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MINIMAL PROJECTIVE RESOLUTIONS
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Dedicated to Helmut Lenzing for his 60th birthday

Abstract. In this paper, we present an algorithmic method for computing a
projective resolution of a module over an algebra over a field. If the algebra is
finite dimensional, and the module is finitely generated, we have a computa-
tional way of obtaining a minimal projective resolution, maps included. This
resolution turns out to be a graded resolution if our algebra and module are
graded. We apply this resolution to the study of the Ext-algebra of the alge-
bra; namely, we present a new method for computing Yoneda products using
the constructions of the resolutions. We also use our resolution to prove a case
of the “no loop” conjecture.

Introduction

In the study of homological properties of rings and modules, projective reso-
lutions are a basic tool. Such resolutions occur naturally in commutative ring
theory, the representation theory of finite dimensional algebras, group representa-
tion theory, algebraic geometry, and algebraic topology [A, AG, F, H1, HZ]. On
the other hand, with the introduction of computers, computational and algorithmic
techniques have grown in importance [Ba, FGKK]. Both theoretical and practical
results are needed. This paper presents a new method of constructing projective
resolutions in a broad setting which has both theoretical and computational im-
plications. In particular, in the graded and finite dimensional cases, our results
provide a recursive procedure for computing minimal projective resolutions.

The class of algebras studied in this paper consists of quotients of path algebras.
We fix a field K for the remainder of this paper. If Q is a finite directed graph,
which we call a quiver, then the path algebra, KQ, is the K-algebra with K-basis
consisting of finite directed paths in Q. Thus, elements of KQ consist of K-linear
combinations of paths in Q. The multiplicative structure on basis elements p and
q is defined by concatenation pq if the terminus of p equals the origin of q, and by
0 otherwise. We view the vertices as paths of length 0 with multiplication given as
follows. If v and w are vertices and p is a path, we let v · w be v if v = w and 0
otherwise. We let v ·p = p if v is the origin of p and 0 otherwise, and we define p ·w
similarly. The multiplication on paths is extended linearly to arbitrary elements
of KQ. Note that the free associative K-algebra on n noncommuting variables is
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isomorphic to the path algebra KQ where Q has one vertex and n loops. We let
Q0 denote the vertex set of Q.

Let Q be a quiver and I be a (two-sided) ideal in the path algebra KQ. Let Λ de-
note KQ/I for the remainder of the introduction. The algebras in this class include
all affine (that is, finitely generated) associative K-algebras. Every finite dimen-
sional K-algebra is Morita equivalent to an algebra in this class if K is algebraically
closed. Furthermore, this class includes graded K-algebras Λ = Λ0⊕Λ1⊕Λ2⊕ · · ·
where Λ0 is a product of a finite number of copies of K, each Λi is a finite dimen-
sional K-vector space and Λ is generated in degrees 0 and 1; that is, for i, j ≥ 0,
ΛiΛj = Λi+j .

Let M be a Λ = KQ/I-module. Let F →M → 0 be an exact sequence of KQ-
modules with F =

∐
v∈Q0

vKQ. A main theme of the paper is the construction of
a filtration of F by KQ-submodules which contains all the information needed to
construct the Λ-projective resolution of M , the Λ-syzygies and the Yoneda product
of extensions of Λ-modules. In particular, we find a filtration

· · · ⊂ Fn ⊂ Fn−1 ⊂ · · · ⊂ F 1 ⊂ F 0,

such that F = F 0, M = F 0/F 1 and

· · ·Fn/FnI → Fn−1/Fn−1I → · · · → F 1/F 1I → F 0/F 0I →M → 0

is a Λ-projective resolution of M with the maps induced by the inclusions of the
filtration. For the basic construction, we do not assume that Λ is finite dimensional,
or even noetherian. Furthermore, we do not assume that the Λ-module M is finitely
generated. For our minimality results, M will be finitely generated and Λ either
finite dimensional or graded.

We provide a recursive formula to compute Fn as a KQ-submodule of Fn−1 from
the previously obtained Fn−1 ⊂ Fn−2. To explicitly find Fn from our formula, one
must write an intersection of certain submodules of a projective KQ-module as a
direct sum of cyclic submodules. A method for finding the generators of these cyclic
submodules employs the theory of right Gröbner bases, and will appear elsewhere.

Our construction resembles earlier resolutions of Bongartz, Butler, Eilenberg,
Eilenberg-Nagao-Nakayama and Gruenberg [Bo, E, ENN]. Their resolutions are
almost never minimal in the finite dimensional case, and deal only with resolutions
of semisimple modules. We recall their resolution. Let J denote the ideal of KQ
generated by the arrows of Q. Furthermore, assume that JN ⊆ I ⊆ J2 for some
positive integer N ≥ 2. Then we have the filtration

· · · ⊂ JIn ⊂ In ⊂ · · · ⊂ I3 ⊂ JI2 ⊂ I2 ⊂ JI ⊂ I ⊂ J ⊂ KQ.

Note that J/I is the Jacobson radical of Λ and that Λ/(J/I) is isomorphic to
KQ/J . One gets the following Λ-projective resolution of KQ/J

· · · → In/In+1 → JIn−1/JIn → · · · → I/I2 → J/JI → KQ/I → KQ/J → 0,

where the maps are induced by the inclusions.
The paper is organized as follows. In the first section, we give a general construc-

tion of a projective resolution of an arbitrary Λ-module M , where Λ is a quotient of
a path algebra. We show that if Λ is a right noetherian algebra and M is a finitely
generated Λ-module, then the resolution is finitely generated. If Λ is graded and
M is a graded module, we show how to modify the construction to obtain a graded
projective resolution.
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In the second section, we provide algorithmic techniques to adjust the construc-
tion to obtain minimal projective resolutions in both the finite dimensional and
the graded cases. The section ends with explicit computations of syzygies and
Ext-groups.

Section 3 deals with Ext-algebras. If Λ0 denotes Λ modulo its radical in the
finite dimensional case, or, Λ modulo its graded radical in the graded case, then we
study the algebraic structure of

E(Λ) =
∐
n≥0

ExtnΛ(Λ0,Λ0).

Furthermore, if M is either a finite dimensional Λ-module or a graded Λ-module, we
investigate the E(Λ)-module structure of E(M) =

∐
n≥0(M,Λ0). A major result

of the paper is that this module structure is included in the information obtained
in the construction of the resolution. In particular, one need not “lift maps” to find
the Yoneda products.

We apply our techniques to prove one case of the No Loop Conjecture in section
four. Namely, we prove that if Λ is a finite dimensional K-algebra and a is a loop
at the vertex v such that an is the first power of a belonging to the ideal I but
an is not in JI + IJ , then ExtnΛ(S, S) 6= (0), for all n ≥ 1, where S is the simple
Λ-module corresponding to the vertex v.

In the final section we investigate the influence of the characteristic of the ground
field K on the structure of projective resolutions. Other than some new examples,
we show that if the global dimension of Λ is bounded by 2 in one characteristic,
then the global dimension will be finite in all characteristics. We also provide an
example of an algebra that has infinite global dimension in only one characteristic.

Finally, we note that all modules will be right modules unless otherwise stated.
We also introduce some terminology. We say that an element x in the path algebra
KQ is right uniform, if x 6= 0 and there is a vertex v such that xv = x. Note
that if x 6= 0 is an element of KQ, then x =

∑
v∈Q0

xv. Hence, every nonzero
element of KQ is a sum of right uniform elements. From a different point of view,
KQ =

∐
v∈Q0

KQv as left modules. Hence, every nonzero element is a sum of right
uniform elements in a unique way. An element is right uniform if and only if it is
nonzero and a linear combination of paths ending at a single vertex. Finally, note
that if x is a right uniform element with xv = x for some v ∈ Q0, then xKQ is a
right projective KQ-module isomorphic to vKQ.

Acknowledgment. The major work on this paper was done when the last two
authors visited the Department of Mathematics at Virginia Tech. We would like
to thank the first author and the department for their hospitality and effort in
making our stay there a very pleasant and interesting one. The authors also thank
M. C. R. Butler and the referee for their comments and suggestions, which are
addressed in an appendix to the paper.

1. The resolution

Let Q be a finite quiver, and let R = KQ denote the path algebra of Q over a
field K. Let I be a two-sided ideal in R such that I ⊆ J2, where J denotes the ideal
of R generated by the arrows of the quiver Q. Let Λ = R/I be the quotient algebra,
and let M be a right Λ-module. In this section we construct, in an algorithmic way,
a projective resolution (P , δ) of M over Λ. This resolution need not be finitely
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generated in general, but it is when Λ is noetherian and I is finitely generated as a
right ideal in R. In particular, if I is an admissible ideal of R, that is, JN ⊆ I ⊆ J2

for some N > 1, then Λ is a finite dimensional K-algebra and the resolution (P , δ)
becomes a finitely generated resolution. In the next section we also show how, in
this case, we can adjust P in an algorithmic way to obtain a minimal projective
resolution of MΛ. Moreover, if Λ is graded by the natural grading induced from
the length grading on R, then the resolution constructed for a graded Λ-module is
also graded.

