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MINIMAL MUTATION TREES OF SEQUENCES* 

DAVID SANKOFFt 

Abstract. Given a finite tree, some of whose vertices are identified with given finite sequences, 
we show how to construct sequences for all the remaining vertices simultaneously, so as to minimize 
the total edge-length of the tree. Edge-length is calculated by a metric whose biological significance 
is the mutational distance between two sequences. 

1. Introduction. The problem solved in this paper may be summarized as 
follows. Given a finite tree T, some of whose vertices are identified with points in 
a certain metric space (S, d), locate the remaining vertices in S so as to minimize 
the total length of the edges of T. For S = R', this is a well-known generalization 
of Steiner's problem, but in the present paper S will be the set of finite sequences 
over some alphabet A, and for two such sequences x = (x(1), ,x(n.)), 
y = (y(1), ,y(ny)) , if nx _ ny , 

(1) d(x,y) = nx + ny - max E [1 + ((X(ik),Y(Ak))], 
O<1_nx k= 1 

1 <il< .. < 
+ 

<isny l?<jl <-<j,x?fly 

where 3(x(i), y(j)) = 1 if x(i) and y(j) have the same value in A; otherwise 3(x(i), 
Y(j)) = 0. 

The metric d arises in the study of molecular evolution as discussed by 
Ulam [1] and Sellers [2]. The integer d(x, y) equals the minimum number of 
mutations required to transform sequence x into y, or y into x, where a mutation 
may be either a change (replacement) of the value in A of a single term x(i) to 
correspond with the value of some y(j), or else the deletion from, or insertion into 
sequence x, of a single term. E.g., x = (1, 1,0, 1), y = (1,0, 0, 1, 1), and d(x, y) = 2 
as may be computed by changing x(2) to 0 and inserting a 1 between x(3) and x(4). 

For a given x and y, we may write d(i, j) for the distance between the sub- 
sequences consisting of the first i terms of x and the first j terms of y. Setting 
d(k, 0) = d(O, k) = k for k > 0, it is not difficult to show that 

rd(i- 1,]) 
(2) d(i, j) = 1 + min d(i - 1, j- 1) - 5(x(i), y(j)) 

d(i,j- 1) 

for 1 ? i ? nx and 1 < j ? ny. The use of recursions like (2) for comparing pairs 
of sequences has been explored by a number of authors [2]-[5]. Our main algo- 
rithm described in ? 5 generalizes (2) for the simultaneous comparison of three or 
more sequences, each one identified with a vertex of a given tree. 

To obtain this result, we prove, in the next two sections, two theorems about 
the total edge-length of a tree with vertices in S. In ? 4, we describe a rapid method 
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for decomposing a tree with some of its vertices colored, into a minimum number 
of subtrees with disjoint vertex sets in the original tree, such that each subtree 
contains no two differently colored vertices. This method, the essentials of which 
are attributable to Fitch [6] and Hartigan [7], facilitates the calculation of the 
incremental tern of the recursion which generalizes (2). 

2. The frame sequence of a tree of sequences. In this section and the next we 
consider trees for which the locations of all vertices are specified in S; that is, all 
the sequences are given. 

We shall use the notation x(i) mainly to refer to the ith term, or position, in 
sequence x, and not the value of this term in A, but if terms x(i) and y(j) from dif- 
ferent sequences have the same value, we may write, without ambiguity, x(i) = y(j). 

Let V(T) = {x1, *. , XN} be the vertex set of T, and E(T) be the edge set. 
Suppose xy E E(T). In definition (1) we can find a A, and subsequences il < ... 

< i, and j] < * * < j. which maximize the summation. We say that the sequence 
Mxy= {(x(il), y(jl)), * , (x(i.), y(jA))} is a maximal match of length A. The 
pairs are unordered, so that each M.Y is also a My. 

LEMMA 1. Suppose (x(p), y(q)) E M.Y and (x(r), y(s)) E M.Y Then 

r < ps < q. 

Proof. For some h and k, p = ih, q = j1, r = ik, S = Ik, and r < P ik < ih 
.:. k < h j:->k < ih # S < q. 

