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MINIMAL POSITION AND CRITICAL MARTINGALE
CONVERGENCE IN BRANCHING RANDOM WALKS,

AND DIRECTED POLYMERS ON DISORDERED TREES

BY YUEYUN HU AND ZHAN SHI

Université Paris XIII and Université Paris VI

We establish a second-order almost sure limit theorem for the minimal
position in a one-dimensional super-critical branching random walk, and also
prove a martingale convergence theorem which answers a question of Big-
gins and Kyprianou [Electron. J. Probab. 10 (2005) 609–631]. Our method
applies, furthermore, to the study of directed polymers on a disordered tree.
In particular, we give a rigorous proof of a phase transition phenomenon for
the partition function (from the point of view of convergence in probability),
already described by Derrida and Spohn [J. Statist. Phys. 51 (1988) 817–
840]. Surprisingly, this phase transition phenomenon disappears in the sense
of upper almost sure limits.

1. Introduction.

1.1. Branching random walk and martingale convergence. We consider a
branching random walk on the real line R. Initially, a particle sits at the origin. Its
children form the first generation; their displacements from the origin correspond
to a point process on the line. These children have children of their own (who form
the second generation), and behave—relative to their respective positions—like
independent copies of the initial particle. And so on.

We write |u| = n if an individual u is in the nth generation, and denote its
position by V (u). [In particular, for the initial ancestor e, we have V (e) = 0.] We
assume throughout the paper that, for some δ > 0, δ+ > 0 and δ− > 0,

E

{(∑
|u|=1

1

)1+δ}
< ∞,(1.1)

E

{∑
|u|=1

e−(1+δ+)V (u)

}
+ E

{∑
|u|=1

eδ−V (u)

}
< ∞,(1.2)

here E denotes expectation with respect to P, the law of the branching random
walk.

Received April 2007; revised February 2008.
AMS 2000 subject classification. 60J80.
Key words and phrases. Branching random walk, minimal position, martingale convergence,

spine, marked tree, directed polymer on a tree.

742

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/08-AOP419
http://www.imstat.org


MINIMAL POSITION, BRANCHING RANDOM WALKS 743

Let us define the (logarithmic) moment generating function

ψ(t) := log E

{∑
|u|=1

e−tV (u)

}
∈ (−∞,∞], t ≥ 0.

By (1.2), ψ(t) < ∞ for t ∈ [−δ−,1 + δ+]. Following Biggins and Kyprianou [9],
we assume

ψ(0) > 0, ψ(1) = ψ ′(1) = 0.(1.3)

Since the number of particles in each generation forms a Galton–Watson tree, the
assumption ψ(0) > 0 in (1.3) says that this Galton–Watson tree is super-critical.

In the study of the branching random walk, there is a fundamental martingale,
defined as follows:

Wn := ∑
|u|=n

e−V (u), n = 0,1,2, . . .

(∑
∅

:= 0

)
.(1.4)

Since Wn ≥ 0, it converges almost surely.
When ψ ′(1) < 0, it is proved by Biggins and Kyprianou [7] that there exists a

sequence of constants (an) such that Wn

an
converges in probability to a nondegener-

ate limit which is (strictly) positive upon the survival of the system. This is called
the Seneta–Heyde norming in [7] for branching random walk, referring to Seneta
[35] and Heyde [22] on the rate of convergence in the classic Kesten–Stigum the-
orem for Galton–Watson processes.

The case ψ ′(1) = 0 is more delicate. In this case, it is known (Lyons [29]) that
Wn → 0 almost surely. The following question is raised in Biggins and Kyprianou
[9]: are there deterministic normalizers (an) such that Wn

an
converges?

We aim at answering this question.

THEOREM 1.1. Assume (1.1), (1.2) and (1.3). There exists a deterministic
positive sequence (λn) with 0 < lim infn→∞ λn

n1/2 ≤ lim supn→∞ λn

n1/2 < ∞, such
that, conditionally on the system’s survival, λnWn converges in distribution to W ,
with W > 0 a.s. The distribution of W is given in (10.3).

The limit W in Theorem 1.1 turns out to satisfy a functional equation. Such
functional equations are known to be closely related to (a discrete version of) the
Kolmogorov–Petrovski–Piscounov (KPP) traveling wave equation; see Kyprianou
[25] for more details.

The almost sure behavior of Wn is described in Theorem 1.3 below. The two
theorems together give a clear image of the asymptotics of Wn.
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1.2. The minimal position in the branching random walk. A natural question
in the study of branching random walks is about inf|u|=n V (u), the position of
the leftmost individual in the nth generation. In the literature the concentration
(in terms of tightness or even weak convergence) of inf|u|=n V (u) around its me-
dian/quantiles has been studied by many authors. See, for example, Bachmann
[4] and Bramson and Zeitouni [14], as well as Section 5 of the survey paper by
Aldous and Bandyopadhyay [2]. We also mention the recent paper of Lifshits
[26], where an example of a branching random walk is constructed such that
inf|u|=n V (u) − median({inf|u|=n V (u)}) is tight but does not converge weakly.

We are interested in the asymptotic speed of inf|u|=n V (u). Under assump-
tion (1.3), it is known that, conditionally on the system’s survival,

1

n
inf|u|=n

V (u) → 0 a.s.,(1.5)

inf|u|=n
V (u) → +∞ a.s.(1.6)

The “law of large numbers” in (1.5) is a classic result, and can be found in Ham-
mersley [19], Kingman [23] and Biggins [5]. The system’s transience to the right,
stated in (1.6), follows from the fact that Wn → 0, a.s.

A refinement of (1.5) is obtained by McDiarmid [31]. Under the additional as-
sumption E{(∑|u|=1 1)2} < ∞, it is proved in [31] that, for some constant c1 < ∞
and conditionally on the system’s survival,

lim sup
n→∞

1

logn
inf|u|=n

V (u) ≤ c1 a.s.

We intend to determine the exact rate at which inf|u|=n V (u) goes to infinity.

THEOREM 1.2. Assume (1.1), (1.2) and (1.3). Conditionally on the system’s
survival, we have

lim sup
n→∞

1

logn
inf|u|=n

V (u) = 3

2
a.s.,(1.7)

lim inf
n→∞

1

logn
inf|u|=n

V (u) = 1

2
a.s.,(1.8)

lim
n→∞

1

logn
inf|u|=n

V (u) = 3

2
in probability.(1.9)

REMARK. (i) The most interesting part of Theorem 1.2 is (1.7)–(1.8). It re-
veals the presence of fluctuations of inf|u|=n V (u) on the logarithmic level, which
is in contrast with known results of Bramson [13] and Dekking and Host [16] sta-
ting that, for a class of branching random walks, 1

log logn
inf|u|=n V (u) converges

almost surely to a finite and positive constant.
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(ii) Some brief comments on (1.3) are in order. In general [i.e., without assum-
ing ψ(1) = ψ ′(1) = 0], the law of large numbers (1.5) reads 1

n
inf|u|=n V (u) → c,

a.s. (conditionally on the system’s survival), where c := inf{a ∈ R :g(a) ≥ 0}, with
g(a) := inft≥0{ta + ψ(t)}. If

t∗ψ ′(t∗) = ψ(t∗)(1.10)

for some t∗ ∈ (0,∞), then the branching random walk associated with the point
process V̂ (u) := t∗V (u) + ψ(t∗)|u| satisfies (1.3). That is, as long as (1.10) has a
solution [which is the case, e.g., if ψ(1) = 0 and ψ ′(1) > 0], the study will boil
down to the case (1.3).

It is, however, possible that (1.10) has no solution. In such a situation, Theo-
rem 1.2 does not apply. For example, we have already mentioned a class of branch-
ing random walks exhibited in Bramson [13] and Dekking and Host [16], for which
inf|u|=n V (u) has an exotic log logn behavior.

(iii) Under suitable assumptions, Addario–Berry [1] obtains a very precise as-
ymptotic estimate of E[inf|u|=n V (u)], which implies (1.9).

(iv) In the case of branching Brownian motion, the analogue of (1.9) was
proved by Bramson [12], by means of some powerful explicit analysis.

1.3. Directed polymers on a disordered tree. The following model is bor-
rowed from the well-known paper of Derrida and Spohn [17]: Let T be a rooted
Cayley tree; we study all self-avoiding walks (= directed polymers) of n steps
on T starting from the root. To each edge of the tree is attached a random variable
(= potential). We assume that these random variables are independent and identi-
cally distributed. For each walk ω, its energy E(ω) is the sum of the potentials of
the edges visited by the walk. So the partition function is

Zn :=∑
ω

e−βE(ω),

where the sum is over all self-avoiding walks of n steps on T, and β > 0 is the
inverse temperature.

More generally, we take T to be a Galton–Watson tree, and observe that the
energy E(ω) corresponds to (the partial sum of) the branching random walk de-
scribed in the previous sections. The associated partition function becomes

Wn,β := ∑
|u|=n

e−βV (u), β > 0.(1.11)

Clearly, when β = 1, Wn,1 is just the Wn defined in (1.4).
If 0 < β < 1, the study of Wn,β boils down to the case ψ ′(1) < 0, which was

investigated by Biggins and Kyprianou [7]. In particular, conditionally on the sys-
tem’s survival, Wn,β

E{Wn,β } converges almost surely to a (strictly) positive random vari-
able.

We study the case β ≥ 1 in the present paper.



746 Y. HU AND Z. SHI

THEOREM 1.3. Assume (1.1), (1.2) and (1.3). Conditionally on the system’s
survival, we have

Wn = n−1/2+o(1) a.s.(1.12)

THEOREM 1.4. Assume (1.1), (1.2) and (1.3), and let β > 1. Conditionally on
the system’s survival, we have

lim sup
n→∞

logWn,β

logn
= −β

2
a.s.,(1.13)

lim inf
n→∞

logWn,β

logn
= −3β

2
a.s.,(1.14)

Wn,β = n−3β/2+o(1) in probability.(1.15)

Again, the most interesting part in Theorem 1.4 is (1.13) and (1.14), which
describes a new fluctuation phenomenon. Also, there is no phase transition any
more for Wn,β at β = 1 from the point of view of upper almost sure limits.

The remark on (1.3), stated after Theorem 1.2, applies to Theorems 1.3 and 1.4
as well.

An important step in the proof of Theorems 1.3 and 1.4 is to estimate all small
moments of Wn and Wn,β , respectively. This is done in the next theorems.

THEOREM 1.5. Assume (1.1), (1.2) and (1.3). For any γ ∈ [0,1), we have

0 < lim inf
n→∞ E{(n1/2Wn)

γ } ≤ lim sup
n→∞

E{(n1/2Wn)
γ } < ∞.(1.16)

THEOREM 1.6. Assume (1.1), (1.2) and (1.3), and let β > 1. For any 0 < r <
1
β

, we have

E{Wr
n,β} = n−3rβ/2+o(1), n → ∞.(1.17)

The rest of the paper is as follows. In Section 2 we introduce a change-of-
measures formula (Proposition 2.1) in terms of spines on marked trees. This for-
mula will be of frequent use throughout the paper. Section 3 contains a few pre-
liminary results of the lower tail probability of the martingale Wn. The proofs of
the theorems are organized as follows:

• Section 4: upper bound in part (1.8) of Theorem 1.2.
• Section 5: Theorem 1.6.
• Section 6: Theorem 1.5.
• Section 7: Theorem 1.3, as well as parts (1.14) and (1.15) of Theorem 1.4.
• Section 8: (the rest of) Theorem 1.2.
• Section 9: part (1.13) of Theorem 1.4.
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• Section 10: Theorem 1.1.

Section 4 relies on ideas borrowed from Bramson [12], and does not require the
preliminaries in Sections 2 and 3.

Sections 5 and 6 are the technical part of the paper, where a common idea is
applied in two different situations.

Throughout the paper we write

q := P{the system’s extinction} ∈ [0,1).

The letter c with a subscript denotes finite and (strictly) positive constants. We
also use the notation

∑
∅ := 0,

∏
∅ := 1, and 00 := 1. Moreover, we use an ∼ bn,

n → ∞, to denote limn→∞ an

bn
= 1.

2. Marked trees and spines. This section is devoted to a change-of-measures
result (Proposition 2.1) on marked trees in terms of spines. The material of this
section has been presented in the literature in various forms; see, for example,
Chauvin, Rouault and Wakolbinger [15], Lyons, Pemantle and Peres [30], Biggins
and Kyprianou [8] and Hardy and Harris [20].

There is a one-to-one correspondence between branching random walks and
marked trees. Let us first introduce some notation. We label individuals in the
branching random walk by their line of descent, so if u = i1 · · · in ∈ U := {∅} ∪⋃∞

k=1(N
∗)k (where N

∗ := {1,2, . . .}), then u is the inth child of the in−1th child
of. . . of the i1th child of the initial ancestor e. It is sometimes convenient to con-
sider an element u ∈ U as a “word” of length |u|, with ∅ corresponding to e. We
identify an individual u with its corresponding word.

If u, v ∈ U , we denote by uv the concatenated word, with u∅ = ∅u = u.
Let U := {(u,V (u)) :u ∈ U ,V :U → R}. Let � be Neveu’s space of marked

trees, which consists of all the subsets ω of U such that the first component of ω

is a tree. [Recall that a tree t is a subset of U satisfying: (i) ∅ ∈ t ; (ii) if uj ∈ t for
some j ∈ N

∗, then u ∈ t ; (iii) if u ∈ t , then uj ∈ t if and only if 1 ≤ j ≤ νu(t) for
some nonnegative integer νu(t).]

Let T :� → � be the identity application. According to Neveu [32], there exists
a probability P on � such that the law of T under P is the law of the branching
random walk described in the Introduction.

Let us make a more intuitive presentation. For any ω ∈ �, let

T
GW(ω) := the set of individuals ever born in ω,(2.1)

T(ω) := {(u,V (u)), u ∈ T
GW(ω),V such that (u,V (u)) ∈ ω}.(2.2)

[Of course, T(ω) = ω.] In words, T
GW is a Galton–Watson tree, with the pop-

ulation members as the vertices, whereas the marked tree T corresponds to the
branching random walk. It is more convenient to write (2.2) in an informal way:

T = {(u,V (u)), u ∈ T
GW}.
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For any u ∈ T
GW, the shifted Galton–Watson subtree generated by u is

T
GW
u := {x ∈ U :ux ∈ T

GW}.(2.3)

[By shifted, we mean that T
GW
u is also rooted at e.] For any x ∈ T

GW
u , let

|x|u := |ux| − |u|,(2.4)

Vu(x) := V (ux) − V (u).(2.5)

As such, |x|u stands for the (relative) generation of x as a vertex of the Galton–
Watson tree T

GW
u , and (Vu(x), x ∈ T

GW
u ) the branching random walk which corre-

sponds to the shifted marked subtree

Tu := {(x,Vu(x)), x ∈ T
GW
u }.

Let Fn := σ {(u,V (u)), u ∈ T
GW, |u| ≤ n}, which is the sigma-field induced by

the first n generations of the branching random walk. Let F∞ be the sigma-field
induced by the whole branching random walk.

Assume now ψ(0) > 0 and ψ(1) = 0. Let Q be a probability on � such that,
for any n ≥ 1,

Q|Fn
:= Wn • P|Fn

.(2.6)

Fix n ≥ 1. Let w
(n)
n be a random variable taking values in {u ∈ T

GW, |u| = n} such
that, for any |u| = n,

Q
{
w(n)

n = u
∣∣F∞

}= e−V (u)

Wn

.(2.7)

We write �e,w
(n)
n � = {e =: w(n)

0 ,w
(n)
1 ,w

(n)
2 , . . . ,w

(n)
n } for the shortest path in T

GW

relating the root e to w
(n)
n , with |w(n)

k | = k for any 1 ≤ k ≤ n.
For any individual u ∈ T

GW \ {e}, let ←−u be the parent of u in T
GW, and

�V (u) := V (u) − V (←−u ).