We shall use the following well-known properties of the path algebra R = KQ:
(a) for every x in R, the R-module xR is projective, and, (b) for each R-submodule
Y of qixiR with xi in R, we have Y = qjyjR for some yj in qki=1xiR (of course,
if Y is finitely generated, then we can write Y = qtj=1yjR for some finite set
{y1, . . . , yt} in qixiR, [G]). We now introduce the notation that will be needed in
defining the resolution (P , δ) of M , and, throughout this paper.

Choose a family {f0
i }i∈A of elements of R such that the projective Λ-module

qi∈Af0
i R/qi∈A f0

i I maps onto M . Without loss of generality we choose the family
to consist of vertices in R (repetitions allowed). We have

0→ Ω1
R(M)→ qi∈Af0

i R→M → 0,

and, we then choose a set {f1∗
i } of elements of qi∈Af0

i R such that Ω1
R(M) =

qif1∗
i R. Discard all the elements f1∗

i that are in qi∈Af0
i I and denote by {f1

i }
those f1∗’s that are not elements of qi∈Af0

i I. Assume that we have constructed
families of elements of qi∈Af0

i R: {fki }i for each k = 0, . . . , n. We now construct
the family {fn+1

i }i as follows. We consider the intersection (qifni R) ∩ (qjfn−1
j I).

We stop if the intersection is zero, and we set it equal to some qlfn+1∗
l R otherwise.

Discard all the elements of the form fn+1∗ that are in qifni I, and denote the
remaining ones by {fn+1

i }i. If each element of the form fn+1∗ is in qifni I, we
again stop at this stage of the construction. Note that we may assume that for
each n, each element fni can be chosen to be right uniform, that is, there is a vertex
v (dependent on fni ) such that fni v = fni . An element of R is uniform if it is a linear
combination of paths in R, all starting at one vertex, and, all ending at one vertex.
We also note that, for each n > 0, we have a representation of fnk in qfn−1

i R as
follows:

fnk =
∑
i

fn−1
i hn−1,n

i,k

for scalars hn−1,n
i,k in R. Note that for each k, all but a finite number of hn−1,n

i,k are
zero. It is convenient to encode this information in the matrix (hn−1,n

i,k ). Further-
more, since the fnk ’s and the fn−1

i ’s are right uniform, it follows that each hn−1,n
i,k

is uniform.
Setting Fn = qifni R, from our construction, we have the following filtration of

the right projective R-module F 0:

· · · ⊆ Fn ⊆ Fn−1 ⊆ · · · ⊆ F 2 ⊆ F 1 ⊆ F 0.

Definition 1.1. For each n ≥ 0 let Pn = qifni R/ qi fni I, and let δn : Pn → Pn−1

be the homomorphism induced by the inclusion qfni R ⊂ qfn−1
j R. We also define

the matrix (h
n−1,n

i,k ) where h denotes the image in Λ of the element h in R.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MINIMAL PROJECTIVE RESOLUTIONS 2919

Note that the boundary maps δn are, in fact, determined by multiplication by
the matrix (h

n−1,n
), which gives a formula for the coordinates.

We can now state our first result.

Theorem 1.2. (P , δ) : · · · → Pn
δn−→ Pn−1 → · · · → P1

δ1

−→ P0 → M → 0 is a
projective resolution of M over Λ.

Proof. It is clear that for each n ≥ 0, the modules Pn are projective Λ-modules.
From the following commutative diagram with exact rows

0

��

0

��

qif0
i I

��

qif0
i I

��

0 // Ω1
R(M) //

��

qif0
i R

//

��

M // 0

0 // Ω1
Λ(M) //

��

qif0
i R/qi f0

i I
//

��

M // 0

0 0

it follows that we have exactness at P0. We now show that for each n > 0,
we have δnδn+1 = 0. We must show that (h

n−1,n

i,k )(h
n,n+1

k,l ) is the zero matrix,
or, equivalently that for each i and l, the sum

∑
k h

n−1,n
i,k hn,n+1

k,l is in I. But∑
i f

n−1
i (

∑
k h

n−1,n
i,k hn,n+1

k,l ) is an element of qfn−1
i R, and we also have∑

i

fn−1
i (

∑
k

hn−1,n
i,k hn,n+1

k,l ) =
∑
k

(
∑
i

fn−1
i hn−1,n

i,k )hn,n+1
k,l

=
∑
k

fnk h
n,n+1
k,l = fn+1

l

which lies in qfn−1
i I. We infer from the uniqueness of the representations as

elements of direct sums that for each i and l, the element
∑
k h

n−1,n
i,k hn,n+1

k,l is in I.
It remains to show that for each n, Ker δn ⊆ Im δn+1. Let (xk)k be in the kernel

of δn. Therefore,
∑
k h

n−1,n

i,k xk = 0 for all i, or, equivalently
∑
k h

n−1,n
i,k xk is in the

ideal I for all i. On the other hand,∑
i

fn−1
i (

∑
k

hn−1,n
i,k xk) =

∑
k

(
∑
i

fn−1
i hn−1,n

i,k )xk =
∑
k

fnk xk

is an element of qkfnkR and, since
∑
i f

n−1
i (

∑
k h

n−1,n
i,k xk) is also in qifn−1

i I, we
have that the element

∑
i f

n−1
i (

∑
k h

n−1,n
i,k xk) is in qfn+1∗

j R. Therefore, we can
rewrite it as ∑

i

fn−1
i (

∑
k

hn−1,n
i,k xk) =

∑
j

fn+1
j γj + u,
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where γj is an element in R and u is an element of qfnk I. We claim that we have
δn+1((γj)j) = (xk)k, where γj denotes the image in Λ of the element γj in R. To
prove this we have

δn+1((γj)j) = (h
n,n+1

k,j )(γj)j = (
∑
j

h
n,n+1

k,j γj)k.

But, we have ∑
k

fnk (
∑
j

hn,n+1
k,j γj) =

∑
j

fn+1
j γj =

∑
k

fnk xk

modulo qfnk I. Hence, we infer that for each k we get
∑
j h

n,n+1
k,j γj = xk modulo I.

This proves that Ker δn ⊆ Im δn+1 and the proof is complete.

We show next that the resolution constructed above is a finitely generated reso-
lution if we assume in addition that Λ is noetherian and I is finitely generated as
a right ideal in R.

Theorem 1.3. Assume that Λ is noetherian and that I is finitely generated as a
right ideal of R = KQ. Let MΛ be finitely generated. Then the resolution (P , δ) of
MΛ is finitely generated.

Proof. First observe that we may choose f0
1 , . . . ,f0

k in R such that qki=1f
0
i R/qki=1

f0
i I maps onto M . To prove the theorem, it is enough to show that, for each n > 0,

the direct sums qifn∗i R are finite. We prove this first for n = 1. We have the exact
sequence of R-modules,

0→ qki=1f
0
i I → Ω1

R(M)→ Ω1
Λ(M)→ 0,

and, since both ends are finitely generated, then so is the middle term. But
Ω1
R(M) = qif1∗

i R hence this sum must be finite. We show now by induction,
that, for each n > 1 we have Ω1

R(Ωn−1
Λ (M)) = qifn∗i R and that they are all finitely

generated. (Here by ΩkΛ(M) we mean the kernel of the map qifk−1
i R/qi fk−1

i I →
Ωk−1

Λ (M).) If n ≥ 2, we have the following exact commutative diagram:

0

��

0

��

0 // (qifn−2
i I) ∩ (qjfn−1

j R) //

��

qjfn−1
j R //

��

Ωn−1
Λ (M) // 0

0 // qifn−2
i I // Ω1

R(Ωn−2
Λ (M)) // Ωn−1

Λ (M) // 0

which shows that Ω1
R(Ωn−1

Λ (M)) = qtfn∗t R, and the diagram
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0

��

0

��

qjfn−1
j I

��

qjfn−1
j I

��

0 // Ω1
R(Ωn−1

Λ (M)) //

��

qjfn−1
j R //

��

Ωn−1
Λ (M) // 0

0 // ΩnΛ(M) //

��

qjfn−1
j R/qj fn−1

j I //

��

Ωn−1
Λ (M) // 0

0 0

and, from the left vertical exact sequence, an easy induction argument shows that
Ω1
R(Ωn−1

Λ (M)) is finitely generated. Thus the sum qtfn∗t R is finite. The proof of
the theorem is now complete.

