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MINIMAL PAIRS, INERTIA DEGREES, RAMIFICATION DEGREES AND

IMPLICIT CONSTANT FIELDS

ARPAN DUTTA

Abstract. An extension (K(X)|K, v) of valued fields is said to be valuation transcendental if we

have equality in the Abhyankar inequality. Minimal pairs of definition are fundamental objects in

the investigation of valuation transcendental extensions. In this article, we associate a uniquely

determined positive integer with a valuation transcendental extension. This integer is defined via

a chosen minimal pair of definition, but it is later shown to be independent of the choice. Further,

we show that this integer encodes important information regarding the implicit constant field of

the extension (K(X)|K, v).

1. Introduction

Throughout this article we will assume that (K(X)|K, v) is an extension of valued fields, where
K is a fixed algebraic closure of K and X is an indeterminate. The extension (K(X)|K, v) satisfies
the famous Abhyankar inequality:

(1) rat rk vK(X)/vK + trdeg [K(X)v : Kv] ≤ 1,

where vK and Kv denote respectively the value group and residue field of (K, v) and rat rk vK(X)/vK

is the Q-dimension of the divisible hull Q⊗Z (vK(X)/vK). The above inequality is a consequence
of [4, Chapter VI, §10.3, Theorem 1]. The extension (K(X)|K, v) is said to be valuation tran-

scendental if we have equality in (1). The extension is said to be value transcendental if we

have rat rk vK(X)/vK = 1 and residue transcendental if trdeg [K(X)v : Kv] = 1. Throughout
this article, we will assume that the extension (K(X)|K, v) is valuation transcendental.

Minimal pairs of definition have been used with great success in the study of valuation transcen-

dental extensions [cf. 1, 2, 3, 6]. A pair (a, γ) ∈ K × vK(X) is said to be a minimal pair of

definition for v over K if it satisfies the following conditions:

(MP1) v(X − a) = γ = max v(X − K),
(MP2) v(a − b) ≥ γ =⇒ [K(b) : K] ≥ [K(a) : K] for all b ∈ K,

where
v(X − K) := {v(X − c) | c ∈ K}.

A valuation transcendental extension always admits a minimal pair of definition. It has been
observed in [8, Theorem 3.11] that (K(X)|K, v) is value transcendental if and only if γ /∈ vK, that

is, if and only if γ is not a torsion element modulo vK. Further, it follows from [8, Lemma 3.3]
that (K(X)|K, v) is value (residue) transcendental if and only if (L(X)|L, v) is also value (residue)
transcendental, where L is an arbitrary algebraic extension of K.

The goal of this article is twofold:

• associate a uniquely determined positive integer with a valuation transcendental extension,
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• show that the said integer encodes important information regarding the implicit constant
field of the extension (defined later).

We first prove the following result in Section 3:

Theorem 1.1. Take a minimal pair of definition (a, γ) for v over K. Then

(2) (vK(a, X) : vK(X))[K(a, X)v : K(X)v] = j,

where v(a − ai) ≥ γ for exactly j many conjugates ai of a over K, including a itself and counting
multiplicities.

Given a minimal pair of definition (a, γ) for v over K, we will denote the integer j as defined in
Theorem 1.1 by j(a, K, γ). When K and γ are implicitly understood, we will simply denote it by
j(a). We mention here that when the valuation v is induced by a pseudo monotone sequence M in

(K, v), the integer j(a) is also referred to as the dominating degree of the minimal polynomial of a
over K with respect to M [cf. 10, 5].

For any residue transcendental extension (K(X)|K, v) with a minimal pair of definition (a, γ),
we construct a value transcendental extension w of v to K(X) with a minimal pair of definition
(a, Γ) such that j(a, K, γ) = j(a, K, Γ). This observation is then used to obtain the following result:

Theorem 1.2. Take minimal pairs of definition (a, γ) and (a′, γ) for v over K. Then

j(a) = j(a′).

Theorem 1.2 illustrates that the integer j(a) depends solely on the valued extension (K(X)|K, v)
and is independent of the choice of the minimal pair of definition for v over K. Hence the notation
j(v, K) would be more suited as it reflects the independence of j. However, for the sake of continuity

we persist with the notation j(a, K, γ) for the remainder of the article.

