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Abstmd—Tlds paper studies the ssecewary and sufficient eondftfons for

a ptb-order observer to observe linear frnsctfons of the states of a linear
dynandcaf system. Tbe conditions are a set of mrdtivarissble polynomial
equations wbiefr must be satisfied for some vsriable set in order for a

pth-order observer to exist. It is possible to test for the existence of srrch a
varfable set bs a ffrdte number of steps via decision methods and thereby to

eonstruet ass observer with tbe aid of polynoodaf factorization. To rsdoi-

mfze the eomputatforod effo@ the neceswy and sufficient eorrditfons are
expressed in terms of tbe rsrinimum ❑umber of variables.

I. INTRODUCTION

SINCE the problem addressed in this paper is the
application of decision methods to minimal order

observer design, the relevant perspectives of each of these
topics is now reviewed,

1) Obseruers: For a dynamical system with input U(.),

states x(. ), and outputs y(.), recall that an observer is
simply any asymptotically stable dynamical system driv-
en from U(. ) and y(. ) with outputs W(. ) satisfying

lim [w(f) –K’x(t)]=O
t-cc

for some specified K’ (sometimes the identity matrix).

Since the introduction of” the Kalman observer [1] for
estimating the states of an nth-order linear system using
an rrth-order observer of arbitrary asymptotically stable
dynamics, efforts have been directed to build observers of
lower order. Luenberger observers have arbitrary
asymptotically stable dynamics and are of order (n – m)
where m is the number of independent system outputs [1],

[2]. These also estimate the state vector of an rrth-order
linear system. A further reduction in the order of the

observer is sometimes possible when estimating a linear
functional of the state vector, as in the realization of the
control law K’x. It has been shown by Luenberger that it
is always possible to estimate a scalar K’x using an

observer with arbitrary asymptotically stable dynamics of
order VO– 1 where PO is the observability index of the
signal model. An obvious extension of this result is that an
r-vector K(X can be estimated with r such observers.

However it is well known that if the observer dynamics

are not fully specified, r(vo – 1) may not represent the

minimal order of an observer for estimating K ‘x. On the
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other hand, there is clearly a lower limit for the order of
the observer of (r – m).

Necessary and sufficient conditions for a pth-order ob-
server to estimate K’x where the observer dynamics are
not specified are well known [2], [3], but to test these
conditions using decidability theory and to construct the
observer with the aid of polynomial factorization, exten-
sive computing is required [4]. Fortmann and Williamson
[3] showed that these conditions for the single-output case,

are equivalent to a much simpler set of conditions. How-
ever, for the multiple-output case their results yielded
nonminimal observers. Moore extended the results of [3]

to the case when no direct feedthrough is permitted in the
observer. This case is useful when it is desired that the
measurements themselves have some filtering [4].

2) Decision Methods: Consider the equalities p,(o)= O
and inequalities p2(u) <0 where pi and p2 are each a set of
real multivariable polynomials in u (polynomials in each
of the components of u). The decision methods of [5]–[7]

determine in a finite number of steps with each step
involving only rational operations whether or not a vector

u exists such that pi(u)= O and p2(o) <0. Unfortunately,
the number of steps increases exponentially with the
number of unknowns (elements of u) and also the number
of inequalities. Reference [5] also provides methods for
determining solutions u which satisfy the equalities and
inequalities—given of course that such u are known to
exist. These later methods involve polynomial factoriza-
tion and thus in theory require an infinite number of

steps.

Anderson et al. [5] show how decision techniques can
be applied to, among other problems, minimal-order ob-

server design for estimating K’x. However, in their form-
ulation there are a large number of unknowns and in-
equalities—at least for nontrivial problems.

Description of Paper

This paper explores necessary and sufficient conditions
for the existence of a pth-order observer for estimating
linear functions of the state of a linear dynamical system

involving as few as possible unknowns and inequalities. The

conditions are manipulated to be suitable to the applica-
tion of decision methods for a minimal-order observer
design. Section 11 presents preliminary material including
some results from [3]. Section 111 presents some immediate
simplifications to the observer decision problem by suit-
able selection of observer and model coordinate basis.
Section IV presents a series of properties of observers
which are used in Section V to develop the key theorems
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which are observer existence conditions involving the

minimum of unknowns. Section VI gives brief conclusions
fr,.~m the work.