Remark 1.4. If I is an admissible ideal in R, then I is finitely generated as a
right ideal in R and Λ = R/I is a finite dimensional K-algebra, hence noetherian.
Therefore, as a corollary of the above the resolution is finitely generated for any
finitely generated Λ-module MΛ when I is an admissible ideal.

The path algebra R = KQ has a natural grading R = qi(KQ)i where, for
each i, (KQ)i denotes the K-vector space spanned by the paths of Q of length i.
Each (KQ)i is endowed with an obvious (KQ)0-(KQ)0-bimodule structure, and,
J = qi≥1(KQ)i is the graded radical of R. If I ⊆ J2 is a two-sided ideal generated
by homogeneous elements, then Λ = KQ/I has an induced grading. In this case we
say that Λ is length graded. By a graded Λ-module M , we will always mean a graded
Λ-module M = qi∈ZMi such that, Mi = (0) for sufficiently small i, and, each Mi is
a finite dimensional K-vector space. In particular, Λ is a graded Λ-module. Given
a graded module, it has a projective cover in the category of graded modules and
degree zero maps, and, its kernel is again a graded module in our sense. Note also,
that as a graded algebra, Λ is generated in degrees 0 and 1.

Proposition 1.5. Let MΛ be a graded Λ-module. Then, the projective resolution
(P , δ) of Definition 1.1 can be chosen to be a graded resolution of MΛ.

Proof. Since MΛ is graded, we now take qf0
i R→M → 0 as a degree 0 homomor-

phism with the f0
i ’s homogeneous elements of R in the appropriate degrees. We

have a sequence of R-modules

0→ Ω1
RM → qf0

i R→M → 0

which is exact in grR. Since Ω1
R(M) is a graded submodule, we may take qf1∗

i R =
Ω1

Λ(M) with the elements f1∗
i right uniform homogeneous elements of qif0

i R. Since
I is a homogeneous ideal of R, it follows that I is also a homogeneous right ideal
of R. Thus qf0R is also a graded submodule of qf0R. Therefore, we have that
qf2∗R = (qf1R) ∩ (qf0I) is also a graded submodule of qf0R. We inductively
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construct a chain of graded R-submodules of qf0R:

· · · ⊂ qfnR ⊂ qfn−1R ⊂ · · · ⊂ qf0R.

The result follows by taking quotients modulo I.

2. Minimality

In this section we give an example showing that the projective resolution con-
structed in the previous section need not to be minimal when I is an admissible
ideal. However, when I is an admissible ideal, we prove that the elements {fn}
can be chosen such that the resolution is minimal. We also compare this resolution
with the Bongartz-Butler-Gruenberg resolution in [Bo].

We start with an example showing that the resolution constructed in Definition
1.1 need not be minimal.

Example 2.1. Let R be the path algebra of the following quiver:

2
b

&&LLLLLL

1

a
88rrrrrr

c &&LLLLLL 4
e //

f
// 5

3 d

88rrrrrr

and let I be the ideal of R generated by ab − cd, bf and de. Let Λ = R/I, and
let S1 be the simple Λ-module corresponding to the vertex v1. The ideal I is a
7-dimensional vector space with a basis given by the elements ab − cd, abe− cde,
abf − cdf , abf , cde, bf and de. We construct now a projective resolution of S1 over
Λ using the resolution described in Definition 1.1.

We can take f0 = v1, so we have 0 → Ω1
RS1 → v1R → S1 → 0 and we can

decompose Ω1
RS1 = f1

1R q f1
2R, where f1

1 = a and f1
2 = c. Next we note that

qf2∗R = (aR q bR) ∩ v1I = v1I, and a K-basis of v1I is the set {ab − cd, abe −
cde, abf − cdf, abf, cde}. We decompose v1I as

v1I = (ab− cd)R q abfRq cdeR.

But abf and cde are in qf1I = aI q cI. So f2 = ab − cd and we have f2R =
(ab− cd)R. Now we compute f3∗. We have that qf3∗R = (ab− cd)R ∩ (aI q cI),
and it easy to check that qf3∗R = (0), so that we obtain the following projective
Λ-resolution of S1, which turns out to be minimal:

0→ (ab− cd)R/(ab− cd)I → aR/aI q cR/cI → v1R/v1I → S1 → 0.

We remark that we could have decomposed v1I also in the following way: v1I =
cdfRq (ab− cd)R q cdeR and cdeR is contained in aI q cI, but cdf and (ab− cd)
are not in aI q cI. So we can write f2

1 = cdf and f2
2 = ab − cd. We continue and

get qf3∗R = (cdfRq (ab− cd)R)∩ (aI q cI) = abfR. Finally, we get the following
Λ-projective resolution of S1, which is clearly not minimal:

0→ abfR/abfI → cdfR/cdfRq (ab− cd)R/(ab− cd)I

→ aR/aI q cR/cI → v1R/v1I → S1 → 0.

The next result shows, as in the above example, that we can always choose the
elements {fn} in such a way that we obtain a minimal projective resolution of a
finitely generated Λ-module when I is an admissible ideal.
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Assume now that I is an admissible ideal, hence Λ is finite dimensional. Choose
{f0
i } such that qif0

i R/qi f0
i I is a projective cover of MΛ. We have the following.

Theorem 2.2. In the resolution (P , δ) = (qfni R/fni I, (h
n−1,n

)) the elements {fnj }
can be chosen in such a way that, for each n, no proper K-linear combination of a
subset of {fnj } is in qfn−1I +qfn∗J .

Moreover, there is a decomposition

qfn∗R = (qfni R) q (qfn′i R),

where the elements fn
′

i can be chosen to be in qfn−1I.

Proof. For each n ≥ 2 we have the decomposition

qfn∗R = (qfn−1R) ∩ (qfn−2I)(1)

Step 1: We show first that we can adjust the decomposition (1) to obtain a
decomposition of the type

qfn∗R = (fn1 R q . . .q fnt R)q (fn
′

t+1R q · · · q fn
′

k R),(2)

where each fn
′

j is in qfn−1I + qfn∗J , and, no proper K-linear combinations of
a subset of {fni } is in qfn−1I + qfn∗J . To prove this claim, start with the de-
composition (1). If x = α1f

n
1 + · · · + αsf

n
s is a K-linear combination, where, say

α1 6= 0, then we have fn1 R q . . . q fnt R = xR q fn2 R q . . . q fnt R. Thus, if x is in
qfn−1I +qfn∗J , we adjust our initial decomposition to the decomposition

qfn∗R = (fn2 R q . . .q fnt R)q (xR q fn′t+1R q . . .q fn
′

k R),

x thus becoming one of the fn
′
’s. The element x may be assumed to be right

uniform. We continue this process and the claim is proved.
Step 2: By the first step, we may assume that we have a decomposition of the

type

qfn∗R = (fn1 R q . . .q fnt R)q (fn
′

t+1R q . . .q fn
′

k R),

where each of the fn
′
’s is in qfn−1I + qfn∗J . We show now that we can further

adjust this decomposition in such a way that each fn
′

i is in fact in qifn−1
i I.

Let y = fn
′

j be such that fn
′

j is not in qfn−1I. We can write y = a′ + b′

where a′ is in qfn−1I and b′ is in qfn∗J . But qfn−1I is contained in qfn∗R =
(qfn−1R) ∩ (qfn−2I), so we can write a′ = ya − q and b′ = yb + q for some a in
R, b in J and some q in qfn∗ 6=yfn∗R.

We get y = y(a + b) and, since y is right uniform with terminus w, we have
a+ b = w, so a = w− b. Let z = (w+ b)(w+ b2)(w+ b4) · · · (w+ b2

n

). We multiply
a′ = ya− q in qfn−1I by z on the right and we obtain y(w− b2n+1

)− qz in qfn−1I

or y − yb2n+1 − qz in qfn−1I. Since I is admissible, for large enough n, b2
n+1

is in
I, so yb2

n+1
is in yI ⊂ qfn−1I, so y − qz is in qfn−1I.

We claim now that (y − qz)R q (qfn∗ 6=yfn∗R) = qfn∗R. To show this we first
observe that qfn∗R = (y − qz)R + (qfn∗ 6=yfn∗R). It is obvious that the sum is
direct.

In this way it is clear that we can adjust our decomposition, and that we may
assume that each of the fn

′

i is in fact in qfn−1I. The case where n = 1 is similar.
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We now give the analogous result for the graded (not necessarily noetherian)
case.

Theorem 2.3. Assume Λ is length graded and let M be a graded Λ-module. Then
the resolution (P , δ) = (qifni R/ qi fni I, (h

n−1,n
)) can be chosen to be a graded

resolution in such a way that for each n, the fn∗i ’s are homogeneous elements (and
hence the fni ’s), with no proper K-linear combination of a subset of {fnj } is in
qfn−1I +qfn∗J . Moreover, there is a decomposition

qfn∗R = (qfnR)q (qfn′R)

where the elements fn
′

can be chosen to be homogeneous elements in qfnI.

