduce the area of the black hole, we detect the black hole’s Hawking radiation and aim at

tracing it back to the emission point with the best possible accuracy. For the case of an extremal
black hole (Q2 = GM2) the temperature is zero and we perturb the black hole by sending in
photons from asymptotic infinity and wait for re-emission.

If the microscope detects a photon of some frequency ω, it is subject to the usual uncertainty
(2) arising from the photon’s finite wavelength that limits our knowledge about the photon’s origin.
However, in addition, during the process of emission the mass of the black hole changes fromM+ω
to M , and the horizon radius, which we want to measure, has to change accordingly. If the energy
of the photon is known only up to an uncertainty ∆p, then the error propagates into the precision
by which we can deduce the radius of the black hole

∆RH ∼
∣∣∣
∂RH

∂M

∣∣∣∆p . (51)

With use of (50) and assuming that no naked singularities exist in nature M2G ≤ Q2 one always
finds that

∆RH & 2G∆p . (52)

In an argument similar to that of Adler and Santiago discussed in Section 3.1.2, Maggiore then
suggests that the two uncertainties, the usual one inversely proportional to the photon’s energy
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and the additional one (52), should be linearly added to

∆RH &
1

∆p
+ αG∆p , (53)

where the constant α would have to be fixed by using a specific theory. Minimizing the possible
position uncertainty, one thus finds again a minimum error of ≈ αlPl.

It is clear that the uncertainty Maggiore considered is of a different kind than the one considered
by Mead, though both have the same origin. Maggiore’s uncertainty is due to the impossibility
of directly measuring a black hole without it emitting a particle that carries energy and thereby
changing the black-hole–horizon area. The smaller the wavelength of the emitted particle, the
larger the so-caused distortion. Mead’s uncertainty is due to the formation of black holes if one
uses probes of too high an energy, which limits the possible precision. But both uncertainties go
back to the relation between a black hole’s area and its mass.

3.1.6 A device-independent limit for non-relativistic particles

Even though the Heisenberg microscope is a very general instrument and the above considerations
carry over to many other experiments, one may wonder if there is not some possibility to overcome
the limitation of the Planck length by use of massive test particles that have smaller Compton
wavelengths, or interferometers that allow one to improve on the limitations on measurement
precisions set by the test particles’ wavelengths. To fill in this gap, Calmet, Graesser and Hsu [72,
73] put forward an elegant device-independent argument. They first consider a discrete spacetime
with a sub-Planckian spacing and then show that no experiment is able to rule out this possibility.
The point of the argument is not the particular spacetime discreteness they consider, but that it
cannot be ruled out in principle.

The setting is a position operator x̂ with discrete eigenvalues {xi} that have a separation of
order lPl or smaller. To exclude the model, one would have to measure position eigenvalues x and
x′, for example, of some test particle of mass M , with |x−x′| ≤ lPl. Assuming the non-relativistic
Schrödinger equation without potential, the time-evolution of the position operator is given by
dx̂(t)/dt = i[Ĥ, x̂(t)] = p̂/M , and thus

x̂(t) = x̂(0) + p̂(0)
t

M
. (54)

We want to measure the expectation value of position at two subsequent times in order to attempt
to measure a spacing smaller than the Planck length. The spectra of any two Hermitian operators
have to fulfill the inequality

∆A∆B ≥ 1

2i
〈[Â, B̂]〉 , (55)

where ∆ denotes, as usual, the variance and 〈·〉 the expectation value of the operator. From (54)
one has

[x̂(0), x̂(t)] = i
t

M
, (56)

and thus

∆x(0)∆x(t) ≥ t

2M
. (57)

Since one needs to measure two positions to determine a distance, the minimal uncertainty to the
distance measurement is

∆x ≥
√

t

2M
. (58)
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This is the same bound as previously discussed in Section 3.1.3 for the measurement of distances
by help of a clock, yet we arrived here at this bound without making assumptions about exactly
what is measured and how. If we take into account gravity, the argument can be completed similar
to Wigner’s and still without making assumptions about the type of measurement, as follows.

We use an apparatus of size R. To get the spacing as precise as possible, we would use a
test particle of high mass. But then we will run into the, by now familiar, problem of black-hole
formation when the mass becomes too large, so we have to require

M < 2
R

G
. (59)

Thus, we cannot make the detector arbitrarily small. However, we also cannot make it arbitrarily
large, since the components of the detector have to at least be in causal contact with the position
we want to measure, and so t > R. Taken together, one finds

∆x ≥
√

t

2M
≥
√

R

2M
≥

√
G , (60)

and thus once again the possible precision of a position measurement is limited by the Planck
length.

A similar argument was made by Ng and van Dam [238], who also pointed out that with this
thought experiment one can obtain a scaling for the uncertainty with the third root of the size of
the detector. If one adds the position uncertainty (58) from the non-vanishing commutator to the
gravitational one, one finds

∆x &

√
R

2M
+GM . (61)

Optimizing this expression with respect to the mass that yields a minimal uncertainty, one finds
M ∼ (R/l4Pl)

1/3 (up to factors of order one) and, inserting this value of M in (61), thus

∆x &
(
Rl2Pl

) 1

3 . (62)

Since R too should be larger than the Planck scale this is, of course, consistent with the previously-
found minimal uncertainty.

Ng and van Dam further argue that this uncertainty induces a minimum error in measurements
of energy and momenta. By noting that the uncertainty ∆x of a length R is indistinguishable from
an uncertainty of the metric components used to measure the length, ∆x2 = R2∆g, the inequality
(62) leads to

∆gµν &

(
lPl

R

) 2

3

. (63)

But then again the metric couples to the stress-energy tensor Tµν , so this uncertainty for the metric
further induces an uncertainty for the entries of Tµν

(gµν +∆gµν)T
µν = gµν(T

µν +∆Tµν) . (64)

Consider now using a test particle of momentum p to probe the physics at scale R, thus p ∼ 1/R.
Then its uncertainty would be on the order of

∆p & p

(
lPl

R

) 2

3

= p

(
p

mPl

) 2

3

. (65)
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However, note that the scaling found by Ng and van Dam only follows if one works with the
masses that minimize the uncertainty (61). Then, even if one uses a detector of the approximate
extension of a cm, the corresponding mass of the ‘particle’ we have to work with would be about
a ton. With such a mass one has to worry about very different uncertainties. For particles with
masses below the Planck mass on the other hand, the size of the detector would have to be below
the Planck length, which makes no sense since its extension too has to be subject to the minimal
position uncertainty.

3.1.7 Limits on the measurement of spacetime volumes

The observant reader will have noticed that almost all of the above estimates have explicitly or
implicitly made use of spherical symmetry. The one exception is the argument by Adler and
Santiago in Section 3.1.2 that employed cylindrical symmetry. However, it was also assumed there
that the length and the radius of the cylinder are of comparable size.

In the general case, when the dimensions of the test particle in different directions are very
unequal, the Hoop conjecture does not forbid any one direction to be smaller than the Schwarzschild
radius to prevent collapse of some matter distribution, as long as at least one other direction is
larger than the Schwarzschild radius. The question then arises what limits that rely on black-hole
formation can still be derived in the general case.

A heuristic motivation of the following argument can be found in [101], but here we will follow
the more detailed argument by Tomassini and Viaggiu [307]. In the absence of spherical symmetry,
one may still use Penrose’s isoperimetric-type conjecture, according to which the apparent horizon
is always smaller than or equal to the event horizon, which in turn is smaller than or equal to
16πG2ω2, where ω is as before the energy of the test particle.

Then, without spherical symmetry the requirement that no black hole ruins our ability to
resolve short distances is weakened from the energy distribution having a radius larger than the
Schwarzschild radius, to the requirement that the area A, which encloses ω is large enough to
prevent Penrose’s condition for horizon formation

A ≥ 16πG2ω2 . (66)

The test particle interacts during a time ∆T that, by the normal uncertainty principle, is larger
than 1/(2ω). Taking into account this uncertainty on the energy, one has

A(∆T )2 ≥ 4πG2 . (67)

Now we have to make some assumption for the geometry of the object, which will inevitably
be a crude estimate. While an exact bound will depend on the shape of the matter distribution,
we will here just be interested in obtaining a bound that depends on the three different spatial
extensions, and is qualitatively correct. To that end, we assume the mass distribution fits into
some smallest box with side-lengths ∆x1,∆x2,∆x3, which is similar to the limiting area

A ∼ ∆x1∆x2 +∆x1∆x3 +∆x2∆x3

α2
, (68)

where we added some constant α to take into account different possible geometries. A comparison
with the spherical case, ∆xi = 2R, fixes α2 = 3/π. With Eq. (67) one obtains

(∆t)
2 (

∆x1∆x2 +∆x1∆x3 +∆x2∆x3
)
≥ 12l4p . (69)

Since

(
∆x1 +∆x2 +∆x3

)2 ≥ ∆x1∆x2 +∆x1∆x3 +∆x2∆x3 (70)
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one also has

∆t
(
∆x1 +∆x2 +∆x3

)
≥ 12l2p , (71)

which confirms the limit obtained earlier by heuristic reasoning in [101].
Thus, as anticipated, taking into account that a black hole must not necessarily form if the

spatial extension of a matter distribution is smaller than the Schwarzschild radius in only one
direction, the uncertainty we arrive at here depends on the extension in all three directions, rather
than applying separately to each of them. Here we have replaced ω by the inverse of ∆T , rather
than combining with Eq. (2), but this is just a matter of presentation.

Since the bound on the volumes (71) follows from the bounds on spatial and temporal intervals
we found above, the relevant question here is not whether ?? is fulfilled, but whether the bound
∆x & lPl can be violated [165].

To address that question, note that the quantities ∆xi in the above argument by Tomassini
and Viaggiu differ from the ones we derived bounds for in Sections 3.1.1 – 3.1.6. Previously, the ∆x
was the precision by which one can measure the position of a particle with help of the test particle.
Here, the ∆xi are the smallest possible extensions of the test particle (in the rest frame), which
with spherical symmetry would just be the Schwarzschild radius. The step in which one studies
the motion of the measured particle that is induced by the gravitational field of the test particle
is missing in this argument. Thus, while the above estimate correctly points out the relevance of
non-spherical symmetries, the argument does not support the conclusion that it is possible to test
spatial distances to arbitrary precision.

The main obstacle to completion of this argument is that in the context of quantum field theory
we are eventually dealing with particles probing particles. To avoid spherical symmetry, we would
need different objects as probes, which would require more information about the fundamental
nature of matter. We will come back to this point in Section 3.2.3.

3.2 String theory

String theory is one of the leading candidates for a theory of quantum gravity. Many textbooks have
been dedicated to the topic, and the interested reader can also find excellent resources online [187,
278, 235, 299]. For the following we will not need many details. Most importantly, we need
to know that a string is described by a 2-dimensional surface swept out in a higher-dimensional
spacetime. The total number of spatial dimensions that supersymmetric string theory requires for
consistency is nine, i.e., there are six spatial dimensions in addition to the three we are used to.
In the following we will denote the total number of dimensions, both time and space-like, with D.
In this Subsection, Greek indices run from 0 to D.

The two-dimensional surface swept out by the string in the D-dimensional spacetime is referred
to as the ‘worldsheet,’ will be denoted by Xν , and will be parameterized by (dimensionless) pa-
rameters σ and τ , where τ is its time-like direction, and σ runs conventionally from 0 to 2π. A
string has discrete excitations, and its state can be expanded in a series of these excitations plus
the motion of the center of mass. Due to conformal invariance, the worldsheet carries a complex
structure and thus becomes a Riemann surface, whose complex coordinates we will denote with z
and z. Scattering amplitudes in string theory are a sum over such surfaces.

In the following ls is the string scale, and α′ = l2s . The string scale is related to the Planck scale

by lPl = g
1/4
s ls, where gs is the string coupling constant. Contrary to what the name suggests, the

string coupling constant is not constant, but depends on the value of a scalar field known as the
dilaton.

To avoid conflict with observation, the additional spatial dimensions of string theory have to be
compactified. The compactification scale is usually thought to be about the Planck length, and far
below experimental accessibility. The possibility that the extensions of the extra dimensions (or at
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least some of them) might be much larger than the Planck length and thus possibly experimentally
accessible, has been studied in models with a large compactification volume and lowered Planck
scale, see, e.g., [1]. We will not discuss these models here, but mention in passing that they
demonstrate the possibility that the ‘true’ higher-dimensional Planck mass is in fact much smaller
thanmPl, and correspondingly the ‘true’ higher-dimensional Planck length, and with it the minimal
length, much larger than lPl. That such possibilities exist means, whether or not the model with
extra dimensions are realized in nature, that we should, in principle, consider the minimal length
a free parameter that has to be constrained by experiment.

String theory is also one of the motivations to look into non-commutative geometries. Non-
commutative geometry will be discussed separately in Section 3.6. A section on matrix models will
be included in a future update.

3.2.1 Generalized uncertainty

The following argument, put forward by Susskind [297, 298], will provide us with an insightful
examination that illustrates how a string is different from a point particle and what consequences
this difference has for our ability to resolve structures at shortest distances. We consider a free
string in light cone coordinates, X± = (X0 ± X1)/

√
2 with the parameterization X+ = 2l2sP+τ ,

where P+ is the momentum in the direction X+ and constant along the string. In the light-cone
gauge, the string has no oscillations in the X+ direction by construction.

The transverse dimensions are the remaining Xi with i > 1. The normal mode decomposition
of the transverse coordinates has the form

Xi(σ, τ) = xi(σ, τ) + i

√
α′

2

∑

n ̸=0

(
αi
n

n
ein(τ+σ) +

α̃i
n

n
ein(τ−σ)

)
, (72)

where xi is the (transverse location of) the center of mass of the string. The coefficients αi
n and α̃i

n

are normalized to [αi
n, α

j
m] = [α̃i

n, α̃
j
m] = −imδijδm,−n, and [α̃i

n, α
j
m] = 0. Since the components

Xν are real, the coefficients have to fulfill the relations (αi
n)

* = αi
−n and (α̃i

n)
* = α̃i

−n.
We can then estimate the transverse size ∆X⊥ of the string by

(∆X⊥)
2 = 〈

D∑

i=2

(Xi − xi)2〉 , (73)

which, in the ground state, yields an infinite sum

(∆X⊥)
2 ∼ l2s

∑

n

1

n
. (74)

This sum is logarithmically divergent because modes with arbitrarily high frequency are being
summed over. To get rid of this unphysical divergence, we note that testing the string with some
energy E, which corresponds to some resolution time ∆T = 1/E, allows us to cut off modes with
frequency > 1/∆T or mode number n ∼ lsE. Then, for large n, the sum becomes approximately

∆X2
⊥ ≈ l2s log(lsE) . (75)

Thus, the transverse extension of the string grows with the energy that the string is tested by,
though only very slowly so.

To determine the spread in the longitudinal direction X−, one needs to know that in light-cone
coordinates the constraint equations on the string have the consequence that X− is related to the
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transverse directions so that it is given in terms of the light-cone Virasoro generators

X−(σ, τ) = x−(σ, τ) +
i

P+

∑

n ̸=0

(
Ln

n
ein(τ+σ) +

L̃n

n
ein(τ−σ)

)
, (76)

where now Ln and L̃n fulfill the Virasoro algebra. Therefore, the longitudinal spread in the ground
state gains a factor ∝ n2 over the transverse case, and diverges as

(∆X−)
2 ∼ 1

P 2
+

∑

n

n . (77)

Again, this result has an unphysical divergence, that we deal with the same way as before by taking
into account a finite resolution ∆T , corresponding to the inverse of the energy by which the string
is probed. Then one finds for large n approximately

(∆X−)
2 ≈

(
ls
P+

)2

E2 . (78)

Thus, this heuristic argument suggests that the longitudinal spread of the string grows linearly
with the energy at which it is probed.

The above heuristic argument is supported by many rigorous calculations. That string scat-
tering leads to a modification of the Heisenberg uncertainty relation has been shown in several
studies of string scattering at high energies performed in the late 1980s [140, 310, 228]. Gross and
Mende [140] put forward a now well-known analysis of the classic solution for the trajectories of
a string worldsheet describing a scattering event with external momenta pνi . In the lowest tree
approximation they found for the extension of the string

xν(z, z) ≈ l2s
∑

i

pνi log |z − zi| , (79)

plus terms that are suppressed in energy relative to the first. Here, zi are the positions of the vertex
operators on the Riemann surface corresponding to the asymptotic states with momenta pνi . Thus,
as previously, the extension grows linearly with the energy. One also finds that the surface of the
string grows with E/N , where N is the genus of the expansion, and that the fixed angle scattering
amplitude at high energies falls exponentially with the square of the center-of-mass energy s (times
l2s ).

One can interpret this spread of the string in terms of a GUP by taking into account that at
high energies the spread grows linearly with the energy. Together with the normal uncertainty,
one obtains

∆xν∆pν & 1 + lsE , (80)

again the GUP that gives rise to a minimally-possible spatial resolution.
However, the exponential fall-off of the tree amplitude depends on the genus of the expansion,

and is dominated by the large N contributions because these decrease slower. The Borel resum-
mation of the series has been calculated in [228] and it was found that the tree level approximation

is valid only for an intermediate range of energies, and for sl2s � g
−4/3
s the amplitude decreases

much slower than the tree-level result would lead one to expect. Yoneya [318] has furthermore
argued that this behavior does not properly take into account non-perturbative effects, and thus
the generalized uncertainty should not be regarded as generally valid in string theory. We will
discuss this in Section 3.2.3.
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It has been proposed that the resistance of the string to attempts to localize it plays a role
in resolving the black-hole information-loss paradox [204]. In fact, one can wonder if the high
energy behavior of the string acts against and eventually prevents the formation of black holes in
elementary particle collisions. It has been suggested in [10, 9, 11] that string effects might become
important at impact parameters far greater than those required to form black holes, opening up
the possibility that black holes might not form.

The completely opposite point of view, that high energy scattering is ultimately entirely domi-
nated by black-hole production, has also been put forward [48, 131]. Giddings and Thomas found
an indication of how gravity prevents probes of distance shorter than the Planck scale [131] and
discussed the ‘the end of short-distance physics’; Banks aptly named it ‘asymptotic darkness’ [47].
A recent study of string scattering at high energies [127] found no evidence that the extended-
ness of the string interferes with black-hole formation. The subject of string scattering in the
trans-Planckian regime is subject of ongoing research, see, e.g., [12, 90, 130] and references therein.

Let us also briefly mention that the spread of the string just discussed should not be confused
with the length of the string. (For a schematic illustration see Figure 2.) The length of a string in
the transverse direction is

L =

∫
dσ
(
∂σX

i∂σX
i
)2
, (81)

where the sum is taken in the transverse direction, and has been studied numerically in [173]. In
this study, it has been shown that when one increases the cut-off on the modes, the string becomes
space-filling, and fills space densely (i.e., it comes arbitrarily close to any point in space).

Figure 2: The length of a string is not the same as its average extension. The lengths of strings in the
groundstate were studied in [173].

3.2.2 Spacetime uncertainty

Yoneya [318] argued that the GUP in string theory is not generally valid. To begin with, it
is not clear whether the Borel resummation of the perturbative expansion leads to correct non-
perturbative results. And, after the original works on the generalized uncertainty in string theory,
it has become understood that string theory gives rise to higher-dimensional membranes that are
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dynamical objects in their own right. These higher-dimensional membranes significantly change
the picture painted by high energy string scattering, as we will see in 3.2.3. However, even if the
GUP is not generally valid, there might be a different uncertainty principle that string theory
conforms to, that is a spacetime uncertainty of the form

∆X∆T & l2s . (82)

This spacetime uncertainty has been motivated by Yoneya to arise from conformal symme-
try [317, 318] as follows.

Suppose we are dealing with a Riemann surface with metric ds = ρ(z, z)|dz| that parameterizes
the string. In string theory, these surfaces appear in all path integrals and thus amplitudes, and
they are thus of central importance for all possible processes. Let us denote with Ω a finite region
in that surface, and with Γ the set of all curves in Ω. The length of some curve γ ∈ Γ is then
L(γ, ρ) =

∫
γ
ρ|dz|. However, this length that we are used to from differential geometry is not

conformally invariant. To find a length that captures only the physically-relevant information, one
can use a distance measure known as the ‘extremal length’ λΩ

λΩ(Λ) = sup
ρ

L(Ω, ρ)2

A(Ω, ρ)
, (83)

with

L(Γ, ρ) = inf
γ∈Λ

L(γ, ρ) , A(Ω, ρ) =

∫

Ω

ρ2 dz dz . (84)

The so-constructed length is dimensionless and conformally invariant. For simplicity, we assume
that Ω is a generic polygon with four sides and four corners, with pairs of opposite sides named
α, α′ and β, β′. Any more complicated shape can be assembled from such polygons. Let Γ be
the set of all curves connecting α with α′ and Γ* the set of all curves connecting β with β′. The
extremal lengths λΩ(Γ) and λΩ(Γ

*) then fulfill property [317, 318]

λΩ(Γ
*)λΩ(Γ) = 1 . (85)

Conformal invariance allows us to deform the polygon, so instead of a general four-sided poly-
gon, we can consider a rectangle in particular, where the Euclidean length of the sides (α, α′) will
be named a and that of sides (β, β′) will be named b. With a Minkowski metric, one of these
directions would be timelike and one spacelike. Then the extremal lengths are [317, 318]

λΩ(Γ
*) =

b

a
, λΩ(Γ) =

a

b
. (86)

Armed with this length measure, let us consider the Euclidean path integral in the conformal gauge
(gµν = ηµν) with the action

1

l2s

∫

Ω

dz dz ∂zX
ν∂z̄X

ν . (87)

(Equal indices are summed over). As before, X are the target space coordinates of the string
worldsheet. We now decompose the coordinate z into its real and imaginary part σ1 = Re(z), σ2 =
Im(z), and consider a rectangular piece of the surface with the boundary conditions

Xν(0, σ2) = Xν(a, σ2) = δν2B
σ2
b
,

Xν(σ1, 0) = Xν(σ1, b) = δν1A
σ1
a
. (88)
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If one integrates over the rectangular region, the action contains a factor ab((B/b)2 + (A/a)2) and
the path integral thus contains a factor of the form

exp

(
− 1

l2s

(
A2

λ(Γ)
+

B2

λ(Γ*)

))
. (89)

Thus, the width of these contributions is given by the extremal length times the string scale, which
quantifies the variance of A and B by

∆A ∼ ls
√
λ(Γ) , ∆B ∼ ls

√
λ(Γ*) . (90)

In particular the product of both satisfies the condition

∆A∆B ∼ l2s . (91)

Thus, probing short distances along the spatial and temporal directions simultaneously is not
possible to arbitrary precision, lending support to the existence of a spacetime uncertainty of
the form (82). Yoneya notes [318] that this argument cannot in this simple fashion be carried
over to more complicated shapes. Thus, at present the spacetime uncertainty has the status of a
conjecture. However, the power of this argument rests in it only relying on conformal invariance,
which makes it plausible that, in contrast to the GUP, it is universally and non-perturbatively
valid.