Theorem 1.1 is then applied to the computation of the implicit constant field of the extension

(K(X)|K, v). Given an extension of v to K(X), the implicit constant field of the extension
(K(X)|K, v) is defined as

IC(K(X)|K, v) := K ∩ K(X)h,

where K(X)h is the henselization of K(X) [cf. Section 2]. Implicit constant fields were introduced
by Kuhlmann in [8] to construct extensions of v to K(X) with prescribed value groups and residue
fields. The problem of the explicit computation of implicit constant fields for valuation transcen-

dental extensions was considered in [6], where it was studied via minimal pairs of definition. Given
a minimal pair of definition (a, γ) for v over K, it has been observed in [6, Theorem 1.1] that

IC(K(X)|K, v) ⊆ K(a)h.

Under the additional assumptions that a is separable over K and there is a unique extension of v

from K to K(a), we observe in [6, Theorem 1.3] that

IC(K(X)|K, v) ( K(a)h whenever γ ≤ kras (a, K),

where

kras (a, K) := max{v(a − σa) | σ ∈ Gal (K|K) and σa 6= a}.

In this article, we observe that j(a) is a more natural candidate for the investigation of IC(K(X)|K, v)

than kras (a, K). Specifically, in Theorem 5.2 we show that

j(a) divides [K(a)h : IC(K(X)|K, v)].
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This observation is independent of the separability of a and also does not depend on the number
of extensions of v from K to K(a). When (K, v) is a defectless field [cf. Section 2], then we obtain

that

j(a) = [K(a)h : IC(K(X)|K, v)].

Given an extension of v to K(X), we further observe in [6, Theorem 1.1] that

(3) (K(a) ∩ Kr)h ⊆ IC(K(X)|K, v)

when v is value transcendental, and

(4) (K(a) ∩ Ki)h ⊆ IC(K(X)|K, v)

when v is residue transcendental, where Kr and Ki denote the absolute ramification field and
absolute inertia field of (K, v) [cf. Section 2]. The fact that Ki ⊆ Kr implies that (3) gives a

tighter bound that (4). It is a natural question to inquire whether (3) also holds when v is residue
transcendental. We prove the following result using Theorem 1.1:

Theorem 1.3. Take a minimal pair of definition (a, γ) for v over K and fix an extension of v to

K(X). Then

(K(a) ∩ Kr)h ⊆ IC(K(X)|K, v) ⊆ K(a)h.

2. Preliminaries

Throughout this article, we denote the value of an element a by va and its residue by av. The
valuation ring of a valued field (K, v) will be denoted by OK . The compositum of two fields k1 and
k2 contained in some overfield Ω will be denoted by k1.k2.

Fixing an extension w of v to K, we define the following distinguished groups:

Gd(w) := {σ ∈ Gal (K|K) | w ◦ σ = w on Ksep},

Gi(w) := {σ ∈ Gal (K|K) | w(σa − a) > 0 for all a ∈ OKsep},

Gr(w) := {σ ∈ Gal (K|K) | w(σa − a) > wa for all a ∈ Ksep \ {0}},

where Ksep denotes the separable-algebraic closure of K. The corresponding fixed fields in Ksep

will be denoted by Kd(w), Ki(w) and Kr(w) and they are called the absolute decomposition

field, absolute inertia field and the absolute ramification field of (K, v). If the extension w
is clear from context, we will simply write them as Kd, Ki and Kr. We have the following chain
of inclusions:

Kd ⊆ Ki ⊆ Kr.

A valued field (K, v) is said to be henselian if v admits a unique extension to K. Every valued
field has a minimal separable-algebraic extension which is henselian. This extension is unique
up to valuation preserving isomorphisms over K, and we can consider it to be the same as the

absolute decomposition field. We will call this extension the henselization of (K, v). Clearly, the
henselization depends on the choice of the extension of v to K. When the extension of v to K
is tacitly understood, we will denote the henselization by Kh. The henselization of (K, v) with

respect to an extension w of v to K will be denoted by Kh(w).

Henselization is an immediate extension, that is, vKh = vK and Khv = Kv. An algebraic

extension of henselian valued fields is again henselian. For any algebraic extension L of K, we have
that Lh = L.Kh.

3



For a valued field (K, v) admitting a unique extension of v to a finite extension L, we have the
Lemma of Ostrowski which states that

[L : K] = (vL : vK)[Lv : Kv]pd for some d ∈ N,

where p := char Kv when char Kv > 0 and p := 1 otherwise. The number pd is said to be the
defect of the extension (L|K, v) and will be denoted by d(L|K, v). The extension (L|K, v) is said
to be defectless if d(L|K, v) = 1. Defect satisfies the following multiplicative property: if

L|F |K is a tower of fields such that L|K is finite and v admits a unique extension from K to L,
then

d(L|K, v) = d(L|F, v)d(F |K, v).