For 1 ≤ k ≤ n, we write

I (n)
k := {

u ∈ T
GW : |u| = k,←−u = w

(n)
k−1, u �= w

(n)
k

}
.(2.8)

In words, I (n)
k is the set of children of w

(n)
k−1 except w

(n)
k or, equivalently, the set of

the brothers of w
(n)
k , and is possibly empty. Finally, let us introduce the following

sigma-field:

Gn := σ

{ ∑
x∈I (n)

k

δ�V (x),V
(
w

(n)
k

)
,w

(n)
k ,I (n)

k ,1 ≤ k ≤ n

}
,(2.9)

where δ denotes the Dirac measure.
The promised change-of-measures result is as follows. For any marked tree T,

we define its truncation T
n at level n by T

n := {(x,V (x)), x ∈ T
GW, |x| ≤ n}; see

Figure 1.



MINIMAL POSITION, BRANCHING RANDOM WALKS 749

FIG. 1. Spine; The truncated shifted subtrees T
n−|x|
x ,Tn−|y|

y , T
n−|z|
z , . . . are actually rooted at e.

PROPOSITION 2.1. Assume ψ(0) > 0 and ψ(1) = 0, and fix n ≥ 1. Under
probability Q,

(i) the random variables (
∑

x∈I (n)
k

δ�V (x),�V (w
(n)
k )), 1 ≤ k ≤ n, are i.i.d.,

distributed as (
∑

x∈I (1)
1

δ�V (x),�V (w
(1)
1 ));

(ii) conditionally on Gn, the truncated shifted marked subtrees T
n−|x|
x , for

x ∈⋃n
k=1 I (n)

k , are independent; the conditional distribution of T
n−|x|
x (for any

x ∈ ⋃n
k=1 I (n)

k ) under Q, given Gn, is identical to the distribution of T
n−|x| un-

der P.

Throughout the paper, let ((Si, σi), i ≥ 1) be such that (Si − Si−1, σi), for
i ≥ 1 (with S0 = 0), are i.i.d. random vectors under Q and distributed as
(V (w

(1)
1 ),#I (1)

1 ).

COROLLARY 2.2. Assume ψ(0) > 0 and ψ(1) = 0, and fix n ≥ 1.

(i) Under Q, ((V (w
(n)
k ),#I (n)

k ),1 ≤ k ≤ n) is distributed as ((Sk, σk),

1 ≤ k ≤ n). In particular, under Q, (V (w
(n)
k ),1 ≤ k ≤ n) is distributed as (Sk,1 ≤

k ≤ n).
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(ii) For any measurable function F : R → R+,

EQ{F(S1)} = E

{∑
|u|=1

e−V (u)F (V (u))

}
.(2.10)

In particular, we have EQ{S1} = 0 under (1.2) and (1.3).

Corollary 2.2 follows immediately from Proposition 2.1, and can be found in
several papers (e.g., Biggins and Kyprianou [9]).

We present two collections of probability estimates for (Sn) and for (V (u),
|u| = 1), respectively. They are simple consequences of Proposition 2.1, and will
be of frequent use in the rest of the paper.

COROLLARY 2.3. Assume (1.2) and (1.3). Then

EQ{eaS1} < ∞ ∀|a| ≤ c2,(2.11)

Q{|Sn| ≥ x} ≤ 2 exp
(
−c3 min

{
x,

x2

n

})
(2.12)

∀n ≥ 1,∀x ≥ 0,

Q
{

min
1≤k≤n

Sk > 0
}

∼ c4

n1/2 , n → ∞,(2.13)

sup
n≥1

n1/2EQ{eb min0≤i≤n Si } < ∞ ∀b ≥ 0,(2.14)

where c2 := min{δ+,1 + δ−}. Furthermore, for any C ≥ c > 0, we have

Q
{

max
0≤j,k≤n,|j−k|≤c logn

|Sj − Sk| ≥ C logn

}
≤ 2cn−(c3C−1) logn

(2.15)
∀n ≥ 2.

COROLLARY 2.4. Assume (1.1), (1.2) and (1.3). Let 0 < a ≤ 1. Then

EQ

{(∑
|u|=1

e−aV (u)

)ρ(a)}
< ∞,(2.16)

Q
{

sup
|u|=1

|V (u)| ≥ x

}
≤ c5e

−c6x ∀x ≥ 0,(2.17)

with ρ(a) := δδ+
1+aδ+δ+ , where δ and δ+ are the constants in (1.1) and (1.2), respec-

tively.

PROOF OF COROLLARY 2.3. By Corollary 2.2 (ii), EQ{eaS1} =
E{∑|u|=1 e(a−1)V (u)}, which, according to (1.2), is finite as long as |a| ≤ c2. This
proves (2.11).
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Once we have the exponential integrability in (2.11) for (Sn), standard proba-
bility estimates for sums of i.i.d. random variables yield (2.12), (2.13) and (2.14);
see Petrov [34]’s Theorem 2.7, Bingham [10] and Kozlov [24]’s Theorem A, re-
spectively.

To check (2.15), we observe that the probability term on the left-hand side
of (2.15) is bounded by

∑
0≤j<k≤n,k−j≤c logn Q{|Sk−j | ≥ C logn}. By (2.12),

Q{|Sk−j | ≥ C logn} ≤ 2n−c3C for k − j ≤ c logn. This yields (2.15). �

PROOF OF COROLLARY 2.4. Write ρ := ρ(a). We have
EQ{(∑|u|=1 e−aV (u))ρ} = EQ{Wρ

1,a} = E{Wρ
1,aW1,1}. Let N := ∑

|u|=1 1. By

Hölder’s inequality, W1,a ≤ W
a/(1+δ+)
1,1+δ+ N(1−a+δ+)/(1+δ+), whereas W1,1 ≤

W
1/(1+δ+)
1,1+δ+ Nδ+/(1+δ+). Therefore, by means of another application of Hölder’s

inequality, E{Wρ
1,aW1,1} ≤ [E(W1,1+δ+)](1+aρ)/(1+δ+)[E(N1+δ)](δ+−aρ)/(1+δ+),

which is finite [by (1.2) and (1.1)]. This implies (2.16).
To prove (2.17), we write A := {sup|u|=1 |V (u)| ≥ x}. By Chebyshev’s in-

equality, P(A) ≤ c7e
−c8x , where c7 := E(

∑
|u|=1 ec8|V (u)|) < ∞ as long as

0 < c8 ≤ min{δ−,1 + δ+} [by (1.2)]. Thus, Q(A) = E{∑|u|=1 e−V (u)1A} ≤
c9[P(A)]ρ(1)/[1+ρ(1)], where c9 := [E{(∑|u|=1 e−V (u))1+ρ(1)}]1/(1+ρ(1)) < ∞.

Now (2.17) follows from (2.16), with c6 := c8ρ(1)
1+ρ(1)

. �

3. Preliminary: small values of Wn. This preliminary section is devoted to
the study of the small values of Wn. Throughout the section, we assume (1.1), (1.2)
and (1.3). We define two important events:

S := {the system’s ultimate survival},(3.1)

Sn := {the system’s survival after n generations} = {Wn > 0}.(3.2)

Clearly, S ⊂ Sn. Recall (see, e.g., Harris [21], page 16) that, for some constant
c10 and all n ≥ 1,

P{Sn \ S } ≤ e−c10n.(3.3)

Here is the main result of the section.

PROPOSITION 3.1. Assume (1.1), (1.2) and (1.3). For any ε > 0, there exists
ϑ > 0 such that, for all sufficiently large n,

P{n1/2Wn < n−ε|S } ≤ n−ϑ .(3.4)

The proof of Proposition 3.1 relies on Neveu’s multiplicative martingale. Recall
that under assumption (1.3), there exists a nonnegative random variable ξ∗, with
P{ξ∗ > 0} > 0, such that

ξ∗ law= ∑
|u|=1

ξ∗
u e−V (u),(3.5)
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where, given {(u,V (u)), |u| = 1}, ξ∗
u are independent copies of ξ∗, and “law= ”

stands for identity in distribution. Moreover, there is uniqueness of the distribu-
tion of ξ∗ up to a scale change (see Liu [27]); in the rest of the paper we take the
version of ξ∗ as the unique one satisfying E{e−ξ∗} = 1

2 .
Let us introduce the Laplace transform of ξ∗:

ϕ∗(t) := E{e−tξ∗}, t ≥ 0.(3.6)

Let

W ∗
n := ∏

|u|=n

ϕ∗(e−V (u)), n ≥ 1.(3.7)

The process (W ∗
n , n ≥ 1) is also a martingale (Liu [27]). Following Neveu [33], we

call W ∗
n an associated “multiplicative martingale.”

The martingale W ∗
n being bounded, it converges almost surely (when n → ∞)

to, say, W ∗∞. Let us recall from Liu [27] (see also Kyprianou [25]) that, for some
c∗ > 0,

log
1

W ∗∞
law= ξ∗,(3.8)

log
(

1

ϕ∗(t)

)
∼ c∗t log

(
1

t

)
, t → 0.(3.9)

We first prove the following lemma:

LEMMA 3.2. Assume (1.1), (1.2) and (1.3). There exist κ > 0 and a0 ≥ 1 such
that

E{(W ∗∞)a|W ∗∞ < 1} ≤ a−κ , ∀a ≥ a0,(3.10)

E{(W ∗
n )a1Sn

} ≤ a−κ + e−c10n, ∀n ≥ 1,∀a ≥ a0.(3.11)

PROOF. We are grateful to John Biggins for fixing a mistake in the original
proof.

We first prove (3.10). In view of (3.8), it suffices to show that

E{e−aξ∗ |ξ∗ > 0} ≤ a−κ , a ≥ a0.(3.12)

Let q ∈ [0,1) be the system’s extinction probability. Let N := ∑
|u|=1 1.

It is well known for Galton–Watson trees that q is the unique solution of
E(qN) = q (for q ∈ [0,1)); see, for example, Harris [21], page 7. By (3.5),
ϕ∗(t) = E{∏|u|=1 ϕ∗(te−V (u))}. Therefore, by (3.6), P{ξ∗ = 0} = ϕ∗(∞) =
limt→∞ E{∏|u|=1 ϕ∗(te−V (u))}, which, by dominated convergence, is =
E{(ϕ∗(∞))N } = E{(P{ξ∗ = 0})N }. Since P{ξ∗ = 0} < 1, this yields P{ξ∗ =
0} = q .
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Following Biggins and Grey [6], we note that, for any t ≥ 0,

E{e−tξ∗} = q + (1 − q)E{e−tξ∗ |ξ∗ > 0}.
Let ξ̂ be a random variable such that E{e−t ξ̂ } = E{e−tξ∗ |ξ∗ > 0} for any t ≥ 0.
Let Y be a random variable independent of everything else, such that P{Y =
0} = q = 1 − P{Y = 1}. Then ξ∗ and Y ξ̂ have the same law and, by (3.5), so
do ξ∗ and

∑
|u|=1 e−V (u)Yuξ̂u, where, given {u, |u| = 1}, (Yu, ξ̂u) are independent

copies of (Y, ξ̂ ), independent of {V (u), |u| = 1}. Since {∑|u|=1 e−V (u)Yuξ̂u > 0} =
{∑|u|=1 Yu > 0}, this leads to

E{e−t ξ̂ } = E

{
e−t

∑
|u|=1 e−V (u)Yuξ̂u

∣∣∣ ∑
|u|=1

Yu > 0

}
, t ≥ 0.

Let ϕ̂(t) := E{e−t ξ̂ }, t ≥ 0. Then for any t ≥ 0 and c > 0,

ϕ̂(t) = E

{ ∏
|u|=1

ϕ̂
(
te−V (u)Yu

)∣∣∣∣ ∑
|u|=1

Yu > 0

}
≤ E

{
[ϕ̂(te−c)]Nc

∣∣∣ ∑
|u|=1

Yu > 0

}
,

where Nc := ∑
|u|=1 1{Yu=1,|V (u)|≤c}. By monotone convergence, limc→∞ E{Nc|∑

|u|=1 Yu > 0} = E{∑|u|=1 Yu|∑|u|=1 Yu > 0} > 1 [because P{∑|u|=1 Yu ≥
2} > 0 by assumption (1.3)]. We can therefore choose and fix a constant c > 0
such that E{Nc|∑|u|=1 Yu > 0} > 1. By writing f̂ (s) := E{sNc |∑|u|=1 Yu > 0},
we have

ϕ̂(t) ≤ f̂ (ϕ̂(te−c)), ∀t ≥ 0.

Iterating the inequality yields that, for any t ≥ 0 and any n ≥ 1,

E{e−t ξ̂ } ≤ f̂ (n)(E{e−te−ncξ̂ }), that is, E{e−tencξ̂ } ≤ f̂ (n)(E{e−t ξ̂ }),(3.13)

where f̂ (n) denotes the nth iterate of f̂ . It is well known for Galton–Watson trees
(Athreya and Ney [3], Section I.11) that, for any s ∈ [0,1), limn→∞ γ −nf̂ (n)(s)

converges to a finite limit, with γ := (f̂ )′(0) ≤ P{∑|u|=1 Yu = 1|∑|u|=1 Yu >

0} < 1. Therefore, (3.13) yields (3.12), and thus (3.10).
It remains to check (3.11). Let a ≥ 1. Since ((W ∗

n )a, n ≥ 0) is a bounded sub-
martingale, E{(W ∗

n )a1Sn
} ≤ E{(W ∗∞)a1Sn

}. Recall that W ∗∞ ≤ 1; thus,

E{(W ∗
n )a1Sn

} ≤ E{(W ∗∞)a1S } + P{Sn \ S }.
By (3.3), P{Sn \ S } ≤ e−c10n. To estimate E{(W ∗∞)a1S }, we identify S with
{W ∗∞ < 1}: on the one hand, S c ⊂ {W ∗

n = 1, for all sufficiently large n} ⊂
{W ∗∞ = 1}; on the other hand, by (3.8), P{W ∗∞ < 1} = P{ξ∗ > 0} = 1 −
q = P(S ). Therefore, S = {W ∗∞ < 1}, P-a.s. Consequently, E{(W ∗∞)a1S } =
E{(W ∗∞)a1{W ∗∞<1}}, which, according to (3.10), is bounded by a−κ , for a ≥ a0.
Lemma 3.2 is proved. �

We are now ready for the proof of Proposition 3.1.
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PROOF OF PROPOSITION 3.1. Let c11 > 0 be such that P{ξ∗ ≤ c11} ≥ 1
2 .

Then ϕ∗(t) = E{e−tξ∗} ≥ e−c11tP{ξ∗ ≤ c11} ≥ 1
2e−c11t and, thus, log( 1

ϕ∗(t) ) ≤
c11t + log 2. Together with (3.9), this yields, on the event Sn,

log
(

1

W ∗
n

)
= ∑

|u|=n

log
(

1

ϕ∗(e−V (u))

)

≤ ∑
|u|=n

1{V (u)≥1}c12V (u)e−V (u) + ∑
|u|=n

1{V (u)<1}
(
c11e

−V (u) + log 2
)
.

Since Wn =∑
|u|=n e−V (u), we obtain, on Sn, for any λ ≥ 1,

log
(

1

W ∗
n

)
≤ c13λWn + c12

∑
|u|=n

1{V (u)≥λ}V (u)e−V (u),(3.14)

where c13 := c11 + c12 + e log 2. Note that c12 and c13 do not depend on λ.
Let 0 < y ≤ 1. Since S ⊂ Sn, it follows that, for c14 := c12 + c13,

P{λWn < y|Sn} ≤ P
{

log
(

1

W ∗
n

)
< c14y

∣∣Sn

}

+ P

{ ∑
|u|=n

1{V (u)≥λ}V (u)e−V (u) ≥ y
∣∣∣Sn

}
(3.15)

=: RHS1
(3.15) + RHS2

(3.15),

with obvious notation.
Recall that P(Sn) ≥ P(S ) = 1 − q . By Chebyshev’s inequality,

RHS1
(3.15) ≤ ec14E{(W ∗

n )1/y |Sn} ≤ ec14

1 − q
E{(W ∗

n )1/y1Sn
}.

