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I. INTRODUCTION

Quantum error correction �QEC� theory �1–4� concerns
the possibility to protect against environmental noise when
storing or transmitting quantum information. This possibility
relies, likewise, in the classical error correction theory, in
redundancy. This implies embedding a quantum information
unit �a qubit� belonging to a given Hilbert space �H2� into a
larger one �HD with D�2�. The latter is usually chosen as n
times the tensor product of the former, so that D=2n and
HD=H2

�n. We generally refer to this kind of encoding

C: H2 → H2
�n, �1�

as block encoding of the qubit. However, it is obvious that
whatever HD �with D�2�, extra state space is available and
could potentially be exploited without any restriction. As a
consequence, the alternative possibility is to embed a qubit
into a D-dimensional quantum system, i.e., a qudit, where D
can be made even infinite �in the limit where the qudit be-
comes a quantum oscillator, i.e., a bosonic mode �5,6��. We
refer to this kind of encoding

C: H2 → HD � H2
�n, �2�

as to qudit encoding of the qubit. In a standard QEC frame-
work, such encodings are coupled to suitable decoding
stages, where a recovery operation �e.g., syndrome extraction
and error correction� restores the original quantum informa-
tion by removing the �correctable� errors induced by the
noisy action of the environment.

Note that the encodings of Eqs. �1� and �2� are not equiva-
lent. A first simple reason relies in the available dimensions
for qudit encoding, which are not necessarily restricted to
powers of 2. Moreover, at a more fundamental level, the
errors affecting the two storing systems are different, that is,
they form two different algebras. For a block of qubits errors
are given by combinations of bit and phase flips, which are
representable in terms of products of Pauli matrices. A single
qudit instead is affected by amplitude and phase shifts �im-
plying that, asymptotically, a single bosonic mode is affected
by diffusion in position and momentum �6��, which are rep-
resented by the unitarily generalized Pauli matrices for a
single qudit.

Pioneering advances in the QEC with higher-dimensional
spin systems �7,8� and bosonic modes �5� were achieved dur-
ing the 1990s. More recently, Ref. �6� introduced novel kinds

of codes for qudits, known as shift-resistant �SR� quantum
codes. In its simplest formulation, a SR code corresponds to
embedding a logical qubit into a larger qudit, followed by a
recovery stage which restores the quantum information from
a bounded set of quantum errors �i.e., amplitude and phase
shifts whose weight is less than some critical value�. In par-
ticular, Ref. �6� showed that a qudit of dimension D=18
represents the smallest quantum system able to protect a
logical qubit from a single quantum error, where the corre-
sponding five-qubit block code ��5,1,3�� of Ref. �9� needs a
Hilbert space of dimension D=25�18. Let us underline that
both of these codes are stabilizer codes �3� and are perfect,
roughly meaning that they need minimal quantum resources
for their task �10�.

The latter peculiarity is very important since the primary
issue for having experimentally feasible QEC codes consists
in simplifying their complexity. In fact, the importance of
using minimal resource codes relies on our current difficulty
in performing high fidelity operations on a small number of
qubits �11�. However, apart from the optimality of the above
perfect codes �which are designed to defeat general quantum
errors�, it is still an open problem to find the most efficient
quantum codes which enable QEC within specific error mod-
els. In fact, if the dominant decoherence process in a physical
system is of a specific nature and well known, one can look
for a corresponding quantum error correction scheme whose
quantum complexity is as small as possible. Such a problem
has been raised, for the first time, in Ref. �12� for protecting
logical qubits against dephasing. Later, Ref. �13� proposed an
optimal code embedding a qubit in a block of bosonic modes
able to protect against the effect of amplitude damping.