3.2.3 Taking into account Dp-Branes

The endpoints of open strings obey boundary conditions, either of the Neumann type or of the
Dirichlet type or a mixture of both. For Dirichlet boundary conditions, the submanifold on which
open strings end is called a Dirichlet brane, or Dp-brane for short, where p is an integer denoting
the dimension of the submanifold. A D0-brane is a point, sometimes called a D-particle; a D1-brane
is a one-dimensional object, also called a D-string; and so on, all the way up to D9-branes.

These higher-dimensional objects that arise in string theory have a dynamics in their own right,
and have given rise to a great many insights, especially with respect to dualities between different
sectors of the theory, and the study of higher-dimensional black holes [170, 45].

Dp-branes have a tension of Tp = 1/(gsl
p+1
s ); that is, in the weak coupling limit, they become

very rigid. Thus, one might suspect D-particles to show evidence for structure on distances at least
down to lsgs.

Taking into account the scattering of Dp-branes indeed changes the conclusions we could draw
from the earlier-discussed thought experiments. We have seen that this was already the case
for strings, but we can expect that Dp-branes change the picture even more dramatically. At
high energies, strings can convert energy into potential energy, thereby increasing their extension
and counteracting the attempt to probe small distances. Therefore, strings do not make good
candidates to probe small structures, and to probe the structures of Dp-branes, one would best
scatter them off each other. As Bachas put it [45], the “small dynamical scale of D-particles cannot
be seen by using fundamental-string probes – one cannot probe a needle with a jelly pudding, only
with a second needle!”

That with Dp-branes new scaling behaviors enter the physics of shortest distances has been
pointed out by Shenker [283], and in particular the D-particle scattering has been studied in great
detail by Douglas et al. [103]. It was shown there that indeed slow moving D-particles can probe
distances below the (ten-dimensional) Planck scale and even below the string scale. For these

D-particles, it has been found that structures exist down to g
1/3
s ls.
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To get a feeling for the scales involved here, let us first reconsider the scaling arguments on black-
hole formation, now in a higher-dimensional spacetime. The Newtonian potential φ of a higher-
dimensional point charge with energy E, or the perturbation of g00 = 1 + 2φ, in D dimensions, is
qualitatively of the form

φ ∼ GDE

(∆x)D−3
, (92)

where ∆x is the spatial extension, and GD is the D-dimensional Newton’s constant, related to the
Planck length as GD = lD−2

Pl . Thus, the horizon or the zero of g00 is located at

∆x ∼ (GDE)
1

D−3 . (93)

With E ∼ 1/∆t, for some time by which we test the geometry, to prevent black-hole formation for
D = 10, one thus has to require

(∆t)(∆x)7 & G10 = g2s l
8
s , (94)

re-expressed in terms of string coupling and tension. We see that in the weak coupling limit, this
lower bound can be small, in particular it can be much below the string scale.

This relation between spatial and temporal resolution can now be contrasted with the spacetime
uncertainty (82), that sets the limits below which the classical notion of spacetime ceases to make
sense. Both of these limits are shown in Figure 3 for comparison. The curves meet at

∆xmin ∼ lsg
1/3
s , ∆tmin ∼ lsg

−1/3
s . (95)

If we were to push our limits along the bound set by the spacetime uncertainty (red, solid line),
then the best possible spatial resolution we could reach lies at ∆xmin, beyond which black-hole pro-
duction takes over. Below the spacetime uncertainty limit, it would actually become meaningless
to talk about black holes that resemble any classical object.

At first sight, this argument seems to suffer from the same problem as the previously examined
argument for volumes in Section 3.1.7. Rather than combining ∆t with ∆x to arrive at a weaker
bound than each alone would have to obey, one would have to show that in fact ∆x can become
arbitrarily small. And, since the argument from black-hole collapse in 10 dimensions is essentially
the same as Mead’s in 4 dimensions, just with a different r-dependence of φ, if one would consider
point particles in 10 dimensions, one finds along the same line of reasoning as in Section 3.1.2, that
actually ∆t & lPl and ∆x & lPl.

However, here the situation is very different because fundamentally the objects we are dealing
with are not particles but strings, and the interaction between Dp-branes is mediated by strings
stretched between them. It is an inherently different behavior than what we can expect from the
classical gravitational attraction between point particles. At low string coupling, the coupling of
gravity is weak and in this limit then, the backreaction of the branes on the background becomes
negligible. For these reasons, the D-particles distort each other less than point particles in a
quantum field theory would, and this is what allows one to use them to probe very short distances.

The following estimate from [318] sheds light on the scales that we can test with D-particles in
particular. Suppose we use D-particles with velocity v and mass m0 = 1/(lsgs) to probe a distance
of size ∆x in time ∆t. Since v∆t ∼ ∆x, the uncertainty (94) gives

(∆x)8 & vg2s l
8
s . (96)

thus, to probe very short distances one has to use slow D-particles.
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Figure 3: Spacetime uncertainty (red, solid) vs uncertainty from spherical black holes (blue, dotted) in
D = 10 dimensions, for gs < 1 (left) and gs > 1 (right). After [318], Figure 1. Below the bound from
spacetime uncertainty yet above the black-hole bound that hides short-distance physics (shaded region),
the concept of classical geometry becomes meaningless.

But if the D-particle is slow, then its wavefunction behaves like that of a massive non-relativistic
particle, so we have to take into account that the width spreads with time. For this, we can use
the earlier-discussed bound Eq. (58)

∆xspread &

√
∆t

2m0
, (97)

or

∆xspread &
lsgs
2v

. (98)

If we add the uncertainties (96) and (98) and minimize the sum with respect to v, we find that the
spatial uncertainty is minimal for

v ∼ g2/3s . (99)

Thus, the total spatial uncertainty is bounded by

∆x & lsg
1/3
s , (100)

and with this one also has

∆t & lsg
−1/3
s , (101)

which are the scales that we already identified in (95) to be those of the best possible resolu-
tion compatible with the spacetime uncertainty. Thus, we see that the D-particles saturate the
spacetime uncertainty bound and they can be used to test these short distances.
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Table 1: Analogy between scales involved in D-particle scattering and the hydrogen atom. After [103].

Electron D-particle

mass me mass m0 = 1/(lsgs)

Compton wavelength 1/me Compton wavelength 1/m0 ∼ gsls

velocity α velocity v = g
2/3
s

Bohr radius ∼ 1/(αme) size of resonance 1/(m0v) ∼ g
1/3
s ls

energy levels ∼ α2me resonance energy ∼ m0v
2 ∼ g

1/3
s /ls

fine structure ∼ α4me energy shifts ∼ m0v
4 ∼ g

5/3
s /ls

D-particle scattering has been studied in [103] by use of a quantum mechanical toy model in
which the two particles are interacting by (unexcited) open strings stretched between them. The
open strings create a linear potential between the branes. At moderate velocities, repeated collisions
can take place, since the probability for all the open strings to annihilate between one collision

and the next is small. At v ∼ g
2/3
s , the time between collisions is on the order of ∆t ∼ lsg

−1/3,

corresponding to a resonance of width Γ ∼ g
1/3
s /ls. By considering the conversion of kinetic

energy into the potential of the strings, one sees that the particles reach a maximal separation of

∆x ∼ lsg
−1/3
s , realizing a test of the scales found above.

Douglas et al. [103] offered a useful analogy of the involved scales to atomic physics; see Ta-
ble (1). The electron in a hydrogen atom moves with velocity determined by the fine-structure
constant α, from which it follows the characteristic size of the atom. For the D-particles, this
corresponds to the maximal separation in the repeated collisions. The analogy may be carried
further than that in that higher-order corrections should lead to energy shifts.

The possibility to resolve such short distances with D-branes have been studied in many more
calculations; for a summary, see, for example, [45] and references therein. For our purposes, this
estimate of scales will be sufficient. We take away that D-branes, should they exist, would allow

us to probe distances down to ∆x ∼ g
1/3
s ls.

3.2.4 T-duality

In the presence of compactified spacelike dimensions, a string can acquire an entirely new property:
It can wrap around the compactified dimension. The number of times it wraps around, labeled by
the integer w, is called the ‘winding-number.’ For simplicity, let us consider only one additional
dimension, compactified on a radius R. Then, in the direction of this coordinate, the string has to
obey the boundary condition

X4(τ, σ + 2π) = X4(τ, σ) + 2πwR . (102)

The momentum in the direction of the additional coordinate is quantized in multiples of 1/R,
so the expansion (compare to Eq. (72)) reads

X4(τ, σ) = x40 +
nl2s
R
τ + wRσ + i

α′

2

∑

n ̸=0

(
αi
n

n
ein(τ+σ) +

α̃i
n

n
ein(τ−σ)

)
, (103)

where x40 is some initial value. The momentum P 4 = ∂τx
4/(l2s ) is then

P 4(τ, σ) =
n

R
τ +

i√
2ls

∑

n ̸=0

(
αi
ne

in(τ+σ) + α̃i
ne

in(τ−σ)
)
. (104)
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The total energy of the quantized string with excitation n and winding number w is formally
divergent, due to the contribution of all the oscillator’s zero point energies, and has to be renor-
malized. After renormalization, the energy is

E2 =

3∑

µ=0

PµPµ +m2 with (105)

m2 =
n2

R2
+ w2R

2

α′2
+

2

α′

(
N + Ñ − D − 2

12

)
, (106)

where µ runs over the non-compactified coordinates, and N and Ñ are the levels of excitations
of the left and right moving modes. Level matching requires nw + N − Ñ = 0. In addition to
the normal contribution from the linear momentum, the string energy thus has a geometrically-
quantized contribution from the momentum into the extra dimension(s), labeled with n, an energy
from the winding (more winding stretches the string and thus needs energy), labeled with w, and
a renormalized contribution from the Casimir energy. The important thing to note here is that
this expression is invariant under the exchange

R↔ l2s
R
, n↔ w , (107)

i.e., an exchange of winding modes with excitations leaves mass spectrum invariant.
This symmetry is known as target-space duality, or T-duality for short. It carries over to

multiples extra dimensions, and can be shown to hold not only for the free string but also during
interactions. This means that for the string a distance below the string scale ∼ ls is meaningless
because it corresponds to a distance larger than that; pictorially, a string that is highly excited also
has enough energy to stretch and wrap around the extra dimension. We have seen in Section 3.2.3
that Dp-branes overcome limitations of string scattering, but T-duality is a simple yet powerful
way to understand why the ability of strings to resolves short distances is limited.

This characteristic property of string theory has motivated a model that incorporates T-duality
and compact extra dimensions into an effective path integral approach for a particle-like object that
is described by the center-of-mass of the string, yet with a modified Green’s function, suggested
in [285, 111, 291].

In this approach it is assumed that the elementary constituents of matter are fundamentally
strings that propagate in a higher dimensional spacetime with compactified additional dimensions,
so that the strings can have excitations and winding numbers. By taking into account the excita-
tions and winding numbers, Fontanini et al. [285, 111, 291] derive a modified Green’s function for a
scalar field. In the resulting double sum over n and w, the contribution from the n = 0 and w = 0
zero modes is dropped. Note that this discards all massless modes as one sees from Eq. (106). As
a result, the Green’s function obtained in this way no longer has the usual contribution

G(x, y) = − 1

(x− y)2
. (108)

Instead, one finds in momentum space

G(p) =

∞∑

N=0

∞∑

w,n=1

nl0√
p2 +m2

K1

(
nl0
√
p2 +m2

)
, (109)

where the mass term is given by Eq. (106) and a function of N,n and w. Here, K1 is the modified
Bessel function of the first kind, and l0 = 2πR is the compactification scale of the extra dimensions.
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For n = w = 1 and N = 0, in the limit where p2 � m2 and the argument of K1 is large compared
to 1, p2 � 1/l20, the modified Bessel function can be approximated by

K1 → 4π2

√
pl0

exp
(
−l0
√
p2
)
, (110)

and, in that limit, the term in the sum (109) of the Green’s function takes the form

→
√
l0

p3/2
exp

(
−l0
√
p2
)
. (111)

Thus, each term of the modified Green’s function falls off exponentially if the energies are large
enough. The Fourier transform of this limit of the momentum space propagator is

G(x, y) ≈ 1

4π2

1

(x− y)2 + l20
, (112)

and one thus finds that the spacetime distance in the propagator acquires a finite correction term,
which one can interpret as a ‘zero point length’, at least in the Euclidean case.

It has been argued in [285] that this “captures the leading order correction from string theory”.
This claim has not been supported by independent studies. However, this argument has been
used as one of the motivations for the model with path integral duality that we will discuss in
Section 4.7. The interesting thing to note here is that the minimal length that appears in this
model is not determined by the Planck length, but by the radius of the compactified dimensions.
It is worth emphasizing that this approach is manifestly Lorentz invariant.

3.3 Loop Quantum Gravity and Loop Quantum Cosmology

Loop Quantum Gravity (LQG) is a quantization of gravity by help of carefully constructed suitable
variables for quantization, variables that have become known as the Ashtekar variables [39]. While
LQG theory still lacks experimental confirmation, during the last two decades it has blossomed
into an established research area. Here we will only roughly sketch the main idea to see how it
entails a minimal length scale. For technical details, the interested reader is referred to the more
specialized reviews [42, 304, 305, 229, 118].

Since one wants to work with the Hamiltonian framework, one begins with the familiar 3+1
split of spacetime. That is, one assumes that spacetime has topology R × Σ, i.e., it can be sliced
into a set of spacelike 3-dimensional hypersurfaces. Then, the metric can be parameterized with
the lapse-function N and the shift vector Ni

ds2 = (N2 −NaN
a) dt2 − 2Na dt dx− qab dx

a dxb , (113)

where qij is the three metric on the slice. The three metric by itself does not suffice to completely
describe the four dimensional spacetime. If one wants to stick with quantities that make sense
on the three dimensional surfaces, in order to prepare for quantization, one needs in addition the
‘extrinsic curvature’ that describes how the metric changes along the slicing

Kab =
1

2N
(∇kNi +∇iNk − ∂tqij) , (114)

where ∇ is the covariant three-derivative on the slice. So far, one is used to that from general
relativity.

Next we introduce the triad or dreibein, Ea
i , which is a set of three vector fields

qab = Ea
i E

b
jδ

ij . (115)
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The triad converts the spatial indices a, b (small, Latin, from the beginning of the alphabet) to a
locally-flat metric with indices i, j (small, Latin, from the middle of the alphabet). The densitized
triad

Ẽa
i =

√
det qEa

i , (116)

is the first set of variables used for quantization. The other set of variables is an su(2) connection
Ai

a, which is related to the connection on the manifold and the external curvature by

Ai
a = Γi

a + βKi
a , (117)

where the i is the internal index and Γi
a = Γajkε

jki is the spin-connection. The dimensionless
constant β is the ‘Barbero–Immirzi parameter’. Its value can be fixed by requiring the black-hole
entropy to match with the semi-classical case, and comes out to be of order one.

From the triads one can reconstruct the internal metric, and from A and the triad, one can
reconstruct the extrinsic curvature and thus one has a full description of spacetime. The reason
for this somewhat cumbersome reformulation of general relativity is that these variables do not
only recast gravity as a gauge theory, but are also canonically conjugated in the classical theory

{
Ai

a(x), Ẽ
b
j (y)

}
= βδbaδ

i
jδ

3(x− y) , (118)

which makes them good candidates for quantization. And so, under quantization one promotes A
and E to operators Â and Ê and replaces the Poisson bracket with commutators,

[
Âj

b(x),
ˆ̃Ea
i (y)

]
= iβδbaδ

i
jδ

3(x− y) . (119)

The Lagrangian of general relativity can then be rewritten in terms of the new variables, and the
constraint equations can be derived.

In the so-quantized theory one can then work with different representations, like one works
in quantum mechanics with the coordinate or momentum representation, just more complicated.
One such representation is the loop representation, an expansion of a state in a basis of (traces
of) holonomies around all possible closed loops. However, this basis is overcomplete. A more
suitable basis are spin networks ψs. Each such spin network is a graph with vertices and edges
that carry labels of the respective su(2) representation. In this basis, the states of LQG are then
closed graphs, the edges of which are labeled by irreducible su(2) representations and the vertices
by su(2) intertwiners.

The details of this approach to quantum gravity are far outside the scope of this review; for
our purposes we will just note that with this quantization scheme, one can construct operators
for areas and volumes, and with the expansion in the spin-network basis ψs, one can calculate the
eigenvalues of these operators, roughly as follows.

Given a two-surface Σ that is parameterized by two coordinates x1, x2 with the third coordinate
x3 = 0 on the surface, the area of the surface is

AΣ =

∫

Σ

dx1 dx2
√

det q(2) , (120)

where det q(2) = q11q22 − q212 is the metric determinant on the surface. In terms of the triad, this
can be written as

AΣ =

∫

Σ

dx1 dx2
√
Ẽ3

i Ẽ
3i . (121)

This area can be promoted to an operator, essentially by making the triads operators, though to
deal with the square root of a product of these operators one has to average the operators over
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smearing functions and take the limit of these smearing functions to delta functions. One can then
act with the so-constructed operator on the states of the spin network and obtain the eigenvalues

ÂΣψs = 8πl2Plβ
∑

I

√
jI(jI + 1)ψs , (122)

where the sum is taken over all edges of the network that pierce the surface Σ, and jI , a positive
half-integer, are the representation labels on the edge. This way, one finds that LQG has a
minimum area of

Amin = 4π
√
3βl2Pl . (123)

A similar argument can be made for the volume operator, which also has a finite smallest-
possible eigenvalue on the order of the cube of the Planck length [271, 303, 41]. These properties
then lead to the following interpretation of the spin network: the edges of the graph represent
quanta of area with area ∼ l2P

√
j(j + 1), and the vertices of the graph represent quanta of 3-

volume.
Loop Quantum Cosmology (LQC) is a simplified version of LQG, developed to study the time

evolution of cosmological, i.e., highly-symmetric, models. The main simplification is that, rather
than using the full quantized theory of gravity and then studying models with suitable symmetries,
one first reduces the symmetries and then quantizes the few remaining degrees of freedom.

For the quantization of the degrees of freedom one uses techniques similar to those of the
full theory. LQC is thus not strictly speaking derived from LQG, but an approximation known
as the ‘mini-superspace approximation.’ For arguments why it is plausible to expect that LQC

provides a reasonably good approximation and for a detailed treatment, the reader is referred
to [40, 44, 58, 57, 227]. Here we will only pick out one aspect that is particularly interesting for
our theme of the minimal length.

In principle, one works in LQC with operators for the triad and the connection, yet the semi-
classical treatment captures the most essential features and will be sufficient for our purposes.
Let us first briefly recall the normal cosmological Friedmann–Robertson–Walker model coupled to
scalar field φ in the new variables [118]. The ansatz for the metric is

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (124)

and for the Ashtekar variables

Ai
a = cδia , Ẽa

i = pδai . (125)

The variable p is dimensionless and related to the scale factor as a2 = |p|, and c has dimensions of
energy. c and p are canonically conjugate and normalized so that the Poisson brackets are

{c, p} =
8π

3
β . (126)

The Hamiltonian constraint for gravity coupled to a (spatially homogeneous) pressureless scalar
field with canonically conjugated variables φ, pφ is

16πGH = − 6

β2
c2|p|1/2 + 8πGp2φ|p|−3/2 = 0 . (127)

This yields

c

β
= 2

√
π

3
lPl
pφ
|p| . (128)
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Since φ itself does not appear in the Hamiltonian, the conjugated momentum pφ is a constant of
motion ṗφ = 0, where a dot denotes a derivative with respect to t. The equation of motion for φ is

φ̇ =
pφ
p3/2

, (129)

so we can identify

ρφ =
p2φ
2|p|3 (130)

as the energy density of the scalar field. With this, Equation (129) can be written in the more
familiar form

ρ̇φ = −3

2

ṗ

p4
p2φ = −3

ȧ

a
ρφ . (131)

The equation of motion for p is

ṗ = −8π

3
β
∂H
∂c

= 2
c

β
|p|1/2 . (132)

Inserting (128), this equation can be integrated to get

p3/2 = 2
√
3πlPlpφt . (133)

One can rewrite this equation by introducing the Hubble parameter H = ȧ/a = ṗ/(2p); then one
finds

H2 =
4π

3
l2Pl

p2φ
p3

=
8π

3
Gρφ , (134)

which is the familiar first Friedmann equation. Together with the energy conservation (131) this
fully determines the time evolution.