By (3.11), for n ≥ 1 and 0 < y ≤ 1
a0

, with c15 := ec14/(1 − q),

RHS1
(3.15) ≤ c15(y

κ + e−c10n).(3.16)

To estimate RHS2
(3.15), we observe that

RHS2
(3.15) ≤ 1

1 − q
P

{ ∑
|u|=n

1{V (u)≥λ}V (u)e−V (u) ≥ y

}

≤ 1

(1 − q)y
E

{ ∑
|u|=n

1{V (u)≥λ}V (u)e−V (u)

}

= 1

(1 − q)y
EQ

{ ∑
|u|=n

1{V (u)≥λ}
V (u)e−V (u)

Wn

}

= 1

(1 − q)y
EQ

{
V
(
w(n)

n

)
1{V (w

(n)
n )≥λ}

}
.
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By Corollary 2.2(i), EQ{V (w
(n)
n )1{V (w

(n)
n )≥λ}} = EQ{Sn1{Sn≥λ}} ≤ (EQ{S2

n})1/2 ×
(Q{Sn ≥ λ})1/2, which, by (2.12), is bounded by c16n exp(−c3 min{λ, λ2

n
}). Ac-

cordingly, RHS2
(3.15) ≤ c17n

y
exp(−c3 min{λ, λ2

n
}). Together with (3.15) and (3.16),

it yields that, for 0 < y ≤ 1
a0

,

P{λWn < y|Sn} ≤ c15(y
κ + e−c10n) + c17n

y
exp

(
−c3 min

{
λ,

λ2

n

})
.

Let λ := n1/2y−κ/2. The inequality becomes, for 0 < y ≤ 1
a0

and n ≥ 1,

P
{
n1/2Wn < y(κ+2)/2|Sn

}
≤ c15(y

κ + e−c10n) + c17n

y
exp

(
−c3

min{n1/2yκ/2,1}
yκ

)
.

This readily yields Proposition 3.1. �

REMARK. Under the additional assumption that {u, |u| = 1} contains at
least two elements almost surely, it is possible (Liu [28]) to improve (3.10):
E{(W ∗∞)a|W ∗∞ < 1} ≤ exp{−aκ1} for some κ1 > 0 and all sufficiently large a,
from which one can deduce the stronger version of Proposition 3.1: for any ε > 0,
there exists ϑ1 > 0 such that P{n1/2Wn < n−ε|S } ≤ exp(−nϑ1) for all sufficiently
large n.

We complete this section with the following estimate which will be useful in
the proof of Theorem 1.5.

LEMMA 3.3. Assume (1.1), (1.2) and (1.3). For any 0 < s < 1,

sup
n≥1

E
{(

log
1

W ∗
n

)s}
< ∞.(3.17)

PROOF. Let x > 1. By Chebyshev’s inequality, P{log( 1
W ∗

n
) ≥ x} = P{exW ∗

n ≤
1} ≤ eE{e−exW ∗

n }. Since W ∗
n is a martingale, it follows from Jensen’s inequality

that E{e−exW ∗
n } ≤ E{e−exW ∗∞} ≤ P{W ∗∞ ≤ e−x/2} + exp(−ex/2). Therefore,

P
{

log
(

1

W ∗
n

)
≥ x

}
≤ eP{W ∗∞ ≤ e−x/2} + exp(1 − ex/2).(3.18)

On the other hand, by integration by parts,
∫∞

0 e−tyP(ξ∗ ≥ y)dy = 1−E(e−tξ∗
)

t
=

1−ϕ∗(t)
t

, which, according to (3.9), is ≤ c18 log(1
t
) for 0 < t ≤ 1

2 . Therefore,
for a ≥ 2, c18 loga ≥ ∫∞

0 e−y/aP(ξ∗ ≥ y)dy ≥ ∫ a
0 e−y/aP(ξ∗ ≥ a)dy = (1 −
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e−1)aP(ξ∗ ≥ a). That is, P(ξ∗ ≥ a) ≤ c18
1−e−1

loga
a

or, equivalently, P(W ∗∞ ≤ e−a) ≤
c18

1−e−1
loga

a
, for a ≥ 2. Substituting this in (3.18) gives that, for any x ≥ 4,

P
{

log
(

1

W ∗
n

)
≥ x

}
≤ 2ec18

1 − e−1

log(x/2)

x
+ exp(1 − ex/2).

Lemma 3.3 follows immediately. �

4. Proof of Theorem 1.2: upper bound in (1.8). Assume (1.1), (1.2)
and (1.3). This section is devoted to proving the upper bound in (1.8): conditionally
on the system’s survival,

lim inf
n→∞

1

logn
inf|u|=n

V (u) ≤ 1

2
, a.s.(4.1)

The proof borrows some ideas from Bramson [12]. We fix −∞ < a < b < ∞
and ε > 0. Let �1 ≤ �2 ≤ 2�1 be integers; we are interested in the asymptotic case
�1 → ∞. Consider n ∈ [�1, �2] ∩ Z. Let 0 < c19 < 1 be a constant, and let

gn(k) := min{c19k
1/3, c19(n − k)1/3 + a log�1, n

ε}, 0 ≤ k ≤ n.

Let Ln be the set of individuals x ∈ T
GW with |x| = n such that

gn(k) ≤ V (xk) ≤ c20k, ∀0 ≤ k ≤ n and a log �1 ≤ V (x) ≤ b log�1,

where x0 := e, x1, . . . , xn := x are the vertices on the shortest path in T
GW relating

the root e and the vertex x, with |xk| = k for any 0 ≤ k ≤ n. We consider the
measurable event

F�1,�2 :=
�2⋃

n=�1

⋃
|x|=n

{x ∈ Ln}.

We start by estimating the first moment of #F�1,�2 : E(#F�1,�2) =∑�2
n=�1

E{∑|x|=n 1{x∈Ln}}. Since E{∑|x|=n 1{x∈Ln}} = EQ{∑|x|=n
e−V (x)

Wn
eV (x) ×

1{x∈Ln}} = EQ{eV (w
(n)
n )1{w(n)

n ∈Ln}}, we can apply Corollary 2.2 to see that

E(#F�1,�2) =
�2∑

n=�1

EQ
{
eSn1{gn(k)≤Sk≤c20k,∀0≤k≤n,a log�1≤Sn≤b log�1}

}

≥
�2∑

n=�1

�a
1Q{gn(k) ≤ Sk ≤ c20k,∀0 ≤ k ≤ n,a log�1 ≤ Sn ≤ b log�1}.

We choose (and fix) the constants c19 and c20 such that Q{c19 < S1 < c20} > 0.
Then,1 the probability Q{·} on the right-hand side is �

−(3/2)+o(1)
1 , for �1 → ∞.

1An easy way to see why − 3
2 should be the correct exponent for the probability is to split the

event into three pieces: the first piece involving Sk for 0 ≤ k ≤ n
3 , the second piece for n

3 ≤ k ≤ 2n
3 ,
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Accordingly,

E(#F�1,�2) ≥ (�2 − �1 + 1)�
a−(3/2)+o(1)
1 .(4.2)

We now proceed to estimate the second moment of #F�1,�2 . By definition,

E[(#F�1,�2)
2] =

�2∑
n=�1

�2∑
m=�1

E

{ ∑
|x|=n

∑
|y|=m

1{x∈Ln,y∈Lm}
}

≤ 2
�2∑

n=�1

�2∑
m=n

E

{ ∑
|x|=n

∑
|y|=m

1{x∈Ln,y∈Lm}
}
.

We look at the double sum
∑

|x|=n

∑
|y|=m on the right-hand side. By consider-

ing z, the youngest common ancestor of x and y, and writing k := |z|, we arrive at∑
|x|=n

∑
|y|=m

1{x∈Ln,y∈Lm} =
n∑

k=0

∑
|z|=k

∑
(u,v)

1{zu∈Ln,zv∈Lm},

where the double sum
∑

(u,v) is over u, v ∈ T
GW
z such that |u|z = n − k and

|v|z = m − k and that the unique common ancestor of u and v in T
GW
z is the root.

Therefore,

E[(#F�1,�2)
2] ≤ 2

�2∑
n=�1

�2∑
m=n

n∑
k=0

E

{∑
|z|=k

∑
(u,v)

1{zu∈Ln,zv∈Lm}
}

=: 2
�2∑

n=�1

�2∑
m=n

n∑
k=0

�k,n,m.

We estimate �k,n,m according to three different situations.
First situation: 0 ≤ k ≤ �nε�. Let Vz(u) := V (zu) − V (z) as in Section 2. We

have 0 ≤ gn(k) ≤ V (z) ≤ c20n
ε , and V (zui) ≥ 0 for 0 ≤ i ≤ n−k and V (zun−k) ≤

b log �1, where u0 := e,u1, . . . , un−k are the vertices on the shortest path in T
GW
z

relating the root e and the vertex u, with |ui |z = i for any 0 ≤ i ≤ n−k. Therefore,

and the third piece for 2n
3 ≤ k ≤ n. The probability of the first piece is n−(1/2)+o(1) (it is essentially

the probability of Sk being positive for 1 ≤ k ≤ n
3 , because conditionally on this, Sk converges

weakly, after a suitable normalization, to a Brownian meander; see Bolthausen [11]). Similarly, the
probability of the third piece is n−(1/2)+o(1). The second piece essentially says that after n

3 steps, the

random walk should lie in an interval of length of order logn; this probability is also n−(1/2)+o(1).
Putting these pieces together yields the claimed exponent − 3

2 .
For a rigorous proof, the upper bound—not required here—is easier since we can only look at

the event that the walk stays positive during n steps (with the same condition upon the random
variable Sn), whereas the lower bound needs some tedious but elementary writing, based on the
Markov property. Similar arguments are used for the random walk (Sk) in several other places in the
paper, without further mention.
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Vz(ui) ≥ −c20n
ε for 0 ≤ i ≤ n − k, and Vz(u) ≤ b log �1. Accordingly,

�k,n,m ≤ E

{∑
|z|=k

∑
v∈TGW

z ,|v|z=m−k

1{zv∈Lm}Bn−k

}
,

where

Bn−k := E

{ ∑
|x|=n−k

1{V (xi)≥−c20n
ε,∀0≤i≤n−k,V (x)≤b log�1}

}

= EQ
{
eV (w

(n−k)
n−k )1{V (w

(n−k)
i )≥−c20n

ε,∀0≤i≤n−k,V (w
(n−k)
n−k )≤b log�1}

}
= EQ

{
eSn−k 1{Si≥−c20n

ε,∀0≤i≤n−k,Sn−k≤b log�1}
}

≤ �b
1Q{Si ≥ −c20n

ε,∀0 ≤ i ≤ n − k, Sn−k ≤ b log �1}
≤ �

b−(3/2)+ε+o(1)
1 ≤ �

b−(3/2)+2ε
1 .

Therefore,

�k,n,m ≤ �
b−(3/2)+2ε
1 E

{∑
|z|=k

∑
v∈TGW

z ,|v|z=m−k

1{zv∈Lm}
}

= �
b−(3/2)+2ε
1 E

{ ∑
|x|=m

1{x∈Lm}
}

and, thus,
�2∑

n=�1

�2∑
m=n

�nε�∑
k=0

�k,n,m ≤ �
b−(3/2)+2ε
1 (�2 − �1 + 1)(�ε

2 + 1)E(#F�1,�2).(4.3)

Second situation: �nε� + 1 ≤ k ≤ min{m − �nε�, n}. In this situation, since
V (z) ≥ max{gm(k), gn(k)} ≥ c19n

ε/3, we simply have Vz(u) ≤ b log �1 − c19n
ε/3.

Exactly as in the first situation, we get

�k,n,m ≤ E

{ ∑
|x|=m

1{x∈Lm}
}

E

{ ∑
|x|=n−k

1{V (x)≤b log�1−c19n
ε/3}

}
.

The second E{·} on the right-hand side is

= EQ
{
eSn−k 1{Sn−k≤b log�1−c19n

ε/3}
}≤ �b

1e
−c19n

ε/3

and, thus,
�2∑

n=�1

�2∑
m=n

min{m−�nε�,n}∑
k=�nε�+1

�k,n,m ≤ �b
1e

−c19�
ε/3
1 (�2 − �1 + 1)�2E(#F�1,�2).(4.4)

Third and last situation: m − �nε� + 1 ≤ k ≤ n (this situation may happen only
if m ≤ n + �nε� − 1). This time V (z) ≥ gm(k) ≥ a log �1 and, thus, Vz(u) ≤ (b −
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a) log�1; consequently,

�k,n,m ≤ E

{ ∑
|x|=m

1{x∈Lm}
}

E

{ ∑
|x|=n−k

1{V (x)≤(b−a) log�1}
}

≤ �b−a
1 E

{ ∑
|x|=m

1{x∈Lm}
}
.

Therefore, in case m ≤ n + �nε� − 1,
�2∑

n=�1

�2∑
m=n

n∑
k=m−�nε�+1

�k,n,m ≤
�2∑

n=�1

n+�nε�−1∑
m=n

�ε
2�

b−a
1 E

{ ∑
|x|=m

1{x∈Lm}
}

≤
�2∑

m=�1

m∑
n=m−2�mε�

�ε
2�

b−a
1 E

{ ∑
|x|=m

1{x∈Lm}
}

≤ 2�2ε
2 �b−a

1 E(#F�1,�2).

Combining this with (4.3) and (4.4), and since

E[(#F�1,�2)
2] ≤ 2

�2∑
n=�1

�2∑
m=n

n∑
k=0

�k,n,m,

we obtain
E[(#F�1,�2)

2]
[E(#F�1,�2)]2 ≤ (

2�
b−(3/2)+2ε
1 (�2 − �1 + 1)(�ε

2 + 1)

+ 2�b
1e

−c19�
ε/3
1 (�2 − �1 + 1)�2 + 4�2ε

2 �b−a
1

)
(E(#F�1,�2))

−1.

Since �2 ≤ 2�1, we have 2�
b−(3/2)+2ε
1 (�ε

2 + 1) + 2�b
1e

−c19�
ε/3
1 �2 ≤ �

b−(3/2)+4ε
1 for

all sufficiently large �1. On the other hand, E(#F�1,�2) ≥ (�2 − �1 + 1)�
a−(3/2)−ε
1

by (4.2) (for large �1). Therefore, when �1 is large, we have

E[(#F�1,�2)
2]

[E(#F�1,�2)]2 ≤ �
b−(3/2)+4ε
1 (�2 − �1 + 1) + �b−a+3ε

1

(�2 − �1 + 1)�
a−(3/2)−ε
1

.

By the Paley–Zygmund inequality, P{F�1,�2 �= ∅} ≥ 1
4

[E(#F�1,�2 )]2

E[(#F�1,�2 )2] ; thus,

P
{

min
�1≤|x|≤�2

V (x) ≤ b log�1

}
≥ 1

4

(�2 − �1 + 1)�
a−(3/2)−ε
1

�
b−(3/2)+4ε
1 (�2 − �1 + 1) + �b−a+3ε

1

.(4.5)

Of course, we can make a close to b, and ε close to 0, to see that, for any b ∈ R

and ε > 0, all sufficiently large �1 and all �2 ∈ [�1,2�1] ∩ Z,

P
{

min
�1≤|x|≤�2

V (x) ≤ b log�1

}
≥ �2 − �1 + 1

�ε
1(�2 − �1 + 1) + �

(3/2)−b+ε
1

.(4.6)
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[This is our basic estimate for the minimum of V (x). In Section 5 we are going to
apply (4.6) to �2 := �1.]

