Minimal Projections on Hyperplanes in Sequence Spaces.

J. BraTrTER - E. W. CuENEY (Austin, Tex.) (*)

Summary, - The projection constanis of hyperplanes in the classical sequence spaces (c,) and
(1) are determined, together with the projections of minimum norm.

1. - Introduction.

If Y is a closed linear subspace in a Banach space X, then a projection of X onto ¥
is @ bounded linear map P: X — Y such that Py =y for all ye Y. If such a projec-
tion exists, then Y is said to be complemented in X. In this case, there is some in-
terest in discovering whether there exist projections of minimsal norm, and if so,
what their properties are.

Many applications of projections oceur in numerieal analysis and approximation
theory, for Pz can be regarded as an approximation to @ in ¥. The quality of this
approximation relative to the best approximation is governed by the inequality

|#— Po| < |I—P|-dist (=, ¥) .

In some previous work [1, 2, 3, 4] we have drawn attention to the problem of
determining projections of minimal norm, assuming that a pair ¥ ¢ X has been
preseribed. Many interesting open problems remain in this area of endeavor; for
example, the minimal projections of ([0, 1] onto the subspace of polynomials of
degree < n are still unknown!

The present paper has the modest goal of studying projections of minimal norm
onto hyperplanes in the classical sequence spaces (¢,) and (I,). We give formulas
for projection constants, identify cases in which there exist projections of norm 1,
and so forth. In the course of the investigation we encounter a number of unusual
extremal problems which must be solved to yield minimal projections. The situa-
tion ag regards hyperplanes in {¢,) is reasonably simple. See, for example, Theorem 2
below. In (},), bowever, the description of the projection constants is suprisingly
complex and seems to require the consideration of a number of cases. See, for ex-
ample, Theorems 7, 8, and 9.

(*) Entrata in Redazione I'11 dicembre 1972,
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We summarize here a few definitions:
(1) (c,) is the space of all real sequences z = (w, #,, ...} such that 7161_,190 &,= 0.

The norm is ||of = sup |z,).

(2) (L) is the space of sequences for which » [#,]< co, the norm being
0 ne=1
o= 3 Joul

(3) (I,) is the space of sequences for which sup [#.|< oo, the norm being
lo]e= sup @]

As is well-known, (I,) is isomefrically isomorphic to (¢,)* and () is isometri-
cally isomorphic to (I,)*; in both cases the functionals are given by the formula

(f’ $) - z fnwn-
n=1

A hyperplane {(in any normed space) X is defined here to be a set of the form
)= {peX:fl))=0}  (feX* f=0).

The relative projection constant of & complemented subspace Y in a Banach space X
is the number
p(¥)=inf {|P|: P projects X onto ¥}.

The subspace Y is termed an §-space in X if the infimum inf {|o —y|: y € ¥}
is attained for each ze X.

Levma 1. - Let X be a normed linear space and let f be a continuous nonzero linear
functional on X. Hach projection of X onto the hyperplane f~1(0) is of the following form,
for some z € f~1(1):

1) P=1—fR®z= ie. Pao=n—fn)z.

Proor. - If Pis a projection of X onto f~1(0), select v € {~*(1) and put = v-— Po.
Then f(2)==f(v) —f(Pv)=f(v)=1. Hence X is the direct sum of f1(0) and the
subspace generated by z. On f~1(0), P and P, agree since P,o=x—f(2)2= o= Py

if # € ~1(0). On the subspace generadet by 2, P and P, agree since P,z=z—f(2)s=
=0=Pov—Pr)y=Pz. m

2. — The space (¢,).

Lumwma 2. —~ Let f be an element of norm 1 in (I,). Ewvery projection of (¢,) onto
f~4(0) is of the form P,=I—f &z for some zef-1(1), and moreover

. = sup {J1 —efil + (1 — £} -
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ProoF. — Writing sup for the supremum as # ranges over the unit ball of {¢),
we have N

[P.]| = sup sup [(P#):| = sup sup [#: —f(2)2]
= SUp 8Up IZ (0, —Ffiz) e, = S?p z 10— f:24]
i=1 i=1

=sup {[L—fiz| + 3 |fs2il}
i=1
iski

= sup {L—foz) + a1 — f:}. m

THEOREM 1. — Let fe(l,) and [f| =1. In order that there exist a projection of
norm 1 from (c,) onto the hyperplane f~10) if is necessary and sufficient that |f,|>1%
for some i. In order that {~1(0) have o unique projection of norm 1 it is necessary and
sufficient that |f;|> % for ewactly one index 4.