Proof. By Proposition 1.5 we begin with a graded resolution of M . For each n ≥ 2,
we have a decomposition

qfn∗R = (qfn−1R) ∩ (qfn−2I)(3)

with the fn∗’s homogeneous.
Step 1: We show first that we may adjust the decomposition (3), to obtain a

decomposition of the type

qfn∗R = (qfnR)q (qfn′R)(4)

where each fn
′

is a homogeneous element in qfn−1R + qfn∗J , and, no proper
K-linear combination of a subset of {fn} is in qfn−1I +qfn∗J . For each degree,
there are only a finite number of fn∗’s in that degree, since each homogeneous
component of M and Λ is finite dimensional. Fixing a degree, we obtain

qfn∗R = (fn1 R q · · · q fnt R) q (fn
′

t+1 q · · · q fn
′

k R)(3’)

and we proceed, degree by degree, as in the proof of step 1 of Theorem 2.2.
Step 2: By the first step, we may assume that we have a collection of decom-

positions of the type

qfn∗R = (fn1 R q · · · q fnt R)q (fn
′

t+1 q · · · q fn
′

k R),

where all fn∗, fni and fn
′

j are homogeneous in the same degree, and, where each of
the fn

′

j ’s is in qfn−1I+qfn∗J . We show now that we can adjust these decomposi-
tions in such a way that, each fn

′

j is in fact in qfn−1I. Let y = fn
′

j be such that y
is not in qfn−1I, and of degree k. We can write y = a′+ b′ where a′ is in qfn−1I,
b′ is in qfn∗J , and both are homogeneous of degree k. Since qfn−1I is contained
in qfn∗R, we can write a′ = ya − q for some q in qfn∗ 6=yfn∗R, homogeneous of
degree s. Note that a must be a homogeneous element of R0 = (KQ)0. By right
uniformity ya = y. Thus y − q is in qfn−1I and we also have

(y − q)R q (qfn∗ 6=yfn∗R) = qfn∗R.
This completes the proof.

We can now show that the adjusted resolution is minimal.

Theorem 2.4. Let M be a Λ-module and let (P) = (qfnR/ q fnI, (hn−1,n
)) be

the projective resolution of M as in Theorem 1.2, where the representatives {fn}
are chosen in such a way, that for each n, no proper K-linear combination of a
subset of {fn} lies in qfn−1I +qfn∗J . Then, the resolution (P) is minimal.
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Proof. It is enough to show that for each n, the entries hn−1,n are in J , where
fn =

∑
fn−1hn−1,n. We prove this for each n, the case n = 1 being obvious.

Assume that for some n > 1 we have a representative fnj written as fnj =
fn−1

1 h1 + · · · + fn−1
t ht, where not all hi are in J . Using the fact that the fn−1’s

are right uniform elements of R, we get an expression

fnj = fn−1
1 α1 + · · ·+ fn−1

t αt + fn−1
1 r1 + · · ·+ fn−1

t rt

where αi is in K and ri is in J for i = 1, . . . , t (not all necessarily nonzero). Let x =∑t
i=1 f

n−1
i αi. Then we can write x as x = fnj −

∑t
i=1 f

n−1
i ri in qfn−2I+qfn−1J ,

which is a contradiction to the choice of the elements {fn−1}.

A projective resolution of Λ/ r and the groups DExtnΛ(Λ/ r,Λ/ r) are given in
[Bo], where D = HomK( ,K) is the usual duality. We now give some information
on the elements fn’s, which enables us to give a connection between the Bongartz-
Butler-Gruenberg resolution in [Bo] and our resolution.

Proposition 2.5. Let M be a Λ-module and, for each n ≥ 0, choose {fn} in such
a way that the resolution (qfnR/q fnI, h) is minimal as in Theorem 2.4.

(a) Let n ≥ 1 and write fn = fn−1
1 r1 + · · · + fn−1

t rt with ri in R. Then, the
elements fn can be chosen (adjusted) in such a way that each of the elements
r1, . . . ,rt are in J \ I.

(b) The elements fn+1 are in (qfnJ) ∩ (qfn−1I) and

(qfnJ) ∩ (qfn−1I) ⊂
{

(qf0JIm) ∩ (qf0ImJ) if n = 2m,
(qf0Im+1) ∩ (qf0JImJ) if n = 2m+ 1.

(c) ΩnΛ(M)/ΩnΛ(M) r ' qfnR/((qfnR) ∩ (qfn−1I) +qfnJ) and

qfn−1I +qfnJ ⊂
{
qf0JIm +qf0ImJ if n = 2m,
qf0Im+1 +qf0JImJ if n = 2m+ 1.

(d) DExtnΛ(M,Λ/ r) ' qfnR/((qfnR) ∩ (qfn−1I) +qfnJ).

Proof. (a) It is clear that not all the ri’s can be in I. Write, say,

fn1 = fn−1
1 r1 + · · ·+ fn−1

k rk + fn−1
k+1 rk+1 + · · ·+ fn−1

s rs,

where r1, . . . ,rk are not in I, but rk+1, . . . ,rs are all in I.
Let x1 = fn−1

1 r1 + · · ·+ fn−1
k rk. Then it is easy to check that qfn∗i R = x1R q

(fn∗2 R q . . . q fn∗R), since x1 = fn1 − u, where u is in qfn−1I ⊂ (qfn−1R) ∩
(qfn−2I) = qfn∗R. Furthermore, x1 is not in qfn−1I +qfn∗J ; otherwise, fn1 is.
So we can replace fn1 with x1. Continue this process. The fact that the coefficients
are in J follows from the minimality of the projective resolution.

(b) We have that fn+1 =
∑
fnhn,n+1, where hn,n+1 is in J , since the resolution

is minimal. Therefore, fn+1 is in
∑
fnJ . Moreover,

fn+1 =
∑

fnhn,n+1 =
∑

fn−1hn−1,nhn,n+1,

where the last sum is in qfn−1I, since we have a resolution over Λ = R/I. It
follows immediately from this that fn+1 is in (qfnJ) ∩ (qfn−1I).

We saw above that f i is in qf i−2I for i ≥ 2. This implies that f2m is in qf0Im

and that f2m+1 is in qf1Im ⊂ qf0JIm. The last claim in (b) follows immediately
from this.
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(c) and (d) The second claim of (c) follows in a similar fashion to (b). Since the
projective resolution of M is minimal and Λ/ r is semisimple, it follows immediately
that

DExtnΛ(M,Λ/ r) ' TorΛ
n(M,Λ/ r) ' qfnR/q fnJ.

Furthermore, the minimality of the resolution, and the above imply that qfnJ =
qfnJ + (qfnR) ∩ (qfn−1I). The result follows.

It is shown in [Bo] that

DExtnΛ(Λ/ r,Λ/ r) =

{
(Im ∩ JIm−1J)/(JIm + ImJ) for n = 2m ≥ 2,
(JIm ∩ ImJ)/(Im+1 + JImJ) for n = 2m+ 1 ≥ 1.

We see that the formulas for DExtnΛ(Λ/ r,Λ/ r) and for DExtnΛ(M,Λ/ r) in Propo-
sition 2.5 are very similar, when M is any finitely generated Λ-module.

3. Ext-algebras

Let Λ = R/I where R = KQ and I ⊆ J2 is an admissible ideal of R, or
a length homogeneous ideal. Let Λ0 = R/J . Note that Λ0 is a semisimple Λ-
module. We recall that the Ext-algebra of Λ is the graded K-algebra E(Λ) =
qn≥0 ExtnΛ(Λ0,Λ0) with the obvious addition and with multiplication given by the
Yoneda product. Given a right Λ-module M , we have a graded left E(Λ)-module
E(M) = qn≥0 ExtnΛ(M,Λ0). In this section we show how to use the minimal
projective resolutions introduced in section 2, to effectively describe the E(Λ) action
on E(M) (and thus, if M = Λ0, the multiplicative structure of E(Λ) itself), in an
algorithmic way, by working at the level of the path algebra KQ.

We start by recalling the following interpretation of the Yoneda product, which
will be used in this section. First, we observe that if M is a finitely generated
Λ-module, in the admissible case, or M is graded in the length homogeneous case,
we may consider a minimal Λ-resolution of M :

· · · → Pn
δn−→ Pn−1 → · · · → P0 →M → 0.