We now let b > 1
2 and take the subsequence nj := 2j , j ≥ j0 (with a sufficiently

large integer j0). By (4.6) (and possibly by changing the value of ε),

P
{

min
nj≤|x|≤nj+1

V (x) ≤ b lognj

}
≥ n−ε

j .

Let τj := inf{k : #{u : |u| = k} ≥ n2ε
j }. Then we have, for j ≥ j0,

P
{
τj < ∞, min

τj+nj≤|x|≤τj+nj+1
V (x) > max|y|=τj

V (y) + b lognj

}

≤
(

P
{

min
nj≤|x|≤nj+1

V (x) > b lognj

})�n2ε
j �

≤ (1 − n−ε
j )

�n2ε
j �

,

which is summable in j . By the Borel–Cantelli lemma, almost surely for all
large j , we have either τj = ∞, or minτj+nj≤|x|≤τj+nj+1 V (x) ≤ max|y|=τj

V (y)+
b lognj .

By the well-known law of large numbers for the branching random walk (Ham-
mersley [19], Kingman [23] and Biggins [5]), of which (1.5) was a special case,
there exists a constant c21 > 0 such that 1

n
max|y|=n V (y) → c21 almost surely

upon the system’s survival. In particular, upon survival, max|y|=n V (y) ≤ 2c21n

almost surely for all large n. Consequently, upon the system’s survival, almost
surely for all large j , we have either τj = ∞, or minτj+nj≤|x|≤τj+nj+1 V (x) <

2c21τj + b lognj .
Recall that the number of particles in each generation forms a Galton–

Watson tree, which is super-critical under assumption (1.3) (because m :=
E{∑|u|=1 1} > 1). In particular, conditionally on the system’s survival, #{u:|u|=k}

mk

converges a.s. to a (strictly) positive random variable when k → ∞, which implies
τj ∼ 2ε

lognj

logm
a.s. (j → ∞). As a consequence, upon the system’s survival, we

have, almost surely for all large j ,

min
nj≤|x|≤2nj+1

V (x) ≤ 5εc21

logm
lognj + b lognj .

Since b can be as close to 1
2 as possible, this readily yields (4.1).

5. Proof of Theorem 1.6. Before proving Theorem 1.6, we need three esti-
mates.

The first estimate, stated as Proposition 5.1, was proved by McDiarmid [31]
under the additional assumption E{(∑|u|=1 1)2} < ∞.
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PROPOSITION 5.1. Assume (1.1), (1.2) and (1.3). There exists c22 > 0 such
that, for any ε > 0, we can find c23 = c23(ε) > 0 satisfying

E
{

exp
(
c22 inf|x|=n

V (x)

)
1Sn

}
≤ c23n

(3+ε)/2c22, n ≥ 1.(5.1)

REMARK. Since Wn ≥ exp[− inf|x|=n V (x)], it follows from (5.1) and
Hölder’s inequality that, for any 0 ≤ s < c22 and ε > 0,

E
{

1

Ws
n

1Sn

}
≤ c

s/c22
23 n(3+ε)/2s, n ≥ 1.(5.2)

This estimate will be useful in the proof of Theorem 1.5 in Section 6.

PROOF OF PROPOSITION 5.1. In the proof we write, for any k ≥ 0,

V k := inf|u|=k
V (u).

Taking �2 = �1 in (4.6) gives that, for any ε > 0 and all sufficiently large �

(say, � ≥ �0), we have P{V � ≤ 3
2 log�} ≥ �−ε; thus, P{V � > 3

2 log�} ≤ 1 − �−ε ≤
exp(−�−ε), ∀� ≥ �0. For any r ∈ R and integers k ≥ 1 and n > � ≥ �0, we have

P
{
V n > 3

2 log� + r
}

≤ P
{
#{u : |u| = n − �,V (u) ≤ r} < k

}+ (
P
{
V � > 3

2 log�
})k

≤ P
{
#{u : |u| = n − �,V (u) ≤ r} < k

}+ exp(−�−εk).

By Lemma 1 of McDiarmid [31], there exist c24 > 0, c25 > 0 and c26 > 0 such
that, for any j ≥ 1, P{#{u : |u| = j,V (u) ≤ c24j} ≤ ec25j } ≤ q + e−c26j , q being
as before the probability of extinction. We choose j := � r

c24
� and � := n−� r

c24
� to

see that, for all n ≥ �0 and all 0 ≤ r ≤ c24(n − �0),

P
{
V n > 3

2 logn + r
}≤ q + e−c26�r/c24� + exp

(−n−ε�ec25�r/c24��).
Noting that {V n > 3

2 logn + r} ∩ S c
n = S c

n and that P{S c
n } ≥ q − e−c10n

[see (3.3)], we obtain, for 0 ≤ r ≤ c24(n − �0),

P
{
V n > 3

2 logn + r,Sn

}
(5.3)

≤ e−c10n + e−c26�r/c24� + exp
(−n−ε�ec25�r/c24��).

This implies that, for any 0 < c27 < min{ c26
c24

,
2c10
c24

}, there exists a constant c28 > 0

such that E{ec27V n1{3/2 logn<V n≤c24/2n}∩Sn
} ≤ c28n

c29 , with c29 := (3
2 + c24

c25
ε)c27.

Therefore,

E
{
ec27V n1{V n≤c24/2n}∩Sn

}≤ c30n
c29, n ≥ 1,(5.4)

where c30 := c28 + 1.
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On the other hand, letting δ− > 0 be as in (1.2), we have eδ−V n1Sn
≤∑

|u|=n eδ−V (u). Since ψ(−δ−) := log E{∑|u|=n eδ−V (u)} < ∞ by (1.2), we can
choose and fix c31 > 0 sufficiently large (in particular, c31 > c24

2 ) such that, for
any x ≥ c31,

P{V n > xn,Sn} ≤ e−δ−xn+ψ(−δ−)n ≤ e−δ−xn/2, ∀n ≥ 1.

Therefore, for any c32 <
δ−
2 , we have

sup
n≥1

E
{
ec32V n1{V n>c31n}∩Sn

}
< ∞.(5.5)

Finally, (5.3) also implies that, for n ≥ �0,

P
{
V n >

c24

2
n,Sn

}
≤ e−c10n + e−c26�n/2−3/(2c24) logn�

+ exp
(−n−ε�ec25�n/2−3/(2c24) logn��).

Therefore, for any c33 < min{ c10
c31

,
c26
2c31

},
sup
n≥1

E
{
ec33V n1{c24/2n<V n≤c31n}∩Sn

}
< ∞,

which, combined with (5.4) and (5.5), completes the proof of Proposition 5.1, with
c22 := min{c27, c32, c33}. �

LEMMA 5.2. Let X1,X2, . . . ,XN be independent nonnegative random vari-
ables, and let TN := ∑N

i=1 Xi . For any nonincreasing function F : (0,∞) → R+,
we have

E
{
F(TN)1{TN>0}

}≤ max
1≤i≤N

E{F(Xi)|Xi > 0}.
Moreover,

E
{
F(TN)1{TN>0}

}≤
N∑

i=1

bi−1E
{
F(Xi)1{Xi>0}

}
,

where b := max1≤i≤N P{Xi = 0}.
PROOF. Let τ := min{i ≥ 1 : Xi > 0} (with min ∅ := ∞). Then E{F(TN) ×

1{TN>0}} = ∑N
i=1 E{F(TN)1{τ=i}}. Since F is nonincreasing, we have F(TN) ×

1{τ=i} ≤ F(Xi)1{τ=i} = F(Xi)1{Xi>0}1{Xj=0,∀j<i}. By independence, this leads
to

E
{
F(TN)1{TN>0}

}≤
N∑

i=1

E
{
F(Xi)1{Xi>0}

}
P{Xj = 0,∀j < i}.

This yields immediately the second inequality of the lemma, since P{Xj = 0,∀j <

i} ≤ bi−1.
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To prove the first inequality of the lemma, we observe that E{F(Xi)1{Xi>0}} ≤
P{Xi > 0}max1≤k≤N E{F(Xk)|Xk > 0}. Therefore,

E
{
F(TN)1{TN>0}

}≤ max
1≤k≤N

E{F(Xk)|Xk > 0}
N∑

i=1

P{Xi > 0}P{Xj = 0,∀j < i}.

The
∑N

i=1 · · · expression on the right-hand side is = ∑N
i=1 P{Xi > 0,Xj = 0,

∀j < i} = ∑N
i=1 P{τ = i} = P{TN > 0} ≤ 1. This yields the first inequality of the

lemma. �

To state our third estimate, let w(n) ∈ �e,w(n)
n � be a vertex such that

V
(
w(n))= min

u∈�e,w
(n)
n �

V (u).(5.6)

[If there are several such vertices, we choose, say, the oldest.] The following esti-
mate gives a (stochastic) lower bound for 1

Wn,β
under Q outside a “small” set. We

recall that Wn,β > 0, Q-almost surely (but not necessarily P-almost surely).

LEMMA 5.3. Assume (1.1), (1.2) and (1.3). For any K > 0, there exist θ > 0
and n0 < ∞ such that, for any n ≥ n0, any β > 0, and any nondecreasing function
G : (0,∞) → (0,∞),

EQ

{
G

(
e−βV (w(n))

Wn,β

)
1En

}
≤ 1

1 − q
max

0≤k<n
E
{
G

(
nθβ

Wk,β

)
1Sk

}
,(5.7)

where En is a measurable event such that

Q{En} ≥ 1 − 1

nK
, n ≥ n0.

PROOF. Recall from (2.8) that I (n)
k is the set of the brothers of w

(n)
k . For any

pair 0 ≤ k < n, we say that the level k is n-good if

I (n)
k �= ∅ and T

GW
u survives at least n − k generations, ∀u ∈ I (n)

k ,

where T
GW
u is the shifted Galton–Watson subtree generated by u [see (2.3)]. By

T
GW
u surviving at least n − k generations, we mean that there exists v ∈ T

GW
u such

that |v|u = n − k [see (2.4) for notation].
In words, k is n-good means any subtree generated by any of the brothers of

w
(n)
k has offspring for at least n − k generations.
Let Gn be the sigma-field defined in (2.9). By Proposition 2.1,

Q{k is n-good|Gn} = 1{I (n)
k �=∅}(P{Sn−k})#I (n)

k ,
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where Sn denotes the system’s survival after n generations [see (3.2)]. Since
P{Sn−k} ≥ P{S } = 1 − q , whereas #I (n)

k and #I (1)
1 have the same distribution

under Q (Proposition 2.1), we have

Q{k is n-good} ≥ EQ
{
1{#I (1)

1 ≥1}(1 − q)#I (1)
1
}= c34 ∈ (0,1).

As a consequence, for all 1 ≤ � < n, by Proposition 2.1 again,

Q

{
n⋃

k=1

⋂
j :1≤j≤n,|j−k|≤�

{j is not n-good}
}

≤
n∑

k=1

∏
j :1≤j≤n,|j−k|≤�

Q{j is not n-good}

≤ n(1 − c34)
�+1,

which is bounded by ne−c34(�+1) (using the inequality 1 −x ≤ e−x , for x ≥ 0). Let
K > 0. We take � = �(n) := �c35 logn� with c35 := K+2

c34
. Let c36 := K+2

c6
[where

c6 is as in (2.17)] and c37 := max{K+2
c3

, c35} [c3 being the constant in (2.12)]. Let

E(1)
n :=

n⋂
k=1

⋃
j :1≤j≤n,|j−k|≤�c35 logn�

{j is n-good},(5.8)

E(2)
n :=

{
max

1≤j≤n
sup

u∈I (n)
j

∣∣V (u) − V
(
w

(n)
j−1

)∣∣≤ c36 logn

}
,(5.9)

E(3)
n :=

{
max

0≤j,k≤n,|j−k|≤c35 logn

∣∣V (
w

(n)
j

)− V
(
w

(n)
k

)∣∣≤ c37 logn

}
.(5.10)

We have

Q
{
E(1)

n

}≥ 1 − ne−c34c35 logn = 1 − 1

nK+1 .

On the other hand, by Corollary 2.2,

Q
{(

E(2)
n

)c}≤ nQ
{

sup
u∈I (1)

1

|V (u)| > c36 logn

}
≤ nQ

{
sup
|u|=1

|V (u)| > c36 logn

}
.

Applying (2.17) yields that

Q
{
E(2)

n

}≥ 1 − c5n
−(c36c6−1) = 1 − c5

nK+1 .

To estimate Q{E(3)
n }, we note that, by Corollary 2.2,

Q
{(

E(3)
n

)c}= Q
{

max
0≤j,k≤n,|j−k|≤c35 logn

|Sj − Sk| > c37 logn

}
,

which, in view of (2.15), is bounded by 2c35n
−(c3c37−1) logn. Consequently, if

En := E(1)
n ∩ E(2)

n ∩ E(3)
n ,(5.11)

then Q{En} ≥ 1 − 1
nK for all large n.



MINIMAL POSITION, BRANCHING RANDOM WALKS 765

It remains to check (5.7). By definition,

Wn,β =
n∑

j=1

∑
u∈I (n)

j

e−βV (u)
∑

x∈TGW
u ,|x|u=n−j

e−βVu(x) + e−βV (w
(n)
n )

(5.12)
≥ ∑

j∈L

∑
u∈I (n)

j

e−βV (u)
∑

x∈TGW
u ,|x|u=n−j

e−βVu(x)

for any L ⊂ {1,2, . . . , n}. We choose L := {1 ≤ j ≤ n : |j − |w(n)|| < c35 logn}.
On the event En, for u ∈ I (n)

j with some j ∈ L , we have V (u) ≤ V (w(n)) +
(c36 + c37) logn. Writing θ := c36 + c37, this leads to Wn,β ≥ n−θβe−βV (w(n)) ×∑

j∈L
∑

u∈I (n)
j

ξu, where

ξu := ∑
x∈TGW

u ,|x|u=n−j

e−βVu(x).

Since
∑

j∈L
∑

u∈I (n)
j

ξu > 0 on En, we arrive at

e−βV (w(n))

Wn,β

1En ≤ nθβ∑
j∈L

∑
u∈I (n)

j

ξu

1{∑j∈L
∑

u∈I
(n)
j

ξu>0}.

Let Gn be the sigma-field in (2.9). We observe that L and I (n)
j are Gn-measurable.

Moreover, an application of Proposition 2.1 tells us that under Q, conditionally on
Gn, the random variables ξu, u ∈ I (n)

j , j ∈ L , are independent, and are distributed
as Wn−j,β under P. We are thus entitled to apply Lemma 5.2 to see that, if G is
nondecreasing,

EQ

{
G

(
e−βV (w(n))

Wn,β

)
1En

∣∣Gn

}
≤ max

j∈L
E
{
G

(
nθβ

Wn−j,β

)∣∣Wn−j,β > 0
}

≤ max
0≤k<n

E
{
G

(
nθβ

Wk,β

)∣∣Wk,β > 0
}
.

Since P{Wk,β > 0} = P{Sk} ≥ P{S } = 1 − q , this yields Lemma 5.3. �

We are now ready for the proof of Theorem 1.6. For the sake of clarity, the upper
and lower bounds are proved in distinct parts. Let us start with the upper bound.

PROOF OF THEOREM 1.6. The upper bound. We assume (1.1), (1.2) and (1.3),
and fix β > 1.

For any Z ≥ 0 which is Fn-measurable, we have E{Wn,βZ} =
EQ{∑|u|=n

e−βV (u)

Wn
Z} = EQ{∑|u|=n 1{w(n)

n =u}e
−(β−1)V (u)Z} and, thus,

E{Wn,βZ} = EQ
{
e−(β−1)V (w

(n)
n )Z

}
.(5.13)
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Let s ∈ (
β−1
β

,1), and λ > 0. (We will choose λ = 3
2 .) Then

E{W 1−s
n,β } ≤ n−(1−s)βλ + E

{
W 1−s

n,β 1{Wn,β>n−βλ}
}

= n−(1−s)βλ + EQ

{
e−(β−1)V (w

(n)
n )

Ws
n,β

1{Wn,β>n−βλ}
}
.