II. PRELIMINARY MATERIAL

Consifler a linear time-invariant system described by

the state equations

.i([)=Fx([)+Gu(t) (2.1)

y(t)= H’x(t) (2.2)

with m-vector output y, n-vector states x, and input u of

arbitrary dimension. Assume without loss of generality

that the above system is completely controllable, com-

pletely observable, and that H and G are of full rank—
thus (H’H) ‘1 exists.

A key result concerning observers of K’x (for K’ an
r x n matrix) discussed in [3] is now stated as a theorem.

Theorem 2. I: For the signal model (2.1) and (2.2):

1) Necessary and sufficient conditions for the existence

of a linear, asymptotically stable, completely observable,
pth order observer estimates K’x from U(. ) and -Y(.) are

that there exist matrices [A, 1?,C, E, T] of appropriate di-
mensions such that [.4, C] is completely observable,

K’= C‘ T’for E constrained to be zero

K’= C’ T’ + EH’ for E unconstrained
(2.3)

T’F– AT ’=BH’ (2.4)

and the eigenvalues of A, denoted Ai[A], are strictly nega-
tive (or equivalently for this latter condition, that Condi-
tion C 1 below is satisfied).

2) The conditions C 1, (2.3), and (2.4) are of themselves
sufficient conditions for the existence of a pth-order ob-
server (not necessarily observable).

3) With A, B, T, C, and E chosen

and (2.4), a pth-order observer is

;(f) =Az(t)+ By(t)+

w(t)= c’z(r)+Ey (t).

Condition Cl: For the polynomial

l.$l--Al=~(s)=po+p,$+... +pp

to satisfy Cl, (2.3),

T’Gu(t) (2.5)

(2.6)

_,s P-l+pp,P=o

wi [h /ln = 1, the p Hurwitz determinants A! satisfy the

inequ~ities A/ >0 for i= 1, 2,. . p where A!’= I/3P_ “

A!=

or eqt

B,., bp-,
1 1~p_2,A{=
valently that /3i>0 for

fori=l,2,. . . andj=Oor 1.

B,-, BP-, Pp..,

1 BP-2 Pp..

o Pp., BP-3

etc.

=0, 1,2,. . p and A2i+j>0

Prooj The above theorem has been proven in [3].

Here we briefly outline an alternative proof of necessity of
the conditions (2.3) and (2.4) which is possibly more direct
than that of [3]. First, note that the observer (2.5) and
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(2.6) given in terms of B, T, C’, and E is the most general
pth-order linear system that can be employed as an ob-
server. The necessary and sufficient conditions for this to

be an asymptotically stable observer of K ‘x is that C 1
holds and lim,+~ (w – K’x) = O. Since we are working
with time-invariant systems the latter equality is eqtriva-

lent to the following transfer function equality.

K’(SZ– F)-lG=[ C’(SZ– A)-l T(SZ– F)

+[EH’+C’(SZ– A)-] BH’]](SZ– F)-l G

where of course the right-hand side expression is the
transfer function of a composite system (including ob-

server) with input u(t) and output w(t).

Performing a partial fraction expansion using the iden-
tity (SZ– X)-l =( S-l+ XS-2+X2S3+ . . . ) and equating
the coefficient of s -n to zero yields

[T[CA’C(A*)’C... () C]’)C]

1 1! ]+( HB’– F’T)[OC (A) ’C. ..(2) -C] ’C] : = o.

+[(HE– K)OO. ..O] FG

G

Now defining controllability and observibility matrices

~+(~”-’)’. . . G’FG’]

Q’=[C,4’C.. (AP-’C]C]. (2.7)

This condition is equivalent to the conditions (HE’ – K+
TC)@=O and (TA’+HB’– F’T)[Q’:X]~’=O for some

matrix X. Now clearly with [F, G ] completely controllable

and [A, C] completely observable, ~ and [Q‘: X ] are of
full rank and these equations are equivalent to (2.3) and

(2.4). Necessity of (2.3) and (2.4) is thereby established.
Note that if [A, C] is not completely observable and or
[F, G] is not complete controllability, the conditions (2.3)
and (2.4) are sufficient conditions for the existence of a
pth-order observer of K’x and our proof is complete.

Comments

1) Of course with the condition (2.4) satisfied

$( T’x-z)=A(T’x-z)

and, given C 1,

Iim (T’x – z) =0.
t+m

2) The direct feedthrough term E may be constrained
to zero in order to prevent additive measurement noise
from passing unfiltered into the estimate of K’x. This case

will be referred to loosely as the E = O case. The usual case

when E is unconstrained will be loosely referred to as the

case E #O.