Proor. — By Lemma 1, a necessary and sufficient condition for the existence of
a norm-1 projection is that there exist a point z in (¢)) such that

1) L—f2+ Jzl(1—fi) <1 for all ¢

{2) Efiz,-z 1 .

From inequality (1) it is clear that sgnz;= sgnf, for all <. Hence (1) implies

1—fuz+ 2] —aifi<1

and

l2:(1 —2[f.)) <0 .

For each i satisfying |f;]<3 we must therefore have 2,= 0. Since f(z)==1, there
must exist at least one index j such that |f;]>%. On the other hand, this condition
is sufficient, because if |f;|>4 then z can be defined so that z,=1/f; and #;=0 for
i#4. Then f(3)=1 and |P,| =1, as can be easily verified from (1). If exactly
one index j§ exists for which, |f,|>} then z is uniquely determined in the above man-
ner. If two components of f exist such that |f;|= %= |f;|(i~ ), then two projec-
tions exist as described above, and all convex linear combinations of these two projec-
tions have norm 1. mm

REMARK. — In {¢,) there exist hyperplanes which are not §-spaces but whieh never-
theless possess minimal projections. In the eonstructions above, take for example
f=(,%,%,..) and 2=2,0,0,...).
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THEOREM 2. — Let fe(l) and |f|i=1. The relative projection constant of ~1(0)
in (¢) is 1 if |fl.>%, and otherwise it is 1+ (2 Il (1-2§f¢§))‘1

Proor. — The case |f|.>} has been considered above. Assume that |f], <}.

n
Then the numbers 1 —2|f,| are bounded away from zero and we put A,= (E If:l/
i=1

/(1—2[}‘,-[))“1, n being fixed. We shall define a projection of norm 1 -4 1,. Let
2;= Aa(5gnf,)/(1—2|f;|) for all i<n and let 2,=0 for all {>n. Then f(z) =
= 3 fiz;=1. Since 0<z;f;<> 2,f,=1, we have (for i<n)

L—z.fi| + (1 —If]) = L—aif i+ o] —2f:
=1+ l(1—2If)) =1+ 4.
The corresponding expression reduces to 1 when ¢ > n. Therefore by Lemma 2,
[P,| =1 A,. The projection constant ig thus at most 1 + =1+ lim 4,.

In order to show that the projection constant is not less than 1 4- 4, suppose
on the contrary that for some ze(¢,) we have f(s)=1 and

@) L+ (1 — i) < 1+ 7.
Sinee 1— |2.f;|<1—a2:f:<[L—=zf, a consequence of (3) is that
1—Jeifs] + o]l — eifil< 14+ 4,

whence |z;/(1—2|f;]) < 2. Then the following contradiction arises:

8

1= 16) = 3 §|fz!<z§ |f2||fl 1.

COROLLARY. — Let fe(l) and |f|,=1. If |f|o>1%, then the hyperplane f~(0)
in (o) has a minimal projection. In the case |f|, < %, however, {~1(0) has a minimal
projection if and only if at most a finite number of f, are different from 0.

o

COROLLARY. — The totality of projection constants for all the hyperplanes in (¢,) is
precisely the interval [1, 2).

Proor. — Let le[1,2). For A=1, Theorem 1 describes the hyperplanes having
projeetion constant 4. If Ae(1, 2), seleet »n go that 1< A<2-—2n~1 Define fe(l,)
by putting fi=..=fo=7, fouu=1—mnr, and f, .= fo.s=...= 0. Here r is chosen
in the interval (1/2n, 1/n] so that

nr 1—mnr

“) l—2r+2 Ny —

= (A—1)7.
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Such a value of » exists because the left side of (4) is a continuous function of r in
the prescribed interval, and its range is an interval [n/(n —2), co) which contains
(A—1)"*. Observe that >0 and that [f|,= 1. By Theorem 2, the projection con-
stant of /~1(0) is
n+1 f{ -1 ny 1 —ar -1
1+(21—w) *1+[L—m+2m—d] =4

i=1

Now we remark that by a theorem of Levin and Petunin [5], every hyperplane
has projection. constant at most 2. Hence in the present situation we only must
rule out 2 as a possible value. If |f|,=1 and [f],< } then

I —=21fl) = Z | + 2 St =217 > 1.

