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Minimal Non-contingency Logic

STEVEN T. KUHN

Abstract Simple finite axiomatizations are given for versions of the modal
logics K and K4 with non-contingency (or contingency) as the sole modal prim-
itive. This answers two questions of I. L. Humberstone.

Modal logic is supposed to be the study of principles of reasoning involving neces-
sity, possibility, impossibility, contingency, non-contingency, and related notions. It
has become customary to construct systems in which necessity alone, or necessity
and possibility, are treated as primitive connectives. In most such systems the modal
concepts mentioned are all interdefinable, so that these systems can be regarded as
systematizing, at least indirectly, reasoning involving all of them. Nevertheless, sys-
tems in which contingency or non-contingency are treated as primitive connectives
have certain technical and philosophical interest (see Montgomery and Routley [5]).
Such systems have been investigated in Montgomery and Routley [5], [6], [7], and
Mortensen [4]. (See also Brogan [1] for a discussion of Aristotle’s logic of contin-
gency.) The investigations were facilitated by the observation that necessity is defin-
able in the systems considered. For example, in extensions of the system T, neces-
sarily A is equivalent to A and not contingently A. Cresswell [2] provides examples
of systems not containing T in which necessity is otherwise definable. In the con-
tingency version of the “minimal” modal system K, however, necessity is not defin-
able, and so a general account of the logic of contingency has not emerged so quickly.
Humberstone [3] solves this problem by showing how to modify standard complete-
ness arguments for necessity systems to a system in which non-contingency is primi-
tive. The axiomatization in Section 3 of [3], however, contains a somewhat unwieldy
rule schema, and the author asks whether a finite axiomatization is possible. This note
answers that question affirmatively by presenting a considerably simpler complete-
ness proof that does not require the unwieldy schema. It also solves another problem
raised in [3], axiomatizing the non-contingency version of K4.

Our base language is that of classical propositional logic with ∨ and ¬ as prim-
itive connectives. We add two “modal” connectives, � and ∇, for contingency
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and non-contingency, respectively. To facilitate comparison with [3], we take non-
contingency as primitive and define contingency by the condition: ∇A = ¬�A. A
Kripke model is a structure (W, R, V ), where W is a nonempty set (the “worlds”), R
is a binary relation (“accessibility”) on W , and V is a function from sentence letters
to sets of worlds. The notion A is true in M at w (written (M ,w) |= A) is defined
in the standard way. The clause for � is as follows:

(M ,w) |= �B if and only if either, for all v ∈ W such that wRv, (M , v) |= B,
or, for all w ∈ W such that wRv, not (M , v) |= B.

As usual, A is false in M at w (written (M ,w) �|= A) iff it is not true in M at w. A
formula that is true at every world in a model M is said to be true in M . If it is true
in all the members of some class C of models, it is said to be valid in C. If it is valid
in all Kripke models, it is said to be valid. Minimal non-contingency logic is the set
of all formulas valid according to this definition.

Now let K4� be the set of all formulas provable in the following axiom system.

PL All substitution instances of tautologies

A1 �¬A → �A

A2 �A ∧ ∇(A ∧ B) → ∇B

A3 �A ∧ ∇(A ∨ B) → �(¬A ∨ C)

R� If � A then � �A

RE If � A ↔ B then � �A ↔ �B

MP If � A and � A → B then � B.

Note that all these schemas except PL are finite, and PL can be replaced by any
finite set of axiom schemas that generate the tautologies using MP.

In the remainder of this paper we assume some familiarity with [3]. We estab-
lish first that K4� is contained in the system NC of [3]. Indeed every theorem of K
can be proved using only PL, MP, �¬, and (NCR)i for i = 0, 1, 2. The rule R� is
just (NCR)0 and the rule RE is derived (under the label Rcong) in Section 2 of [3].
Similarly, axiom schema A1 is just �¬ and A2 (in the presence of PL and MP) is
interderivable with the schema �A ∧ �B → �(A ∧ B). This is an instance of the
Principle 2.2 that, by an argument in Section 3 of [3] is provable from (NCR)2. It re-
mains only to prove A3. By PL, � A → (A ∨ B) and � ¬A → (¬A ∨ C), and so by
(NCR)1, � �A → (�(A ∨ B)∨�(¬A ∨ C)). By PL and MP, � �A ∧∇(A ∨ B) →
�(¬A ∨ C) i.e., A3 is provable.

The principal result of this note can be expressed as follows.

Theorem 1 (completeness of K4�) K4� = minimal non-contingency logic.

The soundness (i.e., the “⊆”) half of the theorem follows from the observation above
that K4� is contained in NC and the proof in [3] of the soundness of NC. To prove
the sufficiency (i.e., the “⊇”) half of the theorem, we show that every nontheorem is
false in some model. In fact, as is often the case, we can show that there is a single
“canonical” model which falsifies all the nontheorems (and which satisfies all con-
sistent sets). Our construction of the canonical model uses an auxiliary function, λ

(playing the same role as its namesake, constructed in Section 3 of [3]). If x is a max-
imal consistent set of formulas, then λ(x) = {A : for every formula B, �(A ∨ B) ∈ x}.
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If x is maximal consistent, then the following properties are satisfied.

Property P1 λ(x) is nonempty.

Proof: Take a tautology A, then for any formula B, � A ∨ B. By R�, � �(A ∨ B).
Since x is maximal consistent, �(A ∨ B) ∈ x. Hence A ∈ λ(x).

Property P2 If A ∈ λ(x) and � A → B then B ∈ λ(x).