Now, independently for each edge xy E E(T), choose an M,Y and for each 
x E V(T), for 1 < i < n_, define Q(x(i)) as follows: 

x(i) E Q(x(i)), x 

y(j) E Q(x(i)) and (z(k), y(j)) E MY 
The sets Q(x(i)) are clearly pairwise disjoint or equal; hence they form a partition 
of Q = {xl(l), . - * , x,(n,), * * *, XN(1), * * *, xN(nN)}. 

THEOREM 1. For a given set of maximal matches for E(T), the different Q(x(i)) 
can be enumerated as Q,, ., Q so that 

(4) x(i)eOh and X(I)eQk implies i < j>h < k 

for any x E V(T). 
Proof. Suppose Q(x(i)) = Q(y(p)). By (3), there must exist a sequence of edges 

in E(T), xul, ulu2, 9 * *, u,y, and pairs (x(i), u1(rl)) E Mxu , , (u,(r,), Y(P)) c Mu,y 
Similarly if Q(x(j)) = Q(y(q)), then for the same sequence of edges there must 
exist pairs (x(j), ul(s,)) e M.,, , (u,(s,), y(q)) e Muy since there is a unique 
sequence of edges in E(T) between any two vertices x and y in V(T). Repeated 
applications of Lemma 1 imply that i < j p < q. 

This assures that if different elements A and / of the partition both contain 
positions of one or more sequences in common, then for, say, x(q,) E A, x(px) E tl, 
either qx < p, for all such x simultaneously, or q., > p, for all such x simul- 
taneously. In the first case we may write A << (, and in the second case / << A. 
If tl << A and A << 0 by this definition, we also write / << 0. It is easily verified 
that "<< " is a partial ordering of the elements of the partition, satisfying x(i) E A, 
x(j) E i implies i < j A << if. But any finite partially ordered set may be 



MINIMAL MUTATION TREES 37 

enumerated in a manner consistent with the partial order [8, p. 40]. This enumer- 
ation will then satisfy (4). 

We call any Q1, , Qv a frame sequence associated with the given set of 
maximal matches, as long as it is a partition satisfying (3) and (4). 

3. The incremental function. Let Q1, ., Q be a frame sequence associated 
with a given set of maximal matches for E(T). For each k = 1, --*, v we define 
a coloring of T as follows. If x(i) E Qk, color the vertex x with a color representing 
the value of x(i) in A. (By Theorem 1 there can be at most one i for which x(i) eQk.) 

If x(i) E Qk for no i = 1, *.. , nx, then color the vertex with a color representing 4, 
where 4 0 A. Then let f (Qk) be the number of edges in the tree whose two end- 
points are colored differently (bicolored edges). We shall refer to f as the incre- 
mental function. 

THEOREM 2. Let Q1, , Qv be a frame sequence associated with a given set 
of maximal matches for E(T). Then the total edge-length of T is 

(5) Z d(x,y)= E f(Qk) 
xyeE(T) k= 1 

Conversely, if Q1, E , QV is any partition satisfying (4), it is a frame sequence 
associated with some set of maximal matchesfor E(T) ifand only if f f(Qk) is minimal. 

Proof. If Mxy is of length A, then by (1), 
A 

d(x, y) = n, + ny - Z 1i + (X(ik),y(ik))] 

(6) A 

= nx-i + ny - A + E [1-(x(ik),Y(jk))]. 
k= 1 

For how many h is xy bicolored in calculating f(Qh)? There are three ways in 
which xy may be bicolored: 

(i) x(ik) # Y(jk) Since (x(ik), Y(Ik)) e Mxy these two terms are in the same 
Qh, by (3), and hence xy is bicolored in calculating f(Qh). There are clearly 
Ek [1 (x(ik), Y(jk))] such pairs in Mxy 

(ii) (x(i), y(j))EMxy for no] = 1, , ny. Then if x(i) E Qh, no y(j) E Qh and 
hence xy is bicolored in calculatingf (Qh), with colors representing x(i) and 4, 
respectively. There are n,, - A such x(i). 

(iii) (x(i), y(j)) E Mxy for no i = 1, , nx. There are ny- Asuch y(j). 
Summing all cases of type (i), (ii) and (iii), the edge xy contributes, by (6), exactly 
d(x, y) bicolored edges in computing f (Qh). Summing over E(T) proves (5). 