Hence by Theorem 2, p[f40)]< 2. m

3. — The space (1,).

Levma 3. ~ Let f be an element of norm 1 in (1), Every projection of (I,) onto the
hyperplane f~1(0) is of the form P,=1I1—f @z for some zef(1), and moreover,

1) 1] = sup {Jt —Fuel + Ifal(l] — l2al)} -

ProoF. — If se(l;) and |#| <1 then

1P.a] =

B
l

@] = flwwf(x)ziizi |3 00— tr20a

— [ %] 2‘773‘* z lw332!5w~fﬁ |

A

JLMx

[ 7[ Sup z'ain“"fn‘z]

/

1|'M8 AL

= Sgp i; fﬂzz! = sup {}1 fnzn + glzfnz %}

iR

= 8up {|1 —faza| + [ful(]2] — [2a])} -
For the reverse inequality, fix an index n and define #e(l;) by #,= 6,,. Then
|P.]| > | P.o| = o —f@)a] = §1 |o£; — fn2:]
= L —fu2al + [fal([2] — |2al) -

By taking a supremum in n, we complete the proof of Eq. (1). m
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If f>0 and 2>0 then the condition {f, 2) = 1 implies that 0 <.z, <lfor each <.
Henee HEq. (1) can be simplified in this case to read

(2) [P =1 4 sup fi 2] —22:) .

THROREM 3. Let 0s£fe(l,). The hyperplane f~1(0) in (I,) has a projection of
norm 1 if and only if at most two components of f are different from sero. The hyperplane
has a unique projeciion of norm 1 if and only if ewactly two components of f are dif-
ferent from 0.

ProOF. — We assume that [f|,= 1. In order that f~*(0) have a projection of
norm 1 it is necessary and sufficient that there exist z € (J,) such that f(z) =1 and

(3) L —fez| + |fil([[#] — lesl) <1 (all 7).

It is clear that this implies f;2,>0 for all 7. Hence 1= 3 f,2,>>f,%,> 0. Inequality (3)
is now equivalent to

Ifil{ll2] —2le.l} <0 .

If ;0 then [z <2|¢;|. There can be at most two indices for which 7,0 since

lel = 2led> 2 o> 2 8]
L#0 fi#0
Now suppose that f has exactly one nonzero component, say f,=1 and f,=0

for is£j. Let % be any index different from j, and define z as follows z,=1,
#e[—1,1], and ¢,= 0 for all remaining indices ¢. One verifies easily that (f,2)=1
and ||P,| = 1. The non-uniqueness is plain, since there are many choices for k.

Finally, suppose that f has exactly two nonzero components, f; and f,. We may
suppose that 1= |f;/>|fi|>0. Then the arguments above show that |z,|= |2x]| =
= %|2|. Hence for all 4, ;= }|2] sgnf,. This condition, together with the equa-
tion f{z) =1, fixes # uniqusly. wmm

Lemma 4. - Let fe(l,), |flo=1, and 1>0. Let ze(l), f(z)=1 and minz,< 0.
Then there ewists an we(l) such that f(z) =1, #>0, and |P.| < |P.|.

PrROOF. — Define z,= 0 if #,<0 and @,= 0z, if 2,>0. Here 0= (>'f2)™, the
summation symbol denoting the sum for 2; > 0. This choice of § ensures that f(z) = 1.
Since 1= 3 f,#;<>'f:z:, we have 0< 6<1. We now prove that |P,|<|P.|. By
the remark after Lemma 3, | P,| = maxr;(x), with r,(z) =1 4 f,(]|z| —2=,). We dis-
tingnish several cases.

Case 1, #,< 0. Then ;=0 and r(@)=1+f,o]=1+7, 3 0z2,<1+6f]z] <
<1+f2)<|P.|, by Eq. (1) in Lemma 3.