3) Luenberger [2] introduces the assumption that the
observer does not share any eigenvalues in common with
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the signal model. This allows a unique solution of (2.4) for
T. Here, we avoid such restrictions.

4) The observability condition on the pair A, C can be

expressed as an inequality IQ‘ Q [# O where Q is the ob-
servability matrix. Actually if the conditions (2. 1), (2.3),

and (2.4) are tested for observers of orders, O, 1, 2,”0. in

sequence, the observability condition need not be tested.

To see this, assume that the necessary and sufficient
conditions are not satisfied for observers of orders O, 1,

2,... ,p – 1. Also assume that the sufficient conditions C 1,
(2.3), and (2.4) are satisfied for observers of order p, but

IQ’Q I= 0. Then, an observer of order p exists which is not
completely observable and as a consequence, a re-
duced-order observer would be obtained by removing the
unobservable states. But this contradicts the first assump-
tion and the desired result is established.

5) Reference [5] points out that the conditions C 1,
(2.3), and (2.4) are in fact (p+ r)n multivariable poly-
nomial equations, and p inequalities involving p2 +p(n +

m + r)+ mr unknown elements of A, B, C, E, T.

Moreover, the question of whether or not a pth-order
observer exists, can be determined in a finite number of
rational steps by the application of the methods of [6], [7].

With knowledge that such an observer exists, the observer
can be found by algorithms involving polynomial factor-
ization. The algorithms unfortunately suffer from a “curse

of dimensionality.” That is, the number of unknown ele-
ments and the number of inequalities have an exponential
or factorial effect on calculation time.

6) A result which is readily verified (but apparently not
observed by the earlier authors in the field) is that the
solution of condition (2.4) for T’ and B is

[“lxnlm. . . o 0“1

“H
H’

H’F

Hip-l

for some ~’, where a, are defined from

n

a(s)= ~ ai$i=lJI– Fl=O
1=0

where a.= 1 and

n

(x(/f)= ~ a, A’.
jzo

Observe that y, B, H, F, and A are specified with
A(F) #A(A) ~ is uniquely determined from ~’= a(A)- lB

and T’ is also uniquely determined: If there are any
common eigenvalues in A and F then B and T’ are clearly
nonunique.

It might be thought that these equations can be “

employed to simplify the decision problem. This is indeed
the case, however an even better reduction in complexity

of the decision problem is achieved by exploiting proper-

ties of certain state space coordinate basis as discussed in
the next section.

111. IMMEDIATE SIMPLIFICATION OF THE

DECISION PROBLEM

In this section we point out that a suitable selection of
coordinate basis for the observer and signal model yield
immediately a substantial reduction in the number of
unknowns in the observer decision problem and a total

elimination of the inequalities.

A. Coordinate Basis jor the Observer

Let A be chosen as a direct sum of blocks

for the observer state dimension an even integer and the
direct sum of such blocks with one “block” simply – w;

—c for the observer state dimension odd. Here c is
chosen as some small positive value to ensure that A,[A ]

<0 for all i. With A so chosen, the stability condition C 1
is automatically satisfied for all selection of c, and w,. 1n

other words, we have in one small stroke eliminated the
inequalities from the conditions to be tested. The number
of unknowns in A is also reduced from p 2 to p. For

convenience we use ~ to denote a vector consisting of o,
and Wi for all i.

Note that this choice of A restricts the multiplicity of

each eigenvalue to two. Further parameters must be in-
cluded to search for an observer with higher order multi-

plicity of eigenvalues.
One further point to note is that should we desire to

include the restriction that the observer has all real
eigenvalues (so that it can be realized by a resistive ca-

pacitative network), A could be chosen as the direct sum
of “blocks” – W,2– c.

B. Coordinate Basis for the Signal Model

Since the signal model is assumed to be completely
observable, without loss of generality, it may have the
following form [8].

i(t)=

G,

G2

“ u(l) (3.1)

Gm
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y(f)= Hm-m’[H; H;. . . H;]x(f) (3.2)

with H~~ some nonsingular matrix and

F,i =

Oo. ..ox
10 ox
01 ox
. . 1...<j=
1
. .. .
00

. .

. .

lx 1

Ooox
Ooox

[“Ooox

1!
o
0

Hi= :

e;

(3.3)

Here Fi, is of dimension v, x v, for all i andj and structural
indices {v,~z. . . v~} where

~ V,=rl.