Conversely, suppose Qf, -.. , Qv is a partition satisfying (4). Then for each 
xy E E(T) we note which Qh contain both an x(i) and a y(j). This determines sub- 
sequences l _ i1 < < i A <-nx and 1 < j1 < ..< jA _ ny. If 

nx + ny - , [1 - 6(x(i), y(jk))] = d(x, y), 
k= 1 

then the pairs (x(i1), y(j,)), , (x(i.), y(j,)) constitute a maximal match. By (1), 
the only other possibility is 

n, + ny - , [1 - 6(X(ik), y(jk))] > d(x, y) 
k= 1 
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in which case 

f .(Q,,) > E d(x, y). 
h = 1 xyc-E(T) 

In other words, Zf (Qh) is minimal if and only if Q1, , QV, is associated with a 
set of maximal matches for E(T). 

Returning to our original problem, only part of V(T), say xl, , XN', con- 
sists of known sequences. In ? 5 we shall show how to construct the remaining 
sequences XN'+ 1', * * * XN by simultaneously constructing a partition Qt, ., Q 
satisfying (4), such that Z f(Qh) is minimal compared to any other set of sequences 
and any other such partition. By Theorem 2, this will solve the problem. 

This procedure will involve being able to minimize f(Qh), given colors only 
for vertices x1, , Xx', and required to find an optimal assignment of colors 
for the remaining vertices. In the next section we present a rapid algorithm for 
accomplishing this. 

4. Minimizingf. The problem of minimizing the incremental function may 
be stated as follows. For a tree T with some of its vertices colored, find a coloring 
for all the remaining vertices which minimizes the number of edges having two 
differently colored endpoints (bicolored edges). An equivalent formulation is to 
find a partition of the vertices of T among m subtrees, such that each subtree con- 
tains only vertices with a common color (plus uncolored vertices) and such that 
m is minimal. 

If the removal of any edge xy E E(T) decomposes T into two subtrees Tx 
and Ty, where x c V(Tx), y E V(TY), and where V(TY) contains no colored vertices, 
then it suffices to find a suitable coloring for Tx first, and then color all vertices 
in V(TY) by the color of x. Thus we need only solve the coloring problem for trees 
where the colors are given for all terminal vertices at least. 

We first define the depth of a vertex as follows. All colored vertices, including 
all terminal vertices, are of depth zero. An uncolored vertex having all incident 
edges, except at most one, connected to vertices of depth zero is defined to be of 
depth one. A vertex not of depth 0, 1, - , D - 1 having all incident edges, except 
at most one, connected to vertices of depth 0, 1, , or D - 1 is defined to be of 
depth D. 

LEMMA 2. Every vertex in T has finite depth. 
Proof. Suppose there is a vertex x for which the depth is not defined. Then 

x must be collinear with at least two other vertices of undefined depth. These 
must each be collinear with one other such vertex besides x, and so on. By the 
finiteness of T, there must exist a cycle of vertices of undefined depth, which is 
impossible since T contains no cycles. Therefore every vertex in T has a well- 
defined depth. 

Next, we define the candidate colors for a vertex x. If x has depth zero, there 
is a single candidate, namely its color. If x has depth D > 0, consider all vertices 
collinear with x and of lesser depth. Those colors which are candidates for a 
maximum number of these vertices are the candidate colors for x. 

THEOREM 3. To minimize the number of bicolored edges, the following pro- 
cedure suffices. Choose any vertex x of maximal depth, and color it by one of its 
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candidate colors, say i. If x is collinear with another vertex y of equal depth, i must 
be chosen from the intersection of their two sets of candidate colors, if this exists. 
For any other vertex y collinear with x, if i is a candidate colorfor y, then color y by 
i. Otherwise color y according to any of its candidate colors. After coloring all y 
collinear with x, consider any other vertex z collinear with any such y. If the color 
of y is a candidate for z, then color z accordingly. Otherwise color z by any of its 
candidate colors, and so on. When this process is exhausted, choose any remaining 
vertex of maximal depth, and repeat. 