Case 2, 0<f;z;<1. Then ri()=1+f(|e] —22)=1+7(> 02,—202) =1+

+0f(D 25— 22) <1 + 0f (| 2] —22:). If ||2] >22; then ry(w) <1 + fi( []2] — 22:) < || P.],
by Eq. (1). If [z] < 2 then r(z)<1<|P,].
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Case 3, f:z;>1. Then by Eq. (1) —1 -+ f.]2| <|P.|, whence f;|z| <1+ |P,].
As in Case 2, we have then r(@)<1+ 0f,(|¢] —22)<1+0(1L+ |P.])—20=1+
+0(2] 1) <1+ (|P] —1)= | 2] w

In the remainder of the paper, we shall assume that f>0. This involves no loss
of generality since f~1(0) and ¢~*(0) have the same projection constant if [f|= |g|.
Indeed, if J is any subset of {1, 2,...}, then the mapping of (I,) into (I,) defined by
w;= —u; if ied and a;; =g, if i¢J is an isometry. In accordance with the above
lemma, we may then restrict our search for minimal projections to those projections P,
for which ze(l,), f(2)=1, and #>0.

We introduce now the following definitions:

Op == zfz
i=1
b,= Zfiﬁl
i=1
1
5ﬂ==n_zbn n>2).

LEvMa 5. — Let fe(ly), |fle=1, />0, ze(l), fle)=1, and 2>0. Define
I={i:;=0} and J={i:rie)= |P,|}, where r.(e)=1+ f{[e] —2z). If P, is
not a minimal projection of (L) onto the byperplane f1(0), then there exisis an ele-
ment we(ly) such that f(u)=0, u;>0 for icl, and D u,< 21'_11; ;.

i=1 i€

Proor. — If P, is not minimal, then there exists an x € (l;) such that f(r)==1
and | P.|< |P.]. By Lemma 4 we may assume that #>0. Put u=x—z. Then
f(u)=0 and u;>0 for all iel and e= |P,| — |P,| then

1+ ful o] —20) = ri@) < | ] = [ ] —e=rde)—e=1 + &l —22) —e.

Consequently, |o|—2w,<|z| —2¢,—¢f; ' <|2]| —2¢,—e. Bquivalently, 3 #,—2x,<
<> #—2z,—e, whence > uw;<2u;—z W

THEOREM 5. — Let 1 =f,>f,>...>[,>/,>0 (i > n) and assume that n>2, f, >0,
<P,y @py>n—38, and a,< n—2. Then the projection constant of the hyperplane
F70) in (L) is 1+ (20,8, —n+ (B,—f; ) n—2—a)]""

PrOOF. — Put k=5, — (n—2)f; "}, w=2[k—n + a,f, 17", and v= (1—k)u. De-
fine we(l,) by putting o,= u(f,*—1-+ k), o= fu(f;'—f;") for 2<i<mn, and
2,=0 for ¢ >n.

Observe that k—mn 4 a,f;1>0. Indeed, a,f,* —n>0 since a,f = (f;-+ ...+
+ 1) snf ft Also k>0 because f; ' <f,= (n—2)"'h,. Now equality cannot oc-
cur simultaneously in these two inequalities because if n=a,f,* then f;=..=
=f,=1, and in that event, b,=n > (n—2)f, "

15 ~ doneli di Matematica
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Observe next that #>0. Indeed, » >0 and f,'>f; ' for i=2,...,n. Also, k>0
as proved above, and f;'—1>0.
Next we prove that (f,#)=1. Indeed, Zfi z fidu(f,r — 7+ tuk =

i=

1u[k+2ff“" 1)]= yulk+f, 'a,—n]=1.

n n
Next "We prove that |#],= uf; . Indeed ¥ o,= > du(f,* — 1) + yuk=tulnf ' —
—b,+ k)= dulnf — (n—2)f = wf Y
Observe next that u>v. Indeed, this follows at once from the inequality k>0
proved above.
Next we prove the equation

fllo] —2a) = | » g<i<n.

ffilu m<i

Indeed, for i==1 we have f(||wﬂ~—2w)-—uf” —u(f,'—1-+k)=u(l—k)=wv. For
2<i<n we have f|z|—2x)="{luf;'—u(f,'—f HY]=u. For i>n we have
filll=l —2m;) = fouf,

By Lemma 3, |P.|=1+ max (o] —22;) =1 + u.