An arbitrary algebraic extension (Ω|K, v) is said to be defectless if d(L|K, v) = 1 for every finite
subextension L|K.

Observe that the Lemma of Ostrowski is applicable in particular to henselian valued fields. It is
well-known that (Kr|K, v) is a defectless extension for a henselian valued field (K, v). A henselian
field (K, v) is said to be defectless if d(L|K, v) = 1 for every finite extension (L|K, v). We will say

that an arbitrary valued field is defectless if its henselization is defectless.

3. Proof of Theorem 1.1

Lemma 3.1. Take a minimal pair of definition (a, γ) for v over K. Then for any δ ∈ vK(a), there

exists a polynomial g(X) ∈ K[X] with deg g < [K(a) : K] such that vg = δ.

Proof. Set n := [K(a) : K]. The fact that δ ∈ vK(a) implies that we can take ci ∈ K such that

δ = v
∑n−1

i=0 cia
i. Define g(X) :=

∑n−1
i=0 ciX

i ∈ K[X]. Then deg g < [K(a) : K]. It now follows
from [2, Theorem 2.1] and [6, Lemma 3.2] that δ = vg(a) = vg. �

Lemma 3.2. Assume that (K(X)|K, v) is residue transcendental. Take a minimal pair of definition
(a, γ) for v over K. Let E be the least positive integer such that Eγ ∈ vK(a). Take f(X) ∈ K[X]
with deg f < [K(a) : K] such that vf = −Eγ. Then

K(a, X)v = K(a)v(f(X)(X − a)Ev).

Proof. Observe that (K(a, X)|K(a), v) is a residue transcendental extension with minimal pair

of definition (a, γ). Take d ∈ K(a) such that vd = −Eγ. It follows from [2, Theorem 2.1] that
K(a, X)v = K(a)v(d(X−a)Ev). By Lemma 3.1, we can take f(X) ∈ K[X] with deg f < [K(a) : K]
such that vf = vd. It now follows from [6, Lemma 6.1] that d

f
v ∈ K(a)v. As a consequence,

K(a, X)v = K(a)v(d(X − a)Ev) = K(a)v((
d

f
v)(f(X)(X − a)Ev)) = K(a)v(f(X)(X − a)Ev).

�

We can now give a proof of Theorem 1.1.

Proof. Take the minimal polynomial Q(X) of a over K. Write

Q(X) = (X − a)(X − a2) . . . (X − aj) . . . (X − an),

where v(a − ai) ≥ γ for 2 ≤ i ≤ j and v(a − ai) < γ for all i > j. By definition, the assumption

that (a, γ) is a pair of definition for v over K implies that v(X − b) = min{γ, v(a− b)} for all b ∈ K.
It follows that

vQ = jγ + α, where α := v(a − aj+1) + . . . v(a − an) ∈ vK.
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We first assume that (K(X)|K, v) is a value transcendental extension, that is, γ is not a torsion
element modulo vK. It follows from [6, Remark 3.3] that

vK(X) = vK(a) ⊕ Z(jγ + α) and K(X)v = K(a)v.

Further, we observe that (a, γ) is a minimal pair of definition for v over K(a). Consequently,

vK(a, X) = vK(a) ⊕ Zγ and K(a, X)v = K(a)v.

The facts that jγ+α ∈ vK(a)⊕Zγ and γ is not a torsion element modulo vK imply that α ∈ vK(a).

Consequently, vK(X) = vK(a) ⊕ Zjγ. It follows that (vK(a, X) : vK(X)) = j and hence

(vK(a, X) : vK(X))[K(a, X)v : K(X)v] = j.

We now assume that (K(X)|K, v) is residue transcendental, that is, γ is a torsion element modulo

vK. Set

e := (vK(X) : vK(a)) and E := (vK(a, X) : vK(a)).

Hence E = λe where λ := (vK(a, X) : vK(X)). It follows from [2, Theorem 2.1] that e is the
least positive integer such that evQ ∈ vK(a). By Lemma 3.1, we can take g(X) ∈ K[X] with
deg g < deg Q such that vg = −evQ. We can then conclude from our observations in [6, Remark

3.1] that

(5) K(X)v = K(a)v(gQev).