This resolution is minimal in the sense that, for each n > 0, we have Im δn ⊆ Pn−1 r
where r is the Jacobson radical of Λ in the case where I is admissible, and r is the
graded radical of Λ in the graded case which need not be finite dimensional. Since
ExtnΛ(M,Λ0) is the cohomology of the complex

0→ HomΛ(P0,Λ0) δ∗−→ HomΛ(P1,Λ0) δ∗−→ · · · ,

and, since Λ0 is semisimple, the boundary maps of this complex are all zero. It
follows that, for each n ≥ 0, we have ExtnΛ(M,Λ0) = HomΛ(Pn,Λ0). Now let f̂ be
in ExtnΛ(M,Λ0) and let ĝ be in ExtmΛ (Λ0,Λ0). We have the following commutative
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diagram with exact rows:

PMn+m
//

lm

��

· · · // PMn+1
//

l1

��

PMn

l0

��

f̂

  
AAAAAAAA

PΛ
m

//

ĝ

��

· · · // PΛ
1

// PΛ
0

// Λ0

Λ0

(5)

where the top row is part of a minimal projective resolution of M , the bottom
sequence is part of a minimal projective resolution of Λ0, and the vertical maps
l0, l1, . . . , lm are successive liftings (not necessarily unique) of f̂ . Then we have the
following description of the E(Λ) action on E(M):

ĝ ∗ f̂ = the composition ĝ ◦ lm.

It is well known that this action is well defined. We also remark that, since PMn =
qi(fni R/fni I), we have a dual basis of ExtnΛ(M,Λ0) = HomΛ(PMn ,Λ0) consisting of
the maps {f̂ni } defined in the obvious way. In order to describe this action at the
level of the path algebra KQ, we construct a commutative diagram of R-modules
where, the first and the third rows are minimal projective Λ-resolutions of ΩnΛM
and, Λ0 respectively, and the back face of the parallelepiped is the front face modulo
the ideal I:

PMn+r
//

��

PMn+r−1
//

��

· · · // PMn
//

��

ΩnΛM //

f̂nj

��

0

qfn+rR
� � //

88 88qqqq

��

qfn+r−1R
� � //

66 66nnnn

��

· · · // qfnR //

:: ::uuuu

��

ΩnΛM //

rrrr rrrr

��

0

PΛ
r
ĝri

��

// PΛ
r−1

// · · · // Λ // Λ0
// 0

qgrR

��

� � //

88 88qqqqq
qgr−1R

� � //

66 66nnnnnn
· · · // R //

:: ::uuuuuu
Λ0

////

rrrrrr
rrrrrr

0

Λ0

R

77 77ooooooo

(Note that in order not to complicate our already rather complicated notation, we
denote by ĝri the map qgriR→ R as well as its image modulo I, qgriΛ→ Λ0.)

Notation. Keeping the notation of section 2, let (qfni R/ q fni I, (h
n−1,n

)) be a
minimal projective resolution of M over Λ, and let (qgni R/ q gni I, (k

n−1,n
)) be a

minimal projective resolution of Λ0 over Λ. Recall that the entries of the matrices
(h
n−1,n

) and (k
n−1,n

) are given by the expressions

fni =
∑
j

fn−1
j hn−1,n

j,i and gni =
∑
j

gn−1
j kn−1,n

j,i .

Recall also that for each n ≥ 2 we have

(qfn−1R) ∩ (qfn−2I) = (qfnR)q (qfn
′
R)
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where each fn
′

is in qfn−1I. We have similar statements and notation involving
the g’s, and, note that there are no g0′ ’s and g1′ ’s appearing.

We have the following lemma which is valid over an arbitrary ring S.

Lemma 3.1. Let A, B, C and D be S-modules satisfying B ⊆ C and (A+C)∩D =
(0). Then we have

(A qB qD) ∩ (C qD) ⊆ (A ∩ C) qB qD.

Proof. We first observe that we have the inclusion (A q B q C) ∩ (C q D) ⊆
[(A q B) ∩ C] q D since, if x = a + b + d = c + d′, then a + b − c = d′ − d is
in D, since b is also in C, we get that d = d′ and a + b = c. Therefore, x is in
[(A q B) ∩ C] + D. But D ∩ (A + C) = (0) and B ⊆ C so this sum is direct.
The lemma follows now immediately since B ⊆ C implies the well-known equality
(A qB) ∩ C = (A ∩ C) qB.

The following rather technical proposition is crucial to our description.

Proposition 3.2. (a) For each n ≥ 0, the matrix (hn,n+1) has entries in qg1R.
(b) For each r ≥ 2 and n ≥ 0, the product of matrices (hn,n+1) · · · (hn+r−1,n+r)

has entries in (qgrR) q (q2≤i≤rg
i′R).

Note that for simplicity we are using the following notation: the matrix (hn,n+1)
actually denotes the matrix (hn,n+1

j,i ) where the entries hn,n+1
j,i are obtained by

expanding the elements of the form fn+1 in terms of the elements of the form fn.

Proof. (a) From the minimality of the projective resolution of M it follows that
each entry of the form hn,n+1

j,i is in J , so we can factor out the initial arrows, (note
that the family {g1} is the set of arrows of Q!), and we are done.

(b) We proceed in 2 steps.
Step 1: We show first that the sum is direct. Recall that, for each p > 0 we

have (qgpR) q (qgp′R) ⊆ qgp−1R. Assume that the sum (qgrR) + (qk≤i≤rgi
′
R)

is direct. But this sum is a submodule of qgk−1R. Therefore its intersection with
qgk−1′R is zero. This proves that the sum (qgrR) + (qk−1≤i≤rg

i′R) is also direct,
so it follows by induction that our sum is direct.

Step 2: We have the following:

(hn,n+1) · · · (hn+r−1,n+r)

= [(hn,n+1) · · · (hn+r−3,n+r−2)] · [(hn+r−2,n+r−1)(hn+r−1,n+r)].

By induction, the product of the first r − 2 matrices has entries in (qgr−2R) q
(q2≤i≤r−2g

i′R), and it is clear that the product of the last two matrices has entries
in I, hence the entire product has entries in (qgr−2I) q (q2≤i≤r−2g

i′R). But, by
looking at the product of the first r − 1 matrices, we see that the entire product
has entries also in (qgr−1R) q (q2≤i≤r−1g

i′R). Hence, the entries of the product
lie in the intersection

[(qgr−1R) q (q2≤i≤r−1g
i′R)] ∩ [(qgr−2I) q (q2≤i≤r−2g

i′R)].

We now claim that we have the following inclusion:

[(qgr−1R)q (q2≤i≤r−1g
i′R)] ∩ [(qgr−2I) q (q2≤i≤r−2g

i′R)]

⊆ [(qgr−1R) ∩ (qgr−2I)]q (q2≤i≤r−1g
i′R)].
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Note that, since (qgr−1R) ∩ (qgr−2I)] = (qgrR)q (qgr′R), the claim will indeed
imply that the entries of our product of matrices are in the required sum. To prove
this claim, let A = qgr−1R, B = qgr−1′R, C = qgr−2I, and D = q2≤i≤r−2g

i′R.
With this notation we must prove that we have an inclusion:

(A qB qD) ∩ (C qD) ⊆ (A ∩ C) qB qD.
This is precisely the statement of Lemma 3.1 once one shows that B ⊆ C and that
(A+C)∩D = (0). It is clear that B ⊆ C. We also have that A and C are included
in qgr−2R and D ∩ (qgr−2R) = (0); hence D ∩ (A + C) = (0). The proof is now
complete.

Definition 3.3. It follows from the previous proposition that each entry of the
matrix product (hn,n+1) · · · (hn+r−1,n+r) is an element of the form

∑
grlr,n,n+r +∑

2≤i≤r g
i′si,n,n+r. Let (lr,n,n+r) be the corresponding matrix. (Note that the

number of rows of this matrix is the number of elements in the family {gr}, and
that the number of columns is the number of elements in the family {fn+r}.)

Proposition 3.4. For each n ≥ 0 and r ≥ 0, the following diagram of R-module
commutes modulo I:

qfn+rR
(hn+r−1,n+r)

//

(lr,n,n+r)

��

qfn+r−1R

(lr−1,n,n+r−1)

��

qgrR (kr−1,r)
// qgr−1R

Proof. We shall use a Sweedler-type notation in order to avoid multiple indices.
Note that by Proposition 3.2 we have that the entries of the product of r consecutive
(hn+i,n+i+1)-matrices have the form X =

∑
grlr,n,n+r +

∑
2≤i≤r g

i′si,n,n+r. We
have the following:

X =
∑

grlr,n,n+r +
∑

gr
′
sr,n,n+r +

∑
2≤i≤r−1

gi
′
si,n,n+r

=
∑

(
∑

gr−1kr−1,r)lr,n,n+r

+
∑

(
∑

gr−1ar−1,r)sr,n,n+r +
∑

2≤i≤r−1

gi
′
si,n,n+r

=
∑

gr−1(
∑

kr−1,rlr,n,n+r + ar−1,rsr,n,n+r) +
∑

2≤i≤r−1

gi
′
si,n,n+r,

where each ar−1,r is in the ideal I.
On the other hand, by expressing the matrix product as

[(hn,n+1) · · · (hn+r−2,n+r−1)] · (hn+r−1,n+r),

we see that each entry of this product is an entry of the product

(
∑

gr−1lr−1,n,n+r−1 +
∑

2≤i≤r−1

gi
′
si,n,n+r−1) · (hn+r−1,n+r).