Now we prove that P, is a minimal projection. If it is not, then by Lemma 5,
there exists a vector §=(0,,0,,...) in (};) having the following three properties:

) (7 9) ==
(2) 6,>0 for indices 4 such that x,=0

(3) ZG <2 min 6,

fe=1 2<i<n

These conditions will lead to a contradiction. Let ¢= min 6,. Note that 6,>0

n <i<n

for i>n. Hence 2q> 26 = § 1—f)0,> 2 (1—71) 8@>g}‘(1-i,~)=qm—aﬂ).

i=1 i=1 =2 =2
Thus ¢+0. If ¢>0, then we obtain 2 >mn —a,, contrary to hypotheses. If
n-1 n—1
g< 0, we use the fact that 6,>0 to obtain as above 2¢> 3 (1—f.)0;>¢ > (1—
i=2 i=2

—f)=gqn—1—a,_,). Since ¢< 0, this implies that 2<n—1-— @,y OF @y <n—3,
contrary to hypotheses.
To obtain the formula in the theorem, we write 1 + u=1- 2{b, — (n—2)f, .
—n+a,f, 17 =1+2[(n—2)B,~ (n—2)f; ' —n+ a,f 1 =1+ 2[a,f,—n+ (f—
-fn n 2 —a’n)}— L

THEOREM 6. — Let L=f,>f,>...>f,.,>f,>0 (i>n). Assumethatn >2,f, >0,
> >fni1, ond that a,>n—2. Then the projection constant of the hyperplane

n
170) i (1) s 1+ 2(a,f,—m) 7
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PrOOF ~ Define %= 2(a,8,—n)"*. Define ze(l,) by putting z,= tu(f,— ;")
for 1<i<n, and z,= 0 for ¢ > n.

Observe first that « is well-defined and positive. Indeed, a,b = Z;‘ zf’“
—sz1+2ff Yl en 4 [dnn—1)2 = nt. Henceanﬁn—n;\»'n(n 2)”—

(2]
—n = 2n{n ) > 0.
Observe next that »>0. Indeed, by hypothesis f;'<f *<fg, for i=1,...,n
Next we prove that (f, z)=1. We have

Next we prove that ||| =uf,. Indeed,

1

1

Next we prove the equation f;(|»] —2#;)=u for i=1, ..., n. Indeed, f(|z| —
——-2%5) = f%(uﬁ,n-—— u(ﬁﬂ - f;l}) = 4.

Next we observe that f,(|#] —2;) <u for i>n. Indeed, f|o] —2x,) = fiuf,<
<o 4P, <u by hypothesis.

By Eq. (2) following Lemma 3, |P,|=1-+wu. If P, is not a minimal projec-
tion then by Lemma 5, there exists a vector 6= (6, 0,,...) in (I;) having the pro-
perties:

O 0=

(2) 6,>0 for indices ¢ such that z,= 0

3)

f,<2 min 6,.
Ii<n

Fn8

1

These conditions Wlll lead to a contradiction. Put ¢= mm 0,. Then 2¢> 3 0,=

I<isn f=1

ZG + z 0,> Z@;nq Hence ¢< 0. Now write

j=1 i=nt+1 i=

%

2Q>29i: 21(1—f1)9i>2(1-— f)0:> qzll fo)=qn—a,).

i=1

Since g< 0, this yields 2< n—a, contrary to one of the hypotheses. mm

LEMMA 6. - Let 1=f,>f,>...>0, f>0, and limf,< 1. Let A, (for n>3) de-
note the assertion that f,b, y>n—3 and @,y >n—3. Then A, is true, and there is
a unique index n>3 such that A, is true and A, ., is false.
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Proor. — A, i8 true because f;b,>0 and a,>0. Now we observe that if
a,>n—2 then a, ;>n-—3 because @, 1=a,— f,>n—2—~f,»>n—2—1=n-—3.
Next we observe that if f,,,b,>n-—2 then f,b, ;>n—3 because f,b,_,= fu(b,—
— i =fbs—1>fnabya—1>0—2—1=n—3.

The preceeding arguments show that A, ., implies 4,. Hence either 4, is true
for all n =23, 4, ... or there is an index n {necessarily unique) such that 4, is true
and 4, is false.

We will show that A, is eventually false. By hypothesis, there is a number 0
such that limf,< 6< 1. Select m such that f,< 8§ and m{1—0) >2. Then a,,=
= (f1+ et fm) + (fm+1+ ’}‘f‘zm) <m -+ ml = 2?%-—-’)7&(1—3) < 2m—2. Thus A2m+1
is false, inasmuch as it involves the assertion that a,,>2m—2. m

LEmMaA 7. - If fe(l,), >0, and ||f||=1, then the projection constant of f~1(0)
in (L) is ot least 1+ (@, —2)n™t for all n.