Now to find the Hamiltonian of LQC, one considers an elementary cell that is repeated in all
spatial directions because space is homogeneous. The holonomy around a loop is then just given
by exp(iµc), where c is as above the one degree of freedom in A, and µ is the edge length of the
elementary cell. We cannot shrink this length µ to zero because the area it encompasses has a
minimum value. That is the central feature of the loop quantization that one tries to capture in
LQC; µ has a smallest value on the order of µ0 ∼ lPl. Since one cannot shrink the loop to zero,
and thus cannot take the derivative of the holonomy with respect to µ, one cannot use this way to
find an expression for c in the so-quantized theory.

With that in mind, one can construct an effective Hamiltonian constraint from the classical
Eq. (127) by replacing c with sin(µ0c)/µ0 to capture the periodicity of the network due to the finite
size of the elementary loops. This replacement makes sense because the so-introduced operator
can be expressed and interpreted in terms of holonomies. (For this, one does not have to use the
sinus function in particular; any almost-periodic function would do [40], but the sinus is the easiest
to deal with.) This yields

16πGHeff = − 6

β2
|p| 12 sin

2(µ0c)

µ0
+ 8πG

1

|p| 32
p2φ . (135)

As before, the Hamiltonian constraint gives

sin(µ0c)

µ0β
= 2

√
π

3
lPl
pφ
|p| . (136)
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And then the equation of motion in the semiclassical limit is

ṗ = {p,Heff} = −8π

3
β
∂Heff

∂c
=

2|p| 12
βµ0

sin(µ0c) cos(µ0c) . (137)

With the previously found identification of ρφ, we can bring this into a more familiar form

H2 =
ṗ2

4p2
=

8π

3
Gρρ

(
1− ρφ

ρc

)
, (138)

where the critical density is

ρc =
3

8πGβ2µ2
0a
. (139)

The Hubble rate thus goes to zero for a finite a, at

a2 = 4πGp2φβ
2µ2

0 , (140)

at which point the time-evolution bounces without ever running into a singularity. The critical
density at which this happens depends on the value of pφ, which here has been a free constant.
It has been argued in [43], that by a more careful treatment the parameter µ0 depends on the
canonical variables and then the critical density can be identified to be similar to the Planck
density.

The semi-classical limit is clearly inappropriate when energy densities reach the Planckian
regime, but the key feature of the bounce and removal of the singularity survives in the quantized
case [56, 44, 58, 57]. We take away from here that the canonical quantization of gravity leads
to the existence of minimal areas and three-volumes, and that there are strong indications for a
Planckian bound on the maximally-possible value of energy density and curvature.

3.4 Quantized conformal fluctuations

The following argument for the existence of a minimal length scale has been put forward by
Padmanabhan [248, 247] in the context of conformally-quantized gravity. That is, we consider
fluctuations of the conformal factor only and quantize them. The metric is of the form

gµν(x) = (1 + φ(x))2ḡµν(x) , (141)

and the action in terms of ḡ reads

S[ḡ, φ] =
1

16πG

∫
d4x

√−ḡ
(
R̄(1 + φ(x))2 − 2Λ(1 + φ(x))4 − 6∂νφ∂νφ

)
. (142)

In flat Minkowski background with ḡνκ = ηνκ and in a vacuum state, we then want to address the
question what is the expectation value of spacetime intervals

〈0|ds2|0〉 = 〈0|gµν |0〉 dxµ dxν = (1 + 〈0|φ(x)2|0〉)ηµν dxµ dxν . (143)

Since the expectation value of φ(x)2 is divergent, instead of multiplying fields at the same point,
one has to use covariant point-slitting to two points xν and yν = xν +dxν and then take the limit
of the two points approaching each other

〈0|ds2|0〉 = lim
dx→0

(1 + 〈0|φ(x)φ(x+ dx)|0〉)ηµν dxµ dxν . (144)
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Now for a flat background, the action (142) has the same functional form as a massless scalar
field (up to a sign), so we can tell immediately what its Green’s function looks like

〈0|φ(x)φ(y)|0〉 =
l2p
4π2

1

(x− y)2
. (145)

Thus, one can take the limit dxν → 0

〈0|ds2|0〉 =
l2p
4π2

lim
dx→0

1

(x− y)2
ηµν dx

µ dxν =
l2p
4π2

. (146)

The two-point function of the scalar fluctuation diverges and thereby counteracts the attempt to
obtain a spacetime distance of length zero; instead one has a finite length on the order of the
Planck length.

This argument has recently been criticized by Cunliff in [92] on the grounds that the conformal
factor is not a dynamical degree of freedom in the pure Einstein–Hilbert gravity that was used in
this argument. However, while the classical constraints fix the conformal fluctuations in terms of
matter sources, for gravity coupled to quantized matter this does not hold. Cunliff reexamined
the argument, and found that the scaling behavior of the Greens function at short distances then
depends on the matter content; for normal matter content, the limit (146) still goes to zero.

3.5 Asymptotically Safe Gravity

String theory and LQG have in common the aim to provide a fundamental theory for space and
time different from general relativity; a theory based on strings or spin networks respectively.
Asymptotically Safe Gravity (ASG), on the other hand, is an attempt to make sense of gravity
as a quantum field theory by addressing the perturbative non-renormalizability of the Einstein–
Hilbert action coupled to matter [300].

In ASG, one considers general relativity merely as an effective theory valid in the low energy
regime that has to be suitably extended to high energies in order for the theory to be renormalizable
and make physical sense. The Einstein–Hilbert action is then not the fundamental action that
can be applied up to arbitrarily-high energy scales, but just a low-energy approximation and its
perturbative non-renormalizability need not worry us. What describes gravity at energies close
by and beyond the Planck scale (possibly in terms of non-metric degrees of freedom) is instead
dictated by the non-perturbatively-defined renormalization flow of the theory.

To see how that works, consider a generic Lagrangian of a local field theory. The terms can
be ordered by mass dimension and will come with, generally dimensionful, coupling constants gi.
One redefines these to dimensionless quantities g̃i = λ−digi, where k is an energy scale. It is a
feature of quantum field theory that the couplings will depend on the scale at which one applies
the theory; this is described by the Renormalization Group (RG) flow of the theory. To make sense
of the theory fundamentally, none of the dimensionless couplings should diverge.

In more detail, one postulates that the RG flow of the theory, described by a vector-field in the
infinite dimensional space of all possible functionals of the metric, has a fixed point with finitely
many ultra-violet (UV) attractive directions. These attractive directions correspond to “relevant”
operators (in perturbation theory, those up to mass dimension 4) and span the tangent space to a
finite-dimensional surface called the “UV critical surface”. The requirement that the theory holds
up to arbitrarily-high energies then implies that the natural world must be described by an RG
trajectory lying in this surface, and originating (in the UV) from the immediate vicinity of the
fixed point. If the surface has finite dimension d, then d measurements performed at some energy
λ are enough to determine all parameters, and then the remaining (infinitely many) coordinates
of the trajectory are a prediction of the theory, which can be tested against further experiments.
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In ASG the fundamental gravitational interaction is then considered asymptotically safe. This
necessitates a modification of general relativity, whose exact nature is so far unknown. Importantly,
this scenario does not necessarily imply that the fundamental degrees of freedom remain those of
the metric at all energies. Also in ASG, the metric itself might turn out to be emergent from
more fundamental degrees of freedom [261]. Various independent works have provided evidence
that gravity is asymptotically safe, including studies of gravity in 2+ ε dimensions, discrete lattice
simulations, and continuum functional renormalization group methods.

It is beyond the scope of this review to discuss how good this evidence for the asymptotic safety
of gravity really is. The interested reader is referred to reviews specifically dedicated to the topic,
for example [240, 202, 260]. For our purposes, in the following we will just assume that asymptotic
safety is realized for general relativity.

To see qualitatively how gravity may become asymptotically safe, let λ denote the RG scale.
From a Wilsonian standpoint, we can refer to λ as ‘the cutoff’. As is customary in lattice theory,
we can take λ as a unit of mass and measure everything else in units of λ. In particular, we define
with

G̃ = Gλ2 (147)

the dimensionless number expressing Newton’s constant in units of the cutoff. (Here and in the
rest of this subsection, a tilde indicates a dimensionless quantity.) The statement that the theory
has a fixed point means that G̃, and all other similarly-defined dimensionless coupling constants,
go to finite values when λ→ ∞.

The general behavior of the running of Newton’s constant can be inferred already by dimensional
analysis, which suggests that the beta function of 1/G has the form

λ
d

dλ

1

G
= αλ2 , (148)

where α is some constant. This expectation is supported by a number of independent calculations,
showing that the leading term in the beta function has this behavior, with α > 0. Then the beta
function of G̃ takes the form

λ
dG̃

dλ
= 2G̃− αG̃2 . (149)

This beta function has an IR attractive fixed point at G̃ = 0 and also a UV attractive nontrivial
fixed point at G̃* = 1/α. The solution of the RG equation (148) is

G(λ)−1 = G−1
0 +

α

2
λ2 , (150)

where G0 is Newton’s constant in the low energy limit. Therefore, the Planck length,
√
G, becomes

energy dependent.
This running of Newton’s constant is characterized by the existence of two very different

regimes:

• If 0 < G̃� 1 we are in the regime of sub-Planckian energies, and the first term on the right
side of Eq. (149) dominates. The solution of the flow equation is

G̃(λ) = G̃0

(
λ

λ0

)2

, (151)

where λ0 is some reference scale and G̃0 = G̃(λ0). Thus, the dimensionless Newton’s constant
is linear in λ2, which implies that the dimensionful Newton’s constant G(λ) = G0 = l2Pl is
constant. This is the regime that we are all familiar with.
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• In the fixed point regime, on the other hand, the dimensionless Newton’s constant G̃ = G̃*

is constant, which implies that the dimensionful Newton’s constant runs according to its
canonical dimension, G(λ) = G̃*/λ

2, in particular it goes to zero for λ→ ∞.

One naturally expects the threshold separating these two regimes to be near the Planck scale.
With the running of the RG scale, G̃ must go from its fixed point value at the Planck scale to very
nearly zero at macroscopic scales.

At first look it might seem like ASG does not contain a minimal length scale because there
is no limit to the energy by which structures can be tested. In addition, towards the fixed point
regime, the gravitational interaction becomes weaker, and with it weakening the argument from
thought experiments in Section 3.1.2, which relied on the distortion caused by the gravitational
attraction of the test particle. It has, in fact, been argued [51, 108] that in ASG the formation of
a black-hole horizon must not necessarily occur, and we recall that the formation of a horizon was
the main spoiler for increasing the resolution in the earlier-discussed thought experiments.

However, to get the right picture one has to identify physically-meaningful quantities and a
procedure to measure them, which leads to the following general argument for the occurrence of a
minimal length in ASG [74, 261].

Energies have to be measured in some unit system, otherwise they are physically meaningless.
To assign meaning to the limit of λ→ ∞ itself, λ too has to be expressed in some unit of energy,
for example as λ

√
G, and that unit in return has to be defined by some measurement process. In

general, the unit itself will depend on the scale that is probed in any one particular experiment.
The physically-meaningful energy that we can probe distances with in some interaction thus will
generally not go to ∞ with λ. In fact, since

√
G → 1/λ, an energy measured in units of

√
G will

be bounded by the Planck energy; it will go to one in units of the Planck energy.

One may think that one could just use some system of units other than Planck units to cir-
cumvent the conclusion, but if one takes any other dimensionful coupling as a unit, one will arrive
at the same conclusion if the theory is asymptotically safe. And if it is not, then it is not a fun-
damental theory that will break down at some finite value of energy and not allow us to take the
limit λ → ∞. As Percacci and Vacca pointed out in [261], it is essentially a tautology that an
asymptotically-safe theory comes with this upper bound when measured in appropriate units.

A related argument was offered by Reuter and Schwindt [270] who carefully distinguish measure-
ments of distances or momenta with a fixed metric from measurements with the physically-relevant
metric that solves the equations of motion with the couplings evaluated at the scale λ that is being
probed in the measurement. In this case, the dependence on λ naturally can be moved into the
metric. Though they have studied a special subclass of (Euclidian) manifolds, their finding that
the metric components go like 1/λ2 is interesting and possibly of more general significance.

The way such a 1/λ2-dependence of the metric on the scale λ at which it is tested leads to
a finite resolution is as follows. Consider a scattering process with in and outgoing particles in
a space, which, in the infinite distance from the scattering region, is flat. In this limit, to good
precision spacetime has the metric gκν(λ → 0) = ηκν . Therefore, we define the momenta of the
in- and outgoing particles, as well as their sums and differences, and from them as usual the
Lorentz-invariant Mandelstam variables, to be of the form s = ηκνp

κpν . However, since the metric
depends on the scale that is being tested, the physically-relevant quantities in the collision region
have to be evaluated with the metric gκν(

√
s) = ηκνm

2
Pl/s. With that one finds that the effective

Mandelstam variables, and thus also the momentum transfer in the collision region, actually go to
gκν(

√
s)pνpµ = m2

Pl, and are bounded by the Planck scale.

This behavior can be further illuminated by considering in more detail the scattering process in
an asymptotically-flat spacetime [261]. The dynamics of this process is described by someWilsonian
effective action with a suitable momentum scale λ. This action already takes into account the
effective contributions of loops with momenta above the scale λ, so one may evaluate scattering
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at tree level in the effective action to gain insight into the scale-dependence. In particular, we will
consider the scattering of two particles, scalars or fermions, by exchange of a graviton.

Since we want to unravel the effects of ASG, we assume the existence of a fixed point, which
enters the cross sections of the scattering by virtual graviton exchange through the running of
Newton’s constant. The tree-level amplitude contains a factor 1/mPl for each vertex. In the
s-channel, the squared amplitude for the scattering of two scalars is

|M2
s | =

1

4mPl

t2u2

s2
, (152)

and for fermions

|M2
f | =

1

128mPl

t4 − 6t3u+ 18t2u2 − 6tu3 + u4

s2
. (153)

As one expects, the cross sections scale with the fourth power of energy over the Planck mass. In
particular, if the Planck mass was a constant, the perturbative expansion would break down at
energies comparable to the Planck mass. However, we now take into account that in ASG the
Planck mass becomes energy dependent. For the annihilation process in the s-channel, it is

√
s,

the total energy in the center-of-mass system, that encodes what scale can be probed. Thus, we
replace mPl with 1/

√
G(s). One proceeds similarly for the other channels.

From the above amplitudes the total cross section is found to be [261]

σs =
sG(s)

1920π
, σf =

sG(s)

5120π
, (154)

for the scalars and fermions respectively. Using the running of the gravitational coupling constant
(150), one sees that the cross section has a maximum at s = 2G0/α and goes to zero when the
center-of-mass energy goes to infinity. For illustration, the cross section for the scalar scattering
is depicted in Figure 4 for the case with a constant Planck mass in contrast to the case where the
Planck mass is energy dependent.
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Figure 4: Cross section for scattering of two scalar particles by graviton exchange with and without
running Planck mass, in units of the low-energy Planck mass 1/

√
G0. The dot-dashed (purple) line depicts

the case without asymptotic safety; the continuous (blue) and dashed (grey) line take into account the

running of the Planck mass, for two different values of the fixed point, 1/
√

G̃∗ = 0.024 and 0.1 respectively.
Figure from [261]; reproduced with permission from IOP.
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If we follow our earlier argument and use units of the running Planck mass, then the cross section
as well as the physically-relevant energy, in terms of the asymptotic quantities G(

√
s)
√
s/G0,

become constant at the Planck scale. These indications for the existence of a minimal length scale
in ASG are intriguing, in particular because the dependence of the cross section on the energy
offers a clean way to define a minimal length scale from observable quantities, for example through
the (square root of the) cross section at its maximum value.

However, it is not obvious how the above argument should be extended to interactions in which
no graviton exchange takes place. It has been argued on general grounds in [74], that even in
these cases the dependence of the background on the energy of the exchange particle reduces the
momentum transfer so that the interaction would not probe distances below the Planck length
and cross sections would stagnate once the fixed-point regime has been reached, but the details
require more study. Recently, in [30] it has been argued that it is difficult to universally define
the running of the gravitational coupling because of the multitude of kinematic factors present
at higher order. In the simple example that we discussed here, the dependence of G on the

√
s

seems like a reasonable guess, but a cautionary note that this argument might not be possible to
generalize is in order.

3.6 Non-commutative geometry

Non-commutative geometry is both a modification of quantum mechanics and quantum field the-
ory that arises within certain approaches towards quantum gravity, and a class of theories i n
its own right. Thus, it could rightfully claim a place both in this section with motivations for
a minimal length scale, and in Section 4 with applications. We will discuss the general idea of
non-commutative geometries in the motivation because there is a large amount of excellent liter-
ature that covers the applications and phenomenology of non-commutative geometry. Thus, our
treatment here will be very brief. For details, the interested reader is referred to [104, 151] and
the many references therein.

String theory and M-theory are among the motivations to look at non-commutative geometries
(see, e.g., the nice summary in [104], section VII) and there have been indications that LQG may
give rise to a certain type of non-commutative geometry known as κ-Poincaré. This approach has
been very fruitful and will be discussed in more detail later in Section 4.

The basic ingredient to non-commutative geometry is that, upon quantization, spacetime co-
ordinates xν are associated to Hermitian operators x̂ν that are non-commuting. The simplest way
to do this is of the form

[x̂ν , x̂µ] = iθµν . (155)

The real-valued, antisymmetric two-tensor θµν of dimension length squared is the deformation
parameter in this modification of quantum theory, known as the Poisson tensor. In the limit
θµν → 0 one obtains ordinary spacetime. In this type of non-commutative geometry, the Poisson
tensor is not a dynamical field and defines a preferred frame and thereby breaks Lorentz invariance.

The deformation parameter enters here much like ~ in the commutation relation between posi-
tion and momentum; its physical interpretation is that of a smallest observable area in the µν-plane.
The above commutation relation leads to a minimal uncertainty among spacial coordinates of the
form

∆xµ∆xν &
1

2
|θµν |. (156)

One expects the non-zero entries of θµν to be on the order of about the square of the Planck length,
though strictly speaking they are free parameters that have to be constrained by experiment.

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2013-2

http://www.livingreviews.org/lrr-2013-2


42 Sabine Hossenfelder

Quantization under the assumption of a non-commutative geometry can be extended from the
coordinates themselves to the algebra of functions f(x) by using Weyl quantization. What one
looks for is a procedure W that assigns to each element f(x) in the algebra of functions A a

Hermitian operator f̂ =W (f) in the algebra of operators Â. One does that by choosing a suitable
basis for elements of each algebra and then identifies them with each other. The most common
choice9 is to use a Fourier decomposition of the function f(x)

f̃(k) =
1

(2π)4

∫
d4x e−ikνx

ν

f(x) , (157)

and then doing the inverse transform with the non-commutative operators x̂ν

f̂ =W (f) =
1

(2π)4

∫
d4k e−ikν x̂

ν

f̃(k) . (158)

One can extend this isomorphism between the vector spaces to an algebra isomorphism by
constructing a new product, denoted ?, that respects the map W ,

W (f ? g)(x) =W (f) ·W (g) = f̂ · ĝ , (159)

for f, g ∈ A and f̂ , ĝ ∈ Â. From Eqs. (158) and (159) one finds the explicit expression

W (f ? g) =
1

(2π)4

∫
d4k d4p eikν x̂

ν

eipν x̂
ν

f̃(k)g̃(p) . (160)

With the Campbell–Baker–Hausdorff formula

eAeB = eA+B+ 1

2
[A,B]+ 1

12
[A,[A,B]]− 1

12
[B,[A,B]]− 1

24
[B,[A,[A,B]]]+... (161)

one has

eikν x̂
ν

eipν x̂
ν

= ei(kν+pν)x̂
ν− i

2
kνθ

νκpκ , (162)

and thus

W (f ? g) =
1

(2π)4

∫
d4 kd4p ei(kν+pν)x̂

ν− i

2
kνθ

νκpκ f̃(k)g̃(p) . (163)

This map can be inverted to

f(x) ? g(x) =

∫
d4p

(2π)4
d4k

(2π)4
f̃(k)g̃(p)e−

i

2
kκθ

κνpνe−i(kκ+pκ)x
κ

. (164)

If one rewrites the θ-dependent factor into a differential operator acting on the plane-wave–basis,
one can also express this in the form

f(x) ? g(x) = exp

(
i

2

∂

∂xν
θνκ

∂

∂xκ

)
f(x)g(y)

∣∣∣
x→y

, (165)

which is known as the Moyal–Weyl product [236].
The star product is a particularly useful way to handle non-commutative geometries, because

one can continue to work with ordinary functions, one just has to keep in mind that they obey a

9 An example of a different choice of basis can be found in [314].
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modified product rule in the algebra. With that, one can build non-commutative quantum field
theories by replacing normal products of fields in the Lagrangian with the star products.