Therefore, it has the form

∑
gr−1(

∑
lr−1,n,n+r−1hn+r−1,n+r) +

∑
2≤i≤r−1

gi
′
(
∑

si,n,n+r−1hn+r−1,n+r).
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From the uniqueness of the direct sum decomposition we obtain∑
gr−1(

∑
lr−1,n,n+r−lhn+r−1,n+r)

=
∑

gr−1(
∑

kr−1,rlr,n,n+r + ar−1,rsr,n,n+r)

where we recall that each ar−1,r is in I. It is immediate that the above equality
implies the proposition.

We are ready to prove the main result of this section.

Theorem 3.5. Let f̂nj be in ExtnΛ(M,Λ0) and let ĝri be in ExtrΛ(Λ0,Λ0) be two
basis elements. Then, the element ĝri ∗ f̂nj of Extn+r

Λ (M,Λ0) is given by

ĝri ∗ f̂nj =
∑
t

l̃r,n,n+r
i,j,t f̂n+r

t

where l̃ is the image in Λ/ r of the element l of R.

Proof. We infer from the previous proposition that for each n ≥ 0, and r > 1, we
have a commutative diagram of Λ-modules:

qfn+r
Λ

(h
n+r−1,n+r

)
//

(l
r,n,n+r

)

��

qfn+r−1
Λ

(l
r−1,n,n+r−1

)

��

qgrΛ
(k
r−1,r

)
// qgr−1Λ

This shows, as promised, that we have constructed a diagram (5) as in the beginning
of this section, and, that the product ĝri ∗ f̂nj is in fact the composition ĝri ◦(l

r,n,n+r
).

The theorem now follows.

4. The no loop conjecture

This section is devoted to applying the minimal projective resolution found in
section 2 to the no loop conjecture. In particular, we show a special case of this
conjecture.

Let K, Q, and R be as above, and let I be an admissible ideal in R. As before,
denote R/I by Λ. The no loop conjecture says the following. If S is a simple Λ-
module such that Ext1

Λ(S, S) 6= (0), then pdΛ S =∞. In [I], Igusa proved that the
global dimension of Λ must be infinite, whenever there exists a simple Λ-module S
with Ext1

Λ(S, S) 6= (0). (See also [L].)
First we prove a small technical lemma.

Lemma 4.1. Suppose a is an arrow in Q, where a : v → v for some vertex v in
Q. Let S be the simple Λ-module corresponding to this vertex, and assume that
the minimal resolution of S has been constructed finding the elements fn, fn

′
and

hn−1,n. The residue class of an in vI/v(JI + IJ) is nonzero if and only if

an =
∑
i

f2
i ri +

∑
i

f2′

i si,

where the coefficients ri and si are R, and where some ri is not in J .
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Proof. Assume that an =
∑
i f

2
i ri +

∑
i f

2′

i si for ri and si in R, where one of the
ri’s is not in J . Assume that the residue class of an in vI/v(JI + IJ) is zero.
Since each f2′

i is in qf1I, it is in vJI. Hence the set {f2
i } is linearly dependent in

vI/v(JI + IJ). This is a contradiction to the choice of f2
i (Theorem 2.4), so that

the residue class of an in vI/v(JI + IJ) is nonzero.
Conversely, assume that an =

∑
i f

2
i ri +

∑
i f

2′

i si for some ri and si in R, where
all ri are in J . Then clearly the residue class of an in vI/v(JI + IJ) is zero.

Now we show that if S is a simple Λ-module corresponding to a vertex with a
loop a where an is in I and an has a nonzero residue class in vI/v(JI + IJ), then
pdΛ S =∞.

Proposition 4.2. Suppose a is an arrow in Q, where a : v → v for some vertex v
in Q. Let S be the simple Λ-module corresponding to this vertex, and assume that
an is in I for some n ≥ 2 and that the residue class of an in vI/v(JI + IJ) is
nonzero. Then ExtiΛ(S, S) 6= (0) for all i ≥ 1. In particular, pdΛ S =∞.

Proof. Note that the hypothesis implies that an−1 is not in I. It is well-known that
ExtiΛ(S, S) 6= (0) for i = 1, 2.

By the above lemma, we have that an =
∑

i f
2
i r

2
i +

∑
i f

2′

i s
2
i for some r2

i and s2
i

in R, where some r2
i is not in J . Let z2 =

∑
i f

2′

i s
2
i . Then b2 = an− z2 is in qf2R.

We want to show that b2a is in qf2R ∩qf1I. Since an is in I and z2 is in qf2′R,
the element z2 is in qf1I and, therefore b2a is in qf2R ∩ qf1I.

Assume that b2a is in qf2I. Then there exist ui in I such that
∑

i f
2
i r

2
i a =∑

i f
2
i ui. Hence, r2

i a is in I for all i. There exists an i0 such that r2
i0

= cv + h for
c in K∗ and h in J . Then

c−1(v + (c−1h)2m) · · · (v + (c−1h)2)(v − (c−1h))(cv + h)a = a− (c−1h)2m+1

is in I. Since I is admissible and h is in J , for some large m, we get that a is in I.
This is a contradiction, which shows that b2a is not in qf2I and, Ext3

Λ(S,Λ/ r) 6=
(0).

By the above, we can write b2a as

b2a =
∑
i

f3
i r

3
i +

∑
i

f3′

i s
3
i

for some elements r3
i and s3

i in R. Expanding the two sides in the elements f2, we
get ∑

i

f2
i r

2
i a =

∑
t,i

f2
t h

2,3
t,i r

3
i +

∑
t,i

f2
t α

3
t,is

3
i ,

where each α3
i is in I. This implies that

r2
t a =

∑
i

h2,3
t,i r

3
i +

∑
i

α3
t,is

3
i .

There exists some t such that r2
t a is not in J2. If r3

i is in J for all i, then the
right hand side is in J2. Therefore, we infer that not all r3

i are in J . Since b2a
ends in v, there are also some f3

i such that f3
i v 6= 0. Hence, Ext3

Λ(S, S) 6= (0). Let
z3 =

∑
i f

3′s3
i and b3 = b2a− z3.

Assume now that we have shown that
(a) b2m+1 = b2ma− z2m+1 =

∑
i f

2m+1
i r2m+1

i , where not all r2m+1
i are in J ,

(b) b2m =
∑
i f

2m
i r2m

i , where not all r2m
i are in J ,
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(c) z2m+1 is in qf2m+1′R.
We want to show that b2m+1a

n−1 represents some nonzero element in
Ext2m+2

Λ (S, S).
The element b2m+1a

n−1 is clearly in qf2m+1R. Since b2m is in qf2mR and
z2m+1 is in qf2mI, we have that b2m+1a

n−1 = b2ma
n + z2m+1a

n−1 is in qf2mI.
Therefore, b2m+1a

n−1 is in qf2m+1R ∩ qf2mI.
Assume that b2m+1a

n−1 is in qf2m+1I, that is, b2m+1a
n−1 =

∑
f2m+1
i u2m+1

i ,
where u2m+1

i is in I for all i. Expanding the elements in terms of the elements f2m

we get ∑
i

f2m
i r2m

i an =
∑
i

f2m+1
i u2m+1

i + z2m+1a
n−1

=
∑
t

f2m
t h2m,2m+1

t,i u2m+1
i

∑
t

f2m
t β2m+1

t an−1

where β2m+1
t is in I for all t. For each t, we have that

r2m
t an =

∑
i

h2m,2m+1
t,i u2m+1

i + β2m+1
t an−1.

The right hand side is in JI + IJ for all t. For some t, the element r2m
t is not in J .

Using that I is an admissible ideal and similar arguments as before, we conclude
that an is in JI + IJ . This is a contradiction, and therefore b2m+1a

n−1 is not in
qf2m+1I and Ext2m+2

Λ (S,Λ/ r) 6= (0).
By the above, b2m+1a

n−1 has a representation of the form

b2m+1a
n−1 =

∑
i

f2m+2
i r2m+2

i +
∑
i

f2m+2′

i s2m+2
i .