Since e−βV (w
(n)
n ) ≤ Wn,β , we have e−(β−1)V (w

(n)
n )

Ws
n,β

≤ 1
W

s−(β−1)/β
n,β

; thus, on the event

{Wn,β > n−βλ}, we have e−(β−1)V (w
(n)
n )

Ws
n,β

≤ n[βs−(β−1)]λ.

Let K := [βs − (β − 1)]λ + (1 − s)βλ, and let En be the event in Lemma 5.3.
Since Q(Ec

n) ≤ n−K for all sufficiently large n (see Lemma 5.3), we obtain, for
large n,

E{W 1−s
n,β } ≤ n−(1−s)βλ + n[βs−(β−1)]λ−K

+ EQ

{
e−(β−1)V (w

(n)
n )

Ws
n,β

1{Wn,β>n−βλ}∩En

}
(5.14)

= 2n−(1−s)βλ + EQ

{
e−(β−1)V (w

(n)
n )

Ws
n,β

1{Wn,β>n−βλ}∩En

}
.

We now estimate the expectation expression EQ{·} on the right-hand side.
Let a > 0 and � > b > 0 be constants such that (β − 1)a > sβλ + 3

2 and
[βs − (β − 1)]b > 3

2 . (The choice of � will be made precise later on.) We re-

call that w
(n)
n ∈ �e,w

(n)
n � satisfies V (w(n)) = min

u∈�e,w
(n)
n �

V (u), and consider the
following events:

E1,n := {
V
(
w(n)

n

)
> a logn

}∪ {
V
(
w(n)

n

)≤ −b logn
}
,

E2,n := {
V
(
w(n))< −� logn,V

(
w(n)

n

)
> −b logn

}
,

E3,n := {
V
(
w(n))≥ −� logn,−b logn < V

(
w(n)

n

)≤ a logn
}
.

Clearly, Q(
⋃3

i=1 Ei,n) = 1.

On the event E1,n ∩{Wn,β > n−βλ}, we have either V (w
(n)
n ) > a logn, in which

case e−(β−1)V (w
(n)
n )

Ws
n,β

≤ nsβλ−(β−1)a , or V (w
(n)
n ) ≤ −b logn, in which case we use the

trivial inequality Wn,β ≥ e−βV (w
(n)
n ) to see that e−(β−1)V (w

(n)
n )

Ws
n,β

≤ e[βs−(β−1)]V (w
(n)
n ) ≤

n−[βs−(β−1)]b (recalling that βs > β − 1). Since sβλ − (β − 1)a < −3
2 and [βs −

(β − 1)]b > 3
2 , we obtain

EQ

{
e−(β−1)V (w

(n)
n )

Ws
n,β

1E1,n∩{Wn,β>n−βλ}
}

≤ n−3/2.(5.15)
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We now study the integral on E2,n ∩ {Wn,β > n−βλ} ∩ En. Since s > 0, we
can choose s1 > 0 and 0 < s2 ≤ c22

β
[where c22 is the constant in (5.1)] such that

s = s1 + s2. We have, on E2,n ∩ {Wn,β > n−βλ},
e−(β−1)V (w

(n)
n )

Ws
n,β

= eβs2V (w(n))−(β−1)V (w
(n)
n )

W
s1
n,β

e−βs2V (w(n))

W
s2
n,β

≤ n−βs2�+(β−1)b+βλs1
e−βs2V (w(n))

W
s2
n,β

.

Therefore, by an application of Lemma 5.3 to G(x) := xs2 , x > 0, we obtain, for
all sufficiently large n,

EQ

{
e−(β−1)V (w

(n)
n )

Ws
n,β

1E2,n∩{Wn,β>n−βλ}∩En

}

≤ n−βs2�+(β−1)b+βλs1

1 − q
max

0≤k<n
E
{
ns2θβ

W
s2
k,β

1Sk

}
.

By definition, 1
W

s2
k,β

≤ exp(βs2 inf|x|=k V (x)); thus, by (5.1), E{ns2θβ

W
s2
k,β

1Sk
} ≤

c
βs2/c22
23 ns2θβ+(3+ε)/2βs2 for all 0 ≤ k < n. We choose (and fix) the constant � so

large that −βs2� + (β − 1)b + βλs1 + s2θβ + 3+ε
2 βs2 < −3

2 . Therefore, for all
large n,

EQ

{
e−(β−1)V (w

(n)
n )

Ws
n,β

1E2,n∩{Wn,β>n−βλ}∩En

}
≤ n−3/2.(5.16)

We make a partition of E3,n: let M ≥ 2 be an integer, and let ai := −b + i(a+b)
M

,
0 ≤ i ≤ M . By definition,

E3,n =
M−1⋃
i=0

{
V
(
w(n))≥ −� logn,ai logn < V

(
w(n)

n

)≤ ai+1 logn
}

=:
M−1⋃
i=0

E3,n,i .

Let 0 ≤ i ≤ M − 1. There are two possible situations. First situation: ai ≤ λ.

In this case, we argue that, on the event E3,n,i , we have Wn,β ≥ e−βV (w
(n)
n ) ≥

n−βai+1 and e−(β−1)V (w
(n)
n ) ≤ n−(β−1)ai , thus, e−(β−1)V (w

(n)
n )

Ws
n,β

≤ nβsai+1−(β−1)ai =
nβsai−(β−1)ai+βs(a+b)/M ≤ n[βs−(β−1)]λ+βs(a+b)/M . Accordingly, in this situation,

EQ

{
e−(β−1)V (w

(n)
n )

Ws
n,β

1E3,n,i

}
≤ n[βs−(β−1)]λ+βs(a+b)/MQ(E3,n,i).
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Second (and last) situation: ai > λ. We have, on E3,n,i ∩ {Wn,β > n−βλ},
e−(β−1)V (w

(n)
n )

Ws
n,β

≤ nβλs−(β−1)ai ≤ n[βs−(β−1)]λ; thus, in this situation,

EQ

{
e−(β−1)V (w

(n)
n )

Ws
n,β

1E3,n,i∩{Wn,β>n−βλ}
}

≤ n[βs−(β−1)]λQ(E3,n,i).

We have therefore proved that

EQ

{
e−(β−1)V (w

(n)
n )

Ws
n,β

1E3,n∩{Wn,β>n−βλ}
}

=
M−1∑
i=0

EQ

{
e−(β−1)V (w

(n)
n )

Ws
n,β

1E3,n,i∩{Wn,β>n−βλ}
}

≤ n[βs−(β−1)]λ+βs(a+b)/MQ(E3,n).

By Corollary 2.2, Q(E3,n) = P{min0≤k≤n Sk ≥ −� logn,−b logn ≤ Sn ≤ a ×
logn} = n−(3/2)+o(1). Combining this with (5.14), (5.15) and (5.16) yields

E{W 1−s
n,β } ≤ 2n−(1−s)βλ + 2n−3/2 + n[βs−(β−1)]λ+βs(a+b)/M−(3/2)+o(1).

We choose λ := 3
2 . Since M can be as large as possible, this yields the upper bound

in Theorem 1.6 by posing r := 1 − s. �

PROOF OF THEOREM 1.6. The lower bound. Assume (1.1), (1.2) and (1.3).
Let β > 1 and s ∈ (1 − 1

β
,1). By means of (5.12) and the elementary inequality

(a + b)1−s ≤ a1−s + b1−s (for a ≥ 0 and b ≥ 0), we have

W 1−s
n,β ≤

n∑
j=1

∑
u∈I (n)

j

e−(1−s)βV (u)

( ∑
x∈TGW

u ,|x|u=n−j

e−βVu(x)

)1−s

+ e−(1−s)βV (w
(n)
n )

=
n∑

j=1

e
−(1−s)βV (w

(n)
j−1)

∑
u∈I (n)

j

e
−(1−s)β[V (u)−V (w

(n)
j−1)]

×
( ∑

x∈TGW
u ,|x|u=n−j

e−βVu(x)

)1−s

+ e−(1−s)βV (w
(n)
n ).

Let Gn be the sigma-field defined in (2.9), and let

�j = �j(n, s, β) := ∑
u∈I (n)

j

e
−(1−s)β[V (u)−V (w

(n)
j−1)], 1 ≤ j ≤ n.
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Since V (w
(n)
j ) and I (n)

j , for 1 ≤ j ≤ n, are Gn-measurable, it follows from Propo-
sition 2.1 that

EQ{W 1−s
n,β |Gn} ≤

n∑
j=1

e
−(1−s)βV (w

(n)
j−1)�j E{W 1−s

n−j,β} + e−(1−s)βV (w
(n)
n ).

Let ε > 0 be small, and let r := 3
2(1 − s)β − ε. By means of the already proved

upper bound for E(W 1−s
n,β ), this leads to, with c38 ≥ 1,

EQ{W 1−s
n,β |Gn}

(5.17)

≤ c38

n∑
j=1

e
−(1−s)βV (w

(n)
j−1)(n − j + 1)−r�j + e−(1−s)βV (w

(n)
n ).

Since E(W 1−s
n,β ) = EQ{ e−(β−1)V (w

(n)
n )

Ws
n,β

} [see (5.13)], we have, by Jensen’s inequal-

ity [noticing that V (w
(n)
n ) is Gn-measurable],

E(W 1−s
n,β ) ≥ EQ

{
e−(β−1)V (w

(n)
n )

{EQ(W 1−s
n,β |Gn)}s/(1−s)

}
,

which, in view of (5.17), yields

E(W 1−s
n,β ) ≥ 1

c
s/(1−s)
38

× EQ

{(
e−(β−1)V (w

(n)
n ))

×
({

n∑
j=1

e
−(1−s)βV (w

(n)
j−1)(n − j + 1)−r�j

+ e−(1−s)βV (w
(n)
n )

}s/(1−s))−1}
.

By Proposition 2.1, if (Sj − Sj−1, ξj ), for j ≥ 1 (with S0 := 0), are i.i.d. random

variables under Q and distributed as (V (w
(1)
1 ),

∑
u∈I (1)

1
e−(1−s)βV (u)), then the

EQ{·} expression on the right-hand side is

= EQ

{
e−(β−1)Sn

{∑n
j=1(n − j + 1)−re−(1−s)βSj−1ξj + e−(1−s)βSn}s/(1−s)

}

= EQ

{
e[βs−(β−1)]S̃n

{∑n
k=1 k−re(1−s)βS̃k ξ̃k + 1}s/(1−s)

}
,
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where

S̃� := Sn − Sn−�, ξ̃� := ξn+1−�, 1 ≤ � ≤ n.

Consequently,

E(W 1−s
n,β ) ≥ 1

c
s/(1−s)
38

EQ

{
e[βs−(β−1)]S̃n

{∑n
k=1 k−re(1−s)βS̃k ξ̃k + 1}s/(1−s)

}
.

Let c39 > 0 be a constant, and define

ES̃
n,1 :=

�nε�−1⋂
k=1

{S̃k ≤ −c39k
1/3} ∩ {−2nε/2 ≤ S̃�nε� ≤ −nε/2},

ES̃
n,2 :=

n−�nε�−1⋂
k=�nε�+1

{S̃k ≤ −[k1/3 ∧ (n − k)1/3]} ∩ {−2nε/2 ≤ S̃n−�nε� ≤ −nε/2},
ES̃

n,3 :=
n−1⋂

k=n−�nε�+1

{
S̃k ≤ 3

2
logn

}
∩
{

3 − ε

2
logn ≤ S̃n ≤ 3

2
logn

}
.

Let ρ := ρ((1 − s)β) be the constant in Corollary 2.4, and let

E
ξ̃
n,1 :=

�nε�⋂
k=1

{̃ξk ≤ n2ε/ρ},

E
ξ̃
n,2 :=

n−�nε�⋂
k=�nε�+1

{̃ξk ≤ enε/4},

E
ξ̃
n,3 :=

n⋂
k=n−�nε�+1

{̃ξk ≤ n2ε/ρ}.

On
⋂3

i=1(E
S̃
n,i ∩ E

ξ̃
n,i), we have

∑n
k=1 k−re(1−s)βS̃k ξ̃k + 1 ≤ c40n

2ε+(2ε/ρ), while

e[βs−(β−1)]S̃n ≥ n(3−ε)[βs−(β−1)]/2 (recalling that βs > β − 1). Therefore, with
c41 := (2 + 2

ρ
) s

1−s
,

E(W 1−s
n,β ) ≥ (c38c40)

−s/(1−s)n−c41εn(3−ε)[βs−(β−1)]/2

(5.18)

× Q

{ 3⋂
i=1

(ES̃
n,i ∩ E

ξ̃
n,i)

}
.

We need to bound Q(
⋂3

i=1(E
S̃
n,i ∩ E

ξ̃
n,i)) from below. Let S̃0 := 0. Note that,

under Q, (S̃� − S̃�−1, ξ̃�), 1 ≤ � ≤ n, are i.i.d., distributed as (S1, ξ1). For j ≤ n, let



MINIMAL POSITION, BRANCHING RANDOM WALKS 771

G̃j be the sigma-field generated by (S̃k, ξ̃k), 1 ≤ k ≤ j . Then ES̃
n,1, ES̃

n,2, E
ξ̃
n,1 and

E
ξ̃
n,2 are G̃n−�nε�-measurable, whereas E

ξ̃
n,3 is independent of G̃n−�nε�. Therefore,

Q

( 3⋂
i=1

(ES̃
n,i ∩ E

ξ̃
n,i)|G̃n−�nε�

)

≥ [
Q
(
ES̃

n,3|G̃n−�nε�
)+ Q(E

ξ̃
n,3) − 1

]
1
ES̃

n,1∩ES̃
n,2∩E

ξ̃
n,1∩E

ξ̃
n,2

.

We have c42 := EQ(ξ
ρ
1 ) < ∞ [by (2.16)]; thus, Q{ξ1 > n2ε/ρ} ≤ c42n

−2ε , which

entails Q(E
ξ̃
n,3) = (Q{ξ1 ≤ n2ε/ρ})�nε� ≥ (1 − c42n

−2ε)�nε� ≥ 1 − c43n
−ε . To esti-

mate Q(ES̃
n,3|G̃n−�nε�), we use the Markov property to see that, if S̃n−�nε� ∈ In :=

[−2nε/2,−nε/2], the conditional probability is (writing N := �nε�)

≥ inf
z∈In

Q
{
Si ≤ 3

2
logn − z, ∀1 ≤ i ≤ N − 1,

3 − ε

2
logn − z ≤ SN ≤ 3

2
logn − z

}
,

which is greater than N−(1/2)+o(1). Therefore,

Q
(
ES̃

n,3|G̃n−�nε�
)+ Q(E

ξ̃
n,3) − 1 ≥ n−(ε/2)+o(1) − c43n

−ε = n−(ε/2)+o(1).

As a consequence,

Q

{ 3⋂
i=1

(ES̃
n,i ∩ E

ξ̃
n,i)

}
≥ n−(ε/2)+o(1)Q(ES̃

n,1 ∩ ES̃
n,2 ∩ E

ξ̃
n,1 ∩ E

ξ̃
n,2).(5.19)

To estimate Q(ES̃
n,1 ∩ ES̃

n,2 ∩ E
ξ̃
n,1 ∩ E

ξ̃
n,2), we condition on G̃�nε�, and note that

ES̃
n,1 and E

ξ̃
n,1 are G̃�nε�-measurable, whereas E

ξ̃
n,2 is independent of G̃�nε�. Since

Q(ES̃
n,2|G̃�nε�) ≥ n−(3−ε)/2+o(1), whereas Q(E

ξ̃
n,2) = [Q{ξ1 ≤ enε/4}]n−2�nε� ≥

[1 − c42e
−ρnε/4]n−2�nε� ≥ 1 − e−nε/5

(for large n), we have

Q
(
ES̃

n,1 ∩ ES̃
n,2 ∩ E

ξ̃
n,1 ∩ E

ξ̃
n,2|G̃�nε�

)≥ [
Q
(
ES̃

n,2|G̃�nε�
)+ Q(E

ξ̃
n,2) − 1

]
1
ES̃

n,1∩E
ξ̃
n,1

≥ n−(3−ε)/2+o(1)1
ES̃

n,1∩E
ξ̃
n,1

.