1=1

Also x denotes an element which may be nonzero. The
matrix H, is of dimension vi x m and ei is an m-vector with
unity ith entry and otherwise having zero elements.

With the signal model (3. 1)<3.3), it is straightforward
to derive simplified expressions for the conditions (2.3) and

(2.4) of Lemma 2.1 starting out along the lines in [3]. First

with the partitioning of T’ into column vectors as

T’=[tltz. ..tm] (3.4)

and the partitioning of T’ and K’ into p X vi and r X v,

matrices as

T’=[T; T;. .. T;], =[K; K; KK; ]. K;]. (3.5)

Substitution of (3.4) into (2.4) yields the equalities for
i=l,2,. ..m

(3.6)

where t;= tl,t;=tv,+,;t;=tv,+V2+,,etc. Now a substitu-

tion of (3.5) into (2.3) yields the equalities for i = 1,
2,... m

K~=C’T’ for E=O, &!=C’~.+EH~ for E+(). (3.7)

It now proves convenient to define

Y’=[~;2””” ;m], K~=[k(l, i)k(2, i)” ““k(vi, i)]. (3.8)

With these definitions for k(j, i), we have that (3.7) [a
version of (2.3)] implies the following condition.

Condition C2: The r-vectors /c(j, i) for i = 1, 2,. . . m and
j=l, 2,..-J, satisfy

k(j, i)= C’AJ-i~ (3.9)

where ;i = vi for the case E = O, and vi= Pi—1 for the case
E#O.

Observe now that (3.4~3.6) are equivalent to the con-
dition (2.4) if B is defined by postmultiplication of (2.4)

by H(H’H)-l to be B=(T’F– AT’) H(H’H)-l. Actu-

ally, using the canonical form for H‘, (H ‘H)= Z and the
expression for B is simply

B=(T’F– AT’)H. (3.10)

In a similar manner postmultiplication of the condition

(2.3b) by H (l/’H)-’ yields an expression for E as E

=(K’– C’T’) H(H’H)- 1 which for the canonical form

case simplifies as

E=(K’– C’T’)H. (3.11)

These expressions for E together with (3.9) are equivalent
statements of (3.7).

In summary then, working with the coordinate basis for
signal model and observer as described in this subsection,
instead of the quest for unknowns A, C, B, and E to

satisfy the conditions (2.3), (2.4), and C 1 of Lemma 2.1,
we have the less arduous quest for unknowns ~, C, and ~

to satisfy Condition C2. Once suitable ~, C, and ~ are
determined, the matrices B and E are calculated explicitly
from (3. 10) and (3. 11). In the next section, further simp-
lifications to our Condition C2 are explored.

IV. OBSERVER PROPERTIES

In this section, some useful necessary conditions for the

existence of minimal order, asymptotically stable obser-
vers are derived from the properties of such observers.

A. Necessaty Conditions on A

The characteristic equation for any A with negative
eigenvalues may be written in the form

~(s)= ~$[sz+s(~~+ ~)+(u?+c)]forn even

(n-1)/2

=(s+w; +f) i:, [s2+@+ ~)+(u,2+c)] for n odd

for c some small positive constant.
With the aid of these equations it is a simple matter to

express ~,, the coefficients of ~ (s), as an explicit function
of the vector ~ defined in Section III-A. We will use the
notation /3i(A-) to denote this function. The Caley–
Hamilton theorem for the polynomial

is given by the equation

Application of this theorem to (3.9) yields the following
necessary condition on ~ (or on /3i(~)).

Condition C3: The vector ~ satisfies

,~o&(~)k(j+l,i)=O (4.1)
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for i=l, 2,. . . m, andj=l, 2,. . . (ii = qi) where ~i= min
{P, Ei}. Note that since k(.,.) is an r vector there are r
27=, (fii – q,)conditions. That is, r(n – Z= Iqi) conditions
for E= O and r(n – m – x~= ,q,) conditions for E#O.

B. Restatement of Condition C2

The equations of C2 may be written

[k(l,i)k(2, i). k(;,i)]=C’[~A~...~l~]~] (4.1)

or X,’= C’ ~; for all i.
Writing the characteristic equation of A as /3 (s)= Sp +

& ,sP - 1.. . /31s + & we may define the fiix (Ei –p) matrix
S; as

9081 /32””” BP- I 1 0 ““” 0 0

0 Bo Bl ””” BP-2 p-l 1 ““” 0 0

(Sj),g :::
. .

. .

. . . . .