Expanding in terms of the elements f2m, we get∑
i

f2m
i r2m

i an =
∑
i

f2m+2
i r2m+2

i +
∑
i

f2m+2′

i s2m+2
i + z2m+1a

n−1

=
∑

f2m
t h2m,2m+1h2m+1,2m+2r2m+2

i

+
∑

f2m+1
l α2m+2

l,i s2m+2
i + z2m+1a

n−1

=
∑

f2m
t h2m,2m+1h2m+1,2m+2r2m+2

i

+
∑

f2m
t h2m,2m+1α2m+2

l,i s2m+2
i + z2m+1a

n−1

for some α2m+2
l,i in I. We have that z2m+1 is in qf2mI, so that, if r2m+2

i is in J for
all i, then r2m

i an is in JI + IJ for all i. Since there exists r2m
i0 which is not in J ,

we show as before that an is in JI + IJ . This is a contradiction, and consequently,
not all r2m+2

i are in J , and Ext2m+2
Λ (S, S) 6= (0). Let z2m+2 =

∑
i f

2m+2′s2m+2
i

and b2m+2 = b2m+1a
n−1 − z2m+2. We can now move on to the following step.

Assume now that we have shown that
(a) b2m = b2m−1a

n−1 − z2m =
∑
i f

2m
i r2m

i , where not all r2m
i are in J ,

(b) b2m−1 =
∑
i f

2m−1
i r2m−1

i , where not all r2m−1
i are in J ,

(c) z2m is in qf2m′R.
We want to show that b2ma represents some nonzero element in Ext2m+1

Λ (S, S).
The element b2ma is clearly in qf2mR. Since b2m−1 is in qf2m−1R, z2m is in

qf2m−1I and b2ma = b2m−1a
n−z2ma, we have that b2ma is in qf2mR∩qf2m−1I.
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Assume that b2ma is in qf2mI. Then b2ma =
∑

i f
2m
i r2m

i a =
∑

i f
2m
i u2m

i with
u2m
i in I. Therefore, r2m

i a is in I for all i, and, as before, this would give the
contradiction that a is in I. Thus b2ma is not in qf2mI and Ext2m+1

Λ (S,Λ/ r) 6= (0).
By the above, the element b2ma has a representation of the form

b2ma =
∑
i

f2m+1
i r2m+1

i +
∑
i

f2m+1′s2m+1
i .

Expanding in terms of the elements f2m, we get∑
i

f2m
i r2m

i a =
∑

f2m+1
i r2m+1

i +
∑
i

f2m+1′

i s2m+1
i

=
∑
t

f2m
t h2m,2m+1

t,i r2m+1
i +

∑
t

f2m
t α2m+1

t,i s2m+1
i

where α2m+1
t,i is in I. If all r2m+1

i are in J , then r2m
i a is in J2 for all i. As before,

this is a contradiction, and therefore, there exists some r2m+1
i not in J . Using the

same arguments as before, it follows that Ext2m+1
Λ (S, S) 6= (0). Combining what

we have shown so far, the proof of the proposition is complete.

We point out that it follows from our proof of Proposition 4.2 that the
residue class of arn is nonzero in JIr−1J ∩ Ir/(JIr + IrJ) (which is isomorphic
to TorΛ

2r(Λ/ r,Λ/ r) by [Bo]), and that the residue class of arn+1 is nonzero in
JIr ∩ IrJ/(JIrJ + Ir+1) (which in turn is isomorphic to TorΛ

2r+1(Λ/ r,Λ/ r)).
However, when Ext1

Λ(S, S) 6= (0), then ExtiΛ(S, S) is not in general nonzero for
all i ≥ 1. The following example was pointed out to us by Dieter Happel [H2].

Let Q be the quiver given by

1a ::

b
((
2

c

hh

Let I be the ideal in KQ generated by (a2− bc, cab, cb). Denote by S the simple Λ-
module corresponding to the vertex 1. As with all simple modules corresponding to
a vertex with a loop, ExtiΛ(S, S) 6= (0) for i = 1, 2. However, Ext3

Λ(S, S) = (0), and,
since Ω4

Λ(S) = S, then ExtiΛ(S, S) = (0) if i ≡ 3 mod 4, and nonzero otherwise for
all i ≥ 1.

5. Examples

Let Q be a finite quiver and let I = 〈ρ1, . . . , ρn〉 be an admissible ideal of KQ,
where {ρ1, . . . , ρn} is a minimal set of generators of the two-sided ideal I. Assume
that for each i = 1, . . . , n, the element ρi is a linear combination of paths in Q
with coefficients +1 or −1. Let Λ = KQ/I be the corresponding finite dimensional
algebra. We know that if Λ is a monomial algebra, then the global dimension of Λ
(more generally, the projective dimension of each simple Λ-module) is independent
of the characteristic of K (see [GHZ]). If Λ is the incidence algebra of a partially
ordered set, the global dimension of Λ, although always finite, can vary with the
characteristic of K, unless gldim Λ ≤ 2 in which case it is again characteristic
independent (see [C, IZ]). In this section, we give examples which show that the
global dimension can fluctuate rather wildly according to the characteristic of the
field. The proofs of these examples can be easily done using the minimal projective
resolution constructed in the second section. We start, however, by showing that,
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if the global dimension is two in one characteristic, then it cannot be infinite in
another. More specifically, we prove the following.

Theorem 5.1. Let Q be a finite quiver and let E and F be two fields. Let
ρ1, . . . , ρn be linear combinations of paths in Q, where the coefficients are ±1,
and let IE (IF respectively) denote the two-sided ideal of EQ (FQ respectively)
generated by the elements ρ1, . . . , ρn. Assume that IE and IF are both admissible
ideals, and, that gldimEQ/IE ≤ 2. Then gldimFQ/IF <∞.

We will prove the theorem by induction on the number of vertices of Q, the case
where we have only one vertex being obvious. We need a few preliminary results.

Lemma 5.2. Let Λ be an artin algebra and let SΛ be a simple Λ-module such that
idΛS ≤ 1. Let e be the primitive idempotent corresponding to S. Then,

(i) gldim(1 − e)Λ(1− e) ≤ gldim Λ,
(ii) if gldim Λ =∞, then gldim(1− e)Λ(1− e) =∞. (Compare with [Fu, Propo-

sition 2.5].)

Proof. Since idΛSΛ ≤ 1, we have pdΛop DS ≤ 1, where D is the usual duality,
and we can use [Z] to infer (i). Assume now that gldim Λ = ∞. Then there is a
Λ-module MΛ such that pdMΛ = ∞. Let N = Ω2

ΛM—the second syzygy of M .
By [J], since idS ≤ 1, we have that, if

P : · · ·Pn → · · · → P0 → NΛ → 0

is a minimal projective resolution of N , then no Pi has a summand isomorphic to
eΛ. Thus, HomΛ((1−e)Λ,P) is a minimal projective resolution of the (1−e)Λ(1−e)-
module HomΛ((1 − e)Λ, N). Hence, gldim(1− e)Λ(1− e) =∞.

The next result is well-known.

Lemma 5.3. Let Λ = KQ/I be a finite dimensional quotient of the path algebra
KQ by an admissible ideal I. Let ρ1, . . . , ρn be a minimal set of generators of I
in the sense that I cannot be generated by a proper subset of {ρ1, . . . , ρn}. For a
vertex v of Q the following are equivalent:

(i) idSv ≤ 1.
(ii) ρiv = 0 for each i = 1, . . . , n.

Definition 5.4. Let Q be a finite quiver and let I be an admissible ideal of KQ.
Let ρ1, . . . , ρn be a minimal set of generators of I and assume that ρiv = 0 for each
i. It is clear that there are no loops at the vertex v since, otherwise, we would have
that Ext2

KQ/I(Sv, Sv) 6= (0), contradicting the fact that the injective dimension of
Sv is less or equal to 1. We construct a new quiver Q∗ as follows: the vertices of
Q∗ are all the vertices of Q different from v. The arrows of Q∗ are obtained from
the arrows of Q in the following way: each arrow of Q whose origin and terminus
are both different from v, is also an arrow of Q∗, and, for each path ab in Q:

•
u

a−→ •
v

b−→ •
w

such that ab is not in I, we form a “new” arrow C(a, b) in Q∗

•
u

C(a,b)−−−−→ •
w
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The corresponding two-sided ideal I∗ of KQ∗ is defined in the following manner: if
ρi is such that vρi = 0, and if ρi is not a path of the form ab:

• a−→ •
v

b−→ •,

then we let ρ∗i be the relation obtained from ρi, by replacing each occurrence of a
path of the form • a−→ •

v

b−→ • by the arrow C(a, b). Assume now that ρi is a relation
satisfying vρi 6= 0. Let a1, . . . , ak denote all the arrows into the vertex v, and let

b1, . . . , bs denote all the arrows starting at v. We let ρ∗ij be the relation obtained
from ajρi by replacing each path ajbl not belonging to I, that appears in ajρi, by
the arrow C(aj , bl). We now define I∗ to be the two-sided ideal of KQ∗ generated
by all the elements of type ρ∗.

Proposition 5.5. There is a K-algebra isomorphism

KQ∗/I∗ ' (1− e)KQ/I(1− e),
where e is the primitive idempotent corresponding to the vertex v.