To gain some insight into the way this product modifies the physics, it is useful to compute the
star product with a delta function. For that, we rewrite Eq. (164) as

f(x) ? g(x) =

∫
d4p

(2π)4
d4y f(x+

1

2
θk)g(x+ y)e−ikκy

κ

=
1

π4 |det θ|

∫
d4z d4y f(x+ z)g(x+ y)e−2izνθ−1

νκ yκ

. (166)

And so, one finds the star product with a delta function to be

δ(x) ? g(x) =
1

π4 |det θ|

∫
d4y e2ix

νθ−1

νκ yκ

g(y) . (167)

In contrast to the normal product of functions, this describes a highly non-local operation. This
non-locality, which is a characteristic property of the star product, is the most relevant feature of
non-commutative geometry.

It is clear that the non-vanishing commutator by itself already introduces some notion of
fundamentally-finite resolution, but there is another way to see how a minimal length comes into
play in non-commutative geometry. To see that, we look at a Gaussian centered around zero.
Gaussian distributions are of interest not only because they are widely used field configurations,
but, for example, also because they may describe solitonic solutions in a potential [137].

For simplicity, we will consider only two spatial dimensions and spatial commutativity, so then
we have

[x̂i, x̂j ] = iθεij , (168)

where i, j ∈ {1, 2}, εij is the totally antisymmetric tensor, and θ is the one remaining free parameter
in the Poisson tensor. This is a greatly simplified scenario, but it will suffice here.

A normalized Gaussian in position space centered around zero with covariance σ

Ψσ(x) =
1

πσ
exp

(
−x

2

σ2

)
(169)

has the Fourier transform

Ψ̃σ(k) =

∫
d2xeikxΨσ(x) = exp

(
−π2k2σ2

)
. (170)

We can then work out the star product for two Gaussians with two different spreads σ1 and σ2 to

Ψ̃σ1
? Ψ̃σ2

(k) =

∫
d2kΨσ1

(k)Ψσ2
(p− k) exp

(
i

2
kiεijp

j

)

=
π

(4σ2
1 + σ2

2)
2
exp

(
−p

2σ2
12

4

)
, (171)

where

σ2
12 =

σ2
1σ

2
2 + θ2

σ2
1 + σ2

2

. (172)

Back in position space this yields

Ψσ1
? Ψ̃σ2

(x) =
1

πσ12(4σ2
1 + σ2

2)
2
exp

(
− x2

σ2
12

)
. (173)
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Thus, if we multiply two Gaussians with σ1, σ2 < θ, the width of the product σ12 is larger than θ.
In fact, if we insert σ1 = σ2 = σ12 = σ in Eq. (172) and solve for σ, we see that a Gaussian with
width σ = θ squares to itself. Thus, since Gaussians with smaller width than θ have the effect to
spread, rather than to focus, the product, one can think of the Gaussian with width θ as having a
minimum effective size.

In non-commutative quantum mechanics, even in more than one dimension, Gaussians with
this property constitute solutions to polynomial potentials with a mass term (for example for a
cubic potential this would be of the form V (φ) = m2φ ? φ + a2φ ? φ ? φ ? φ) [137], because they
square to themselves, and so only higher powers continue to reproduce the original function.

3.7 Miscellaneous

Besides the candidate theories for quantum gravity so far discussed, there are also discrete ap-
proaches, reviewed, for example, in [203]. For these approaches, no general statement can be made
with respect to the notion of a minimal length scale. Though one has lattice parameters that play
the role of regulators, the goal is to eventually let the lattice spacing go to zero, leaving open the
question of whether observables in this limit allow an arbitrarily good resolution of structures or
whether the resolution remains bounded. One example of a discrete approach, where a minimal
length appears, is the lattice approach by Greensite [139] (discussed also in Garay [120]), in which
the minimal length scale appears for much the same reason as it appears in the case of quantized
conformal metric fluctuations discussed in Section 3.4. Even if the lattice spacing does not go to
zero, it has been argued on general grounds in [60] that discreteness does not necessarily imply a
lower bound on the resolution of spatial distances.

One discrete approach in which a minimal length scale makes itself noticeable in yet another
way are Causal Sets [290]. In this approach, one considers as fundamental the causal structure of
spacetime, as realized by a partially-ordered, locally-finite set of points. This set, represented by
a discrete sprinkling of points, replaces the smooth background manifold of general relativity. The
“Hauptvermutung” (main conjecture) of the Causal Sets approach is that a causal set uniquely
determines the macroscopic (coarse-grained) spacetime manifold. In full generality, this conjecture
is so far unproven, though it has been proven in a limiting case [63]. Intriguingly, the causal sets
approach to a discrete spacetime can preserve Lorentz invariance. This can be achieved by using
not a regular but a random sprinkling of points; there is thus no meaningful lattice parameter in
the ordinary sense. It has been shown in [62], that a Poisson process fulfills the desired property.
This sprinkling has a finite density, which is in principle a parameter, but is usually assumed to
be on the order of the Planckian density.

Another broad class of approaches to quantum gravity that we have so far not mentioned are
emergent gravity scenarios, reviewed in [49, 284]. Also in these cases, there is no general statement
that can be made about the existence of a minimal length scale. Since gravity is considered to
be emergent (or induced), there has to enter some energy scale at which the true fundamental,
non-gravitational, degrees of freedom make themselves noticeable. Yet, from this alone we do not
know whether this also prevents a resolution of structures. In fact, in the absence of anything
resembling spacetime, this might not even be a meaningful question to ask.

Giddings and Lippert [128, 129, 126] have proposed that the gravitational obstruction to test
short distance probes should be translated into a fundamental limitation in quantum gravity dis-
tinct from the GUP. Instead of a modification of the uncertainty principle, fundamental limitations
should arise due to strong gravitational (or other) dynamics, because the concept of locality is only
approximate, giving rise to a ‘locality bound’ beyond which the notion of locality ceases to be mean-
ingful. When the locality bound is violated, the usual field theory description of matter no longer
accurately describes the quantum state and one loses the rationale for the usual Fock space de-
scription of the states; instead, one would have to deal with states able to describe a quantum
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black hole, whose full and proper quantum description is presently unknown.
Finally, we should mention an interesting recent approach by Dvali et al. that takes very

seriously the previously-found bounds on the resolution of structures by black-hole formation [106]
and is partly related to the locality bound. However, rather than identifying a regime where
quantum field theory breaks down and asking what quantum theory of gravity would allow one
to consistently deal with strong curvature regimes, in Dvali et al.’s approach of ‘classicalization’,
super-Planckian degrees of freedom cannot exist. On these grounds, it has been argued that
classical gravity is in this sense UV-complete exactly because an arbitrarily good resolution of
structures is physically impossible [105].

3.8 Summary of motivations

In this section we have seen that there are many indications, from thought experiments as well as
from different approaches to quantum gravity, that lead us to believe in a fundamental limit to the
resolution of structure. But we have also seen that these limits appear in different forms.

The most commonly known form is a lower bound on spatial and temporal resolutions given
by the Planck length, often realized by means of a GUP, in which the spatial uncertainty increases
with the increase of the energy used to probe the structures. Such an uncertainty has been found in
string theory, but we have also seen that this uncertainty does not seem to hold in string theory in
general. Instead, in this particular approach to quantum gravity, it is more generally a spacetime
uncertainty that still seems to hold. One also has to keep in mind here that this bound is given by
the string scale, which may differ from the Planck scale. LQG and the simplified model for LQC
give rise to bounds on the eigenvalues of the area and volume operator, and limit the curvature in
the early universe to a Planckian value.

Thus, due to these different types of bounds, it is somewhat misleading to speak of a ‘minimal
length,’ since in many cases a bound on the length itself does not exist, but only on the powers
of spatio-temporal distances. Therefore, it is preferable to speak more generally of a ‘minimal
length scale,’ and leave open the question of how this scale enters into the measurement of physical
quantities.
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4 Models and Applications

In this section we will investigate some models that have been developed to deal with a minimal
length or, more often, a maximum energy scale. The models discussed in the following are not in
themselves approaches to a fundamental description of spacetime like the ones previously discussed
that lead us to seriously consider a finite resolution of structures. Instead, the models discussed in
this section are attempts to incorporate the notion of a minimal length into the standard model
of particle physics and/or general relativity by means of a modification of quantum mechanics,
quantum field theory and Poincaré symmetry. These models are meant to provide an effective
description of the possible effects of a minimal length with the intention to make contact with
phenomenology and thereby ideally constrain the possible modifications.10

As mentioned previously, the non-commutative geometries discussed in Section 3.6 could also
have rightfully claimed a place in this section on models and applications.

Before we turn towards the implementation, let us spend some words on the interpretation
because the construction of a suitable model depends on the physical picture one aims to realize.

4.1 Interpretation of a minimal length scale

It is the central premise of this review that there exists a minimal length scale that plays a
fundamental role in the laws of nature. In the discussion in Section 5 we will consider the possibility
that this premise is not fulfilled, but for now we try to incorporate a minimal length scale into
the physical description of the world. There are then still different ways to think about a minimal
length scale or a maximum energy scale.

One perspective that has been put forward in the literature [14, 193, 15, 212] is that for
the Planck mass to be observer independent it should be invariant under Lorentz boosts. Since
normal Lorentz boosts do not allow this, the observer independence of the Planck mass is taken
as a motivation to modify special relativity to what has become known as ‘Deformed Special
Relativity’ (DSR). (See also Section 4.5). In brief, this modification of special relativity allows
one to perform a Lorentz boost on momentum space in such a way that an energy of Planck mass
remains invariant.

While that is a plausible motivation to look into such departures from special relativity, one has
to keep in mind that just because a quantity is of dimension length (mass) it must not necessarily
transform under Lorentz boosts as a spatial or time-like component of a spacetime (or momentum)
four vector. A constant of dimension length can be invariant under normal Lorentz boosts, for
example, if it is a spacetime (proper) distance. This interpretation is an essential ingredient to
Padmanabhan’s path integral approach (see Section 4.7). Another example is the actual mass of
a particle, which is invariant under Lorentz boosts by merit of being a scalar. Thinking back to
our historical introduction, we recall that the coupling constant of Fermi’s theory for the weak
interaction is proportional to the inverse of the W -mass and therefore observer independent in the
sense that it does not depend on the rest frame in which we determine it – and that without the
need to modify special relativity.

Note also that coupling constants do depend on the energy with which structures are probed,
as discussed in Section 3.5 on ASG. There we have yet another interpretation for a minimal length
scale, that being the energy range (in terms of normally Lorentz-invariant Mandelstam variables for
the asymptotically in/out-going states) where the running Planck mass comes into the fixed-point
regime. The center-of-mass energy corresponding to the turning point of the total cross section in
graviton scattering, for example, makes it a clean and observer-independent definition of an energy
scale, beyond which there is no more new structure to be found.

10 The word ‘effective’ should here not be read as a technical term.
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One should also keep in mind that the outcome of a Lorentz boost is not an observable per
se. To actually determine a distance in some reference frame one has to perform a measurement.
Thus, for the observer independence of a minimal length, it is sufficient if there is no operational
procedure that allows one to resolve structures to a precision better than the Planck length. It
has been argued in [154] that this does not necessitate a modification of Lorentz boosts for the
momenta of free particles; it is sufficient if the interactions of particles do not allow one to resolve
structures beyond the Planck scale. There are different ways this could be realized, for example,
by an off-shell modification of the propagator that prevents arbitrarily-high momentum transfer.
As previously discussed, there are some indications that ASG might realize such a feature and it
can, in a restricted sense, be interpreted as a version of DSR [74].

An entirely different possibility that we mentioned in Section 3.7, has recently been put forward
in [106, 105], where it was argued that it is exactly because of the universality of black-hole
production that the Planck length already plays a fundamental role in classical gravity and there
is no need to complete the theory in the high energy range.

4.2 Modified commutation relations

The most widely pursued approach to model the effects of a minimal length scale in quantum
mechanics and quantum field theory is to reproduce the GUP starting from a modified commutation
relation for position and momentum operators. This modification may or may not come with a
modification also of the commutators of these operators with each other, which would mean that
the geometry in position or momentum space becomes non-commuting.

The modified commutation relations imply not only a GUP, but also a modified dispersion
relation and a modified Poincaré-symmetry in momentum and/or position space. The literature
on the subject is vast, but the picture is still incomplete and under construction.

4.2.1 Recovering the minimal length from modified commutation relations

To see the general idea, let us start with a simple example that shows the relation of modified
commutation relations to the minimal length scale. Consider variables k = (~k, ω), where ~k is the
three vector, components of which will be labeled with small Latin indices, and x = (~x, t). Under
quantization, the associated operators obey the standard commutation relations

[xν , xκ] = 0 , [xν , kκ] = iδνκ , [kν , kκ] = 0 . (174)

Now we define a new quantity p = (~p,E) = f(k), where f is an injective function, so that f−1(p) =
k is well defined. We will also use the notation pµ = hαµ(k)kα with the inverse kα = h µ

α (p)pµ. For
the variables x and p one then has the commutation relations

[xν , xκ] = 0 , [xν , pκ] = i
∂fκ
∂kν

, [pν , pκ] = 0 . (175)

If one now looks at the uncertainty relation between xi and pi, one finds

∆xi∆pi ≥
1

2
〈∂fi
∂ki

〉 . (176)

To be concrete, let us insert some function, for example a generic expansion of the form ~p ≈
~k(1 + αk2/m2

Pl) plus higher orders in k/mPl, so that the inverse relation is ~k ≈ ~p(1 − αp2/m2
Pl).

Here, α is some dimensionless parameter. One then has

∂fi
∂kj

≈ δij

(
1 + α

p2

m2
Pl

)
+ 2α

pipj
m2

Pl

. (177)
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Since this function is convex, we can rewrite the expectation value in (176) to

∆xi∆pi ≥
1

2

(
1 + α

〈p2〉
m2

Pl

+ 2α
〈p2i 〉
m2

Pl

)
. (178)

And inserting the expression for the variance 〈A2〉 − 〈A〉2 = ∆A2, one obtains

∆xi∆pi ≥
1

2

(
1 + α

∆p2 + 〈p〉2
m2

Pl

+ 2α
∆p2i + 〈pi〉2

m2
Pl

)

≥ 1

2

(
1 + 3α

∆p2i
m2

Pl

)
, (179)

or

∆xi ≥
1

2

(
1

∆pi
+ 3α

∆pi
m2

Pl

)
. (180)

Thus, we have reproduced the GUP that we found in the thought experiments in Section 3.1 with
a minimal possible uncertainty for the position [175, 26, 207, 209, 25].

However, though the nomenclature here is deliberately suggestive, one has to be careful with
interpreting this finding. What the inequality (180) tells us is that we cannot measure the position
to arbitrary precision if we do it by varying the uncertainty in p. That has an operational meaning
only if we assign to p the meaning of a physical momentum, in particular it should be a Hermi-
tian operator. To distinguish between the physical quantity p, and k that fulfills the canonical
commutation relations, the k is sometimes referred to as the ‘pseudo-momentum’ or, because it is
conjugated to x, as ‘the wave vector.’ One can then physically interpret the non-linear relation
between p and k as an energy dependence of Planck’s constant [156].

To further clarify this, let us turn towards the question of Lorentz invariance. If we do not make
statements in addition to the commutation relations, we do not know anything about the transfor-
mation behavior of the quantities. For all we know, they could have an arbitrary transformation
behavior and Lorentz invariance could just be broken. If we require Lorentz invariance to be pre-
served, this opens the question of how it is preserved, what is the geometry of its phase space, and
what is its Poisson structure. And, most importantly, how do we identify physically-meaningful
coordinates on that space?

At the time of writing, no agreed upon picture has emerged. Normally, phase space is the
cotangential bundle of the spacetime manifold. One might generalize this to a bundle of curved
momentum spaces, an idea that dates back at least to Max Born in 1938 [64]. In a more radical
recent approach, the ‘principle of relative locality’ [287, 286, 169, 27, 23, 21] phase space is instead
considered to be the cotangential bundle of momentum space.

To close this gap in our example, let us add some more structure and assume that the phase
space is a trivial bundle S = M⊗P, where M is spacetime and P is momentum space. Elements of
this space have the form (x,p). If we add that the quantity p is a coordinate on P and transforms
according to normal Lorentz transformations under a change of inertial frames, and k is another
coordinate system, then we know right away how k transforms because we can express it by use
of the function f . If we do a Lorentz transformation on p, so that p′ = Λp, then we have

k′ = f(p′) = f(Λp) = f(Λf−1(k)) , (181)

which we can use to construct the modified Lorentz transformation as k′ = Λ̃(k). In particular, one
can chose f in such a way that it maps an infinite value of p (in either the spatial or temporal entries,
or both) to a finite value of k at the Planck energy. The so-constructed Lorentz transformation on
p will then keep the Planck scale invariant, importantly without introducing any preferred frame.
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This is the basic idea of deformations of special relativity, some explicit examples of which we will
meet in Section 4.5.

If one assumes that p transforms as a normal Lorentz vector, one has

[Jκν , pµ] = i (pνηκµ − pκηνµ) . (182)

Since this commutator commutes with p, one readily finds

[Jκν , kµ] = i (pνηκα − pκηνα)
∂kµ
∂pα

, (183)

which gives us the infinitesimal version of (181) by help of the usual expansion

k′ν = kν − i

2
ωαβ [Jαβ , kν ] +O(ω2) , (184)

where ωαβ are the group parameters of Λ.
Now that we know how k transforms, we still need to add information for how the coordinates

on P are supposed to be matched to those on M. One requirement that we can use to select a
basis on M along with that on P under a Lorentz transformation is that the canonical form of
the commutation relations should remain preserved. With this requirement, one then finds for the
infinitesimal transformation of x [253]

[Jκν , x
µ] = ixα

∂

∂kµ

(
pκηβν

∂kα
∂pβ

− pνηβκ
∂kα
∂pκ

)
(185)

and the finite transformation

x′
ν
=
∂p′α
∂k′µ

Λν
α

∂kβ
∂pν

xκ . (186)

One finds the latter also directly by noting that this transformation behavior is required to keep
the symplectic form w = dxα ∧ dkα canonical.

A word of caution is in order here because the innocent looking indices on these quantities
do now implicitly stand for different transformation behaviors under Lorentz transformations.
One can amend this possible confusion by a more complicated notation, but this is for practical
purposes usually unnecessary, as long as one keeps in mind that the index itself does not tell the
transformation behavior under Lorentz transformations. In particular, the derivative ∂kα/∂pβ has
a mixed transformation behavior and, in a Taylor-series expansion, this and higher derivatives
yield factors that convert the normal to the modified transformation behavior.

So far this might have seemed like a rewriting, so it is important to stress the following:
just writing down the commutation relation leaves the structure under-determined. To completely
specify the model, one needs to make an additional assumption about how a Lorentz transformation
is defined, how the coordinates in position space ought to be chosen along with those in momentum
space under a Lorentz transformation and, most importantly, what the metric on the curved
momentum space (and possibly spacetime) is.

Needless to say, the way we have fixed the transformation behavior in this simple example
is not the only way to do it. Another widely used choice is to require that k obeys the usual
transformation behavior, yet interpret p as the physical momentum, or x as ‘pseudo-coordinates’
(though this is not a word that has been used in the literature). We will meet an example of this
in Section 4.2.2. This variety is the main reason why the literature on the subject of modified
commutation relations is confusing.

At this point it should be mentioned that a function f that maps an infinite value of p to
an asymptotically-finite value of f(p) cannot be a polynomial of finite order. Its Taylor series
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expansion necessarily needs to have an infinite number of terms. Now if k(p) becomes constant for
large p, then ∂k/∂p goes to zero and ∂p/∂k increases without bound, which is why the uncertainty
(176) increases for large p. Depending on the choice of f , this might be the case for the spatial or
temporal components or both. If one wants to capture the regularizing properties of the minimal
length, then a perturbative expansion in powers of E/mPl will not work in the high energy limit.
In addition, such expansions generically add the complication that any truncation of the series
produces for the dispersion relation a polynomial of finite order, which will have additional zeros,
necessitating additional initial values [158]. This can be prevented by not truncating the series,
but this adds other complications, discussed in Section 4.4.

Since ∂p/∂k is a function of p, the position operator i(∂pα/∂kν)∂/∂pα, is not Hermitian if p is
Hermitian. This is unfortunate for a quantity that is supposed to be a physical observable, but we
have to keep in mind that the operator itself is not an observable anyway. To obtain an observable,
we have to take an expectation value. To ensure that the expectation value produces meaningful
results, we change its evaluation so that the condition 〈xΨ|Φ〉 = 〈Ψ|xΦ〉, which in particular
guarantees that expectation values are real, is still fulfilled. That is, we want the operator to be
symmetric, rather than Hermitian.11 To that end, one changes the measure in momentum space
to [175, 184]

d3p→ d3k =
∣∣∣
∂k

∂p

∣∣∣d3p , (187)

which will exactly cancel the non-Hermitian factor in x̂ = i∂/(∂k), because now

〈Ψ|xΦ〉 = i

∫
d3p
∣∣∣
∂k

∂p

∣∣∣Ψ* ∂

∂k
Φ

= i

∫
d3kΨ* ∂

∂k
Φ = i

∫
d3k(

∂

∂k
Ψ*)Φ

= 〈xΨ|Φ〉 . (188)

Note that this does not work without the additional factor because then the integration measure
does not fit to the derivative, which is a consequence of the modified commutation relations. We
will see in the next section that there is another way to think of this modified measure.

The mass-shell relation, gµν(p)pµpν −m2 = 0, is invariant under normal Lorentz transforma-
tions acting on p, and thus gµν(k)pµ(k)pν(k)

2 −m2 = 0 is invariant under the modified Lorentz
transformations acting on k. The clumsy notation here has stressed that the metric on momentum
space will generally be a non-linear function of the coordinates. The mass-shell relation will yield
the Hamiltonian constraint of the theory.