() ()0...
Po & ““” p-l 1

For the case p > J, the matrix [1S; ; 1P is nonsingular
I–(f–

and (4. 1) is equivalent to the following sets of equivalent
conditions.

w+-l=c’n[s+~-l
or

or

~/S;=O and k(j, i)= C’AJ-l~l for j=l,2, ”””p.

Note that we have employed the Caley–Hamilton
theorem X$’=o~iA i -1 = O which implies that rs; = O for

all i. For the case when /3(s) is chosen as in (4.1), the first
of these conditions is equivalent to Condition C3. Now
for the case fii>p Condition C3 has no equations in k(” ,i)
and so (4.1) can not be simplified. Thus it is seen that

Condition C2 is equivalent to C3 together with the condi-
tion

k, (j, i) = c~zl’- 1; (4.2)

forl=l, 2,. ..r, i=l,2~, andj=ndj= 1,2,. .-m where

:::::

kl(i,j) c;

k2(i,j) c;

k(i,j)= - c’= “ .

k,(i,j) c;

It proves convenient to introduce the following notation:

~’=[Z?{I?~. . . I/;], I/,’= [k(l, i)k(2, i). . . k(q,, i)] (4.4)

dl

d2

D= “

d.

,($=

k(qj+ l,j)

k(qj + 2,j)

1’k(p,j)

(4.5)

J

i?= “ ,<. =[k(i,l)k(i,2) . ..k(i. m)]. (4.6)

Of course ~’ may well be a function of the unspecified
matrix D and should thus be written ~’(D).

With the above notation and the assumption that C3 is

satisfied, Condition C2 is equivalent to the following
equivalent conditions.

Condition C4:

I?’=c ’f’.
Condition C5: There exists a matrix D such that either

of the following equivalent conditions is satisfied.
a) E’(D)= QT’.

b) ki(D)=CAi-l~’ for i=l, 2,. ..p.
c) The triple {C, A, ~’) is a pth-order realization with

first p Markov parameters ~,(D), ~z(D). . ~lP(D ).

C. Necessaty Condition on the Pair [A, f’]

We have seen in the above subsection that a necessary
condition for an observer of order p to exist is that there
exist a pth-order realization {C, A, f’} of the Markov
parameters kl(D)(j = 1, 2,-. p) for some D. Clearly, a
necessary condition for a minimal order observer to exist
is that the realization { C, A, f’} be minimal or equiva-

lently that
Condition C6: The pair [A, C] is completely observable

and the pair [A, ‘f’] is completely controllable.

D. Necessary Condition on T and f

We now claim that the following conditions’ on T and ~

are necessary conditions for a minimal order observer.
Condition C7: The matrix ~’ is full rank.
To establish this claim we first consider certain control-

lability properties of the composite system consisting of
the cascade of the signal model and observer as follows:

[;]=[&:][;]+[(G]”==[;]+GU.

The controllability matrix of this composite system is

———
W=[~~GF2G”-?+p-1~]
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[1w= 1“
T’

[G FGF2G0. F”+P-’G] (4.7)

where the latter equality is achieved by application of

(2.4).
Now it is not difficult to see that in order for the

observer to be minimal order the states y of the above
composite system (the observer states) must be completely
controllable from the composite system input u. Equiva-

lently the matrix T’[G FG, . . F“+’- lG] must have full

rank p; and since [F, G ] is completely controllable this.
requires that T’ have full rank. But rank T= rank T since

~‘ is derived from T’ merely be delection of some de-
pendent columns. Thus a necessary condition for the
observer to be minimal is that T have full rank or equiva-
lently that (4.7) be satisfied.

Notice that the Conditions C6 and C7 each imply that
the pair [A, T’] is completely controllable.

E. A Coordinate Basis for A

Since [A, ~’] is required to be completely controllable a

suitable coordinate basis is described in [10] with struc-
tural indices p,P2” “.Pm not specified at this stage (see
comment 1) next section).

[ it,, A12 . . . A1~

O A22 . . . A2M

A= ““

00 A mm

where

+ p, +

The unknown ‘elements of A, ~ comprise the vectors ~,

?ii and~i fori=l) 2,”””m andj=i+l, i+2, ”””m. Here

~ and Yti are pi vectors and iii is a ~i_, vector. There ~re
in fact Zy. ,(m + 1 – i)pi unknown elements in A and T.