Thus, Q(ES̃
n,1 ∩ ES̃

n,2 ∩ E
ξ̃
n,1 ∩ E

ξ̃
n,2) ≥ n−(3−ε)/2+o(1)Q(ES̃

n,1 ∩ E
ξ̃
n,1). Going back

to (5.19), we have

Q

{ 3⋂
i=1

(ES̃
n,i ∩ E

ξ̃
n,i)

}
≥ n−(3/2)+o(1)Q(ES̃

n,1 ∩ E
ξ̃
n,1)

≥ n−(3/2)+o(1)[Q(ES̃
n,1) + Q(E

ξ̃
n,1) − 1].
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We choose the constant c39 > 0 sufficiently small so that Q(ES̃
n,1) ≥ n−(ε/2)+o(1),

whereas Q(E
ξ̃
n,1) = Q(E

ξ̃
n,3) ≥ 1 − c43n

−ε . Accordingly,

Q

{ 3⋂
i=1

(ES̃
n,i ∩ E

ξ̃
n,i)

}
≥ n−(3+ε)/2+o(1), n → ∞.

Substituting this into (5.18) yields

E(W 1−s
n,β ) ≥ n−c41εn(3−ε)[βs−(β−1)]/2n−(3+ε)/2+o(1).

Since ε can be as small as possible, this implies the lower bound in Theorem 1.6.
�

6. Proof of Theorem 1.5. The basic idea in the proof of Theorem 1.5 is the
same as in the proof of Theorem 1.6. Again, we prove the upper and lower bounds
in distinct parts, for the sake of clarity. Throughout the section, we assume (1.1),
(1.2) and (1.3).

PROOF OF THEOREM 1.5: The upper bound. Clearly, n1/2Wn ≤ Yn, where

Yn := ∑
|u|=n

(
n1/2 ∨ V (u)+

)
e−V (u).

Recall W ∗
n from (3.7). Applying (3.14) to λ = 1, we see that Yn ≥ 1

c44
log( 1

W ∗
n
),

with c44 := c12 + c13. Thus, P{Yn < x,Sn} ≤ P{log( 1
W ∗

n
) < c44x,Sn} ≤ ec44 ×

E{(W ∗
n )1/x1Sn

}, which, according to (3.11), is bounded by ec44(xκ + e−c10n)

for 0 < x ≤ 1
a0

. Thus, for any fixed c > 0 and 0 < s < min{ c10
c

, κ}, we

have supn≥1 E{ 1
Y

s
n

1{Yn≥e−cn}∩Sn
} < ∞. On the other hand, let c31 and c32

be as in (5.5); since Yn ≥ exp{− inf|u|=n V (u)}, it follows from (5.5) that
supn≥1 E{ 1

Y
c32
n

1{Yn<e−c31n}∩Sn
} < ∞. As a consequence,

sup
n≥1

E
{

1

Y
s

n

1Sn

}
< ∞, 0 < s < min

{
c32,

c10

c31
, κ

}
.(6.1)

We now fix 0 < s < min{1
2 , c32,

c10
c31

, κ}. Let K ≥ 1 and let En be the event

in (5.11), satisfying Q{En} ≥ 1 − n−K for n ≥ n0. We write

E{(n1/2Wn)
1−s} = E{(n1/2Wn)

1−s1En} + E{(n1/2Wn)
1−s1Ec

n
}.

For n ≥ n0, E{W 1−s
n 1Ec

n
} ≤ [E{W 1−2s

n }]1/2[E{Wn1Ec
n
}]1/2 = [E{W 1−2s

n }]1/2 ×
[Q{Ec

n}]1/2 ≤ [E{Wn}](1/2)−sn−K/2, which equals n−K/2 (since E{Wn} = 1).
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Therefore, for n → ∞,

E{(n1/2Wn)
1−s} ≤ E{Y 1−s

n 1En} + o(1).

Exactly as in (5.13), we have E{Y 1−s

n 1En} = EQ{(n1/2 ∨ V (w
(n)
n )+)Y

−s

n 1En}.
Thus, for n → ∞,

E{(n1/2Wn)
1−s} ≤ EQ

{(
n1/2 + V

(
w(n)

n

)+)
Y

−s

n 1En

}+ o(1).(6.2)

For any subset L ⊂ {1,2, . . . , n}, we have

Yn ≥ ∑
j∈L

∑
u∈I (n)

j

∑
x∈TGW

u ,|x|u=n−j

max{n1/2,V (x)+}e−V (x)

= ∑
j∈L

∑
u∈I (n)

j

e−V (u)
∑

x∈TGW
u ,|x|u=n−j

max{n1/2, [V (u) + Vu(x)]+}e−Vu(x).

Recall that w(n) is the oldest vertex in �e,w
(n)
n � such that V (w(n)) =

min
u∈�e,w

(n)
n �

V (u). Let c35 be the constant in (5.8). We choose

L :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
j ≤ n :I (n)

j �= ∅,
∣∣w(n)

∣∣< j <
∣∣w(n)

∣∣+ c35 logn
}
,

if n − ∣∣w(n)
∣∣≥ 2c35 logn,{

j ≤ n :I (n)
j �= ∅,

∣∣w(n)
∣∣− c35 logn < j <

∣∣w(n)
∣∣},

otherwise.

On the event En, it is clear that L �= ∅ and that, for any u ∈ I (n)
j (with j ∈ L ),∣∣V (u) − V

(
w(n))∣∣≤ c45 logn,(6.3)

where c45 := c36 + c37, with c36 and c37 as in (5.9) and (5.10), respectively.
We distinguish two possible situations, depending on whether V (w(n)) ≥

−c46 logn, where c46 := 1
s

+ c45. In both situations, we consider a sufficiently

large n and an arbitrary u ∈ I (n)
j (with j ∈ L ).

On {V (w(n)) ≥ −c46 logn} ∩ En, we have max{n1/2, [V (u) + Vu(x)]+} ≥
1
2(n1/2 ∨ Vu(x)+) [this holds trivially in case Vu(x) ≤ n1/2; otherwise [V (u) +
Vu(x)]+ ≥ Vu(x) − (c46 + c45) logn ≥ 1

2Vu(x)+] and, thus,

Yn ≥ 1

2

∑
j∈L

∑
u∈I (n)

j

e−V (u)
∑

x∈TGW
u ,|x|u=n−j

max{(n − j)1/2,Vu(x)+}e−Vu(x)

=: 1

2

∑
j∈L

∑
u∈I (n)

j

e−V (u)ξu.
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If, however, V (w(n)) < −c46 logn, then on En, V (u) ≤ V (w(n)) + c45 logn <

−1
s

logn and, since max{n1/2, [V (u) + Vu(x)]+} ≥ n1/2, we have, in this case,

Yn ≥ n(1/s)+(1/2)
∑
j∈L

∑
u∈I (n)

j

∑
x∈TGW

u ,|x|u=n−j

e−Vu(x)

=: n(1/s)+(1/2)
∑
j∈L

∑
u∈I (n)

j

ηu.

Therefore, in both situations we have

Y
−s

n 1En ≤ 2s

(∑
j∈L

∑
u∈I (n)

j

e−V (u)ξu

)−s

1En

(6.4)

+ n−(s/2)−1

(∑
j∈L

∑
u∈I (n)

j

ηu

)−s

1En.

[Since
∑

j∈L
∑

u∈I (n)
j

∑
x∈TGW

u ,|x|u=n−j 1 > 0 on En, the (·)−s expressions on the

right-hand side are well defined.]
We claim that there exists 0 < s0 < 1 such that, for any ε > 0 and s ∈ (0, s0),

EQ

{(
n1/2 + V

(
w(n)

n

)+)(∑
j∈L

∑
u∈I (n)

j

e−V (u)ξu

)−s

1En

}
(6.5)

≤ c48,

EQ

{(
n1/2 + V

(
w(n)

n

)+)(∑
j∈L

∑
u∈I (n)

j

ηu

)−s

1En

}
(6.6)

≤ c47n
1/2+(3+ε)/2s .

We admit (6.5) and (6.6) for the time being. In view of (6.4), we obtain, for
0 < s < s∗ := min{1

2 , s0, c32,
c10
c31

, κ},
EQ

{(
n1/2 + V

(
w(n)

n

)+)
Y

−s

n 1En

}≤ 2sc48 + o(1).

Substituting this in (6.2), we see that supn≥1 E{(n1/2Wn)
1−s} < ∞ for any s ∈

(0, s∗). This yields the last inequality in (1.16) when γ is close to 1. By Jensen’s
inequality, it holds for all γ ∈ [0,1). This will complete the proof of the upper
bound in Theorem 1.5.

It remains to check (6.5) and (6.6). We only present the proof of (6.5), because
the proof of (6.6) is similar and slightly easier, using (5.2) in place of (6.1).
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Recall Gn from (2.9). By Proposition 2.1, under Q and conditionally on Gn,
the random variables ξu, for u ∈ I (n)

j and j ∈ L , are independent. We write
L := {j (1), . . . , j (N)}, with j (1) < · · · < j(N). It follows from the second part
of Lemma 5.2 that

EQ

{(∑
j∈L

∑
u∈I (n)

j

e−V (u)ξu

)−s

1En

∣∣∣Gn

}

≤
N∑

i=1

bi−1EQ

{( ∑
u∈I (n)

j (i)

e−V (u)ξu

)−s

1{∑
u∈I

(n)
j (i)

e−V (u)ξu>0}
∣∣∣Gn

}
,

where b := maxj∈L Q{∑
u∈I (n)

j

e−V (u)ξu = 0|Gn}. We note that b ≤
max1≤j≤n P{S c

n−j } ≤ q , and that, for any i ≤ N , the EQ{·} expression on the
right-hand side is, according to the first part of Lemma 5.2, bounded by

1

1 − q
max

u∈I (n)
j (i)

EQ

{
esV (u)

ξ s
u

1{ξu>0}
∣∣Gn

}
.

By Proposition 2.1, EQ{ 1
ξ s
u

1{ξu>0}|Gn} = E{ 1
Y

s
n−j

1Sn−j
}, which is bounded in n

and j [by (6.1)]. Summarizing, we have proved that

EQ

{(∑
j∈L

∑
u∈I (n)

j

e−V (u)ξu

)−s

1En

∣∣∣Gn

}
≤ c49

N∑
i=1

qi−1 max
u∈I (n)

j (i)

esV (u).

As a consequence, the expression on the left-hand side of (6.5) is bounded by
c49EQ{�n}, where

�n := (
n1/2 + V

(
w(n)

n

)+) N∑
i=1

qi−1 max
u∈I (n)

j (i)

esV (u)1{|V (u)−V (w(n))|≤c45 logn}

≤ �̃n := (
n1/2 + V

(
w(n)

n

)+) N∑
i=1

qi−1 max
u∈I (n)

j (i)

esV (u).

The proof of (6.5) now boils down to verifying the following estimates: there exists
0 < s0 < 1 such that, for any s ∈ (0, s0),

sup
n

EQ
{
�̃n1{n−|w(n)|≥2c35 logn}

}
< ∞,(6.7)

lim
n→∞ EQ

{
�n1{n−|w(n)|<2c35 logn}

}= 0.(6.8)

Let us first check (6.7). Let S0 := 0 and let (Sj − Sj−1, σj ,�j ), j ≥ 1, be i.i.d.

random variables under Q and distributed as (V (w(1)),#I (1)
1 ,max

u∈I (1)
1

esV (u)).
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Let

Sn := min
0≤i≤n

Si, ϑn := inf{k ≥ 0 :Sk = Sn}.
[The random variable ϑn has nothing to do with the constant ϑ in Proposition 3.1.]
Writing LHS(6.7) for EQ{�̃n1{n−|w(n)|≥2c35 logn}}, it follows from Proposition 2.1
that

LHS(6.7) = EQ

{
[n1/2 + S+

n ]
M∑
i=1

qi−1esS�(i)−1��(i)1{n−ϑn≥2c35 logn}
}

= EQ

{
[n1/2 + S+

n ]esSn

M∑
i=1

qi−1es[S�(i)−1−S�(0)]��(i)1{n−ϑn≥2c35 logn}
}
,

where �(i) := inf{k > �(i − 1) :σk ≥ 1} with �(0) := ϑn, and M := sup{i :�(i) <

ϑn + c35 logn}.
At this stage, we use a standard trick for random walks: let ν0 := 0 and let

νi := inf
{
k > νi−1 :Sk < min

0≤j≤νi−1
Sj

}
, i ≥ 1.

In words, 0 = ν0 < ν1 < · · · are strict descending ladder times. On the event {νk ≤
n < νk+1} (for k ≥ 0), we have ϑn = νk and Sn = Sνk

. Thus, LHS(6.7) equals

∞∑
k=0

EQ

{
1{n−νk≥2c35 logn}1{νk≤n<νk+1}[n1/2 + S+

n ]esSνk

×
M∑
i=1

qi−1es[S�(i)−1−S�(0)]��(i)

}
.

For any k, we look at the expectation EQ{·} on the right-hand side. By condi-
tioning upon (Sj , σj ,�j ,1 ≤ j ≤ νk), and since S+

n = [Sνk
+ (Sn − Sνk

)]+ ≤
(Sn − Sνk

)+ = Sn − Sνk
on {νk ≤ n < νk+1}, we obtain

LHS(6.7) ≤
∞∑

k=0

EQ
{
1{n−νk≥2c35 logn}esSνk fn(n − νk)

}
,(6.9)

where, for any 1 ≤ j ≤ n,

fn(j) := EQ

{
1{ν1>j}[n1/2 + Sj ]

M ′∑
i=1

qi−1esSm(i)−1�m(i)

}
,

and m(i) := inf{k > m(i − 1) :σk ≥ 1} with m(0) := 0, and M ′ := sup{i :m(i) <

c35 logn}. For brevity, we write Ln := ∑M ′
i=1 qi−1esSm(i)−1�m(i) = ∑∞

i=1 qi−1 ×
esSm(i)−1�m(i)1{m(i)<c35 logn} for the moment. By the Cauchy–Schwarz inequality,

fn(j) ≤ [Q{ν1 > j}]1/2[EQ{(n1/2 + Sj )
2|ν1 > j}]1/2[EQ

{
L2

n1{ν1>j}
}]1/2

.
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By (2.13), Q{ν1 > j} ≤ c50j
−1/2 for some c50 > 0 and all j ≥ 1. On the other

hand, (n1/2 +Sj )
2 ≤ 2(n+S2

j ), and it is known (Bolthausen [11]) that EQ{S2
j

j
|ν1 >

j} → c51 ∈ (0,∞) for j → ∞. Therefore, EQ{(n1/2 + Sj )
2|ν1 > j} ≤ c52n for

some c52 > 0 and all n ≥ j ≥ 1. Accordingly, with c53 := c
1/2
50 c

1/2
52 , we have

fn(j) ≤ c53j
−1/4n1/2[EQ

{
L2

n1{ν1>j}
}]1/2

, 1 ≤ j ≤ n.

By the Cauchy–Schwarz inequality, L2
n ≤ (

∑∞
i=1 qi−1)

∑∞
i=1 qi−1e2sSm(i)−1�2

m(i)×
1{m(i)<c35 logn}. Therefore, for j ≥ 2c35 logn,

EQ
{
L2

n1{ν1>j}
}≤ 1

1 − q

∞∑
i=1

qi−1EQ
{
e2sSm(i)−1�2

m(i)1{m(i)<c35 logn}1{ν1>j}
}

≤ 1

1 − q

∞∑
i=1

qi−1EQ
{
e2sSm(i)−1�2

m(i)1{m(i)≤j/2}1{ν1>j}
}
.