There is a subtlety here; since x is not Hermitian, we can’t use the representation if this
operator. The way this can be addressed depends on the model. One can in many cases just work
the momentum representation. In our example, we would note that the operator x̄ν = (∂kν/∂pµ)x

µ

is Hermitian, and use its representation. In this representation, the Hamiltonian constraint becomes
a higher-order operator, and thus delivers a modification of the dispersion relation. However, the
interpretation of the dispersion then hinges on the interpretation of the coordinates. Depending on
the suitable identification of position space coordinates and the function f , the speed of massless
particles in this model may thus become a function of the momentum four-vector p. It should be
noted however that this is not the case for all choices of f [155].

Many of the applications of this model that we will meet later only use the first or second-order
expansion of f . While these are sufficient for some interesting consequences of the GUP, the

11 According to the Hellinger–Toeplitz theorem, an everywhere-defined symmetric operator on a Hilbert space is
necessarily bounded. Since some operators in quantum mechanics are unbounded, one is required to deal with wave
functions that are not square integrable. The same consideration applies here.
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Planck energy is then generically not an asymptotic and invariant value. If the complete function
f is considered, it is usually referred to as an ‘all order GUP.’ The expansion to first or second
order is often helpful because it allows one to parameterize the possible modifications by only a
few dimensionless quantities.

To restrict the form of modifications possible in this approach, sometimes the Jacobi identities
are drawn upon. It is true that the Jacobi identities restrict the possible commutation relations, but
seen as we did here starting from the standard commutation relations, this statement is somewhat
misleading. The Jacobi identities are, as the name says, identities. They say more about the
properties of the binary operation they represent than about the quantities this operation acts on.
They are trivially fulfilled for the commutators of all new variables f(k) one can define (coordinates
one can choose) if the old ones fulfilled the identities. However, if one does not start from such a
function, one can draw upon the Jacobi identities as a consistency check.

A requirement that does put a restriction on the possible form of the commutation relation is
that of rotational invariance. Assuming that fi(~k) = kih(k), where k = |~k|, one has

∂fi
∂kj

= δji h(k) + ki
∂h(k)

∂kj
. (189)

The expansion to 3rd order in k is

h(k) = 1 + αk + βk2 +O(k3) ,
∂h

∂kj
= α

kj
k

+ 2βkj +O(k2) . (190)

We denote the inverse of fi(~k) with f−1
i (~p) = pih̃(p). An expansion of h̃(p) and comparison of

coefficients yields to third order

h̃(p) = 1− αp− (β − 2α2)p2 . (191)

With this, one has then

[xi, pj ] = δij + α

(
kδij +

kikj
k

)
+ β

(
k2δij + 2kjki

)
+O(k3)

= δij + α

(
pδij +

pipj
p

)
+ (β − α2)p2δij + (2β − α2)pipj +O(p3) . (192)

For the dimensions to match, the constant α must have a dimension of length and β a dimension
of length squared. One would expect this length to be of the order Planck length and play the role
of the fundamental length.

It is often assumed that β = α2, but it should be noted that this does not follow from the
above. In particular, α may be zero and the modification be even in k, starting only at second
order. Note that an expansion of the commutator in the form [xi, pj ] = iδij(1 + βp2) does not
fulfill the above requirement.

To summarize this section, we have seen that a GUP that gives rise to a minimal length
scale can be realized by modifying the canonical commutation relations. We have seen that this
modification alone does not completely specify the physical picture, we have in addition to fix the
transformation behavior under Lorentz transformations and the metric on momentum space. In
Section 4.2.2 we will see how this can be done.

4.2.2 The Snyder basis

As mentioned in the previous example, p is not canonically conjugate to x, and the wave vector
k, which is canonically conjugate, is the quantity that transforms under the modified Lorentz
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transformations. But that is not necessarily the case for models with modified commutation
relations, as we will see in this section.

Let us start again from the normal commutation relations (174) and now define new position
coordinates X by Xν = xν − xαkαkν/m

2
Pl, as discussed in [135]. (The Planck mass mPl could

enter here with an additional dimensionless factor that one would expect to be of order one, if
one describes a modification that has its origin in quantum gravitational effects. In the following
we will not carry around such an additional factor. It can easily be inserted at any stage just
by replacing mPl with αmPl.) In addition, we now require that k transforms under the normal
Lorentz transformations. With this replacement, the k’s are then still commutative as usual and
the remaining commutation relations have the form

[Xµ, Xν ] = − 1

mPl
Jµν , [Xµ, kν ] = i

(
ηµν − kµkν

m2
Pl

)
, (193)

where we recognize

Jµν = xµkν − xνkµ = Xµkν −Xνkµ , (194)

as the generators of Lorentz transformations. This reproduces the commutation relations of Sny-
der’s original proposal [288].

The commutator between X and k leads to a GUP by taking the expectation value in the same
way as previously, though the reason here is a different one: If it is the Xν ’s that are representing
physically-meaningful positions in spacetime, then it is their non-commutativity that spoils the
resolution of structures at the Planck scale. Note that the transformation from x to X is not
canonical exactly for the reason that it does change the commutation relations.

In a commonly-used notation, Ji0 = Ni are the generators of boosts and {J23, J31, J12} are the
generators of the rotations {M1,M2,M3} that fulfill the normal Lorentz algebra

[Ni, Nj ] = −iεijkNk , [Mi,Mj ] = iεijkNk,

[Mi, Nj ] = iεijkNk . (195)

Since we have not done anything to the transformation of the momentum k, in theX,k phase-space
coordinates one also has

[Mi, kj ] = iεijkkk , [Mi, k0] = 0,

[Ni, kj ] = iδijk0 , [Ni, k0] = iki . (196)

There are two notable things here. First, as in Section 4.2.2, the Lorentz algebra remains
entirely unmodified. Second, the X by construction transforms covariantly under normal Lorentz
transformations if the x and k do. However, we see that there is exactly one x for which X does
not depend on k, and that is x = 0. If we perform a translation by use of the generator k; the
coordinate x will be shifted to some value x′ = x+a. Alternatively, one may try to take a different
generator for translations than k, the obvious choice is the operator canonically conjugated to Xν

∂

∂Xν
=

∂

∂xα

∂xα
∂Xν

. (197)

If one contracts Xν = xν + xαkαkν/m
2
Pl with k

ν , one can invert X(x) to

xν = Xν − Xαk
α

m2
Pl + kκkκ

kν . (198)
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Then one finds the translation operator

∂

∂Xν
= kν

(
1

1− kαkα/m2
Pl

)
. (199)

Therefore, it has been argued [230] that one should understand this type of theory as a modification
of translation invariance rather than a modification of Lorentz symmetry. However, this depends
on which variables are assigned physical meaning, which is a question that is still under discussion.

We should at this point look at Snyder’s original motivation for it is richer than just the commu-
tation relations of position, momenta and generators and adds to it in an important way. Snyder
originally considered a 5-dimensional flat space of momenta, in which he looked at a hypersurface
with de Sitter geometry. The full metric has the line element

ds2 = ηAB dηA dηB , (200)

where the coordinates ηA have dimensions of energy and capital Latin indices run from 0 to 4. This
flat space is invariant under the action of the group SO(4, 1), which has a total of 10 generators.
In that 5-dimensional space, consider a 4-dimensional hyperboloid defined by

−m2
p = ηABηAηB = ηµνηµην − η24 . (201)

This hypersurface is invariant under the SO(3, 1) subgroup of SO(4, 1). It describes a de Sitter
space and can be parameterized by four coordinates. Snyder chooses the projective coordinates
kν = mPlην/η4. (These coordinates are nowadays rarely used to parameterize de Sitter space, as
the fifth coordinate of the embedding space η4 is not constant on the hyperboloid.) The remaining
four generators of SO(4, 1) are then identified with the coordinates

J4ν = Xν = i

(
η4
mPl

∂

∂ην
+

ην
mPl

∂

∂η4

)
. (202)

From this one obtains the same commutation relations (193), (195), and (196) as above [55].
However, the Snyder approach contains additional information: We know that the commutation

relations seen previously can be obtained by a variable substitution from the normal ones. In
addition, we know that the momentum space is curved. It has a de Sitter geometry, a non-trivial
curvature tensor and curvature scalar 12/m2

Pl. It has the corresponding parallel transport and a
volume measure. In these coordinates, the line element has the form

ds2 =
ηµν dkµ dkν

1− ηακkαkκ/m2
Pl

. (203)

Thus, we see how the previously found need to adjust the measure in momentum space (187) arises
here naturally from the geometry in momentum space. The mass-shell condition is

m2 =
ηµνkµkν

1− ηακkαkκ/m2
Pl

. (204)

We note that on-shell this amounts to a redefinition of the rest mass.
The (X,k) coordinates on phase space have become known as the Snyder basis.

4.2.3 The choice of basis in phase space

The coordinates η that Snyder chose to parameterize the hyperbolic 4-dimensional submanifold
are not unique. There are infinitely many sets of coordinates we can choose on this space; most of
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them will be non-linear combinations of each other. Such non-linear redefinitions of momenta will
change the commutation relations between position and momentum variables. More generally, the
question that arises here is what coordinates on phase space should be chosen, since we have seen
in the previous Section 4.2.2 that a change of coordinates in phase space that mixes position and
momentum operators creates non-commutativity. For example, one could use a transformation
that mixes p and x to absorb the unusual factor in the [x,p] commutator in (175) at the expense
of creating a non-commutative momentum space.

Besides the above-discussed coordinate systems (x,k), (x,p), (X,η), and (X,k), there are
various other choices of coordinates that can be found in the literature. One choice that is very
common are coordinates x̃ that are related to the Snyder position variables [197] via

x̃0 = X0 , x̃i = Xi +
Ni

mp
. (205)

This leads to the commutation relations

[x̃0, x̃i] = −i
xi
mPl

, [x̃i, x̃j ] = 0 . (206)

The non-commutative spacetime described by these coordinates has become known as κ-Minkowski
spacetime. The name derives from the common nomenclature in which the constant mPl (that, as
we have warned previously, might differ from the actual Planck mass by a factor of order one) is
κ.

Another choice of coordinates that can be found in the literature [132, 287] is obtained by the
transformation

χ0 = x0 + xik
i/mPl , χi = xi (207)

on the normal coordinates xν . This leads to the commutation relations

[χ0, χi] = i
χi

mPl
, [χi, χj ] = 0 , [ki, χj ] = iδij ,

[χ0, k0] = i , [χ0, ki] = −i
ki
mPl

, [k0, χi] = i . (208)

This is the full κ-Minkowski phase space [205], which is noteworthy because it was shown by
Kowalski-Glikman and Nowak [197] that the geometric approach to phase space is equivalent to
the algebraic approach that has been pursued by deforming the Poincaré-algebra (the algebra of
generators of Poincaré transformations, i.e., boosts, rotations and momenta) to a Hopf algebra [213]
with deformation parameter κ, the κ-Poincaré Hopf algebra, giving rise to the above κ-Minkowski
phase space.

A Hopf algebra generally consists of two algebras that are related by a dual structure and
associated product rules that have to fulfill certain compatibility conditions. Here, the dual to the κ-
Poincaré algebra is the κ-Poincaré group, whose elements are identified as Lorentz transformations
and position variables. The additional structure that we found in the geometric approach to be
the curvature of momentum space is, in the algebraic approach, expressed in the co-products and
antipodes of the Hopf algebra. As in the geometrical approach, there is an ambiguity in the choice
of coordinates in phase space.

In addition to the various choices of position space coordinates, one can also use different
coordinates on momentum space, by choosing different parameterizations of the hypersurface than
that of Snyder. One such parameterization is using coordinates πν , that are related to the Snyder
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basis by

η0 = −mPl sinh

(
π0
mPl

)
− ~π2

2mPl
exp

(
π0
mPl

)
,

ηi = −πi exp
(
π0
mPl

)
,

η4 = −mPl cosh

(
π0
mPl

)
− ~π2

2mPl
exp

(
π0
mPl

)
. (209)

(Recall that η4 is not constant on the hypersurface.) The πν ’s are the bicrossproduct basis of
the Hopf algebra [213], and they make a natural choice for the algebraic approach. With the
κ-Minkowski coordinates x̃µ, one then has the commutators [197]

[π0, x̃0] = i , [πi, x̃0] = −i
πi
mPl

,

[πi, x̃j ] = −iδij , [π0, x̃i] = 0 . (210)

Another choice of coordinates on momentum space is the Magueijo–Smolin basis Pµ, which is
related to the Snyder coordinates by

kµ =
Pµ

1− P0/mPl
. (211)

From the transformation behavior of the k (196), one can work out the transformation behavior of
the other coordinates, and reexpress the mass-shell condition 204 in the new sets of coordinates.

Since there are infinitely many other choices of coordinates, listing them all is beyond the scope
of this review. So long as one can identify a new set of coordinates by a coordinate transformation
from other coordinates, the commutation relations will fulfill the Jacobi identities automatically.
Thus, these coordinate systems are consistent choices. One can also, starting from the transforma-
tion of the Snyder coordinates, derive the transformation behavior under Lorentz transformation
for all other sets of coordinates. For the above examples the transformation behavior can be found
in [132, 197]

In summary, we have seen here that there are many different choices of coordinates on phase
space that lead to modified commutation relations. We have met some oft used examples and seen
that the most relevant information is in the geometry of momentum space. Whether there are
particular choices of coordinates on phase space that lend themselves to easy interpretations and
are thus natural in some sense is presently an open question.

4.2.4 Multi-particle states

One important consequence of the modified Lorentz symmetry that has been left out in our dis-
cussion so far is the additivity of momenta, which becomes relevant when considering interactions.

In the example from Section 4.2.1, the function f has to be non-linear to allow a maximum
value of (some components of) k to remain Lorentz invariant, and consequently the Lorentz trans-

formations Λ̃ are non-linear functions of k. But that means that the transformation of a sum of
pseudo-momenta k1 + k2 is not the same as the sum of the transformations:

Λ̃(k1 + k2) 6= Λ̃(k1) + Λ̃(k2) . (212)

Now in the case discussed in Section 4.2.1, it is the p that is the physical momentum that is
conserved, and since it transforms under normal Lorentz transformations its conservation is inde-
pendent of the rest frame.

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2013-2

http://www.livingreviews.org/lrr-2013-2


56 Sabine Hossenfelder

However, if one has chosen the p rather than the k to obey the normal Lorentz transformation,
as was the case in Sections 4.2.2 and 4.2.3, then this equation looks exactly the other way round

Λ̃(p1 + p2) 6= Λ̃(p1) + Λ̃(p2) . (213)

And now one has a problem, because the momentum p should be conserved in interactions, and
the above sum is supposed to be conserved in an interaction in one rest frame, it would not be
conserved generally in all rest frames. (For the free particle, both p and k are conserved since the
one is a function of the other.)

The solution to this problem is to define a new, non-linear, addition law ⊕ that has the property
that it remains invariant and that can be rightfully interpreted as a conserved quantity. This
is straightforward to do if we once again use the quantities k that in this case by assumption
transform under the normal Lorentz transformation. To each momentum we have an associated
pseudo-momentum k1 = f−1(p1), k2 = f−1(p2). The sum k1 + k2 is invariant under normal
Lorentz transformations, and so we construct the sum of the p′s as

p1 ⊕ p2 = f(k1 + k2) = f(f−1(p1) + f−1(p2)) . (214)

It is worthwhile to note that this modified addition law can also be found from the algebraic
approach; it is the bicrossproduct of the κ-Poincaré algebra [197].

This new definition for a sum is now observer independent by construction, but we have created
a new problem. If the function f (or some of its components) has a maximum of the Planck mass,
then the sum of momenta will never exceed this maximal energy. The Planck mass is a large energy
as far as particle physics is concerned, but in everyday units it is about 10−5 gram, a value that is
easily exceeded by some large molecules. This problem of reproducing a sensible multi-particle limit
when one chooses the physical momentum to transform under modified Lorentz transformations
has become known as the ‘soccer-ball problem.’

The soccer-ball problem is sometimes formulated in a somewhat different form. If one makes
an expansion of the function f to include the first correction terms in p/mPl, and from that derives
the sum ⊕, then it remains to be shown that the correction terms stay small if one calculates
sums over a large number of momenta, whose ordinary sum describes macroscopic objects like, for
example, a soccer ball. One expects that the sum then has approximately the form p1 ⊕ p2 ≈
p1 + p2 + p1p2Γ/mPl, where Γ are some coefficients of order one. If one iterates this sum for N
terms, the normal sum grows with N but the additional term with ∼ N2, so that it will eventually
become problematic.

Note that this problem is primarily about sums of momenta, and not even necessarily about
bound states. If one does not symmetrize the new addition rule, the result may also depend on
the order in which momenta are added. This means in particular the sum of two momenta can
depend on a third term that may describe a completely unrelated (and arbitrarily far away) part
of the universe, which has been dubbed the ‘spectator problem’ [195, 134].

There have been various attempts to address the problem, but so far none has been generally
accepted. For example, it has been suggested that with the addition of N particles, the Planck
scale that appears in the Lorentz transformation, as well as in the modified addition law, should
be rescaled to mPlN [212, 171, 210]. It is presently difficult to see how this ad-hoc solution would
follow from the theory. Alternatively, it has been suggested that the scaling of modifications
should go with the density [157, 246] rather than with the total momentum or energy respectively.
While the energy of macroscopic objects is larger than that of microscopic ones, the energy density
decreases instead. This seems a natural solution to the issue but would necessitate a completely
different ansatz to implement. A noteworthy recent result is [24, 166], where it has been shown
how the problem can be alleviated in a certain model, such that the nonlinear term in the sum
does not go with N2 but with N3/2.
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One should also note that this problem does not occur in the case in which the modification is
present only off-shell, which seems to be suggested in some interpretations. Then, if one identifies
the momenta of particles as those of the asymptotically free states, the addition of their momenta
is linear as usual. For the same reason, the problem also does not appear in the interpretation
of such modifications of conservation laws as being caused by a running Planck’s constant, put
forward [261, 74], and discussed in Section 3.5. In this case, the relevant energy is the momentum
transfer, and for bound states this remains small if the total mass increases.

So we have seen that demanding the physical momentum rather than the pseudo-momentum
to transform under modified Lorentz transformations leads to the soccer ball and the spectator
problem. This is a disadvantage of this choice. On the other hand, this choice has the advantage
that it has a geometric base, which is missing for the case discussed in Section 4.2.1.

4.2.5 Open problems

We have, in Section 4.2.2 and 4.2.3, seen different examples for modified commutation relations
with a curved momentum space. But commutation relations alone don’t make for physics. To
derive physical meaning, one has to define the dynamics of the system and its observables.

This raises the question of which principles to use for the dynamics and how to construct
observables. While there are several approaches to this, some of which we will meet in the following,
there exists to date no agreed-upon framework by which to derive observables, and therefore the
question of whether there is a physical reason to prefer one basis over another is open.

One finds some statements in the literature that a different choice of coordinates leads to a
different physics, but this statement is somewhat misleading. One should more precisely say that
a choice of coordinates and the corresponding commutation relations do not in and of themselves
determine the physics. For that, one has to specify not only the geometry of the phase space,
which is not contained merely in the commutation relations, but also a unique procedure to arrive
at equations of motion.

Given the complete geometry (or, equivalently, the operations on the Hopf algebra), the Hamil-
tonian in some basis can be identified as (a function of) the Casimir operator of the Lorentz
group.12 It can be expressed in any basis one wishes by substitution. However, if the trans-
formation between one basis of phase space and the other is not canonical, then transform-
ing the Hamiltonian by substitution will not preserve the Hamiltonian equations. In particu-
lar, ∂H/∂p and [H,x] will generically not yield the same result, thus the notion of velocity re-
quires careful interpretation, especially when the coordinates in position space are in addition
non-commuting. It has been argued by Smolin in [286] that commuting coordinates are the sen-
sible choice. The construction of observables with non-commuting coordinates has been worked
towards, e.g., in [287, 286, 169, 27, 23, 21, 272, 302, 136].

The one modification that all of these approaches have in common is a non-trivial measure
in momentum space that in the geometric approach results from the volume element of the now
curved space. But this raises the question of what determines the geometry. Ideally one would
like an axiomatic approach that allows one to derive the geometry from an underlying principle,
and then everything else from the geometry. One would, in the general case, if dynamical matter
distributions are present, not expect the structure of momentum space to be entirely fixed. A step
towards a dynamical momentum space has been made in [86], but clearly the topic requires more
investigation.

Another open problem with this class of models is the type of non-locality that arises. If the
Planck length acts as a minimal length, there clearly has to be some non-locality. However, it has
been shown that for those types of models in which the speed of light becomes energy dependent,

12 The Lorentz group has a second Casimir operator, which is the length of the Pauli–Lubanski pseudovector. It
can be identified by it being a function of the angular momentum operator.
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the non-locality becomes macroscopically large. Serious conceptual problems arising from this were
pointed out in [16, 277, 156], and shown to be incompatible with observation in [159, 160].

A very recent development to address this problem is to abandon an absolute notion of locality,
and instead settle for a relative one. This ‘principle of relative locality’ [287, 286, 169, 27, 23, 21, 79]
is a promising development. It remains to be seen how it mitigates the problem of non-local particle
interactions. For some discussion, see [162, 163, 161]. It should be stressed that this problem does
not occur if the speed of light remains constant for free particles.

4.3 Quantum mechanics with a minimal length scale

So we have seen that modified commutation relations necessarily go together with a GUP, a
modified measure in momentum space and a modified Lorentz symmetry. These models may or
may not give rise to a modified on-shell dispersion relation and thus an energy-dependent speed
of light [155], but the modified commutation relations and the generalized uncertainty cannot be
treated consistently without taking care of the momentum space integration and the transformation
behavior.