Observe that (K(a, X)|K(a), v) is a residue transcendental extension with (a, γ) as a minimal pair
of definition and the corresponding minimal polynomial X −a. By definition, v(X −a) = γ. Similar

arguments as above now imply that E is the smallest positive integer such that Eγ ∈ vK(a). Take
f(X) ∈ K[X] with deg f < deg Q such that vf = −Eγ. Then by Lemma 3.2,

(6) K(a, X)v = K(a)v(f(X)(X − a)Ev).

The fact that vQ = jγ + α implies that

λevQ = EvQ = jEγ + Eα.

The fact that evQ, Eγ ∈ vK(a) then implies that Eα ∈ vK(a). Consequently, it follows from
Lemma 3.1 that there exists h(X) ∈ K[X] with deg h < deg Q such that vh = −Eα. We have thus

obtained that λvg − jvf − vh = 0, that is, v gλ

fjh
= 0. It follows from [6, Lemma 6.1] that

gλ

f jh
v ∈ K(a)v.

As a consequence,

K(a)v((gQev)λ) = K(a)v(gλQEv) = K(a)v((
gλ

f jh
v)(f jhQEv)) = K(a)v(f jhQEv).

We observe from [2, Theorem 2.1] that gQev is transcendental over K(a)v. Consequently, gλQEv =

(gQe)λv is also transcendental over K(a)v. Thus,

(7) [K(X)v : K(a)v(f jhQEv)] = [K(a)v(gQev) : K(a)v(gλQEv)] = λ.

Observe that X − a divides Q(X) over K(a). Hence we have an expression of the form

QE =
nE∑

i=E

ci(X − a)i where ci ∈ K(a).
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It follows from [2, Theorem 2.1] that vci+iγ ≥ EvQ for all i. Suppose that vci+iγ = EvQ for some
i such that E does not divide i. Then we can write vci +i′γ+tEγ = EvQ where 1 ≤ i′ ≤ E−1. The

fact that vci, Eγ, EvQ ∈ vK(a) then implies that i′γ ∈ vK(a), which contradicts the minimality
of E. Hence,

E divides i whenever vci + iγ = EvQ.

We now consider the expression

f jhQE =
nE∑

i=E

f jhci(X − a)i.

Observe that vf jhQE = 0. The preceding observations now imply that

E divides i whenever vf jhci(X − a)i = 0.

Taking residues, we obtain that

f jhQEv =
n∑

i=1

f jhciE(X − a)iEv =
n∑

i=1

(f j−ihciE)v(f(X)(X − a)E)iv.

It follows from [6, Lemma 6.1] that (f j−ihciE)v ∈ K(a)v. As a consequence,

(8) f jhQEv ∈ K(a)v[f(X)(X − a)Ev].

The coefficient of (f(X)(X − a)E)iv in f jhQEv is given by f j−ihciEv, where ciE is the coefficient
of (X − a)iE in QE. Hence,

ciE = (−1)nE−iEEnE−iE(0, . . . , 0, a2 − a, . . . , a2 − a, . . . , an − a, . . . , an − a),

where 0 and ai − a appear E times for each i and EnE−iE(Y1, . . . , YnE) is the (nE − iE)-th elemen-

tary symmetric polynomial in the variables Y1, . . . , YnE . By definition, each contributing term in
EnE−iE(0, . . . , 0, a2 − a, . . . , a2 − a, . . . , an − a, . . . , an − a) is of the form (at1

− a) . . . (atnE−iE
− a),

where at1
, . . . , atnE−iE

∈ {a, a2, . . . , an}. We first assume that i > j. The fact that v(a − ai) < γ

for all i > j now implies that

v((at1
− a) . . . (atnE−iE

− a)) + (iE − jE)γ > Ev((aj+1 − a) . . . (an − a)) = Eα.

Recall that vh = −Eα and vf = −Eγ. It follows that vf j−ihciE > 0 and as a consequence,

(9) f j−ihciEv = 0 whenever i > j.

We now assume that i = j. The coefficient of (f(X)(X − a)E)jv in f jhQEv is given by hcjEv.

Each contributing term in the expression of cjE is of the form (at1
− a) . . . (atnE−jE

− a), where
at1

, . . . , atnE−jE
∈ {a, a2, . . . , an}. If {at1

, . . . , atnE−jE
} = {aj+1, . . . , an} with each term appearing

E times, then

v((at1
− a) . . . (atnE−jE

− a)) = Ev((aj+1 − a) . . . (an − a)) = Eα = −vh.