For the case when A has “left-half plane eigenvalues, Ai,
can be transformed to the form of Section III-A with p,

unknowns denoted xi. That is pi= ~, (~,). Of course we
have that

p(s)= fi pii(s)=o (4.9)
i=l

where B,(s) = O is the characteristic equation of A,, [with
coefficients the elements of fli (2,)] and ,B(r)= O is the
characteristic equation of A itself. Thus since A—’
=[~z;““ . ~~], the coefficients ~,(~) can be readily
obtained from the coefficients /3ii(~,) for all i.

With A, f chosen in the form above, the matrix ~ may
now be written

[ Tll T12 . . . ‘lm 1
0 T22 .-. T2~

T=‘, ~j is (p, x q,) for all i,j. ,

q = 11
IF,

and Tti = Op,q
o

and for pi < qi

I ~ ]~j=[opfix].T;= [ Ip, ,

01
A,;=

1;1

T
AO=[O O

— —— –1 6 P, ‘

1pr–l J

Also

+$,., +

~Y] for i+j.
Here X denotes some possibly nonzero matrix of
appropriate dimension.

{

;= [0 0.0:1 0..0] p,>o

[Zi;:o. . .0] pi= O(notepl#O)

where

A= i PI
j=l

and a denotes a possible nonzero element. (The fact

F. Further Minimal-Order Observer Properties

First let us introduce the definitions.
Definitions: ?;, f;. The submatrix ~~ of ~’ is obtained

by deleting all the rows and columns of ~’ containing any

element of the blocks 1’, or lZ, for all i. The submatrix T:
of T’ is obtained by deleting the columns and retaining
only the rows of $’ with elements of the blocks lP, or Ii,
for all i.

Now from Condition C7 and the above definition for
~~ we have the following.

Condition C8: T~ has full rank (p– XT- ,Ti)or equiva-

lently IT~Tsl >0.
that Also. a necessarv condition for C8 to be satisfied is that

the last (p –~i_,) elements of ~ are zero when pi= O is
.

readily prov~n although not noted in [10]. Since p,= O we
h~ve- that t, is depen~ent on the rows of the matrix ~ (qm-j-~fn-j)> ,$o(Pm-J-~m-,)

Ap’-t~ll . ..(ti_.A~_ Apl.lti-’- lti-l]=[~b,_,O]’
j-o

[tlAtl. ““
and our result is established.) for all i or more simply the following.
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Condition C9:

i qm-j> i P.-j
j=O j=O

fori=O, 1,.--M–1.

In order to derive an alternative condition to C4 in

terms of ~~, we introduce the further notations

where q, = min (pi, qi)= min (Pi> ‘i).
With the above notation Condition C4 can be expressed

as follows.
Condition C1O:

G. A Lower Bound on the Order of the Minimal Observer

A study of the minimum possible rank of the product of
the observability matrix Q [of (2.7)] and what may be

termed a controllability matrix T’, allows us to readily
calculate a lower bound on the order of an observer.
Decision methods are not required in the calculation.

Let the minimum rank of QT’ be p~,n, then it is clear
that both Q and T’ must have rank greater than or equal

to p~in and thus any observer satisfying the appropriate
controllability and observability conditions mentioned in
the earlier lemmas, must be of order no less than pm,n.

(Recall that the rank of Q and the rank of T’ must each

be p where p is the order of a minimal-order observer.)
Thus it remains to give a procedure for calculation of pmin.

An expansion for QT’ is given as

c’;, C’A;l . . . C’Ap-lil ; C’;z

C’A;l C’A2~1 .”. C’Apil 1 C’Ai2

QT’= ~
I
I
I

c~/4P-l;l c~APii . . . C’zlz(p– l);l : C’Ap-i12

/c(j, i) and “X”

lows:
indicating unspecified

QT’=[R,R2. . .R~]
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elements as fol-

where Ri is the pth leading principal submatrix of

k, ,

k~’i

k(l, i)

x

x

kz,i

k~, i

k(l, i)

x
x

x

. . .

. . .

. . .

k(l, i)

k(l, i) X

x
x

. . .

. . .

(4.12)

x
x

x

The minimum possible rank of such a matrix turns out

to be the number of rows of the matrix QT’ which (for all
possible unknown elements X) are independent. To test
whether or not the ith row is independent of rows j = 1,
2,. . . i — 1 for all possible unknown elements, it suffices to
delete all columns of QT’ containing the unknown ele-
ments of the ith row and then apply standard techniques.