For any i ≥ 1, to estimate the expectation EQ{·} on the right-hand side, we apply
the strong Markov property at time m(i) to see that

EQ{·} = EQ
{
e2sSm(i)−1�2

m(i)1{m(i)≤j/2}1{ν1>m(i)}g
(
Sm(i), j − m(i)

)}
,

where g(z, k) := Q{z + Si ≥ 0,∀1 ≤ i ≤ k} for any z ≥ 0 and k ≥ 1. By (13) of
Kozlov [24], g(z, k) ≤ c54(z + 1)/k1/2 for some c54 > 0 and all z ≥ 0 and k ≥ 1.
Since z + 1 ≤ c55e

sz for all z ≥ 0, this yields, with c56 := c55
1−q

,

EQ
{
L2

n1{ν1>j}
} ≤ c56

∞∑
i=1

qi−1EQ

{
e2sSm(i)−1�2

m(i)1{m(i)≤j/2}
esSm(i)

(j − m(i))1/2

}

≤ c56

(j/2)1/2

∞∑
i=1

qi−1EQ
{
e2sSm(i)−1+sSm(i)�2

m(i)

}

= 21/2c56

j1/2 EQ

{ ∞∑
i=1

qi−1e2sSm(i)−1+sSm(i)�2
m(i)

}
.

We observe that
∑∞

i=1 qi−1e2sSm(i)−1+sSm(i)�2
m(i) ≤ ∑∞

k=1 qR(k)−1e2sSk−1+sSk�2
k ,

where R(k) := #{1 ≤ j ≤ k :σj ≥ 1}. Therefore, with c57 := 21/2c56,

EQ
{
L2

n1{ν1>j}
}≤ c57

j1/2

∞∑
k=1

EQ
{
qR(k)−1e2sSk−1+sSk�2

k

}

≤ c57

j1/2

∞∑
k=1

[
EQ

{
q2[R(k)−1]}]1/2[EQ{e4sSk−1+2sSk�4

k}]1/2.
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By definition, EQ{q2[R(k)−1]} = q−2rk , with r := Q(σ1 = 0) + q2Q(σ1 ≥ 1) < 1
[because q < 1 and Q(σ1 = 0) < 1]. On the other hand,

EQ{e4sSk−1+2sSk�4
k} = EQ{e6sSk−1}EQ

{
e2s(Sk−Sk−1)�4

k

}
= [EQ{e6sS1}]k−1EQ{e2sS1�4

1}.
By (2.11), there exists s# > 0 sufficiently small such that EQ{e6sS1} < 1

r
for

all 0 < s < s#. On the other hand, EQ{�8
1} < ∞ for 0 < s <

c6
8 [by (2.17)],

and EQ{e4sS1} < ∞ for 0 < s ≤ c2
4 [by (2.11)]; thus, EQ{e2sS1�4

1} < ∞ for
0 < s < min{ c6

8 , c2
4 }. As a consequence, for any 0 < s < min{s#,

c6
8 , c2

4 }, we have
EQ{L2

n1{ν1>j}} ≤ c58
j1/2 , for some c58 > 0 and all n ≥ j ≥ 1 with j ≥ 2c35 logn,

which yields

fn(j) ≤ c53c
1/2
58 j−1/2n1/2.

Going back to (6.9), we obtain, for any 0 < s < min{s#,
c6
8 , c2

4 } and c59 := c53c
1/2
58 ,

LHS(6.7) ≤ c59n
1/2

∞∑
k=0

EQ

{
1{n−νk≥2c35 logn}

esSνk

(n − νk)1/2

}
.

By (2.13) again, 1
j1/2 ≤ c60Q{ν1 > j} for all j ≥ 1. Thus, with c61 := c59c60,

LHS(6.7) ≤ c61n
1/2

∞∑
k=0

EQ
{
1{n−νk≥2c35 logn}esSνk 1{νk+1>n}

}

≤ c61n
1/2

∞∑
k=0

EQ
{
1{νk≤n<νk+1}esSνk

}
,

which equals c61n
1/2EQ{es min0≤i≤n Si }, and, according to (2.14), is bounded in n.

This completes the proof of (6.7).
It remains to check (6.8). By definition,

�n ≤ [
n1/2 + V

(
w(n)

n

)+]
nsc45esV (w(n))

N∑
i=1

qi−1.

Since
∑N

i=1 qi−1 ≤ 1
1−q

, this leads to, by an application of Proposition 2.1,

EQ
{
�n1{n−|w(n)|<2c35 logn}

}≤ nsc45

1 − q
EQ

{[n1/2 + S+
n ]esSn1{n−ϑn<2c35 logn}

}
,

where (Si) is as in Proposition 2.1 and, as before, Sn := min0≤i≤n Si , ϑn := inf{k ≥
0 :Sk = Sn}.

Let 0 < ε < 1
2 ; let An := {Sn > n1/2+ε} and Bn := {Sn ≤ n1/2+ε} = Ac

n.
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Since EQ{eaS1} < ∞ for |a| < c2 [see (2.11)] and Q(An) ≤ 2 exp(−c3n
2ε) [see

(2.12)], the Cauchy–Schwarz inequality yields nsc45EQ{[n1/2 +S+
n ]esSn1An} → 0,

n → ∞.
On Bn, we have n1/2 + S+

n ≤ 2n1/2+ε; thus, EQ{[n1/2 + S+
n ]esSn ×

1Bn∩{n−ϑn<2c35 logn}} ≤ 2n1/2+εEQ{esSn1{n−ϑn<2c35 logn}}. It is clear that Sn ≤
S�n/2� := min0≤i≤n/2 Si , and that {n − ϑn < 2c35 logn} ⊂ {n

2 − ϑ̃n/2 < 2c35 logn},
where ϑ̃n/2 := min{k ≥ 0 : S̃k = min0≤i≤n−�n/2� S̃i}, with S̃i := Si+�n/2� − S�n/2�,
i ≥ 0. Since S�n/2� and ϑ̃n/2 are independent, we have EQ{esSn1{n−ϑn<2c35 logn}} ≤
EQ{esS�n/2�}Q{n

2 − ϑ̃n/2 < 2c35 logn}. By (2.14), EQ{esS�n/2�} ≤ c62n
−1/2; on the

other hand, Q{n
2 − ϑ̃n/2 < 2c35 logn} ≤ c63

(logn)1/2

n1/2 (see Feller [18], page 398).

Therefore, EQ{[n1/2 + S+
n ]esSn1Bn∩{n−ϑn<2c35 logn}} ≤ c64n

−1/2+ε(logn)1/2.
Summarizing, we have proved that, for any s > 0 and 0 < ε < 1

2 , when n → ∞,

EQ
{
�n1{n−|w(n)|<2c35 logn}

}≤ o(1) + c64

1 − q
nsc45−1/2+ε(logn)1/2,

which yields (6.8), as long as 0 < s < 1
2c45

. �

PROOF OF THEOREM 1.5. The lower bound. We start with

n1/2Wn ≥ Yn := ∑
|u|=n

(
n1/2 ∧ V (u)+

)
e−V (u).

Let s ∈ (0,1). Exactly as in (5.13), we have

E{Y 1−s
n } = EQ

{(
n1/2 ∧ V

(
w(n)

n

)+)
Y−s

n

}
.(6.10)

By definition,

Yn =
n∑

j=1

∑
u∈I (n)

j

e−V (u)
∑

x∈TGW
u ,|x|u=n−j

min{n1/2, [V (u) + Vu(x)]+}e−Vu(x)

+ min{n1/2,V (w(n)
n )+}e−V (w

(n)
n )

≤
n∑

j=1

e
−V (w

(n)
j−1)

∑
u∈I (n)

j

e−�u
∑

x∈TGW
u ,|x|u=n−j

[
V
(
w

(n)
j−1

)+ + �+
u + Vu(x)+

]

× e−Vu(x) + �n,

where �u := V (u) − V (w
(n)
j−1) [for u ∈ I (n)

j ], and �n := V (w
(n)
n )+e−V (w

(n)
n ).

By means of the elementary inequality (
∑

i ai)
−s ≥ (

∑
i a

s
i )

−1 and (
∑

i bi)
s ≤∑

i b
s
i for nonnegative ai and bi , we obtain Y−s

n ≥ 1
Zn

on Sn, with Zn being defined
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as

∑
j

e
−sV

(
w

(n)
j−1

)∑
u

e−s�u

{[(
V (w

(n)
j−1)

+)s + (�+
u )s

](∑
x

e−Vu(x)

)s

+
[∑

x

Vu(x)+e−Vu(x)

]s}
+ �s

n,

where
∑

j :=∑n
j=1,

∑
u :=∑

u∈I (n)
j

, and
∑

x :=∑
x∈TGW

u ,|x|u=n−j . We now con-

dition upon Gn, and note that V (w
(n)
j ) and I (n)

j are Gn-measurable. By Proposi-
tion 2.1,

EQ{Zn|Gn} =∑
j

e
−sV (w

(n)
j−1)

∑
u

e−s�u
{((

V
(
w

(n)
j−1

)+)s + (�+
u )s

)
× E(Ws

n−j ) + E(Us
n−j )

}+ �s
n,

where, for any k ≥ 0, Uk := ∑
|y|=k V (y)+e−V (y). By Jensen’s inequality,

E(Ws
n−j ) ≤ [E(Wn−j )]s = 1. On the other hand, by (3.9), Uk ≤ c65 log 1

W ∗
k

and,

thus, by Lemma 3.3, E(Us
k ) ≤ cs

65E{[log 1
W ∗

k
]s} ≤ c66. Therefore, the

∑
u sum on

the right-hand side (without �s
n, of course) is

≤ ∑
u

e−s�u
{(

V
(
w

(n)
j−1

)+)s + (�+
u )s + c67

}
= [

V
(
w

(n)
j−1

)+]s ∑
u

e−s�u +∑
u

e−s�u{(�+
u )s + c67}.

There exists c68 = c68(s) < ∞ such that e−sa{(a+)s + c67} ≤ c68(e
−sa + e−sa/2)

for all a ∈ R. As a consequence,

EQ{Zn|Gn} ≤ c69

n∑
j=1

e
−sV (w

(n)
j−1)

{[
V
(
w

(n)
j−1

)+]s + 1
}

× ∑
u∈I (n)

j

[e−s�u + e−s/2�u] + �s
n.

By Jensen’s inequality again, EQ{ 1
Zn

|Gn} ≥ 1
EQ{Zn|Gn} . Since Y−s

n ≥ 1
Zn

on Sn,
this leads to

EQ{Y−s
n |Gn}

≥ c70∑n
j=1 e

−sV (w
(n)
j−1){[V (w

(n)
j−1)

+]s + 1}∑
u∈I (n)

j

[e−s�u + e− s
2 �u] + �s

n

.
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We apply Proposition 2.1: if (Sj − Sj−1, ηj ), for j ≥ 1 (with S0 := 0), are
i.i.d. random variables (under Q) and distributed as (V (w(1)),

∑
u∈I (1)

1
[e−sV (u) +

e−s/2V (u)]), then

EQ
{(

n1/2 ∧ V
(
w(n)

n

)+)
Y−s

n

}
≥ c70EQ

{
n1/2 ∧ S+

n∑n
j=1 e−sSj−1[(S+

j−1)
s + 1]ηj + e−sSn(S+

n )s

}

≥ c70EQ

{
(n1/2 ∧ Sn)1{min1≤j≤n Sj>0}∑n

j=1 e−sSj−1(Ss
j−1 + 1)ηj + e−sSnSs

n

}
.

Note that if Sj > 0, then e−sSj [Ss
j + 1] ≤ c71e

−tSj with t := s
2 . Therefore, by

writing

Q(n){·} := Q
{
·∣∣ min

1≤j≤n
Sj > 0

}
,

and E(n)
Q the expectation with respect to Q(n), and η̂j := ηj + 1 for brevity, we get

that

EQ
{(

n1/2 ∧ V
(
w(n)

n

)+)
Y−s

n

}≥ c72Q
{

min
1≤j≤n

Sj > 0
}

E(n)
Q

{
n1/2 ∧ Sn∑n+1

j=1 e−tSj−1 η̂j

}

≥ c72Q
{

min
1≤j≤n

Sj > 0
}

E(n)
Q

{
εn1/21{Sn>εn1/2}∑n+1

j=1 e−tSj−1 η̂j

}
.

Since Q{min1≤j≤n Sj > 0} ≥ c73n
−1/2 [see (2.13)], this leads to

EQ
{(

n1/2 ∧ V
(
w(n)

n

)+)
Y−s

n

}
≥ c74εE(n)

Q

{ 1{Sn>εn1/2}∑n+1
j=1 e−tSj−1 η̂j

}

≥ c74ε

[
E(n)

Q

{
1∑n+1

j=1 e−tSj−1 η̂j

}
− Q(n){Sn ≤ εn1/2}

]
.

Let ρ(s) > 0 be as in Corollary 2.4. We have EQ{(∑
u∈I (1)

1
e−sV (u))ρ(s)} < ∞

by (2.16). Since ρ(s) ≤ ρ( s
2), we also have EQ{(∑

u∈I (1)
1

e−s/2V (u))ρ(s)} < ∞.

Therefore, EQ{η̂ρ(s)
1 } < ∞. We are thus entitled to apply Lemma 6.1 (stated and

proved below) to see that E(n)
Q { 1

1+∑n+1
j=1 e

−tSj−1 η̂j

} ≥ c75 for some c75 ∈ (0,∞) and

all n ≥ n0. Since 1∑n+1
j=1 e

−tSj−1 η̂j

≥ 1
1+∑n+1

j=1 e
−tSj−1 η̂j

, this yields

EQ
{(

n1/2 ∧ V
(
w(n)

n

)+)
Y−s

n

}≥ c74ε
[
c75 − Q(n){Sn ≤ εn1/2}], n ≥ n0.
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On the other hand, Sn/n1/2 under Q(n) converges weakly to the terminal value of a
Brownian meander (see Bolthausen [11]); in particular, limε→0 limn→∞ Q(n){Sn ≤
εn1/2} = 0. We can thus choose (and fix) a small ε > 0 such that Q(n){Sn ≤
εn1/2} ≤ c75

2 for all n ≥ n1. Therefore, for n ≥ n0 + n1,

EQ
{(

n1/2 ∧ V
(
w(n)

n

)+)
Y−s

n

}≥ c74ε

[
c75 − c75

2

]
.

As a consequence, we have proved that, for 0 < s < 1,

lim inf
n→∞ EQ

{(
n1/2 ∧ V

(
w(n)

n

)+)
Y−s

n

}
> 0,

which, in view of (6.10), yields the first inequality in (1.16), and thus completes
the proof of the lower bound in Theorem 1.5. �

We complete the proof of Theorem 1.5 by proving the following lemma, which
is a very simple variant of a result of Kozlov [24].

LEMMA 6.1. Let {(Xk, ηk), k ≥ 1} be a sequence of i.i.d. random vectors de-
fined on (�,F ,P) with P{η1 ≥ 0} = 1, such that E{ηθ

1} < ∞ for some θ > 0. We
assume E(X1) = 0 and 0 < E(X2

1) < ∞. Let S0 := 0 and Sn := X1 +· · ·+Xn, for
n ≥ 1. Then

lim
n→∞ E

{
1

1 +∑n+1
k=1 ηke−Sk−1

∣∣∣∣ min
1≤k≤n

Sk > 0
}

= c76 ∈ (0,∞).(6.11)

PROOF. The lemma is an analogue of the identity (26) of Kozlov [24], except
that the distribution of our η1 is slightly different from that of Kozlov’s, which ex-
plains the moment condition E{ηθ

1} < ∞: this condition will be seen to guarantee

lim
j→∞ lim sup

n→∞
E

{
1

1 +∑j
k=1 ηke−Sk−1

(6.12)

− 1

1 +∑n+1
k=1 ηke−Sk−1

∣∣∣∣ min
1≤k≤n

Sk > 0
}

= 0.