Otherwise, there exists some tk such that v(atk
− a) ≥ γ and as a consequence,

v((at1
− a) . . . (atnE−jE

− a)) > Ev((aj+1 − a) . . . (an − a)).

It now follows from the triangle inequality that vcjE = −vh. Consequently,

(10) hcjEv 6= 0.

It follows from (10) and (9) that

(11) deg(f jhQEv) = j.

6



As a consequence of (8) and (6) we then obtain that

(12) [K(a, X)v : K(a)v(f jhQEv)] = [K(a)v(f(X)(X − a)Ev) : K(a)v(f jhQEv)] = j.

In light of the multiplicative property of degrees of field extensions, it now follows from (7) that

[K(a, X)v : K(X)v]λ = j. Recall that λ = (vK(a, X) : vK(X)). It follows that

(13) [K(a, X)v : K(X)v](vK(a, X) : vK(X)) = j.

We have thus proved the theorem. �

4. Independence of j

Take any a ∈ K and γ in some ordered abelian group containing vK. Recall that any polynomial

f(X) ∈ K[X] has a unique expression of the form f(X) =
∑n

i=0 ci(X −a)i, where ci ∈ K. Consider
the map va,γ : K[X] → vK + Zγ by setting

va,γf := min{vci + iγ}.

Extend va,γ canonically to K(X). Then va,γ is a valuation transcendental extension of v from K to
K(X) [8, Lemma 3.10]. By definition, va,γ(X − a′) := min{γ, v(a − a′)} for any a′ ∈ K. It follows

that

va,γ(X − a) = γ = max va,γ(X − K).

Lemma 4.1. Assume that (K(X)|K, v) is a residue transcendental extension. Take a minimal

pair of definition (a, γ) for v over K. Consider the ordered abelian group vK ⊕Z equipped with the
lexicographic order. Embed vK into (vK ⊕ Z)lex by setting α 7→ (α, 0) for all α ∈ vK. Define

Γ := (γ, −1).

Take the extension w := va,Γ of v to K(X). Then (a, Γ) is a minimal pair of definition for w over

K. Further,

j(a, K, γ) = j(a, K, Γ).

Proof. It follows from our preceding discussions that

w(X − a) = Γ = max w(X − K).

Take any a′ ∈ K. By definition, v(a − a′) ≥ Γ if and only if (v(a − a′), 0) ≥ (γ, −1), which again
holds if and only if v(a − a′) ≥ γ. We have thus obtained that

(14) v(a − a′) ≥ Γ if and only if v(a − a′) ≥ γ.

Recall that (a, γ) is a minimal pair of definition for v over K. As a consequence of (14), we now
obtain that

(a, Γ) is a minimal pair of definition for w over K.

It further follows from (14) that

j(a, K, Γ) = j(a, K, γ).

�

Lemma 4.2. Assume that (K(X)|K, v) is value transcendental. Take minimal pairs of definition
(a, γ) and (a′, γ) for v over K. Then j(a) = j(a′).
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Proof. Take the minimal polynomial Q(X) of a over K and the minimal polynomial Q′(X) of a′

over K. Then vQ = j(a)γ + α and vQ′ = j(a′)γ + α′, where α, α′ ∈ vK. It follows from [6, Lemma

3.10] that vQ = vQ′. Consequently, (j(a) − j(a′))γ ∈ vK. The fact that γ is not contained in the
divisible group vK implies that j(a) = j(a′). �

We can now give a proof of Theorem 1.2.

Proof. When the extension (K(X)|K, v) is value transcendental, then the assertion of Theorem 1.2
is proved in Lemma 4.2. We now assume that (K(X)|K, v) is residue transcendental. Consider the

ordered abelian group (vK ⊕Z)lex. Embed vK into (vK ⊕Z)lex by setting α 7→ (α, 0) for all α ∈ vK.
Set Γ := (γ, −1). The fact that (a, γ) and (a′, γ) are minimal pair of definition for v over K implies
that v(a − a′) ≥ γ and hence v(a − a′) ≥ Γ. It now follows from [1, Proposition 3] that va,Γ = va′,Γ.