Proof. We proceed by induction on D. Assume that for any coloring of all 
vertices of depth at least D, the procedure applied to the rest of the vertices pro- 
duces a minimum of additional bicolored edges. Then consider any coloring of 
all vertices of depth at least D + 1, and let x be a vertex of depth D, valence v, 
and such that 

V = V2 =Vm >Vm+ = 

are the number of vertices of depth less than D, collinear with x, and with candidate 
colors 1, 2, . , respectively. Note that 1, . , m are the candidate colors for x. 
By the induction hypothesis, for the aforementioned vertices collinear with x, it 
suffices to consider only colorings by their candidate colors. Now suppose the 
coloring of x by m + 1 could lead to a minimum of additional bicolored edges. 
Then, by the induction hypothesis, x will be incident to v - vm +1 - 1 or 
v - vm+1 bicolored edges, depending on whether or not x is collinear with a 
vertex of depth greater than D colored m + 1. But v - v1 < v - vm+ 1- 1 which 
means that 1 is also a minimizing color, as are 2, , m. This stems from the 
fact implicit in the induction hypothesis and theorem statement that any coloring 
by candidate colors of the vertices collinear with x and of lesser depth, is as good 
as any other such coloring, except possibly with respect to the edges coincident 
with x. 

Hence it suffices to consider only candidate colors for x. If x is collinear with 
a vertex of depth greater than D colored i, where i is a candidate for x, then i is 
the only minimizing color for x since v -vi-1 < v -vj, for j = 1,, m. If, 
on the other hand, x is collinear with a vertex y of depth D, then any candidate 
color for both x and y is a minimizing color when applied to both. 

Thus the procedure in the theorem statement produces a minimum number 
of additional bicolored edges when applied to all vertices of depth less than or 
equal to D. It remains to prove that for any coloring of all vertices of depth at 
least 2, the procedure applied to the vertices of depth 1 produces a minimum of 
bicolored edges. Suppose x is connected to 

V1 = V2 = = Vm > Vm+i = 

vertices colored 1, 2, . , respectively (all of depth zero, of course), and possibly 
to one vertex y of depth greater than or equal to 1. If y is of depth greater than 1 
and is colored 1, . , or m, or if y is of depth 1 and shares candidates with x, then 
clearly x and y must be of the same color to produce a minimum of bicolored 
edges. In all other cases, it is equally clear that any of 1, 2, . , m will do for x. 

Since an uncolored vertex may be connected to at most one vertex of greater 
or equal depth, by the definition of depth, no vertex will be colored more than 
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once by this procedure, and Lemma 2 ensures that all vertices will be colored at 
least once. This completes the proof. 

5. The main algorithm. For a tree T with given sequences for vertices 

Xl, *-, XN', we are required to find sequences for the remaining vertices 
XN+1 , 9XN and a partition Ql, *QV satisfying (4) such that Ef(Qk) is 
minimized. For each k = 1, ... , v, the input into the coloring procedure in the 
previous section consists of the colors for all xi, 1 < i ? N'. If for some j, 
Xi(j) E Qk, then the color of xi will represent the value of xi(j) in A. Otherwise xi 
will be colored by 4. For N' < i ? N, on the other hand, the procedure output 
determines everything, even whether or not Qk should contain any position xi(j), 
depending on whether the vertex xi is colored some color other than 4, or colored 
by 4, respectively. Let / = {x1(1), . , x1(nj), . , XN(1l), .. , XNf(nNl)} be the 
set of positions in x1, ... , XN. To minimize E f over all possibilities for sequences 
XN,+ 1 **, , XN and all partitions of Q satisfying (4), first consider any partition 
of /, say /1, . , /v, satisfying (4), apply Theorem 3 for k = 1, . , v to calculate 
optimal colorings, and define, for each xi, where N' < i < N, the value of xi(j) 
to be the color of vertex xi in the jth coloring in which it is not Q. Then define Qk 

to contain all the elements of Vk plus all positidns of the variable vertices colored 
non-+ in the kth optimal coloring. Then Q1, ... QV satisfies (4) and no other 
partition Q1 * , Q', where Q'k D for k = 1, , v could have a lesser E f(Qa), 
without contradicting Theorem 3. Therefore, instead of examining all partitions 
of Q satisfying (4) to find a minimum, it suffices to examine only all partitions of 
V which satisfy (4). 