To date, nobody has analyzed the same problem for qudit
encoding, i.e., nobody has considered the engineering of a
minimal single-qudit code able to protect a logical qubit
against a specific kind of decoherence. Only Ref. �14�
pointed out that qudit encoding is not effective by itself when
specific error models are taken into account. That is, without
a suitable error correction �recovery� operation, the extra
space cannot be exploited to protect against errors. In this
paper, we consider the qudit encoding in a QEC framework
�i.e., with a suitable recovery stage� and we design the mini-
mal codes which are able to protect a logical qubit against a
single class of errors, such as amplitude or phase shifts. Note
that we are here considering minimal codes which are qua-
siclassical. In fact, even if they encode quantum information
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�one logical qubit�, the environmental error model here is
classical, in the sense that the correctable errors occur only
in a preferred basis. The two complementary bases of a
single qudit are perfectly symmetric, being connected by a
discrete Fourier transformation. Therefore, by fixing the un-
perturbed basis �pointer basis� to be the computational one,
we can always define as phase damping the damping that
affects the complementary basis. We will show the robust-
ness of a minimal qudit code in preserving the encoded
quantum information against this kind of error.

The layout of the paper is the following. In Sec. II we
present the code’s construction and its performance against
shift errors. Section III is devoted to the phase-damping
channel. Section IV shows the performance of the code
against phase damping in terms of input-output fidelity. Fi-
nally, Sec. V is the conclusion.

II. CODE

A. Qudits

Let us consider a qudit, i.e., a D-dimensional spin system.
In its Hilbert space HD we choose a computational basis ��j��
labeled by modular integers j�ZD : = �0, . . . ,D−1�. An arbi-
trary unitary transformation HD→HD can be expanded in
terms of D2-generalized Pauli operators �15�

XaZb, a,b � ZD, �3�

which are defined by

X�j� = �j � 1�, Z�j� = � j�j� , �4�

where j1 � j2 : = j1+ j2�mod D� and

�: = exp�i2�/D� . �5�

Such unitary operators satisfy the anticommutation relation

ZX = �XZ , �6�

and their eigenstates are connected by

�i�˜ = 	
j=0

D−1

Hij�j� , �7�

where X�i�˜=� j�i�˜, and H is the D�D Fourier matrix with
entries

Hij: =
�−ij


D
, i, j � ZD. �8�

Accordingly, a general quantum error acting on the qudit can
be decomposed in the error basis of Eq. �3�. Its elements, i.e.,
the generalized Pauli operators, represent the basic quantum
errors which a quantum correcting code must correct. Ac-
cording to Eq. �4� these are distinguished as amplitude shifts
Xa and complementary phase shifts Zb. Multiplying by suit-
able phase factors � j the elements of Eq. �3�, one defines the
qudit Pauli group and, consequently, extends the stabilizer
formalism �3,6�. These two kinds of errors, if considered
separately, represent an Abelian group and their correction
can thus be performed through quasiclassical codes.

B. Single errors

It is natural to ask what is the smallest D-level system
which protects an encoded qubit from a single amplitude
shift X�1. Let us first consider an example with D=6, so that
�=exp�i� /3�. A logical qubit can be encoded in the two
code words stabilized by the generator Z2, i.e.,

�0�: = �0�, �1�: = �3� , �9�

where

Z2�0� = �0�, Z2�3� = �3� . �10�

In such a case the measurement of the stabilizer preserves
every coherent superposition ���=��0�+	�3�, i.e.,

Z2��� = ��� , �11�

while it detects single X errors, i.e.,

Z2X�1��� = ��2X�1��� . �12�

Alternately, one must consider the complementary generator
X2 for correcting single Z�1 errors, i.e., one must encode the
qubit into the code words

� + �: = �0�˜, �− �: = �3�˜ , �13�

where

X2�0�˜ = �0�˜, X2�3�˜ = �3�˜ . �14�

According to Eq. �7�, one can express these code words in
the computational basis as

�0�˜ =
1

6

	
j=0

5

�j�, �3�˜ =
1

6

	
j=0

5

�− 1� j�j� . �15�

C. Multiple errors

From the previous example we argue that in order to cor-
rect k shifts we need a qudit with

D = 4k + 2 �16�

levels. This can be understood by means of the “clock” pic-
ture of Fig. 1, and is easily proven in the following. Con-

0

1

k

kk

k

FIG. 1. �Color online� Pictorial view of errors’ effect on code
states. The shadowed area separates the correctable error spaces
associated with the two code words.
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sider, for example, the case of k amplitude shifts X�k, but the
reasoning is perfectly symmetric for the complementary er-
rors. In order to determine two possible code words, we must
consider the eigenvalue equation