The literature on the subject of quantum mechanics with a minimal length scale is partly
confusing because many models use only some of the previously-discussed ingredients and do not
subscribe to all of the modifications, or at least they are not explicitly stated. Some differ in the
interpretation of the quantities; notoriously there is the question of what is a physically-meaningful
definition of velocity and what is the observable momentum.

Thus, the topic of a minimal length scale has thus given rise to many related approaches
that run under the names ‘modified commutation relation,’ ‘generalized uncertainty,’ ‘deformed
special relativity,’ ‘minimal length deformed quantum mechanics,’ etc. and are based on only some
features of the modified phase space discussed previously. It is not clear in all cases whether this
is consistently possible or what justifies a particular interpretation. For example, one may argue
that in the non-relativistic limit, a modified transformation behavior under boosts, that would
only become relevant at relativistic energies, is irrelevant. However, one has to keep in mind that
the non-linear transformation behavior of momenta results in a non-linear addition law, which
becomes problematic for the treatment of multi-particle states. Thus, even in the non-relativistic
case, one has to be careful if one deals with a large number of particles.

The lack of clean, agreed upon, axiomatic approach has inevitably given rise to occasional
criticism. It has been argued in [5], for example, that the deformations of special relativity are
operationally indistinguishable from special relativity. Such misunderstandings are bound to arise
if the model is underspecified. Maybe, the easiest way to see that the minimal length modified
quantum theory is not equivalent to the unmodified case is to keep in mind that the momentum
space is curved: There is no coordinate transformation that will make the curvature of momentum
space go away. The non-trivial metric will also produce an infinite series of higher-order derivatives
in the Hamiltonian constraint, a reflection of the non-locality that the existence of a minimal length
scale implies.

In the following, we will not advocate one particular approach, but just report what results are
presently available. Depending on which quantities are raised to physical importance, the resulting
model can have very different properties. The speed of light might be energy dependent [26] or
not [301, 99], there might be an upper limit to energies and/or momenta, or not, addition laws and
thresholds might be modified, or not, coordinates might be non-commuting, or not, there might
be non-localities or not, the modification might only be present off-shell, or not. This is why the
physical meaning of different bases in phase space is a problem in need of being addressed in order
to arrive at more stringent predictions.
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4.3.1 Maximal localization states

The most basic information about the minimal length modified quantum mechanics is in the posi-
tion operator itself. While, in the momentum representation, there exist eigenvectors of the posi-
tion operator that correspond to arbitrarily–sharply-peaked wave functions, these do not describe
physically-possible configurations. It has been shown in [184] that the sharply-peaked wavefunc-
tions with spread below the minimal position uncertainty carry an infinite energy, and thus do
not represent a physically-meaningful basis. Instead, one can construct quasi-localized states that
are as sharply focused as physically possible. These states are then no longer exactly orthogonal.
In [184], the maximal localization states have been constructed in one spatial dimension for a
2nd-order expansion of the GUP.

4.3.2 The Schrödinger equation with potential

The most straight-forward modification of quantum mechanics that one can construct with the
modified commutation relations is leaving the Hamiltonian unmodified. For the harmonic oscillator
for example, one then has the familiar expression

H =
p2

2m
+mω2x

2

2
. (215)

However, due to the modified commutation relations, if one inserts the operators, the resulting
differential equation becomes higher order. In one dimension, for example, in the momentum space
representation, one would have to second order x̂ = i(1 + l2Plp

2)∂/∂p and thus for the stationary
equation

∂2

∂p2
ψ(p) +

2lPl

1 + l2Plp
2

∂

∂p
Ψ(p) +

2E/(2mω2)− p2/(mω)2

(1 + l2Plp
2)2

ψ(p) = 0 . (216)

The same procedure can be applied to other types of potentials in the Schrödinger equation,
and in principle this can be done not only in the small-momentum expansion, but to all orders. In
this fashion, in the leading-order approximation, the harmonic oscillator in one dimension has been
studied in [184, 167, 8, 125], the harmonic oscillator in arbitrary dimensions in [83, 177, 85, 93], the
energy levels of the hydrogen atom in [167, 69, 296, 67, 258], the particle in a box in [7], Landau
levels and the tunneling current in [8, 96, 97], the uniform gravitational potential in [244, 83],
the inverse square potential in [65, 66], neutrino oscillations in [292], reflection and transmission
coefficients of a potential step and potential barrier in [8, 97], the Klein paradox in [124], and
corrections to the gyromagnetic moment of the muon in [143, 95]. Note that these leading order
expansions do not all use the same form of the GUP.

In order to obtain the effects of the minimal length on the transition rate of ultra cold neutrons
in gravitational spectrometers, Pedram et al. calculated the quantization of the energy spectrum
of a particle in a linear gravitational field in the GUP leading-order approximation [259] and to
all orders [256]. The harmonic oscillator in one dimension with an asymptotic GUP has been
considered in [257, 255].

While not, strictly speaking, falling into the realm of quantum mechanics, let us also mention
here the Casimir effect, which has been studied in [142, 46, 241, 112, 102], and Casimir–Polder
intermolecular forces, which have been looked at in [252].

All these calculations do, in principle, cause corrections to results obtained in standard quantum
mechanics. As one expects, the correction terms are unobservably small if one assumes the minimal
length scale to be on the order of the Planck length. However, as argued previously, since we
have no good explanation as to why the Planck length as the scale at which quantum gravity
should become important is so small, the minimal length should, in principle, be regarded as a free
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parameter and then be bound by experiment. A compilation of bounds from the above calculations
is presently not available and unfortunately no useful comparison is possible due to the different
parameterizations and assumptions used. One can hope that this might improve in the future if a
more standardized approach becomes established, for example, using the parameterization (192).

4.3.3 The Klein–Gordon and Dirac equation

The Klein Gordon equation can be obtained directly from the invariant p(k)2−m2 = 0. The Dirac
equation can be constructed using the same prescription that lead to the Schrödinger equation,
except that, to make sure Lorentz invariance is preserved, one should first bring it into a suitable
form

(γνpν −m)Ψ = 0 , (217)

and then replace pν with its operator as discussed in Section 4.2.1. In the position representation,
this will generally produce higher-order derivatives not only in the spatial, but also in the temporal,
components. In order to obtain the Hamiltonian that generates the time evolution, one then has
to invert the temporal part.

The Dirac equation with modified commutation relations has been discussed in [167, 188].
The Klein–Gordon equation and the Dirac particle in a rectangular and spherical box has been
examined in [98].

4.4 Quantum field theory with a minimal length scale

One can construct a quantum field theory along the lines of the quantum mechanical treat-
ment, starting with the modified commutation relations. If the position-space coordinates are
non-commuting with a constant Poisson tensor, this leads to the territory of non-commutative
quantum field theory for which the reader is referred to the literature specialized on that topic, for
example [104, 151] and the many references therein.

Quantum field theory with the κ-Poincaré algebra on the non-commuting κ-Minkowski space-
time coordinates has been pioneered in [174, 178, 183]. In [176] it has been shown that introducing
the minimal length uncertainty principle into quantum field theory works as a regulator in the ul-
traviolet, at least for φ4 theory. Recently, there has been a lot of progress on the way towards field
quantization [31], by developing the Moyal–Weyl product, the Fock space [75, 34], and the con-
served Noether charges [113, 4, 35]. The case of scalar field theory has been investigated in [33, 226].
A different second-order modification of the commutation relation has been investigated for the
spinor and Klein–Gordon field in [233] and [232] respectively. [77] studied the situation in which
the Hamiltonian remains unmodified and only the equal time commutation relations are modified.
There are, as yet, not many applications in the literature that investigate modifications of the
standard model of particle physics, but one can expect these to follow soon.

Parallel to this has been the development of quantum field theory in the case where coordinates
are commuting, the physical momentum transforms under the normal Lorentz transformation,
and the speed of light is constant [167]. This approach has the advantage of being easier to
interpret, yet has the disadvantage of delivering more conservative predictions. In this approach,
the modifications one is left with are the modified measure in momentum space and the higher-
order derivatives that one obtains from the metric in momentum space. The main difficulty in
this approach is that, when one takes into account gauge invariance, one does not only obtain an
infinite series of higher-derivate corrections to the propagator, one also obtains an infinite number
of interaction terms. Whether these models are unitary is an open question.

In order to preserve the super-Planckian limit that is necessary to capture the presence of the
UV-regulating properties, it has been suggested in [167] that one expand the Lagrangian in terms
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of gE/mPl, where g is the coupling constant and E is the energy scale. This means that the
corrections to the propagator (which do not contain any g) are kept entirely, but one has only the
first vertex of the infinite series of interaction terms. One can then explore the interesting energy
range > mPl until mPl/g. The virtue of this expansion, despite its limited range of applicability,
is that, by not truncating the power series of the propagator, one does not introduce additional
poles. The expansion in terms of E/mPl was looked at in [188].

In this modified quantum field theory, in [152] the running gauge couplings, possibly with
additional compactified spatial dimensions, were investigated. In [189], the electro-weak gauge
interaction with minimal length was studied. In [231], the top quark phenomenology in the case
with a lowered Planck scale was studied, and in [153, 81] it has been argued that if the Planck
scale is indeed lowered, then its role as a minimal length would decrease the production of black
holes.

One recurring theme in these models is the suppression of phase space at high energies [167],
which is a direct consequence of the modified measure in momentum space. This has also been
found, for the same reason, in the κ-Poincaré approach [311]. Another noteworthy feature of these
quantum field theories with a minimal length is that the commutator between the fields φ(x) and
their canonical conjugate π(y) are not equal to a delta function [157, 221], which is an expression
of the non-locality that the higher-order derivatives bring in.

In [190] it has furthermore been suggested that one apply this modification of the quantization
procedure to quantum cosmology, which is a promising idea that might allow one to make contact
with phenomenology.

4.5 Deformed Special Relativity

Deformed special relativity (DSR) is concerned with the departure from Lorentz symmetry that
results from the postulate that the Planck energy transforms like a (component of a) momentum
four vector and remains an invariant, maximal energy scale. While the modified commutation
relations necessarily give rise to some version of DSR, one can also try to extract information from
the deformation of the Lorentz symmetry, or the addition law, directly. This gives rise to what
Amelino-Camelia has dubbed ‘test theories’ [18]: simplified and reduced versions of the quantum
theory with a minimal length. Working with these test theories has the advantage that one can
make contact with phenomenology without working out the – still not very well understood – second
quantization and interaction. It has the disadvantage that it makes the ambiguity in identifying
physically-meaningful observables worse.

The literature on the topic is vast, and we can not cover it in totality here. For more details on
the DSR phenomenology, the reader is referred to [19, 20]. We will just mention the most relevant
properties of these types of models here.

As we have seen earlier, a non-linear relation p(k), where k transforms under a normal Lorentz
transformation, generates the deformed Lorentz transformation for p by Eq. (181). Note that in
DSR it is the non-linearly transforming p that is considered the physical momentum, while the
k that transforms under the normal Lorentz transformation is considered the pseudo-momentum.
There is an infinite number of such functions, and thus there is an infinite number of ways to
deform special relativity.

We have already met the common choices in the literature; they constitute bases in κ-Minkowski
phase space, for example, the coordinates (211) proposed by Magueijo and Smolin in [211]. With
this relation, a boost in the z-direction takes the form

P ′
0 =

γ(P0 − vPz)

1 + (γ − 1)P0/mPl − γvPz/mPl
(218)

P ′
z =

γ(Pz − vP0)

1 + (γ − 1)P0/mPl − γvPz/mPl
. (219)
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This example, which has become known as DSR2, is particularly illustrative because this deformed
Lorentz boost transforms (mPl,mPl) → (mPl,mPl), and thus keeps the Planck energy invariant.
Note that since k0/k = P0/P, a so defined speed of light remains constant in this case.

Another example that has entered the literature under the name DSR1 [71] makes use of the
bicrossproduct basis (209). Then, the dispersion relation for massless particles takes the form

cosh(π0/mPl) =
1

2

~π2

m2
Pl

eπ0/mPl . (220)

The relation between the momenta and the pseudo-momenta and their inverse has been worked
out in [171]. In this example, the speed of massless particles that one derives from the dispersion
relation depends on the energy of the particle. This effect may be observable in high-frequency light
reaching Earth from distant sources, for example from γ-ray bursts. This interesting prediction is
covered in more detail in [26, 19, 20].

As discussed in Section 4.2.4, the addition law in this type of model has to be modified in order
to obtain Lorentz-invariant conserved sums of momenta. This gives rise to the soccer-ball problem
and can lead to changes in thresholds of particle interactions [19, 20, 78]. It had originally been
argued that this would shift the GZK cut-off [17], but this argument has meanwhile been revised.
However, in the ‘test theory’ one does not actually have a description of the particle interaction,
so whether or not the kinematical considerations would be realized is unclear.

In these two DSR theories, it is usually assumed that the position variables conjugated to k

are not commutative [99], thereby delivering a particular realization of κ-Minkowski space. In the
DSR1 model, the speed of massless particles that one derives from the above dispersion relation
(220) is energy dependent. However, the interpretation of that speed hinges on the meaning of the
conjugated position-space coordinates, which is why it has also been argued that the physically-
meaningful speed is actually constant [301, 99]. Without an identification of observable positions,
it is then also difficult to say whether this type of model actually realizes a minimal length. One
can expect that recent work on the principle of relative locality [287, 286, 169, 27, 23, 21, 79]
will shed light on this question. A forthcoming review [196] will be especially dedicated to the
development of relative locality.

4.6 Composite systems and statistical mechanics

As mentioned previously, a satisfactory treatment of multi-particle states in those models in which
the free particles’ momenta are bound by a maximal energy scale is still lacking. Nevertheless, ap-
proaches to the description of composite systems or many particle states have been made, based on
the modified commutation relations either without subscribing to the deformed Lorentz transfor-
mations, and thereby generically breaking Lorentz invariance, or by employing an ad hoc solution
by rescaling the bound on the energy with the number of constituents. While these approaches
are promising in so far that modified statistical mechanics at Planckian energies would allow one
to use the early universe as a laboratory, they should be regarded with some caution, because the
connection to the single particle description with deformed Lorentz symmetry is missing, and the
case in which Lorentz symmetry is broken is strongly constrained already [191].

That having been said, the statistical mechanics from the κ-Poincaré algebra was investigated
in general in [194, 109]. In [268] corrections to the effective Hamiltonian of macroscopic bodies
have been studied, and in [264] observational consequences of modified commutation relations
for a massive oscillator have been considered. In [172] statistical mechanics with a generalized
uncertainty and possible applications for cosmology have been looked at. The partition functions
of minimal-length quantized statistical mechanics have been derived in [257], in [6] the consequences
of the GUP on the Liouville theorem were investigated, and in [84] the modification of the density of
states and the arising consequences for black-hole thermodynamics were studied. In [242], one finds
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the effects of the GUP on the thermodynamics of ultra-relativistic particles in the early universe,
and relativistic thermodynamics in [94]. [312] studied the equation of state for ultra-relativistic
Fermi gases in compact stars, the ideal gas was addressed in [82] and photon gas thermodynamics
in [320].

4.7 Path-integral duality

In Sections 3.2.4 and 3.4 we have discussed two motivations for limits of spacetime distances
that manifest themselves in the Green’s function. While one may question how convincing these
motivations are, the idea is interesting and may be considered as a model on its own right. Such
a modification that realizes a finite ‘zero point length’ of spacetime intervals had been suggested
by Padmanabhan [247, 249, 250, 251] as a way to effectively take into account metric fluctuations
below the Planck scale (the motivation from string theory discussed in Section 3.2.4 was added
after the original proposal). This model has the merit of not requiring a modification of Lorentz
invariance.

The starting point is to rewrite the Feynman propagator GF (x, y) as a sum over all paths γ
connecting x and y

GF (x, y) =
∑

γ

e−mDγ(x,y) =

∫
dτe−mτK(x, y, τ) , (221)

where Dγ(x, y) is the proper length of γ, and m is a constant of dimension mass. Note that the
length of the path depends on the background metric, which is why one expects it to be subject
to quantum gravitational fluctuations. The path integral kernel is

K(x, y, τ) =

∫
Dx exp

(
−m

4

∫ τ

0

dτ ′gµν ẋ
µẋν

)
, (222)

where a dot indicates a derivative with respect to τ ′. The relevant difference between the middle
and right expressions in (221) is that D(x, y) has a square root in it. The equivalence has been
shown using a Euclidean lattice approach in [251]. Once the propagator is brought into that form,
one can apply Padmanabhan’s postulated “principle of duality” according to which the weight for
each path should be invariant under the transformation Dγ(x, y) → l2Pl/Dγ(x, y). This changes
the propagator (221) to

G̃F (x, y) =
∑

γ

exp

[
−m

(
Dγ(x, y) +

l2Pl

Dγ(x, y)

)]
. (223)

Interestingly enough, it can be shown [251] that with this modification in the Schwinger repre-
sentation, the path integral kernel remains unmodified, and one merely obtains a change of the
weight

G̃F (x, y) =

∫
dτ exp

[
−m

(
τ +

l2Pl

τ

)]
K(x, y, τ) . (224)

When one makes the Fourier transformation of this expression, the propagator in momentum space
takes the form

G̃F (p) =
2lPl√
p2 +m2

K1(2lPl

√
p2 +m2) , (225)
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where K1 is the modified Bessel function of the first kind. This expression has the limiting values
(compare to Eq. (109))

G̃F (p) →





1

p2 +m2
for
√
p2 +m2 � mPl

exp(−2lPl

√
p2 +m2)√

2lPl(p2 +m2)3/4
for mPl �

√
p2 +m2

. (226)

This postulated duality of the path integral thus suppresses the super-Planckian contributions
to amplitudes. As mentioned in Section 3.2.4, in position space, the Feynman propagator differs
from the ordinary one by the shift (x − y)2 → (x − y)2 + 2lPl. (This idea is so different not from
that of March [219], who in 1936 proposed to replace ordinary spacetime distances with a modified
distance ds̃ = ds − ρ. Though at that time, the ‘minimal length’ ρ was supposed to be of about
the size of the atomic nucleus. March’s interpretation was that when the newly defined distance
between two points vanishes, the points become indistinguishable.)

Some applications for this model for QED, for example the Casimir effect, have been worked
out in [294, 282], and consequences for inflation and cosmological models have been looked at
in [295, 192]. For a recent criticism see [76].

4.8 Direct applications of the uncertainty principle

Maybe the most direct way to look for effects of the minimal length is to start from the GUP
itself. This procedure is limited in its applicability because there are only so many insights one can
gain from an inequality for variances of operators. However, cases that can be studied this way
are everything that can be concluded from modifications of the Bekenstein argument, and with it
corrections to the black-hole entropy that one obtains taking into account the modification of the
uncertainty principle and modified dispersion relations.

Most interestingly, in [225, 28] it has been argued that comparing the corrections to the black-
hole entropy obtained from the GUP to the corrections obtained in string theory and LQG may
be used to restrict the functional form of the GUP.

It has also been argued that taking into account the GUP may give rise to black-hole rem-
nants [2], a possibility that has been explored in many follow-up works, e.g., [87, 243, 315]. Cor-
rections to the thermodynamical properties of a Schwarzschild black hole have been looked at
in [22, 321, 100, 214, 217], the Reissner–Nordström black hole has been considered in [319], and
black holes in anti-de Sitter space in [280, 281, 61]. Black-hole thermodynamics with a GUP has
been studied in [201, 237, 54, 186], the thermodynamics of Kerr–Newman black holes in [315], and
the entropy of a charged black hole in f(R) gravity in [273]. In [80] the consequences of the GUP

for self-dual black holes found in the mini-superspace approximation of LQC have been analyzed.
The thermodynamics of anti-de Sitter space has been looked at in [309], and the dynamics of

the Taub cosmological model with GUP in [53]. The thermodynamics of Friedmann–Robertson–
Walker in four-dimensional spacetimes with GUP can be found in [52, 216], and with additional
dimensions in [279]. The relations of the GUP to holography in extra dimensions have been
considered in [276], the effects of GUP on perfect fluids in cosmology in [215], and the entropy
of the bulk scalar field in the Randall–Sundrum model with GUP in [185]. In [119] it has been
suggested that there is a relationship between black-hole entropy and the cosmological constant.
The relations of the GUP to Verlinde’s entropic gravity have been discussed in [245]

4.9 Miscellaneous

While most of the work on modified uncertainty relations has focused on the GUP, the conse-
quences of the spacetime uncertainty that arises in string theory for the spectrum of cosmological
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perturbations have been studied in [68]. In [269] it has been proposed that it might be possible
to test Planck scale modifications of the energy-time uncertainty relation by monitoring tritium
decay. It should also be mentioned that the classical mechanics of κ-Poincaré has been worked
out in [206], and the kinematics of a classical free relativistic particle with deformed phase space
in [132, 123, 32]. The effects of such a deformed phase space on scalar field cosmology have been
investigated in [263].

In [179] an interesting consequence of the minimal length was studied, the implication of a
finite bandwidth for physical fields. Making this connection allows one to then use theorems from
classical information theory, such as Shannon’s sampling theorem. It was shown in [179] that fields
on a space with minimum length uncertainty can be reconstructed everywhere if known only on a
discrete set of points (any set of points), if these points are, on average, spaced densely enough.
These continuous fields then have a literally finite information density. In [181], it was shown that
this information-theoretic meaning of the minimal length generalizes naturally to curved spacetime
and in [182] it was then argued that for this reason spacetime would be simultaneously continuous
and discrete in the same way that information can be.