We conclude that testing the rank of QT’ as given in
(4. 12) yields a lower bound pmin for the order of a minimal

obseruer of K’x. Thus instead of testing for observer
orders O, 1, 2,. . . it is sufficient to test for observers of

order p~i~> p~i~ +1, pmin+ 2,..., until the necessary and
sufficient conditions of the lemmas are satisfied.

V. COMPUTING A MINIMAL-ORDER OBSERVER

In this section, the decision problem which arises in the
minimal-order observer design procedures is further

simplified. It appears that the simplifications are as much
as can be achieved. Actually, two sets of useful existence

conditions can be established, depending on whether we
work with [A, ~’] in the completely controllable form

(4.11)

The first point to observe is that many of the elements of
this matrix are specified quantities k( j, i) for j = 1, 2,. . . qi
andi=l,2,. . . m, while the remainder are dependent on
unknown parameters earlier denoted D. The expression
for QT’ is now rewritten in terms of the known r vectors

(4. 14) or with [A, C] in the dual observable form.

A. [A, f’] in Controllable Form

Here two cases derived from C8 and C 10 are worth

giving separate treatment.
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CondiZion Cll: 1) For the case when pi< tij (and thus

qi – p,) for all i, then

c;= I&,k;= I?;f;.

2) For the case when pi > fii (and thus (qi <pi)) for
i, then

C;=k:, C~=[k&&T~]T~(TJTJ1

[ki-~; T~][Ts(T~Ts )’Tj-/T~T~l]=O

lTjTS.>0

where (X)~ denotes the adjoint of X’.

some

We are now in a position to state one of the key
theorems of this paper.

Theorems 5.1: For the signal model (3,4), (3.5) (where
H~~ = IJ, a necessary and sufficient condition for the

existence of a completely controllable asymptotically sta-
ble pth-order observer of K’x is that there exist for some
set of structural indices pi satisfying C9, and z?=, (m+
1– i)pi unknown parameters {~i,~i, iii} for i = 1, 2,. . . m

(defined in Section III-E) such that Conditions C3 and
C 11 are satisfied.

Comments: 1) Since C3 and C 11 are multivariable poly-
nomial equalities (and one inequality which is readily

converted to an equality by the addition of one state
variable), the decision methods of [5] and [7] may be
applied for p =p~in, p~in + 1, ““ . for all possible pi satisfy-

ing C9, until it is determined that a solution of C3 and
C 11 exists. The methods of [5] and [7] can then be applied
to yield suitable parameters {xi, ~i, iii} from which A, T,

C, B (and E) can be determined, [via (4.14), (5.2), (3.8)
(and (3. 10))].

2) In the event that pi< vi for all i, it is clear that
Condition C 11 is considerably simpler to test than when

pi> vi for some vi,

3) The decision problem is stated above is considerably
simpler than that stated in Section 111. There is a reduc-
tion from [p +p(m + r)] unknowns to Z7=, (m+ 1– i)pi

< pm unknowns here. Also the number of equalities is
reduced, although the number of tests required is in-
creased. Since there are a number of restrictions on pi, the

‘Umber(p+r)will represent on ‘upper bound on

()the number of tests required, where ~ =
~!

y!(x–y)! ‘

4) Notice that for the scalar output case m =1, p =pl,
VI = n, and’ for p < n— 1, we have q, = q,=P and thus ?;,

?;, ~~, and C; are of zero order. Thus Condition Cl 1 is
always satisfied. For this case then, there is a considerable
simplification of the above lemma.

5) So far in our developments, we have assumed a fixed
set of structural indices vi for the signal model. Clearly,
Conditions C3 and C 11 may be more complicated with
one set of structural indices than with another set, but this
requires a tedious separate study.
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B. [A, C] in Observable Form

In this subsection, we derive an alternative result to

Lemma 5.1 by working with [A, C ] in the observable form
corresponding to the controllable form (4.14) for [A, ~’].

In this instance additional unknowns which are a subset

of D are involved and unhappily the algebra is quite

different than for the previous case studied.
Let us assume for the remainder of the section that the

pair [A, C] is in the observable form corresponding to the
controllable form (4. 14) for [A, T’]. Then for specified
structural indices p, where

~ Pi=P>
1=1

then there are Z;=, (r+ 1 – i)p, unknown elements in
[A, ~]. The matrix Q and its left inverse @~ (in that

@‘Q =1) have the following forms:

Q=

1

-Pi+ +P2+

+P + +--P+ +P +

QL=

100000

001000

000010

*P, +

o
0

0
0 ,

I
x

(5.1)

With these definitions, a consequence of Condition C5
are the relationships for j= 1, 2,” “ “m

lkJ(],j)kj(2,j). . . k~(pr,j)]. (5.2)

Recall that the elements k,(i,j) for i= qj + 1, q,+ 2,” “ . PI

and 1=1, 2,. . . r are unspecified. Thus with IIJ = min
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{PO q,} there are a total of E;’, ~~=, (p, - TJ) unspecified
elements in 7’.