Proof. Let φ : KQ∗/I∗ → (1 − e)KQ/I(1 − e) be φ(w) = w for each vertex w of
Q∗, φ(a) = a for each arrow a of Q∗ inherited from Q, and also φ(C(a, b)) = ab
for each arrow of Q∗ of the form C(a, b) (here x means the image in KQ/I of the
element x of KQ). It is clear that φ induces a K-algebra homomorphism which is
onto, and, it is not hard to show that Kerφ = I∗.

Remark 5.6. The generating set {ρ∗i , ρ∗ik} of I∗ need not be minimal. Indeed, it
could happen that one of the ρ∗ik’s can be written in terms of the remaining ρ∗’s.
However, no element of the form ρ∗i can be written in terms of the remaining ρ∗i ’s
and ρ∗ik’s. This means that, by dropping if necessary some of the elements of the
form ρ∗ik, we get a minimal generating set of I∗, and, by construction the coefficients
involved are again ±1.

Finally, we should point out that I∗ need not be admissible, for instance, one
of the minimal relations may be a sum of C(a, b) and linear combinations of other
paths. In this case, it is easy to see that KQ∗/I∗ is isomorphic to an algebra
KQ∗∗/I∗∗, where Q∗∗ is obtained from Q∗ by dropping the arrow C(a, b), and I∗∗

is obtained from I∗ in the obvious way, that is, by replacing every occurrence of
C(a, b) by the given linear combination.

Proof of Theorem 5.1. Any artin algebra of global dimension n has at least one
simple module with injective dimension equal to n − 1 by an argument similar to
the one in [Z]. The theorem follows from the remarks above by induction on the
number of nonisomorphic simple modules.
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The following examples illustrate how global dimension can be affected by the
characteristic of the ground field.

Example 5.7. Let Q be the following quiver:

1
a // 2

b1

&&

bn

88
... 3

c1
((

c2

66 4

where n ≥ 2, and, let I = 〈
∑n

i=1 abi, bic1 + bnc2, for i = 1, . . . , n〉. Let Λ = KQ/I
and let S1 be the simple Λ-module corresponding to the vertex 1.

We claim the following:

pdΛ S1 =

{
3, if char k | n,
2, if char k - n

and,

gldim Λ =

{
3, if chark | n,
2, if chark - n.

Proof. It is easy to see that f0 = v1 and f1 = a. We can write v1I ∩ aR = v1I =
qif2∗

i R and we can easily see that f2 =
∑n

i=1 abi, since for each i, abic1 + abnc2 is
an element of aI = f1I. Next, in computing the intersection f2R ∩ f1I, we must
solve the equation

n∑
i=1

(abic1 + abnc2)αi = (
n∑
i=1

abic1)β + (
n∑
i=1

abic2)γ,

where α1, . . . , αn, β, γ are in the field K. By identifying corresponding coefficients,
we see that for each i = 1, . . . , n, αi = β,

∑n
i=1 αi = γ, and also that γ = 0. This

implies that nβ = 0, and f2R ∩ f1I = (
∑n
i=1 abic1β)R. If charK - n, then β = 0.

Thus f2R∩ f1I = (0), and hence pdS1 = 2. If charK | n, then we can take β = 1;
we also see that

∑n
i=1 abic1 is not in f2I, since c1 is not in I. In this case, we

have f3 =
∑n
i=1 abic1. It is easy to show that f3R ∩ f2I = (0). The remaining

statements are obvious.

Example 5.8. A small adjustment of the previous example yields the following.
Let Q be the quiver given by

1
a // 2

b

%%c //

d
99 3

e
((

f

66 4BC@A
g

OO

and let I = 〈ab+ ac+ ad, be+ df, ce+ df, de+ df, eg, ga〉. Let Λ = KQ/I and let Si
be the simple Λ-module corresponding to the vertex i of Q. It is easy to see that Λ
is finite dimensional. An easy calculation shows that Λ has finite global dimension
if and only if the characteristic of K 6= 3. In characteristic different from 3 we
have that pdΛ S1 = 2, pdΛ S2 = 5, pdΛ S3 = 4 and pdΛ S4 = 3. In characteristic
equal to 3 all simple Λ-modules have infinite projective dimension. In fact, we have
the following initial segments of the minimal projective resolutions of the simple
Λ-modules.
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In characteristic 3:

0→ S1 → P4 → P3 → P2
a−→ P1 → S1 → 0,

0→ S2
1 → P 3

4 → P 3
3 → P2 → S2 → 0,

0→ S1 → P 2
4 → P3 → S3 → 0,

0→ S1 → P4 → S4 → 0.

In characteristic different from 3:

0→ P3
b+c+d−−−−→ P2

a−→ P1 → S1 → 0

and as above Ω3
Λ(S2) ' S2

1 , Ω2
Λ(S3) ' S1 and ΩΛ(S4) ' S1.

Appendix

The authors would like to thank M. C. R. Butler and the referee for kindly
pointing out that we can also approach the construction of the projective resolu-
tions more conceptually. One gains a notational simplicity but loses an explicit
algorithmic method of constructing the resolution. We briefly sketch this approach
and add some comments on how to reobtain our explicit constructions from it.

We keep the following notations from the paper. Let R = KQ denote a path
algebra, let I be an ideal in R, and Λ = R/I. We let J be the ideal of R generated
by arrows of Q and let R0 denote the K-span of the vertices of Q. Then R0 is
a semisimple K-algebra and R = R0 ⊕ J as R0-modules. A right projective R-
module is isomorphic to U ⊗R0 R where U is a right R0-module. See [BK, G].
Let M be a right R/I-module, and let F0 be a semisimple R0-module such that
there is a surjection F0 ⊗R0 R → M . Let K1 = Ker(F0 ⊗R0 R → M). Then
K1 = F1 ⊗R0 R for some right R0-module F1. We note that F1 can be chosen to
be an R0-complement of K1J in K1 which generates K1. It should be remarked
that one can always find an R0-complement to K1J in K1. Because of the special
structure of projectiveR-modules, F1 can be chosen to generateK1. An algorithmic
method for constructing F1 can be given by constructing a minimal right uniform
Gröbner basis for K1 in F0 ⊗R0 R. This Gröbner basis is an R0-generating set for
F1 (see [G]). Fix F1 with the desired properties. Then we get the beginning of a
projective R/I-resolution of M .

F1 ⊗R0 R/F1 ⊗R0 I → F0 ⊗R0 R/F0 ⊗R0 I →M → 0.

Next, proceed inductively as follows. Let Kn+1 = (Fn ⊗R0 R)∩ (Fn−1 ⊗R0 I) in
F0⊗R0 R. Let F ∗n+1 be an R0-complement to Kn+1J in Kn which generates Kn+1.
The same remarks made above about the existence and construction of F1 apply to
the existence and construction of F ∗n+1. Choose F ∗n+1 with the desired properties.
ThusKn+1 = F ∗n+1⊗R0R. Decompose F ∗n+1 as anR0-module, F ∗n+1 = Fn+1⊕F ′n+1,
with F ′n+1 ⊆ Fn ⊗R0 I. We get an R/I-projective resolution of M as follows.

· · · → F2 ⊗R0 R/F2 ⊗R0 I → F1 ⊗R0 R/F1 ⊗R0 I

→ F0 ⊗R0 R/F0 ⊗R0 I →M → 0.

This method yields the construction of the paper by taking the fni ’s to be an
“R0-basis” of Fn; namely, since Fn is a direct some of simple R0-modules, the fni
choose one from each summand. As remarked above, the Fn’s and the fni ’s in
particular, can be explicitly constructed using right Gröbner basis techniques.
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In the construction in Section 1, we find the f∗n+1’s and form F ′n+1 by taking all
f∗n+1’s in Fn⊗R0 I. One does not need to remove all such f∗n+1’s; that is, F ′n+1 can
be chosen to be any summand of F ∗n+1 with the property that F ′n+1 ⊆ Fn ⊗R0 I.
Of course, if one is attempting to construct a minimal projective resolution, F ′n+1

must be taken as large as possible. On the other hand, always taking F ′n = 0 yields
the following well known generalization of the Gruenberg resolution mentioned in
the introduction. Let P0 = F0 ⊗R0 R and P1 = Ker(P0 →M) (over R). Then, the
above construction yields the long exact sequence

→ P0I
2/P0I

3 → P1I/P1I
2 → P0I/P0I

2 → P1/P1I → P0/P0I →M → 0,

coming from the filtration

· · · ⊆ P0I
2 ⊆ P1I ⊆ P0I ⊆ P1 ⊆ P0.

This immediately yields the following formulae. For m ≥ 1,

TorΛ
2m(M,R0) = (P1I

m−1J ∩ P0I
m)/(P1I

m + P0I
mJ),

and for m ≥ 0,

TorΛ
2m+1(M,R0) = (P1I

m ∩ P0I
mJ)/(P1I

mJ + P0I
m+1).
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