Proor. — Let ze(l), 2>0, and f(z)=1. Then ||P,| =1+ supf|e]—2z).
Hence |P.|—1>f:|¢]| —2f#;: By summing for indices i=1,...,n we obtain
w([B] ~ 1) > ] —2 Sini>a,—2. m

CoroLLARY. — If fe(l), Ifl =1, and limsup|f,|=1 then the projection con-
stamt of {H0) in {I;) is 2.

Proor. ~ Take a permutation n of the natural numbers such that f, >1—e
for i=1,...,n. Put g,=1{,. Then g~*(0) and f~*(0) have the same projection con-
stant. By Lemma 7, ¢~%0) has projection constant at least 1 - [n{(l—e)—2]n"%
This can be made arbitrarily close to 2. ma

THEOREM 7. ~ Let 1=f,>f,>...>0. The relative projection constant p of the
hyperplane f~10) in (I,) is described thus:
(1) If limf,=1 then p=2.
(2) If fy==0 then p=1.
(3) If limf,< 1 and f; > 0 then let n be the unique index such that min {f,,bnml,
Gns}>n—3 and min {f, b,, a.}<n—2. (See Lemma 6.) Then

2= 1 +2[a’m6n_%+ (5n_f7:1) max {%—2—6&%, O}]—l .

PRrROOF. — The case when limf,=1 (and thus f,==1 for all %) is governed by
Lemma 7. In this case we take z=(0,...,0,1,0,...) to get a minimal projection.
The case when f;= 0 is governed by Theorem 4.

The case when limf,<1, f,>0, fboy>n—3, ¢,y >n—3, and a,<n—2 i8
governed by Theorem 5. We only need to verify that f, ' <p,. This is true because

faBu== faba(n—2) T = (b + [ ) — 1) =
= (fubpr + D —2) > (=3 + H(n—2) ' =1.
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The final case is when limf <1, f;>0, f,b,_;>n—38, a,_,>n—3, a,>n—2,
and f,,..b,<n—2. This case is governed by Theorem 6. We must verily that
fo>Bt>fuo1- We have f, 6! by the argument of the preceding paragraph. We
have f1>f,., because f, 1B, =1, 10 (n—2)""< 1. mu

COROLLARY. — If 1=1f1>f,>...>0 then the hyperplane f~1(0) in (1) possesses at
least one minimal projection.

LeEMMA 8. — Let fe(ly), >0, |f| =1. For each nec N and for each & > 0 there
is a permutation m: N— N such that f, >f, >...>f, >/,—¢ for all i>n.

Proo¥. — Let n and ¢ be given. For each ke N, define J(k)= {i: 1>f,>1— ke}.
Let k, denote the first element of N such that J(k,) contains at least » elements.

If k,=1, then select integers 7, ..., @, € J(1). We rearrange these integers so
that f, >...>f,,. Let the set N\ {m,, ..., 7,} be enumerated in any convenient order
88 Ty 1) Byigy ---» Clearly f, >1—e>f, —e for i >n.

If k,>1 then J(k,—1) contains fewer than « elements. Let them be emmerated
a8 7y, ..., W, With f, >...>f, and s < n. Since J(k) contains at least » elements,
we can select integers 7 ., ..., @, €J(k)\J(k,—1). These too can be arranged so
that f,, >...>f,,. Now we have

fo, =2l l—{ky—Le>f, >..2f,>1—ke.
Let the set N\{nl, ey nn} be enumerated as m,,;, Tpiz, .... Then for ¢ > we have
fo<l—(kg—1le=1—ke+e<f,,+e m
LEMMA 9. — If O0<e<1, if f,geX* if |fl=|g]l=1 and if |f—g]<e/T2
then the projection constamis cf the corresponding hyperplanes satisfy the inequality
Pl 0] —plg(0)]l<e.

Proor. — Select € X so that (f,2)=1 and so that |[I—f®z| < p[f2(0)]+ &/2.
Since p[f(0)]<2, [b], we have

3>2+¢2>|I—f®z|>|f Dzl —1.