It is now not difficult to show that with @ defined in
terms of the elements k,(i,j) as above, condition (4.2)
simplifies to the constraint

k,(i,j)= c;/1 ‘-’; (5.3)

forj=l, 2,. ..m, 1=1, 2,. ..r andq=p, +1, p,+2. ..qj.
With i so constrained we have that [see the appropriate
submatrix of ~ in (5.1)]

PI P2 PI

c/’A ‘-’= [XIXI.IX[O]. (5.4)

—P —

Substitution of (5.4) into (5.3) poi~ts up the fact that not
all the unspecified elements of $ are involved in the
constraint (5.3). For a specified J“, there is some maximum
1 [denoted \ (max)] such that pj (max) < ~. Using this

notation the unspecified elements of t;unsolved in the

constraint (5.3) and k,(i,j) for j= 1, 2,. . . m, f= 1, 2,. . .
[~ (max)–1] and i=q, +l, qj+2... p,. The number of
such unspecified elements in Z;=, ~j~m~)- 1 (p, – q~).

Thus we have the following theorem.

Theorem 5.2: For the signal model (3.4), (3.5) (where
H~~ = ZJ, a necessary and sufficient condition for the
existence of a completely observable pth-order observer
which is asymptotically stable, is that there exist structural
indices pi, and E;= ~ (r+ 1—i)pi fundamental parameters

of the pair [A, C ] in the Bucy observable form [10] (corre-
sponding to the controllable form of Section IV) (for j = 1,

2,. . . m, 1=1, 2,. . . ;(max)–1) and i=qj+l, qj+2,. ..p,

such that Condition C3 and Condition (5.4) are satisfied.
Commenls: 1) With parameters satisfying the conditions

of the above theorem, ~ is given (5.2) and the remaining
observer parameters determined from definitions given
earlier.

2) Once again, the above existence conditions can be
tested using the decision methods of [7]. The number of
unknown elements in the existence conditions is

~ ~(max)– 1

~(r+l+l)p, + ~

j=l ,X, ‘P’-l)1= 1

which for r < m may well be less than the number of
unknowns in Lemma 5.1. For the case when the pi in-
crease monotonically with i the number of unknowns in
~’ reduces to zero.

3) Since the (5.4) is a linear function of the unknown ~’
it is possible, at least in theory, to reduce the number of
such unknowns by the number of independent equations

of (5.3) solving these parameters. In general, these inde-

pendent equations cannot be identified except by trial and
error, and thus any such parameter reduction would in-
volve numerous repetition of the decision problem. The
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number of sets of possible structural indices is
(p+;-’)

which represents the number of decision problems to be
examined to show that no pth-order observer may exist.

4) For the scalar estimate case when r = 1, the number of

unknown elemeuts in the constraint equations reduces to p,

and the conditions (5.3) euanesees. This result is possibly
the most useful new result of the paper.

VI. CONCLUSIONS

Although we have simplified considerably the decision
problem arising from the minimal observer problem when
observing K’x, there is still a “curse of dimensionality” or
exponential effect on computational complexity which
would make certain minimal observer problems for ob-
serving some K’x intractable. Perhaps the most useful
result of the paper is the comment 3) of Theorem 5.2 for
this points out that in the very common scalar estimate
case (K’x is scalar), the necessary and sufficient condi-

tions involve only p unknowns where p < n – m and p is

the observer order. For a large number of outputs, m,

available (a frequent situation) the value of p may well be
small even for high-order signal models and the decision
problem quite tractable. For the case when there is a

scalar measurement (m = 1), the situation is not quite so
attractive since p < n – 1, and with less outputs there is less
likelihood of a low-order observer. Unfortunately, there
does not appear to be necessary and sufficient conditions
for other than the m = 1 and r = 1 cases, involving only p

unknown parameters, and so the cases where m # 1 and

r # 1 are inevitably more complicated to work with.
One final point is that the various results in Section 111

of the present paper have application to the determination
of minimal stable realizations from partially specified
Markov parameters (the duality was first pointed out by
T.E. Fortmann). This topic is explored in a companion

paper [9].
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