Set w := va,Γ = va′,Γ. In light of Lemma 4.1, we observe that (a, Γ) and (a′, Γ) are minimal pairs
of definition of w over K. Further, j(a, K, γ) = j(a, K, Γ) and j(a′, K, γ) = j(a′, K, Γ). The fact
that Γ /∈ vK implies that w is a value transcendental extension of v to K(X). It then follows from

Lemma 4.2 that j(a, K, Γ) = j(a′, K, Γ). As a consequence, we conclude that

j(a, K, γ) = j(a′, K, γ).

�

5. Implicit constant fields

Proposition 5.1. Assume that L|K is an extension of fields such that K is relatively algebraically
closed in L. Take a ∈ K. Then K(a) and L are linearly disjoint over K.

Proof. Take the minimal polynomial Q(X) of a over L. Write

Q(X) = (X − a)(X − a2) . . . (X − an) =
n∑

i=0

ciX
i.

Take the minimal polynomial f(X) of a over K. Then Q divides f over L and hence each root
of Q is also a root of f . Thus each ai is a K-conjugate of a and consequently ai ∈ K. Further,
observe that each coefficient cj is a symmetric expression in the roots ai and hence cj ∈ K for all

j. Consequently, cj ∈ K ∩ L = K, that is, Q(X) ∈ K[X]. It follows that

[K(a) : K] = [L(a) : L],

that is, K(a) and L are linearly disjoint over K. �

For the rest of this section, we fix an extension of v to K(X). Take a minimal pair of definition
(a, γ) for v over K. We have observed in [6, Theorem 1.1] that Kh ⊆ IC(K(X)|K, v) ⊆ K(a)h. As
a consequence,

IC(K(X)|K, v)(a) = K(a)h.

By definition, IC(K(X)|K, v) is relatively algebraically closed in K(X)h. It is now a direct conse-

quence of Proposition 5.1 that K(a)h and K(X)h are linearly disjoint over IC(K(X)|K, v). Observe
that K(a)h.K(X)h = K(X)h(a) = K(a, X)h. Thus,

[K(a)h : IC(K(X)|K, v)] = [K(a, X)h : K(X)h].

From the Lemma of Ostrowski, we have that

[K(a, X)h : K(X)h] = (vK(a, X)h : vK(X)h)[K(a, X)hv : K(X)hv]d(K(a, X)h|K(X)h, v).
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Recall that henselization is an immediate extension. The following result now follows immediately
from Theorem 1.1:

(15) [K(a)h : IC(K(X)|K, v)] = j(a)d(K(a, X)h|K(X)h, v).

Assume that (K, v) is a defectless valued field. The fact that (K(X)|K, v) is a valuation tran-
scendental extension implies that we can apply [9, Theorem 1.1] to this extension and obtain that
(K(X), v) is also a defectless field. By definition, (K(X)h, v) is a defectless field. We have thus

arrived at the following result:

Theorem 5.2. Take a minimal pair of definition (a, γ) for v over K. Fix an extension of v to

K(X). Then

[K(a)h : IC(K(X)|K, v)] = j(a)d(K(a, X)h|K(X)h, v).

In particular,

[K(a)h : IC(K(X)|K, v)] = j(a) whenever (K, v) is defectless.

Corollary 5.3. Take a minimal pair of definition (a, γ) for v over K. Fix an extension of v to

K(X).

(i) A necessary condition for obtaining IC(K(X)|K, v) = K(a)h is that j(a) = 1. If (K, v) is
defectless, then the condition is also sufficient.

(ii) Assume that j(a) = [K(a) : K]. Then IC(K(X)|K, v) = Kh.

Proof. The first assertion is an immediate consequence of Theorem 5.2. It is thus enough to prove
(ii). We assume that j(a) = [K(a) : K]. It then follows from Theorem 5.2 that

[K(a)h : IC(K(X)|K, v)] ≥ j(a) = [K(a) : K].

Recall that Kh(a) = K(a)h. Consequently,

[K(a) : K] ≥ [K(a)h : Kh] ≥ [K(a)h : IC(K(X)|K, v)].

It now follows that [K(a)h : IC(K(X)|K, v)] = [K(a)h : Kh]. As a consequence,

IC(K(X)|K, v) = Kh.

�

An immediate corollary is the following:

Corollary 5.4. ([6, Proposition 7.1]) Take a minimal pair of definition (a, γ) for v over K. Assume

that a is purely inseparable over K. Fix an extension of v to K(X). Then IC(K(X)|K, v) = Kh.