A model for spacetime foam in terms of non-local interactions as a description for quantum
gravitational effects, which serves as an origin of a minimal length scale, has been put forward
in [121, 122]. This model is interesting because it ties together three avenues towards a phe-
nomenology of quantum gravity: the minimal length scale, decoherence from spacetime foam, and
non-locality.

Finally, we mention that a minimum time and length uncertainty in rainbow gravity has been
found in [115, 116, 117].
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5 Discussion

After the explicit examples in Sections 3 and 4, here we will collect some general considerations.
One noteworthy remark for models with a minimal length scale is that discreteness seems neither

necessary nor sufficient for the existence of a minimal length scale. String theory is an example
that documents that discreteness is not necessary for a limit to the resolution of structures, and [60]
offered example in which discreteness does not put a finite limit on the resolution of spatial distances
(though the physical interpretation, or the observability of these quantities requires more study).

We have also seen that the minimal length scale is not necessarily the Planck length. In string
theory, it is naturally the string scale that comes into play, or a product of the string coupling and
the string scale if one takes into account D-branes. Also in ASG, or emergent gravity scenarios, the
Planck mass might just appear as a coupling constant in some effective limit, while fundamentally
some other constant is relevant. We usually talk about the Planck mass because we know of no
higher energy scale that is relevant to the physics we know, so it is the obvious candidate, but not
necessarily the right one.

5.1 Interrelations

The previously-discussed theories and models are related in various ways. We had already men-
tioned that the path-integral duality (Section 4.7) is possibly related to T-duality (Section 3.2.4)
or conformal fluctuations in quantum gravity (Section 3.4), and that string theory is one of the
reasons to study non-commutative geometries. In addition to this, it has also been argued that
the coherent-state approach to non-commutative geometries represents another model for minimal
length modified quantum mechanics [293]. The physics of black holes in light of the coherent state
approach has been reviewed in [239].

DSR has been motivated by LQG, though no rigorous derivation exists to date. However, there
are non-rigorous arguments that DSR may emerge from a semiclassical limit of quantum gravity
theories in the form of an effective field theory with an energy dependent metric [29], or that DSR

(in form of a κ-Poincaré algebra) may result from a version of path integral quantization [198]. In
addition, it has been shown that in 2+1 dimensional gravity coupled to matter, the gravitational
degrees of freedom can be integrated out, leaving an effective field theory for the matter, which
is a quantum field theory on κ-Minkowski spacetime, realizing a particular version of DSR [114].
Recently, it has also been suggested that DSR could arise via LQC [59].

As already mentioned, it has been argued in [74] that ASGmay give rise toDSR if one carefully
identifies the momentum and the pseudo-momentum. In [133] how the running of the Planck’s
mass can give rise to a modified dispersion relation was studied.

5.2 Observable consequences

The most relevant aspect of any model is to make contact with phenomenology. We have mentioned
a few phenomenological consequences that are currently under study, but for completeness we
summarize them here.

To begin with, experimental evidence that speaks for any one of the approaches to quantum
gravity discussed in Section 3 will also shed light on the nature of a fundamental length scale.
Currently, the most promising areas to look for such evidence are cosmology (in particular the po-
larization of the cosmic microwave background) and miscellaneous signatures of Lorentz-invariance
violation. The general experimental possibilities to make headway on a theory of quantum gravity
have been reviewed in [19, 164]. One notable recent development, which is especially interesting
for the question of a minimal length scale, is the possibility that direct evidence for the discrete
nature of spacetime may be found in the emission spectra of primordial black holes, if such black
holes exist and can be observed [50].
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Signatures directly related to the minimal length proposal are a transplanckian cut-off that
would make itself noticeable in the cosmic microwave background in the way that the spectrum
of fluctuations would not be exactly scale invariant [220, 68]. Imprints from scalar and tensor
perturbations have been studied in [37, 38, 36], and in [88, 89] it has been argued in that observable
consequences arise at the level of the CMB bispectrum. Deformations of special relativity can lead
to an energy-dependent dispersion, which might be an observable effect for photons reaching Earth
from γ-ray bursts at high redshift [26, 19, 20]. Minimal length deformations do, in principle, give
rise to computable correction terms to a large number of quantum mechanical phenomena (see
Section 4.3.2). This allows one to put bounds on the parameters of the model. These bounds
are presently many orders of magnitude away from the regime where one would naturally expect
quantum gravitational effects. While it is therefore unlikely that evidence for a minimal length can
be found in these experiments, it should be kept in mind that we do not strictly speaking know
that the minimal length scale is identical to the Planck scale and not lower, and scientific care
demands that every new range of parameter space be scrutinized.

Recently, it was proposed that a massive quantum mechanical oscillator might allow one to test
Planck-scale physics [264] in a parameter range close to the Planck scale. This proposal should
be regarded with caution because the deformations for composite systems used therein do not
actually follow from the ones that were motivated by our considerations in Section 3, because the
massive oscillator represents a multi-particle state. If one takes into account the ad-hoc solutions
to the soccer-ball problem, that are necessary for consistency of the theory when considering multi-
particle states (see Section 4.2.4), then the expected effect is suppressed by a mass many orders
of magnitude above the Planck mass. Thus, it is unlikely that the proposed experiment will be
sensitive to Planck-scale physics.

It is clearly desireable to be able to study composite systems and ensembles, which would allow
us to make use of recent advances in quantum optics and data from the early high-density era
of the universe. Thus, solving the soccer-ball problem is of central relevance for making contact
between these models and phenomenology.

5.3 Is it possible that there is no minimal length?

“The last function of reason is to recognize that there are an infinity of things which

surpass it.”

– Blaise Pascal

After having summarized all the motivations for the existence of a minimal length scale, we have
to take care that our desire for harmony does not have us neglecting evidence to the contrary.

We have already discussed that there are various possibilities for a minimal length scale to make
itself noticeable, and this does not necessarily mean that it appears as a lower bound on the spatial
resolution. We could instead merely have a bound on products of spatial and temporal extensions.
So in this sense there might not be a minimal length, just a minimal length scale. Therefore, we
answer the question posed in this section’s title in the affirmative. Let us then ask if it is possible
that there is no minimal length scale.

The case for a minimal length scale seems clear in string theory and LQG, but it is less clear
in emergent gravity scenarios. If gravity is emergent, and the Planck mass appears merely as a
coupling constant in the effective limit, this raises the question, of there is some way in which the
fundamental theory cannot have a limiting value at all.

In ASG, the arguments we have reviewed in Section 3.5 are suggestive but not entirely con-
clusive. The supporting evidence that we discussed comes from graviton scattering, and from a
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study of a particular type of Euclidean quantum spacetimes.13 Notwithstanding the question of
whether general relativity actually has a (physically-meaningful) fixed point, the evidence for a
minimal length is counterintuitive even in ASG, because gravity becomes weaker at high energies,
so, naively, one would expect its distorting effects to also become weaker.

As Mead carefully pointed out in his article investigating the Heisenberg microscope with
gravity:

“We have also neglected the effect of quantum fluctuations in the gravitational field.
However, these would be expected to provide an additional source of uncertainty,
not remove those already present. Hence, inclusion of this effect would, if anything,
strengthen the result.” ([222], p. B855)

That is correct, one might add, unless gravity itself weakens and counteracts the effect of the
quantum fluctuations. In fact, in [51] the validity of the Hoop conjecture in a thought experiment
testing short-distance structures has been re-examined in the context of ASG. It was found that
the running of the Planck mass avoids the necessity of forming a trapped surface at the scale of
the experiment. However, it was also found that still no information about the local physics can
be transmitted to an observer in the asymptotic distance.

As previously mentioned, there is also no obvious reason for the existence of a minimal length
scale in discrete approaches where the lattice spacing is taken to zero [13]. To study the question,
one needs to investigate the behavior of suitably constructed observables in this limit. We also note
the central role of the Hoop conjecture for our arguments, and that it is, for general configurations,
an unproven conjecture.

These questions are presently very much under discussion; we mention them to show that the
case is not as settled as it might have seemed from Sections 3 and 4.

13 Though it has meanwhile been shown that the fixed point behavior can be found also in the Lorentzian
case [218].
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6 Summary

We have seen in this review that there are many motivations for the existence of a minimal length
scale. Various thought experiments suggest there are limits to how well we can resolve structures.
String theory and LQG, presently the two most widely pursued approaches to quantum gravity,
both bring with them a minimal length scale, if in very different realizations. It has been argued
that a minimal length scale also exists in the scenario of ASG, and that non-commutative geometries
have a minimal length scale built in already.

With that extensive motivation, many models have been proposed that aim at incorporating a
minimal length scale into the quantum field theories of the standard model, rather than waiting for
a theory of quantum gravity to be developed and eventually connected to the standard model. We
have discussed some of these approaches, and also identified some key open problems. While a lot of
work has been done directly studying the implications of modified dispersion relations, deformations
of special relativity and a GUP, the underlying framework is not yet entirely understood. Most
importantly, there is the question of how to construct physically-meaningful observables. One
possibility to address this and some other open questions is to develop an axiomatic approach
based on the geometry of phase space.

Exploring the consequences of a minimal length scale is one of the best motivated avenues
to make contact with the phenomenology of quantum gravity, and to gain insights about the
fundamental structure of space and time.
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[234] Möglich, F., “Über das Massenverhältnis Elektron-Neutron”, Die Naturwissenschaften, 26, 409–410
(1938). [DOI]. (Cited on page 6.)

[235] Mohaupt, T., “Introduction to string theory”, in Giulini, D., Kiefer, C. and Lämmerzahl, C., eds.,
Quantum Gravity: From Theory to Experimental Search, 271th WE-Heraeus Seminar ‘Aspects of
Quantum Gravity’, Bad Honnef, Germany, 24 February – 1 March 2002, Lecture Notes in Physics,
631, pp. 173–251, (Springer, Berlin; New York, 2003). [DOI], [arXiv:hep-th/0207249]. (Cited on
page 22.)

[236] Moyal, J.E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45, 99–124
(1949). [DOI]. (Cited on page 42.)

[237] Myung, Y.S., Kim, Y.-W. and Park, Y.-J., “Black hole thermodynamics with generalized uncertainty
principle”, Phys. Lett. B, 645, 393–397 (2007). [DOI], [arXiv:gr-qc/0609031 [gr-qc]]. (Cited on
page 64.)

[238] Ng, Y.J. and van Dam, H., “Limitation to quantum measurements of space-time distances”, Ann.
N.Y. Acad. Sci., 755, 579–584 (1995). [DOI], [arXiv:hep-th/9406110]. (Cited on page 20.)

[239] Nicolini, P., “Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review”,
Int. J. Mod. Phys. A, 24, 1229–1308 (2009). [DOI], [arXiv:0807.1939 [hep-th]]. (Cited on page 66.)

[240] Niedermaier, M. and Reuter, M., “The Asymptotic Safety Scenario in Quantum Gravity”, Living
Rev. Relativity, 9, lrr-2006-5 (2006). URL (accessed 20 January 2012):
http://www.livingreviews.org/lrr-2006-5. (Cited on page 38.)

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2013-2

http://dx.doi.org/10.1142/S0217751X11051536
http://arxiv.org/abs/1007.3943
http://dx.doi.org/10.1103/PhysRevD.84.064012
http://arxiv.org/abs/1108.0829
http://dx.doi.org/10.1016/0550-3213(90)90202-O
http://arxiv.org/abs/1001.1330
http://arxiv.org/abs/1001.1330
http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=81
http://dx.doi.org/10.1016/j.physletb.2009.01.023
http://arxiv.org/abs/0808.1628
http://dx.doi.org/10.1103/PhysRevD.85.074019
http://arxiv.org/abs/1108.3280
http://arxiv.org/abs/1108.3280
http://dx.doi.org/10.1007/s10773-010-0394-2
http://arxiv.org/abs/1004.0563
http://dx.doi.org/10.1142/S0217751X11054802
http://arxiv.org/abs/1105.1900
http://dx.doi.org/10.1007/BF01772952
http://dx.doi.org/10.1007/978-3-540-45230-0_5
http://arxiv.org/abs/hep-th/0207249
http://dx.doi.org/10.1017/S0305004100000487
http://dx.doi.org/10.1016/j.physletb.2006.12.062
http://arxiv.org/abs/gr-qc/0609031
http://dx.doi.org/10.1111/j.1749-6632.1995.tb38998.x
http://arxiv.org/abs/hep-th/9406110
http://dx.doi.org/10.1142/S0217751X09043353
http://arxiv.org/abs/0807.1939
http://www.livingreviews.org/lrr-2006-5
http://www.livingreviews.org/lrr-2013-2


86 Sabine Hossenfelder

[241] Nouicer, K., “Casimir effect in the presence of minimal lengths”, J. Phys. A: Math. Gen., 38, 10027–
10035 (2005). [DOI], [arXiv:hep-th/0512027 [hep-th]]. (Cited on page 59.)

[242] Nozari, K. and Fazlpour, B., “Generalized uncertainty principle, modified dispersion relations and
early universe thermodynamics”, Gen. Relativ. Gravit., 38, 1661–1679 (2006). [DOI], [arXiv:gr-
qc/0601092 [gr-qc]]. (Cited on page 62.)

[243] Nozari, K. and Mehdipour, S.H., “Gravitational uncertainty and black hole remnants”, Mod. Phys.
Lett. A, 20, 2937–2948 (2005). [DOI], [arXiv:0809.3144 [gr-qc]]. (Cited on page 64.)

[244] Nozari, K. and Pedram, P., “Minimal length and bouncing-particle spectrum”, Europhys. Lett., 92,
50013 (2010). [DOI], [arXiv:1011.5673 [hep-th]]. (Cited on page 59.)

[245] Nozari, K., Pedram, P. and Molkara, M., “Minimal Length, Maximal Momentum and the Entropic
Force Law”, Int. J. Theor. Phys., 51, 1268–1275 (2012). [DOI], [arXiv:1111.2204 [gr-qc]]. (Cited on
page 64.)

[246] Olmo, G.J., “Palatini Actions and Quantum Gravity Phenomenology”, J. Cosmol. Astropart. Phys.,
2011(10), 018 (2011). [DOI], [arXiv:1101.2841 [gr-qc]]. (Cited on page 56.)

[247] Padmanabhan, T., “Physical Significance of Planck Length”, Ann. Phys. (N.Y.), 165, 38–58 (1985).
[DOI]. (Cited on pages 36 and 63.)

[248] Padmanabhan, T., “Planck length as the lower bound to all physical length scales”, Gen. Relativ.
Gravit., 17, 215–221 (1985). [DOI]. (Cited on page 36.)

[249] Padmanabhan, T., “Limitations on the operational definition of space-time events and quantum
gravity”, Class. Quantum Grav., 4, L107–L113 (1987). [DOI]. (Cited on page 63.)

[250] Padmanabhan, T., “Duality and zero point length of space-time”, Phys. Rev. Lett., 78, 1854–1857
(1997). [DOI], [arXiv:hep-th/9608182 [hep-th]]. (Cited on page 63.)

[251] Padmanabhan, T., “Hypothesis of path integral duality. I. Quantum gravitational corrections to the
propagator”, Phys. Rev. D, 57, 6206–6215 (1998). [DOI]. (Cited on page 63.)

[252] Panella, O., “Casimir-Polder intermolecular forces in minimal length theories”, Phys. Rev. D, 76,
045012 (2007). [DOI], [arXiv:0707.0405 [hep-th]]. (Cited on page 59.)

[253] Panes, B., “Minimum length-maximum velocity”, Eur. Phys. J. C, 72, 1930 (2012). [DOI],
[arXiv:1112.3753 [hep-ph]]. (Cited on page 49.)

[254] Pauli, W., “[899] Pauli an Heisenberg, 11. Juli 1947”, in von Meyenn, K., ed., Wolfgang Pauli.
Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a, Bd. III: 1940–1949, Sources in
the History of Mathematics and Physical Sciences, 11, pp. 461–464, (Springer, Berlin; New York,
1993). Online version (accessed 12 January 2012):
http://cdsweb.cern.ch/record/84589. (Cited on page 8.)

[255] Pedram, P., “A higher order GUP with minimal length uncertainty and maximal momentum”, Phys.
Lett. B, 714, 317–323 (2011). [DOI], [arXiv:1110.2999 [hep-th]]. (Cited on page 59.)

[256] Pedram, P., “Minimal Length and the Quantum Bouncer: A Nonperturbative Study”, Int. J. Theor.
Phys., 51, 1901–1910 (2012). [DOI], [arXiv:1201.2802 [hep-th]]. (Cited on page 59.)

[257] Pedram, P., “New Approach to Nonperturbative Quantum Mechanics with Minimal Length Uncer-
tainty”, Phys. Rev. D, 85, 024016 (2012). [DOI], [arXiv:1112.2327 [hep-th]]. (Cited on pages 59
and 62.)

[258] Pedram, P., “A note on the one-dimensional hydrogen atom with minimal length uncertainty”, arXiv,
e-print, (2012). [arXiv:1203.5478 [quant-ph]]. (Cited on page 59.)

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2013-2

http://dx.doi.org/10.1088/0305-4470/38/46/009
http://arxiv.org/abs/hep-th/0512027
http://dx.doi.org/10.1007/s10714-006-0331-0
http://arxiv.org/abs/gr-qc/0601092
http://arxiv.org/abs/gr-qc/0601092
http://dx.doi.org/10.1142/S0217732305018050
http://arxiv.org/abs/0809.3144
http://dx.doi.org/10.1209/0295-5075/92/50013
http://arxiv.org/abs/1011.5673
http://dx.doi.org/10.1007/s10773-011-1002-9
http://arxiv.org/abs/1111.2204
http://dx.doi.org/10.1088/1475-7516/2011/10/018
http://arxiv.org/abs/1101.2841
http://dx.doi.org/10.1016/S0003-4916(85)80004-X
http://dx.doi.org/10.1007/BF00760244
http://dx.doi.org/10.1088/0264-9381/4/4/007
http://dx.doi.org/10.1103/PhysRevLett.78.1854
http://arxiv.org/abs/hep-th/9608182
http://dx.doi.org/10.1103/PhysRevD.57.6206
http://dx.doi.org/10.1103/PhysRevD.76.045012
http://arxiv.org/abs/0707.0405
http://dx.doi.org/10.1140/epjc/s10052-012-1930-4
http://arxiv.org/abs/1112.3753
http://cdsweb.cern.ch/record/84589
http://dx.doi.org/10.1016/j.physletb.2012.07.005
http://arxiv.org/abs/1110.2999
http://dx.doi.org/10.1007/s10773-011-1066-6
http://arxiv.org/abs/1201.2802
http://dx.doi.org/10.1103/PhysRevD.85.024016
http://arxiv.org/abs/1112.2327
http://arxiv.org/abs/1203.5478
http://www.livingreviews.org/lrr-2013-2


Minimal Length Scale Scenarios for Quantum Gravity 87

[259] Pedram, P., Nozari, K. and Taheri, S.H., “The effects of minimal length and maximal momentum
on the transition rate of ultra cold neutrons in gravitational field”, J. High Energy Phys., 2011(03),
093 (2011). [DOI], [arXiv:1103.1015 [hep-th]]. (Cited on page 59.)

[260] Percacci, R., “Asymptotic Safety”, in Oriti, D., ed., Approaches to Quantum Gravity: Towards a New
Understanding of Space, Time and Matter, pp. 111–128, (Cambridge University Press, Cambridge;
New York, 2009). [arXiv:0709.3851 [hep-th]]. (Cited on page 38.)

[261] Percacci, R. and Vacca, G.P., “Asymptotic Safety, Emergence and Minimal Length”, Class. Quantum
Grav., 27, 245026 (2010). [DOI], [arXiv:1008.3621 [hep-th]]. (Cited on pages 38, 39, 40, and 57.)

[262] Peres, A. and Rosen, N., “Quantum Limitations on the Measurement of Gravitational Fields”, Phys.
Rev., 118, 335–336 (1960). [DOI]. (Cited on page 8.)
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[265] Planck, M., “Über irreversible Strahlungsvorgänge”, Ann. Phys. (Berlin), 1, 69 (1900). [DOI]. (Cited
on page 6.)

[266] Pokrowski, G.I., “Zur Frage nach der Struktur der Zeit”, Z. Phys., 51, 737–739 (1928). [DOI]. (Cited
on page 6.)

[267] Proca, A. and Goudsmit, S., “Sur la masse des particules élémentaires”, J. Phys. Radium, 10,
209–214 (1939). [DOI]. (Cited on page 6.)

[268] Quesne, C. and Tkachuk, V.M., “Composite system in deformed space with minimal length”, Phys.
Rev. A, 81, 012106 (2010). [DOI], [arXiv:0906.0050 [hep-th]]. (Cited on page 62.)

[269] Raghavan, R.S., “Time-Energy Uncertainty in Neutrino Resonance: Quest for the Limit of Validity
of Quantum Mechanics”, arXiv, e-print, (2009). [arXiv:0907.0878 [hep-ph]]. (Cited on page 65.)

[270] Reuter, M. and Schwindt, J.-M., “A minimal length from the cutoff modes in asymptotically safe
quantum gravity”, J. High Energy Phys., 2006(01), 070 (2006). [DOI], [arXiv:hep-th/0511021 [hep-
th]]. (Cited on page 39.)

[271] Rovelli, C. and Smolin, L., “Discreteness of area and volume in quantum gravity”, Nucl. Phys. B,
442, 593–619 (1995). [DOI], [arXiv:gr-qc/9411005]. (Cited on page 34.)