The identity (6.12), which plays the role of Kozlov’s Lemma 1 in [24], is the key
ingredient in the proof of (6.11). Since the rest of the proof goes along the lines
of [24] with obvious modifications, we only prove (6.12) here.

Without loss of generality, we assume θ ≤ 2 (otherwise, we can replace θ by 2).
We observe that, for n > j , the integrand in (6.12) is nonnegative, and is

≤
∑n+1

k=j+1 ηke
−Sk−1

1 +∑n+1
k=1 ηke−Sk−1

≤
( ∑n+1

k=j+1 ηke
−Sk−1

1 +∑n+1
k=1 ηke−Sk−1

)θ/2

≤
( n+1∑

k=j+1

ηke
−Sk−1

)θ/2

,
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which is bounded by
∑n+1

k=j+1 η
θ/2
k e−θ/2Sk−1 . Since P{min1≤k≤n Sk > 0} ∼ c4/n1/2

[see (2.13)], we only need to check that

lim
j→∞ lim sup

n→∞
n1/2

n+1∑
k=j+1

E
{
η

θ/2
k e−θ/2Sk−11{min1≤i≤n Si>0}

}= 0.(6.13)

Let LHS(6.13) denote the n1/2∑n+1
k=j+1 E{·} expression on the left-hand side.

Let Ŝi = Ŝi(k) := Si+k − Sk , i ≥ 0. It is clear that (Ŝi , i ≥ 0) is independent of
(ηk,X1, . . . ,Xk), and is distributed as (Si, i ≥ 0). Write Sk−1 := min1≤j≤k−1 Sj

and Ŝn−k := min1≤i≤n−k Ŝi . Then

LHS(6.13) ≤ n1/2
n+1∑

k=j+1

E
{
η

θ/2
k e−θ/2Sk−11{Sk−1>0,Ŝn−k>−Sk−1−Xk}

}
.

To estimate E{·} on the right-hand side, we first condition upon (ηk, Sk−1, Sk−1,

Xk), which leaves us to estimate the tail probability of Ŝn−k . At this stage, it is

convenient to recall (see (13) of Kozlov [24]) that P{Ŝn−k > −y} ≤ c54
1+y+

(n−k+1)1/2

for some c54 > 0 and all y ∈ R. Accordingly,

LHS(6.13) ≤ c54n
1/2

n+1∑
k=j+1

E

{
η

θ/2
k e−θ/2Sk−11{Sk−1>0}

1 + (Sk−1 + Xk)
+

(n − k + 1)1/2

}

≤ c54n
1/2

n+1∑
k=j+1

E

{
η

θ/2
k e−θ/2Sk−11{Sk−1>0}

1 + Sk−1 + X+
k

(n − k + 1)1/2

}
.

On the right-hand side, (ηk,Xk) is independent of (Sk−1, Sk−1). We condition
upon (Sk−1, Sk−1): for any z ≥ 1, an application of the Cauchy–Schwarz inequal-
ity gives

E{ηθ/2
k (z + X+

k )} ≤ [E(ηθ
k )]1/2[E{(z + X+

k )2}]1/2.

Of course, E(ηθ
k ) = E(ηθ

1) < ∞ by assumption, and E{(z + X+
k )2} ≤ 2E(z2 +

X2
k) = 2[z2 + E(X2

1)]. Thus, E{ηθ/2
k (z + X+

k )} ≤ c77z for z ≥ 1. Consequently,
with c78 := c54c77,

LHS(6.13) ≤ c78n
1/2

n+1∑
k=j+1

E

{
e−θ/2Sk−11{Sk−1>0}

1 + Sk−1

(n − k + 1)1/2

}

≤ c79n
1/2

n+1∑
k=j+1

E

{
e−θ/3Sk−11{Sk−1>0}

1

(n − k + 1)1/2

}
,

the last inequality following from the fact that supx>0(1 + x)e−θ/6x < ∞.
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We use once again the estimate (2.13), which implies 1
(n−k+1)1/2 ≤ c80P{Si >

Sk−1,∀k ≤ i ≤ n}. Since (Si − Sk−1, k ≤ i ≤ n) is independent of (Sk−1, Sk−1),
this implies, with c81 := c79c80,

LHS(6.13) ≤ c81n
1/2

n+1∑
k=j+1

E
{
e−θ/3Sk−11{Sk−1>0,Si>Sk−1,∀k≤i≤n}

}

≤ c81n
1/2

n+1∑
k=j+1

E
{
e−θ/3Sk−11{Sn>0}

}
,

where Sn := min1≤i≤n Si . It remains to check that

lim
j→∞ lim sup

n→∞
n1/2

n+1∑
k=j+1

E
{
e−θ/3Sk−11{Sn>0}

}= 0.(6.14)

This would immediately follow from Lemma 1 of Kozlov [24], but we have been
kindly informed by Gerold Alsmeyer (to whom we are grateful) of a flaw in
its proof, on page 800, line 3 of [24], so we need to proceed differently. Since
E{e−θ/3Sk−11{Sn>0}} ≤ n−(3/2)+o(1)(n − k + 2)−1/2 (for n → ∞) uniformly in

k ∈ [n
2 , n + 1], we have n1/2∑n+1

k=�n/2� E{e−θ/3Sk−11{Sn>0}} → 0, n → ∞. On the

other hand, (36) of Kozlov [24] (applied to δ = 1
2 and ηi = 1 there) implies

that limj lim supn n1/2∑�n/2�
k=j+1 E{e−θ/3Sk−11{Sn>0}} = 0. Therefore, (6.14) holds:

Lemma 6.1 is proved. �

7. Proof of Theorem 1.3 and (1.14)–(1.15) of Theorem 1.4. In this section
we prove Theorem 1.3, as well as parts (1.14)–(1.15) of Theorem 1.4. We as-
sume (1.1), (1.2) and (1.3) throughout the section.

PROOF OF THEOREM 1.3 AND (1.14) AND (1.15) OF THEOREM 1.4. Up-
per bounds. Let ε > 0. By Theorem 1.6 and Chebyshev’s inequality, P{Wn,β >

n−(3β/2)+ε} → 0. Therefore, Wn,β ≤ n−(3β/2)+o(1) in probability, yielding the up-
per bound in (1.15).

The upper bound in (1.14) follows trivially from the upper bound in (1.15).
It remains to prove the upper bound in Theorem 1.3. Fix γ ∈ (0,1). Since W

γ
n

is a nonnegative supermartingale, the maximal inequality tells that, for any n ≤ m

and any λ > 0,

P
{

max
n≤j≤m

W
γ
j ≥ λ

}
≤ E(W

γ
n )

λ
≤ c82

λnγ/2 ,

the last inequality being a consequence of Theorem 1.5. Let ε > 0 and let nk :=
�k2/ε�. Then

∑
k P{maxnk≤j≤nk+1 W

γ
j ≥ n

−(γ /2)+ε
k } < ∞. By the Borel–Cantelli

lemma, almost surely for all large k, maxnk≤j≤nk+1 Wj < n
−(1/2)+(ε/γ )
k . Since
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ε
γ

can be arbitrarily small, this yields the desired upper bound: Wn ≤ n−(1/2)+o(1)

a.s. �

PROOF OF THEOREM 1.3 AND (1.14) AND (1.15) OF THEOREM 1.4. Lower
bounds. To prove the lower bound in (1.14) and (1.15), we use the Paley–Zygmund
inequality and Theorem 1.6 to see that

P
{
Wn,β > n−(3β/2)+o(1)}≥ no(1), n → ∞.(7.1)

This is the analogue of (4.5) for Wn. From here, the argument follows the lines
in the proof of the upper bound in (1.8) of Theorem 1.2 (Section 4), and goes as
follows: let ε > 0 and let τn := inf{k ≥ 1 : #{u : |u| = k} ≥ n2ε}. Then

P
{
τn < ∞, min

k∈[n/2,n]Wk+τn,β ≤ n−(3β/2)−ε exp
[
−β max|x|=τn

V (x)

]}

≤ ∑
k∈[n/2,n]

P
{
τn < ∞,Wk+τn,β ≤ n−(3β/2)−ε exp

[
−β max|x|=τn

V (x)

]}

≤ ∑
k∈[n/2,n]

(
P
{
Wk,β ≤ n−(3β/2)−ε})�n2ε�

,

which, according to (7.1), is bounded by n exp(−n−ε�n2ε�) (for all sufficiently
large n), thus summable in n. By the Borel–Cantelli lemma, almost surely
for all sufficiently large n, we have either τn = ∞, or mink∈[n/2,n] Wk+τn,β >

n−(3β/2)−ε exp[−β max|x|=τn V (x)]. Conditionally on the system’s ultimate sur-
vival, we have 1

n
max|x|=n V (x) → c21 a.s., τn ∼ 2ε logn

logm
a.s., n → ∞, and Wn,β ≥

mink∈[n/2,n] Wk+τn,β for all sufficiently large n. This readily yields lower bounds
in (1.14) and (1.15): conditionally on the system’s survival, Wn,β ≥ n−(3β/2)+o(1)

almost surely (and a fortiori, in probability).
The lower bound in Theorem 1.3 is along exactly the same lines, but using

Theorem 1.5 instead of Theorem 1.6. �

8. Proof of Theorem 1.2. Assume (1.1), (1.2) and (1.3). Let β > 1. We
trivially have Wn,β ≤ Wn exp{−(β − 1) inf|u|=n V (u)} and Wn,β ≥ exp{−β ×
inf|u|=n V (u)}. Therefore, 1

β
log 1

Wn,β
≤ inf|u|=n V (u) ≤ 1

β−1 log Wn

Wn,β
on Sn. Since

β can be as large as possible, by means of Theorem 1.3 and of parts (1.14) and
(1.15) of Theorem 1.4, we immediately get (1.7) and (1.9).

Since Wn ≥ exp{− inf|u|=n V (u)}, the lower bound in (1.8) follows immediately
from Theorem 1.3, whereas the upper bound in (1.8) was already proved in Sec-
tion 4.

9. Proof of part (1.13) of Theorem 1.4. The upper bound follows from The-
orem 1.3 and the elementary inequality Wn,β ≤ W

β
n , the lower bound from (1.8)

and the relation Wn,β ≥ exp{−β inf|u|=n V (u)}.
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10. Proof of Theorem 1.1. The proof of Theorem 1.1 relies on Theorem 1.5
and a preliminary result, stated below as Proposition 10.1. Theorem 1.5 ensures
the tightness of (n1/2Wn,n ≥ 1), whereas Proposition 10.1 implies that Wn+1

Wn
con-

verges to 1 in probability (conditionally on the system’s survival).

PROPOSITION 10.1. Assume (1.1), (1.2) and (1.3). For any γ > 0, there exists
γ1 > 0 such that, for all sufficiently large n,

P
{∣∣∣∣Wn+1

Wn

− 1
∣∣∣∣≥ n−γ

∣∣S }
≤ n−γ1 .(10.1)

PROOF. Let 1 < β ≤ min{2,1 + ρ(1)}, where ρ(1) is the constant in Corol-
lary 2.4.

We use a probability estimate of Petrov [34], page 82: for centered random
variables ξ1, . . . , ξ� with E(|ξi |β) < ∞ (for 1 ≤ i ≤ �), we have E{|∑�

i=1 ξi |β} ≤
2
∑�

i=1 E{|ξi |β}.
By definition, on the set Sn, we have

Wn+1

Wn

− 1 = ∑
|u|=n

e−V (u)

Wn

( ∑
x∈TGW

u :|x|u=1

e−Vu(x) − 1

)
,

where T
GW and |x|u are as in (2.1) and (2.4), respectively. Conditioning on Fn,

and applying Proposition 2.1 and Petrov’s probability inequality recalled above,
we see that, on Sn,

E
{∣∣∣∣Wn+1

Wn

− 1
∣∣∣∣β ∣∣Fn

}
≤ 2

∑
|u|=n

e−βV (u)

W
β
n

E

{∣∣∣∣∣ ∑|y|=1

e−V (y) − 1

∣∣∣∣∣
β}

(10.2)

= c83
Wn,β

W
β
n

,

where c83 := 2E{|∑|v|=1 e−V (v) −1|β} < ∞ [see (2.16)], and Wn,β is as in (1.11).

Let ε > 0 and b > 0. Let s ∈ (
β−1
β

,1). Define Dn := {Wn ≥ n−(1/2)−ε} ∩
{Wn,β ≤ n−(3β/2)+b}. By Proposition 3.1, P{Wn < n−(1/2)−ε,S } ≤ n−ϑ for some
ϑ > 0 and all large n, whereas, by Theorem 1.6, P{Wn,β > n−(3β/2)+b} ≤
n3β(1−s)/2−(1−s)bE{W 1−s

n,β } = n−(1−s)b+o(1). Therefore,

P{S \ Dn} ≤ n−ϑ + n−(1−s)b+o(1), n → ∞.

On the other hand, since S ⊂ Sn, it follows from (10.2) and Chebyshev’s inequal-
ity that, for n → ∞,

P
{∣∣∣∣Wn+1

Wn

− 1
∣∣∣∣≥ n−γ ,Dn,S

}
≤ nγβE

{
c83

Wn,β

W
β
n

1Dn∩Sn

}
≤ c83n

γβ−(3β/2)+b+[(1/2)+ε]β.
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As a consequence, when n → ∞,

P
{∣∣∣∣Wn+1

Wn

− 1
∣∣∣∣≥ n−γ ,S

}
≤ n−ϑ + n−(1−s)b+o(1) + c83n

γβ−β+b+εβ .

We choose ε and b sufficiently small such that γβ − β + b + εβ < 0. Proposi-
tion 10.1 is proved. �

We now have all of the ingredients needed for the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Once Proposition 10.1 is established, the proof of
Theorem 1.1 follows the lines of Biggins and Kyprianou [7].

Assume (1.1), (1.2) and (1.3). Let λn > 0 satisfy E{(λnWn)
1/2} = 1. That is,

λn := {E(W 1/2
n )}−2.

By Theorem 1.5, we have 0 < lim infn→∞ λn

n1/2 ≤ lim supn→∞ λn

n1/2 < ∞, and

(λnWn) is tight. Let Ŵ be any possible (weak) limit of (λnWn) along a sub-
sequence. By Theorem 1.5 and dominated convergence, E(Ŵ 1/2) = 1. We now
prove the uniqueness of Ŵ .

By definition,

Wn+1 = ∑
|v|=1

e−V (v)
∑

x∈TGW
v ,|x|v=n

e−Vv(x).

By assumption, λnWn → Ŵ in distribution when n goes to infinity along a certain
subsequence. Thus, λnWn+1 converges weakly (when n goes along the same sub-
sequence) to

∑
|v|=1 e−V (v)Ŵv , where, conditionally on (v,V (v), |v| = 1), Ŵv are

independent copies of Ŵ .
On the other hand, by Proposition 10.1, λnWn+1 also converges weakly (along

the same subsequence) to Ŵ . Therefore,

Ŵ
law= ∑

|v|=1

e−V (v)Ŵv.

This is the same equation for ξ∗ in (3.5). Recall that (3.5) has a unique solution up

to a scale change (Liu [27]), and since E(Ŵ 1/2) = 1, we have Ŵ
law= c84ξ

∗, with
c84 := [E{(ξ∗)1/2}]−2. The uniqueness (in law) of Ŵ shows that λnWn converges
weakly to Ŵ when n → ∞.

By (3.3), P{Wn > 0} = P{Sn} → P{S } = P{ξ∗ > 0}. Let W > 0 be a random
variable such that

E(e−aW ) = E(e−aŴ |Ŵ > 0), ∀a ≥ 0.(10.3)

It follows that, conditionally on the system’s survival, λnWn converges in distrib-
ution to W . �
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