6. Proof of Theorem 1.3

Proof. When the extension (K(X)|K, v) is value transcendental, the assertion is proved in [6, The-
orem 1.1]. So we assume that (K(X)|K, v) is residue transcendental.

We fix an extension of v to K(X) and denote it again by v. Observe that K(a) ∩ Kr is a finite
separable extension, hence simple. Hence we can choose b ∈ K such that K(a) ∩ Kr = K(b). The
inclusion IC(K(X)|K, v) ⊆ K(a)h follows from [6, Lemma 5.1]. It is left to show that K(b)h ⊆

IC(K(X)|K, v). Recall that IC(K(X)|K, v) := K ∩ K(X)h(v). It is thus sufficient to show that

b ∈ K(X)h(v), that is, K(b, X)h(v) = K(X)h(v).
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Applying the Lemma of Ostrowski to the extension (K(a, X)h(v)|K(X)h(v), v), we obtain the
following relation in light of Theorem 1.1:

[K(a, X)h(v) : K(X)h(v)] = j(a, K, γ)d(K(a, X)h(v) |K(X)h(v), v).

Take a′ ∈ K such that v(a − a′) ≥ γ. By definition, [K(a) : K] ≤ [K(a′) : K]. The fact that

b ∈ K(a) then implies that

[K(a, b) : K] = [K(a) : K] ≤ [K(a′) : K] ≤ [K(a′, b) : K].

Consequently,

[K(a, b) : K(b)] ≤ [K(a′, b) : K(b)].

It follows that (a, γ) is also a minimal pair of definition for v over K(b). It now follows from
Theorem 1.1 and the Lemma of Ostrowski that

[K(a, X)h(v) : K(b, X)h(v)] = j(a, K(b), γ)d(K(a, X)h(v) |K(b, X)h(v), v).

As a consequence,

[K(b, X)h(v) : K(X)h(v)] =
j(a, K, γ)

j(a, K(b), γ)
d(K(b, X)h(v)|K(X)h(v), v).

It follows from [7, Theorem 3] that the condition that b ∈ Kr implies that K(b, X) ⊆ K(X)r(v).

Consequently, (K(b, X)h(v)|K(X)h(v), v) is a defectless extension. We have thus obtained that

(16) [K(b, X)h(v) : K(X)h(v)] =
j(a, K, γ)

j(a, K(b), γ)
.

We now consider the valuation w as constructed in the statement of Lemma 4.1. Fix an extension
of w to K(X) and denote it again by w. Similar arguments as above yield that

[K(b, X)h(w) : K(X)h(w)] =
j(a, K, Γ)

j(a, K(b), Γ)
.

Observe that Γ /∈ vK and hence (K(X)|K, w) is a value transcendental extension. It then follows
from [6, Theorem 1.1] that K(b)h ⊆ IC(K(X)|K, w). As a consequence, b ∈ K(X)h(w) and hence

K(b, X)h(w) = K(X)h(w). In light of the preceding discussions, we conclude that

j(a, K, Γ) = j(a, K(b), Γ).

It follows from Lemma 4.1 that j(a, K, γ) = j(a, K, Γ). Observe that (a, γ) is also a minimal pair
of definition for v over K(b). Applying Lemma 4.1 to the extension (K(b, X)|K(b), v), we obtain

that j(a, K(b), Γ) = j(a, K(b), γ). As a consequence,

j(a, K, γ) = j(a, K, Γ) = j(a, K(b), Γ) = j(a, K(b), γ).

It now follows from (16) that K(b, X)h(v) = K(X)h(v). Consequently, b ∈ K(X)h(v) and hence
K(b)h ⊆ IC(K(X)|K, v). We have thus proved the theorem. �

Corollary 6.1. Take a minimal pair of definition (a, γ) for v over K and fix an extension of v to

K(X). Assume that j(a) = [K(a) : K(a) ∩ Kr]. Then IC(K(X)|K, v) = (K(a) ∩ Kr)h.

Proof. Take b ∈ K such that K(b) = K(a)∩ Kr. Recall that j(a) divides [K(a)h : IC(K(X)|K, v)].

In light of Theorem 1.3 we have the following chain of relations:

j(a) ≤ [K(a)h : IC(K(X)|K, v)] ≤ [K(a)h : K(b)h] ≤ [K(a) : K(b)].

10



The assumption that j(a) = [K(a) : K(b)] now implies that each of the inequalities in the above
expression is an equality. As a consequence, we obtain that

IC(K(X)|K, v) = K(b)h.

�
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