[272] Rychkov, V.S., “Observers and measurements in noncommutative space-times”, J. Cosmol. As-
tropart. Phys., 2003(07), 006 (2003). [DOI], [arXiv:hep-th/0305187 [hep-th]]. (Cited on page 57.)

[273] Said, J.L. and Adami, K.Z., “The generalized uncertainty principle in f(R) gravity for a charged
black hole”, Phys. Rev. D, 83, 043008 (2011). [DOI], [arXiv:1102.3553 [gr-qc]]. (Cited on page 64.)

[274] Salecker, H. and Wigner, E.P., “Quantum limitations of the measurement of space-time distances”,
Phys. Rev., 109, 571–577 (1958). [DOI]. (Cited on page 16.)

[275] Scardigli, F., “Generalized uncertainty principle in quantum gravity from micro-black hole gedanken
experiment”, Phys. Lett., B452, 39–44 (1999). [DOI], [arXiv:hep-th/9904025]. (Cited on page 13.)

[276] Scardigli, F. and Casadio, R., “Generalized uncertainty principle, extra dimensions and holography”,
Class. Quantum Grav., 20, 3915–3926 (2003). [DOI], [arXiv:hep-th/0307174 [hep-th]]. (Cited on
page 64.)

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2013-2

http://dx.doi.org/10.1007/JHEP03(2011)093
http://arxiv.org/abs/1103.1015
http://arxiv.org/abs/0709.3851
http://dx.doi.org/10.1088/0264-9381/27/24/245026
http://arxiv.org/abs/1008.3621
http://dx.doi.org/10.1103/PhysRev.118.335
http://arxiv.org/abs/1111.6136
http://dx.doi.org/10.1038/nphys2262
http://adsabs.harvard.edu/abs/2012NatPh...8..393P
http://arxiv.org/abs/1111.1979
http://arxiv.org/abs/1111.1979
http://dx.doi.org/10.1002/andp.19003060105
http://dx.doi.org/10.1007/BF01331957
http://dx.doi.org/10.1051/jphysrad:01939001005020900
http://dx.doi.org/10.1103/PhysRevA.81.012106
http://arxiv.org/abs/0906.0050
http://arxiv.org/abs/0907.0878
http://dx.doi.org/10.1088/1126-6708/2006/01/070
http://arxiv.org/abs/hep-th/0511021
http://arxiv.org/abs/hep-th/0511021
http://dx.doi.org/10.1016/0550-3213(95)00150-Q
http://arxiv.org/abs/gr-qc/9411005
http://dx.doi.org/10.1088/1475-7516/2003/07/006
http://arxiv.org/abs/hep-th/0305187
http://dx.doi.org/10.1103/PhysRevD.83.043008
http://arxiv.org/abs/1102.3553
http://dx.doi.org/10.1103/PhysRev.109.571
http://dx.doi.org/10.1016/S0370-2693(99)00167-7
http://arxiv.org/abs/hep-th/9904025
http://dx.doi.org/10.1088/0264-9381/20/18/305
http://arxiv.org/abs/hep-th/0307174
http://www.livingreviews.org/lrr-2013-2


88 Sabine Hossenfelder

[277] Schutzhold, R. and Unruh, W.G., “Large-scale nonlocality in ‘doubly special relativity’ with an
energy-dependent speed of light”, JETP Lett., 78, 431–435 (2003). [DOI], [arXiv:gr-qc/0308049 [gr-
qc]]. (Cited on page 58.)

[278] Schwarz, J.H., “Introduction to superstring theory”, arXiv, e-print, (2000). [arXiv:hep-ex/0008017].
(Cited on page 22.)

[279] Sefiedgar, A.S., Nozari, K. and Sepangi, H.R., “Modified dispersion relations in extra dimensions”,
Phys. Lett. B, 696, 119–123 (2011). [DOI], [arXiv:1012.1406 [gr-qc]]. (Cited on page 64.)

[280] Setare, M.R., “Corrections to the Cardy-Verlinde formula from the generalized uncertainty principle”,
Phys. Rev. D, 70, 087501 (2004). [DOI], [arXiv:hep-th/0410044 [hep-th]]. (Cited on page 64.)

[281] Setare, M.R., “The generalized uncertainty principle and corrections to the Cardy–Verlinde formula
in SAdS5 black holes”, Int. J. Mod. Phys. A, 21, 1325–1332 (2006). [DOI], [arXiv:hep-th/0504179
[hep-th]]. (Cited on page 64.)

[282] Shankaranarayanan, S. and Padmanabhan, T., “Hypothesis of path integral duality: Applications
to QED”, Int. J. Mod. Phys. D, 10, 351–366 (2001). [DOI], [arXiv:gr-qc/0003058 [gr-qc]]. (Cited
on page 64.)

[283] Shenker, S.H., “Another Length Scale in String Theory?”, arXiv, e-print, (1995). [arXiv:hep-
th/9509132]. (Cited on page 27.)

[284] Sindoni, L., “Emergent Models for Gravity: an Overview of Microscopic Models”, SIGMA, 8, 027
(2012). [DOI], [arXiv:1110.0686 [gr-qc]]. URL (accessed 20 November 2012):
http://sigma-journal.com/2012/027/. (Cited on page 44.)

[285] Smailagic, A., Spallucci, E. and Padmanabhan, T., “String theory T-duality and the zero point
length of spacetime”, arXiv, e-print, (2003). [arXiv:hep-th/0308122]. (Cited on pages 31 and 32.)

[286] Smolin, L., “On limitations of the extent of inertial frames in non-commutative relativistic space-
times”, arXiv, e-print, (2010). [arXiv:1007.0718 [gr-qc]]. (Cited on pages 48, 57, 58, and 62.)

[287] Smolin, L., “Classical paradoxes of locality and their possible quantum resolutions in deformed special
relativity”, Gen. Relativ. Gravit., 43, 3671–3691 (2011). [DOI], [arXiv:1004.0664 [gr-qc]]. (Cited on
pages 48, 54, 57, 58, and 62.)

[288] Snyder, H.S., “Quantized Space-Time”, Phys. Rev., 71, 38–41 (1947). [DOI]. (Cited on pages 8
and 52.)

[289] Snyder, H.S., “[817] Snyder an Pauli, 1946”, in von Meyenn, K., ed., Wissenschaftlicher Briefwechsel
mit Bohr, Einstein, Heisenberg u.a., Bd. III: 1940–1949, Sources in the History of Mathematics and
Physical Sciences, 11, pp. 358–360, (Springer, Berlin; New York, 1993). (Cited on page 8.)

[290] Sorkin, R.D., “Causal sets: Discrete gravity”, in Gomberoff, A. and Marolf, D., eds., Lectures on
Quantum Gravity, Pan-American Advanced Studies Institute School on Quantum Gravity, held at
the CECS, Valdivia, Chile, January 4 – 14, 2002, Series of the Centro de Estudios Cient́ıficos, pp.
305–327, (Springer, New York, 2005). [arXiv:gr-qc/0309009 [gr-qc]]. (Cited on page 44.)

[291] Spallucci, E. and Fontanini, M., “Zero-point Length, Extra-Dimensions and String T-duality”, in
Grece, S.A., ed., New Developments in String Theory Research, pp. 245–270, (Nova Science Publish-
ers, Hauppauge, NY, 2005). [arXiv:gr-qc/0508076]. (Cited on page 31.)

[292] Sprenger, M., Nicolini, P. and Bleicher, M., “Neutrino oscillations as a novel probe for a minimal
length”, Class. Quantum Grav., 28, 235019 (2011). [DOI], [arXiv:1011.5225 [hep-ph]]. (Cited on
page 59.)

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2013-2

http://dx.doi.org/10.1134/1.1633311
http://arxiv.org/abs/gr-qc/0308049
http://arxiv.org/abs/gr-qc/0308049
http://arxiv.org/abs/hep-ex/0008017
http://dx.doi.org/10.1016/j.physletb.2010.11.067
http://arxiv.org/abs/1012.1406
http://dx.doi.org/10.1103/PhysRevD.70.087501
http://arxiv.org/abs/hep-th/0410044
http://dx.doi.org/10.1142/S0217751X06025304
http://arxiv.org/abs/hep-th/0504179
http://arxiv.org/abs/hep-th/0504179
http://dx.doi.org/10.1142/S0218271801000901
http://arxiv.org/abs/gr-qc/0003058
http://arxiv.org/abs/hep-th/9509132
http://arxiv.org/abs/hep-th/9509132
http://dx.doi.org/10.3842/SIGMA.2012.027
http://arxiv.org/abs/1110.0686
http://sigma-journal.com/2012/027/
http://arxiv.org/abs/hep-th/0308122
http://arxiv.org/abs/1007.0718
http://dx.doi.org/10.1007/s10714-011-1235-1
http://arxiv.org/abs/1004.0664
http://dx.doi.org/10.1103/PhysRev.71.38
http://arxiv.org/abs/gr-qc/0309009
http://arxiv.org/abs/gr-qc/0508076
http://dx.doi.org/10.1088/0264-9381/28/23/235019
http://arxiv.org/abs/1011.5225
http://www.livingreviews.org/lrr-2013-2


Minimal Length Scale Scenarios for Quantum Gravity 89

[293] Sprenger, M., Nicolini, P. and Bleicher, M., “Physics on the smallest scales: an introduction to mini-
mal length phenomenology”, Eur. J. Phys., 33, 853–862 (2012). [DOI], [arXiv:1202.1500 [physics.ed-
ph]]. (Cited on page 66.)

[294] Srinivasan, K., Sriramkumar, L. and Padmanabhan, T., “Hypothesis of path integral duality. II.
Corrections to quantum field theoretic results”, Phys. Rev. D, 58, 044009 (1998). [DOI], [arXiv:gr-
qc/9710104 [gr-qc]]. (Cited on page 64.)

[295] Sriramkumar, L. and Shankaranarayanan, S., “Path integral duality and Planck scale corrections
to the primordial spectrum in exponential inflation”, J. High Energy Phys., 2006(12), 050 (2006).
[DOI], [arXiv:hep-th/0608224 [hep-th]]. (Cited on page 64.)

[296] Stetsko, M.M., “Harmonic oscillator with minimal length uncertainty relations and ladder operators”,
Phys. Rev. A, 74, 062105 (2006). [DOI], [arXiv:quant-ph/0703269 [quant-ph]]. (Cited on page 59.)

[297] Susskind, L., “String theory and the principles of black hole complementarity”, Phys. Rev. Lett., 71,
2367–2368 (1993). [DOI], [arXiv:hep-th/9307168]. (Cited on page 23.)

[298] Susskind, L., “Strings, black holes and Lorentz contraction”, Phys. Rev. D, 49, 6606–6611 (1994).
[DOI], [arXiv:hep-th/9308139]. (Cited on page 23.)

[299] Szabo, R.J., “BUSSTEPP lectures on string theory: An introduction to string theory and D-brane
dynamics”, arXiv, e-print, (2002). [arXiv:hep-th/0207142]. (Cited on page 22.)

[300] ’t Hooft, G. and Veltman, M., “One-loop divergencies in the theory of gravitation”, Ann. Inst. Henri
Poincare A, 20, 69–94 (1974). Online version (accessed 20 November 2012):
http://www.numdam.org/item?id=AIHPA_1974__20_1_69_0. (Cited on page 37.)

[301] Tamaki, T., Harada, T., Miyamoto, U. and Torii, T., “Have we already detected astrophysical
symptoms of space-time noncommutativity?”, Phys. Rev. D, 65, 083003 (2002). [DOI], [arXiv:gr-
qc/0111056 [gr-qc]]. (Cited on pages 58 and 62.)

[302] Tezuka, K.-I., “Uncertainty of Velocity in kappa-Minkowski Spacetime”, arXiv, e-print, (2003).
[arXiv:hep-th/0302126 [hep-th]]. (Cited on page 57.)

[303] Thiemann, T., “Closed formula for the matrix elements of the volume operator in canonical quantum
gravity”, J. Math. Phys., 39, 3347–3371 (1998). [DOI], [arXiv:gr-qc/9606091]. (Cited on page 34.)

[304] Thiemann, T., “Loop quantum gravity: An inside view”, in Stamatescu, I.-O. and Seiler, E., eds.,
Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, Lecture Notes
in Physics, 721, pp. 185–263, (Springer, Berlin; New York, 2007). [DOI], [arXiv:hep-th/0608210].
(Cited on page 32.)

[305] Thiemann, T., Modern Canonical Quantum General Relativity, Cambridge Monographs on Mathe-
matical Physics, (Cambridge University Press, Cambridge; New York, 2007). [arXiv:gr-qc/0110034].
(Cited on page 32.)

[306] Thorne, K.S., “Nonspherical gravitational collapse: A short review”, in Klauder, J.R., ed., Magic
Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth Birthday,
pp. 231–258, (W.H. Freeman, San Francisco, 1972). [ADS]. (Cited on page 13.)

[307] Tomassini, L. and Viaggiu, S., “Physically motivated uncertainty relations at the Planck length
for an emergent non-commutative spacetime”, Class. Quantum Grav., 28, 075001 (2011). [DOI],
[arXiv:1102.0894 [gr-qc]]. (Cited on page 21.)

[308] Unruh, W.G., “Sonic analog of black holes and the effects of high frequencies on black hole evapo-
ration”, Phys. Rev. D, 51, 2827–2838 (1995). [DOI], [arXiv:gr-qc/9409008]. (Cited on page 9.)

[309] Vakili, B., “Cosmology with minimal length uncertainty relations”, Int. J. Mod. Phys. D, 18, 1059–
1071 (2009). [DOI], [arXiv:0811.3481 [gr-qc]]. (Cited on page 64.)

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2013-2

http://dx.doi.org/10.1088/0143-0807/33/4/853
http://arxiv.org/abs/1202.1500
http://arxiv.org/abs/1202.1500
http://dx.doi.org/10.1103/PhysRevD.58.044009
http://arxiv.org/abs/gr-qc/9710104
http://arxiv.org/abs/gr-qc/9710104
http://dx.doi.org/10.1088/1126-6708/2006/12/050
http://arxiv.org/abs/hep-th/0608224
http://dx.doi.org/10.1103/PhysRevA.74.062105
http://arxiv.org/abs/quant-ph/0703269
http://dx.doi.org/10.1103/PhysRevLett.71.2367
http://arxiv.org/abs/hep-th/9307168
http://dx.doi.org/10.1103/PhysRevD.49.6606
http://arxiv.org/abs/hep-th/9308139
http://arxiv.org/abs/hep-th/0207142
http://www.numdam.org/item?id=AIHPA_1974__20_1_69_0
http://dx.doi.org/10.1103/PhysRevD.65.083003
http://arxiv.org/abs/gr-qc/0111056
http://arxiv.org/abs/gr-qc/0111056
http://arxiv.org/abs/hep-th/0302126
http://dx.doi.org/10.1063/1.532259
http://arxiv.org/abs/gr-qc/9606091
http://dx.doi.org/10.1007/978-3-540-71117-9_10
http://arxiv.org/abs/hep-th/0608210
http://arxiv.org/abs/gr-qc/0110034
http://adsabs.harvard.edu/abs/1972mwm..book..231T
http://dx.doi.org/10.1088/0264-9381/28/7/075001
http://arxiv.org/abs/1102.0894
http://dx.doi.org/10.1103/PhysRevD.51.2827
http://arxiv.org/abs/gr-qc/9409008
http://dx.doi.org/10.1142/S0218271809014935
http://arxiv.org/abs/0811.3481
http://www.livingreviews.org/lrr-2013-2


90 Sabine Hossenfelder

[310] Veneziano, G., “An enlarged uncertainty principle from gedanken string collisions?”, in Arnowitt,
R.L., Bryan, R. and Duff, M.J., eds., Strings ’89, 3rd International Superstring Workshop, Texas
A&M University, College Station, TX, March 13 – 8, 1989, pp. 86–103, (World Scientific, Singapore,
1990). Online version (accessed 29 March 2012):
http://cdsweb.cern.ch/record/197729/. (Cited on pages 10 and 24.)

[311] Vilela Mendes, R., “Some consequences of a non-commutative space-time structure”, Eur. Phys. J.
C, 42, 445–452 (2005). [DOI], [arXiv:hep-th/0406013 [hep-th]]. (Cited on page 61.)

[312] Wang, P., Yang, H. and Zhang, X., “Quantum gravity effects on compact star cores”, arXiv, e-print,
(2011). [arXiv:1110.5550 [gr-qc]]. (Cited on page 63.)

[313] Wess, J., “Nonabelian gauge theories on noncommutative spaces”, in Nath, P., Zerwas, P.M. and
Grosche, C., eds., The 10th International Conference On Supersymmetry And Unification Of Funda-
mental Interactions (SUSY02), June 17 – 23, 2002, DESY Hamburg, pp. 586–599, (DESY, Hamburg,
2002). Online version (accessed 29 March 2012):
http://www-library.desy.de/preparch/desy/proc/proc02-02.html. (Cited on page 8.)

[314] Wohlgenannt, M., “Non-commutative Geometry & Physics”, Ukr. J. Phys., 55, 5–14 (2010).
[arXiv:hep-th/0602105 [hep-th]]. URL (accessed 15 November 2012):
http://ujp.bitp.kiev.ua/index.php?item=j&id=122. (Cited on page 42.)

[315] Xiang, L. and Wen, X.Q., “Black hole thermodynamics with generalized uncertainty principle”, J.
High Energy Phys., 2009(10), 046 (2009). [DOI], [arXiv:0901.0603 [gr-qc]]. (Cited on page 64.)

[316] Yang, C.N., “On quantized space-time”, Phys. Rev., 72, 874 (1947). [DOI]. (Cited on page 8.)

[317] Yoneya, T., “On the interpretation of minimal length in string theories”, Mod. Phys. Lett. A, 4, 1587
(1989). [DOI]. (Cited on page 26.)

[318] Yoneya, T., “String theory and space-time uncertainty principle”, Prog. Theor. Phys., 103, 1081–
1125 (2000). [DOI], [arXiv:hep-th/0004074]. (Cited on pages 24, 25, 26, 27, 28, and 29.)

[319] Yoon, M., Ha, J. and Kim, W., “Entropy of Reissner-Nordstrom black holes with minimal length
revisited”, Phys. Rev. D, 76, 047501 (2007). [DOI], [arXiv:0706.0364 [gr-qc]]. (Cited on page 64.)

[320] Zhang, X., Shao, L. and Ma, B.-Q., “Photon Gas Thermodynamics in Doubly Special Relativity”,
Astropart. Phys., 34, 840–845 (2011). [DOI], [arXiv:1102.2613 [hep-th]]. (Cited on page 63.)

[321] Zhao, H.-X., Li, H.-F., Hu, S.-Q. and Zhao, R., “Generalized Uncertainty Principle and Black Hole
Entropy of Higher-Dimensional de Sitter Spacetime”, Commun. Theor. Phys., 48, 465–468 (2007).
[DOI], [arXiv:gr-qc/0608023 [gr-qc]]. (Cited on page 64.)

Living Reviews in Relativity

http://www.livingreviews.org/lrr-2013-2

http://cdsweb.cern.ch/record/197729/
http://dx.doi.org/10.1140/epjc/s2005-02303-1
http://arxiv.org/abs/hep-th/0406013
http://arxiv.org/abs/1110.5550
http://www-library.desy.de/preparch/desy/proc/proc02-02.html
http://arxiv.org/abs/hep-th/0602105
http://ujp.bitp.kiev.ua/index.php?item=j&id=122
http://dx.doi.org/10.1088/1126-6708/2009/10/046
http://arxiv.org/abs/0901.0603
http://dx.doi.org/10.1103/PhysRev.72.874
http://dx.doi.org/10.1142/S0217732389001817
http://dx.doi.org/10.1143/PTP.103.1081
http://arxiv.org/abs/hep-th/0004074
http://dx.doi.org/10.1103/PhysRevD.76.047501
http://arxiv.org/abs/0706.0364
http://dx.doi.org/10.1016/j.astropartphys.2011.03.001
http://arxiv.org/abs/1102.2613
http://dx.doi.org/10.1088/0253-6102/48/3/017
http://arxiv.org/abs/gr-qc/0608023
http://www.livingreviews.org/lrr-2013-2

	Introduction
	A Minimal History
	Motivations
	Thought experiments
	The Heisenberg microscope with Newtonian gravity
	The general relativistic Heisenberg microscope
	Limit to distance measurements
	Limit to clock synchronization
	Limit to the measurement of the black-hole–horizon area
	A device-independent limit for non-relativistic particles
	Limits on the measurement of spacetime volumes

	String theory
	Generalized uncertainty
	Spacetime uncertainty
	Taking into account Dp-Branes
	T-duality

	Loop Quantum Gravity and Loop Quantum Cosmology
	Quantized conformal fluctuations
	Asymptotically Safe Gravity
	Non-commutative geometry
	Miscellaneous
	Summary of motivations

	Models and Applications
	Interpretation of a minimal length scale
	Modified commutation relations
	Recovering the minimal length from modified commutation relations
	The Snyder basis
	The choice of basis in phase space
	Multi-particle states
	Open problems

	Quantum mechanics with a minimal length scale
	Maximal localization states
	The Schrödinger equation with potential
	The Klein–Gordon and Dirac equation

	Quantum field theory with a minimal length scale
	Deformed Special Relativity
	Composite systems and statistical mechanics
	Path-integral duality
	Direct applications of the uncertainty principle
	Miscellaneous

	Discussion
	Interrelations
	Observable consequences
	Is it possible that there is no minimal length?

	Summary
	Acknowledgements
	Index
	References