Let i = (i 1, .. , jN) and e be any N'-vector of zeros and ones, where 
0 < ei _ ji < ni for i = 1, . , N'. Let f(j * e) be the number of bicolored edges 
determined by Theorem 3 when vertex xi is colored by xi(ji) if ei = 1, and by 4 
if ei = 0. Then writing dT(j) for min EE(T) d(x, y) when only the first ji terms of 
sequence xi are considered, i = 1, , N', and setting dT(O) = 0, we have the 
following theorem. 

THEOREM 4. 
(7) dT(j) = min {f(j . e) + dT(j - e)}. 

e 

Proof. For some frame sequence Q1, , * QV for the given and the variable 
sequences, dT(j) = f(QV) + Zk E(k 

Now, QV can contain only positions of the form xi(ji), I ? i ? N', plus 
variable sequence positions; for if xi(h) E Q, h < ji, then Xi(ji) E Qk, where k < v, 
contradicting (4). If xi(ji) eQv set ei = 1, otherwise ei = 0, for i = 1, , N'. 
Then f (QV) = f(j i e). 

Now the partition Q1 *QV- I is either a frame sequence for dT(j- e), or 
else E I-1 f(Qk) > dT(j - e), by the converse of Theorem 2. If the inequality 
holds, then for any frame sequence Q'1, * * l, Q, of dT(j -e), 

v-i 

d T() = f (QK2) + E f (k) 
k= 1 

> f (Qv) + E f (Qk) 
k= 1 
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which contradicts the minimality of P0-1 f(Qk) and hence the fact that Ql,, Qv 
is a frame sequence for dT(j). 

Therefore, 

dT(j) = f(j e) + dT(j - e), 

and for no e' could f(j e') + dT(j- e') be less than dT(j) without contradicting 
either or both of Theorem 2 and 3. Hence (7) follows. 

MAIN ALGORITHM. Enumerate the vectors 
0 = (0, ... 0), , n = (n,, ,nN) 

so that each component is nondecreasing with the enumeration. Setting dT(O) = 0, 
we can calculate dT(j) for each successive vector in the enumeration by searching 
each vector e consisting of zeros and ones, 0 < ei < ]i < ni, for 

min {f(j e) + dT(j -e), 
e 

where each such dT( - e) has already been calculated, thanks to the component- 
wise nondecreasing property of the enumeration. 

Once dT(n) has been calculated, we find a frame sequence and hence the 
variable sequences as follows. Search for an e satisfying Theorem 4 when j = n. 
This defines /, the last element of some optimal partition of /, and hence Qv, 
the last term of a frame sequence for dT(n). Setting j = n - e, we search for an 
e' satisfying the theorem, and so on, each step providing an additional term of the 
frame sequence. 

Both the calculation of dT and the construction of the frame sequence re- 
quire a number of steps proportional to (2N' - 1)nl ... nN' since there are 2N- 1 
vectors e to search for most j. This figure is approximately (2n)N' if all the sequences 
have about n terms. 

6. Applications. The construction we have developed has immediate appli- 
cation to problems of macromolecular evolution. The given sequences are the 
nucleotide base sequences of homologous RNA or DNA molecules from different 
species, and T represents the phylogenetic (family tree) relationships of these 
species. The variable vertices of T represent hypothetical ancestral species, so 
that the solution of the minimal mutation tree constitutes a probable recon- 
struction of the RNA or DNA molecules of these ancestors. 

The main problem in practical applications is the strong dependence of 
computing time and memory on N', the number of given sequences. There are 
two ways of evading this problem. First, it is frequently a biologically reasonable 
assumption that dT(j) need not be computed for any j for which lk - jhl > C, 
for any k, h and some suitable C. Second we can restrict ourselves to locally 
optimal solutions by using only the N' = 3 version of the algorithm, analogous 
to the Steiner three-point problem with one unknown vertex. See [9] for the type 
of results obtained by these methods. 
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