From this we conclude that |jz| = |f @¢||< 4. If |f—g] < &/72 then |(g—F,2)|<
< &/18< }. Hence (g,2) >4 and it is permissible to define »=2/(g,%). We have
now

lo—z] = 2] 1—(g,2)7< 4l{g, 2) —1](g, &)
< 8l(g—1, 2)| < 4e/9
I—g®@a)—(I—f®z]=|f @z—9g @

<=9 @]+ lg@E—a)| <|f—gl [2] + lg] ls—=]
< 4872 + 4/ =¢/2 .
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Thus plgH0)]<|I—g @u|<|I—F®z| + &/2 < p[f~2(0)] + e. Since the hypotheses
involve g and f symmetrieally, the inequality p[f(0)]< p[g(0)] + & must also be
true. wm

TuroreM 8. — Let fe(l,), |[f]|=1, >0, and A=limsupf,<1. If the set
{fi: s >2} is finite, say i, ..., %, then the projection constant of f~10) is the same as
that of g7X0), where g=(f,, [, s fis 25 Ay 4y o).

Proor. — Select an index m >k -+ 2(1 — 4)~1. By our hypotheses and by Lemma 8,
there exists for every & >0 a permutation x such that

1=fp> >l >A> 0, > >l > —e (i >m).
Since lim supf,= 4, f,, >A—e¢. Define he(l,) by putting

fre i<m

max(f, —e, 0) i>m.

Then 1>Mh>...>Mm>A> k> >h,>h; (1 >m). Moreover, if we calculate the
numbers a, for & we find that

Gy = (B4 v+ ) + (hgss - oo+ By <k -+ (m—F) A

=m—m—E1—-N<m—2.

Thus in applying Theorem 5 or 6 to h, we know that » < m. Hence the projection
constant of A~1(0) depends only on hy, ..., k,. Letting ¢->0 and using Lemma 9,
we establish the theorem. mm

THEOREM 9. — Let fe(l,), [f|l=1, >0, and i=limsupf,<1. If the set
{i:f:> 2} is infinite then there ewist indices my, My, ..., m, such that 1=f, >f, >
>...>f, > for i¢{m1, cery m,} and such that the projection constant of f~1(0) in (1))
s the same as that of g=(0), where

g= (fm’ e fm,a 0,0,..)

PrOOF. — Let the set {i:/,> 1} be enumerated as m,, m,, ... in such a way that
fu,>T > Select k so that f, < (14 4). Select >k + 4(1—A)~. Define ge(l,)
as above.

If we compute the numbers a, for the sequence ¢ we find that a,= (¢, -+ ...+ ¢ +
+ Gt o F g)<E+ (r—E) 31 + A< r—2. Thus (by Theorem 7 and lemma 7)
the projection constant of g~1(0) depends only on the set of numbers {gl, ceny Grb =

== {fmn nrey fm,.}
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Now by Lemma 8, there exists for each ¢>0 a permutation n: N — N such
that 7= m,, 7=~ My, ..., = m, and

fr>tn> >t >l—¢ (i>r).

Define he(l,) by letting b=/ for i<r and hi_—.ma,x{fm—e, 0} for ¢>mn. Then
(by Lemma 9) the projection constants of A~1(0) and f~1(0) differ by at most 72e.
The projection constant of A71(0) equals that of g=*(0). Since this is true for every
¢ >0, the projection constants of /~1(0) and g~(0) are equal.

REFERENCES

[1] J. Bratrer - E. W. CHENEY, On the cwistence of ewtremal projections, J. Approximation
Theory, 6 (1972), pp. 72-79.

[2] E. W. CuENEY - K. H. Price, Minimal projections, in Approximation Theory, A. Talbot,
ed., Academic Press, New York, pp. 261-289.

(3] E. W. Caexey - K. H. Price, Minimal interpolating projections, in Ilerations-Verfahren
Numerische Mathematik Approzimationstheorie, ISNM, vol. 15, Birkhauser Verlag, Basel,
1970, pp. 115-121,

[4] E. W. CEENEY, Projections with finite cerrier, Research Paper CNA 28, Center for Nu.
merical Analysis, The University of Texas at Austin, Texas, July 1971. To appear in
Proceedings of a Conference on Numerical Methods in Approximation Theorv, Oberwol-
fach, Germany, June 1971, ISMN vol. 16, Birkhauser-Verlag, Basel, 1972.

[5] A. Ju. LEvIN - Ju. I. PETUNIN, Some problems related to the concept to orthogonality in a
Banach space, Uspehi Math. Nauk, 18 (1963), no. 3(111), pp. 167-170, MR 27-2833. h