Proof: Take an arbitrary formula C. We must show �(B ∨ C) ∈ x. Since A ∈ λ(x),
�(A ∨ (B ∨ C)) ∈ x. Since � A → B, � (A ∨ (B ∨ C)) ↔ (B ∨ C), and so, by RE,
�(B ∨ C) ∈ x, as was to be proved.

Property P3 If �A ∈ x and A /∈ λ(x) then ¬A ∈ λ(x).

Proof: Suppose �A ∈ x and A /∈ λ(x) but ¬A /∈ λ(x). Then there is some formula
B such that �(¬A ∨ B) /∈ x. Since A /∈ λ(x), there is also a C such that �(A ∨ C) /∈ x.
By definition of ∇ and maximal consistency of x, ∇(A ∨ C) ∈ x. Since �A ∈ x, this
implies �A ∧ ∇(A ∨ C) ∈ x. By A3, �(¬A ∨ B) ∈ x. This contradicts the earlier
conclusion, and so the supposition is false, and the claim is true.

Property P4 If A ∈ λ(x) and B ∈ λ(x) then (A ∧ B) ∈ λ(x).

Proof: Suppose A ∈ λ(x) and B ∈ λ(x), but (A ∧ B) /∈ λ(x). Then there is some
formula C such that �((A ∧ B) ∨ C) /∈ x. By definition of ∇, ∇((A ∧ B) ∨ C) ∈ x.
By RE, ∇((A ∨ C) ∧ (B ∨ C)) ∈ x. Since A ∈ λ(x), �(A ∨ C) ∈ x. Since x is
maximal consistent, �(A ∨ C) ∧ ∇((A ∨ C) ∧ (B ∨ C)) ∈ x. By A2, ∇(B ∨ C) ∈
x, and so �(B ∨ C) /∈ x. But this contradicts the assumption that B ∈ λ(x), so the
supposition is false, and the claim is true.

Let W be the set of all maximal consistent sets of formulas. For all u, v ∈ W , let uRv

iff λ(u) ⊆ v and, for all sentence letters q, let V (q) = {w ∈ W : q ∈ w}. The canonical
model is the model M = (W, R, V ).

Lemma 2 If M = (W, R, V ) and w ∈ W, then (M ,w) |= A iff A ∈ w.

Proof: By induction on A. We do the case A = �B. First, suppose A ∈ w. By
P3, either B or ¬B is in λ(w). By the definition of R, then, either ∀v(wRv ⇒ B ∈
v) or ∀v(wRv ⇒ B /∈ v). By induction hypothesis, either ∀v(wRv ⇒ (M , v) |=
B) or ∀v(wRv ⇒ (M , v) �|= B). By the truth definition, (M ,w) |= A, as required.
Conversely, suppose A /∈ w. Let x1 = λ(w) ∪ {B} and let x2 = λ(w) ∪ {¬B}. Both
of these are consistent. For, if x1 were not, we would have � C1 ∧ . . . ∧ Cn → ¬B,
where C1, . . . , Cn ∈ λ (w). (By P1, we may assume without loss of generality that
n ≥ 1.) By n − 1 applications of P4, (C1 ∧ . . . ∧ Cn) ∈ λ(w), and therefore by P2,
¬B ∈ λ(w). This implies �¬B ∈ w, which, by A1, implies �B ∈ w, contradicting
the supposition that A /∈ w. The argument for x2 is similar. Thus W contains maximal
consistent sets u and v containing x1 and x2, respectively. By definition of R, wRu,
and wRv. By induction hypothesis, (M , u) |=B and (M , v) �|= B. By truth definition
(M ,w) �|= �B, as required.

To prove the theorem it is sufficient to observe that, if A is a nontheorem, then ¬A
is consistent, and so {¬A} can be expanded to a maximal consistent set w. By the
lemma above (M ,w) |= ¬A, and so M falsifies A, as required.
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More generally, the argument here establishes that every extension of K4� is
complete with respect to some class of (non-contingency) Kripke models. It can also
be adapted to provide special completeness results for particular non-contingency
logics. Consider, for example the question raised in Section 4 of [3] of axiomatiz-
ing the logic determined by the class of transitive models. Let K4� be the formulas
provable in the axiom system obtained by adding the schema �A → �(�A ∨ B) to
the system for K4� and let transitive non-contingency logic be the formulas valid in
all transitive models. Then we can show the following.

Theorem 3 (completeness of K4�) K4� = transitive non-contingency logic.

Proof: To prove soundness it is sufficient to show that the new schema valid in
the transitive models. Suppose there is a transitive model M = (W, R, V ) and a
world w ∈ W such that (M ,w) �|= �A → �(�A ∨ B). Then (M ,w) |= �A but
(M ,w) �|= �(�A ∨ B). The former condition implies that A is either true at all
worlds accessible from w or false at all such worlds. The latter condition implies that
for some v such that wRv, (M , v) �|= �A ∨ B, which implies that (M , v) �|= �A.
Thus there is a world u1 accessible from v at which A is true and a world u2 acces-
sible from v at which A is false. Since M is transitive, however, u1 and u2 are both
accessible from w, contradicting our earlier conclusion. Since M and w are arbitrary
the new axiom is valid.

To prove sufficiency, we may show that the canonical model (defined as above)
is transitive. Suppose u and v are worlds in the canonical model such that uRv and
vRw and suppose that, for every formula B, �(A ∨ B) ∈ u. Then by the new schema
we have that, for every formulas B and C, �(�(A ∨ B) ∨ C) ∈ u. Since uRv,
�(A ∨ B) ∈ v for every formula B. Since vRw, A ∈ w. Thus, we have shown that
�(A ∨ B) ∈ u for all formulas B implies A ∈ w, which is exactly the condition re-
quired for uRw.
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