ZG�j� = � jG�j� , �17�

where j�ZD, 0�G�ZD, and D must be determined. In Eq.
�17�, the state �j� is stabilized if and only if � jG=1, and this
happens in either the trivial case j=0 or in the case

jG = D . �18�

Note that, since j
D, we must necessarily set G�2 for the
weight of the Z generator. The resulting code will be able to
correct all errors X0 ,X�1 ,X�2 , . . . ,X�k if and only if the sta-
bilizer generator ZG will commute with Xd, where d : =2k
+1 defines the distance of the code. Since

ZGXd = �dGXdZG, �19�

this will happen if and only if

dG = D , �20�

i.e., if the weight of the generator corresponds to the ratio
between the dimension of the qudit and the code’s distance.
By comparing Eqs. �18� and �20� we must conclude that

j = d = 2k + 1. �21�

Then, by making the “minimal” choice G=2 in Eq. �18�, we
get the minimal dimension D of Eq. �16�. In conclusion, k
amplitude shifts are corrected by encoding a qubit into the
code words

�0�: = �0�, �1�: = �2k + 1� , �22�

of a �4k+2�-dimensional qudit. These code words are stabi-
lized by the operator Z2 and are connected by the logical flip

gate X̄ : =X2k+1. Analogously, k phase shifts are corrected by
means of the code words

� + �: = �0�˜ =
1


4k + 2
	
j=0

4k+1

�j� , �23�

�− �: = �2k + 1�˜ =
1


4k + 2
	
j=0

4k+1

�− 1� j�j� , �24�

which are stabilized by X2 and are connected by the logical

phase gate Z̄ : =Z2k+1. Both these codes are perfect, since the
correctable error spaces �of dimension d� associated to their
code words just barely fit in the qudit space �of dimension
D=2d�. We may refer to these codes as to minimal amplitude

code ��0� , �2k+1�� and minimal phase code ��0�˜ , �2k+1�˜�, re-
spectively. It is clear that they are equivalent up to a �dis-
crete� Fourier transformation.

Note that, correspondingly, the minimal qubit block code
which is able to correct k-phase �or amplitude� error flips
works via majority voting and, therefore, needs a block of
2k+1 qubits. This is equivalent to considering a Hilbert
space of dimension D=22k+1, which is exponential rather
than polynomial in k. This means that the qubit code is ex-

ponentially more demanding than the corresponding shift-
resistant qudit code at given weight k.

D. Syndrome extraction and error recovery

1. Amplitude errors

Consider an arbitrary coherent superposition of orthogo-
nal code words of the amplitude code ��0� , �2k+1��, i.e.,

���0�� = ��0� + 	�2k + 1� . �25�

Suppose that an amplitude shift error Xs, with syndrome −k
�s�k, occurs on this superposition. Then, the logical state
of Eq. �25� becomes

���s��: = Xs���0�� = ��0 � s� + 	�2k + 1 � s� . �26�

According to Sec. II C, such an error is detected by measur-
ing the complementary generator Z2. In fact, this measure-
ment gives

Z2���s�� = �2s���s�� , �27�

i.e., the syndrome is unambiguously extracted via the eigen-
value �2s of Z2 �nondegeneracy of the code�, while the cor-
rupted state is preserved in the process. In order to realize
this kind of quantum nondemolition measurement, we must
append an ancillary system to the signal, let the joint system
evolve according to a suitable unitary interaction, and finally,
measure the ancilla. Since we must distinguish 2k+1 or-
thogonal errors �k positive shifts, k negative shifts, and the
no-shift�, we need an ancillary system having at least 2k+1
orthogonal states, that we label by �l�A with l�Z, �l��k.

In detail this correction process goes as follows. Let us
introduce the 2k+1 projectors

P�s�: = �0 � s��0 � s� + �2k + 1 � s��2k + 1 � s� , �28�

and construct the following unitary operation �generalized
controlled-NOT �CNOT� gate or operation�:

N: = 	
s=−k

k

P�s�XA
s . �29�

It is then easy to check that N realizes the syndrome extrac-
tion. In fact, its effect on the joint system signal plus ancilla
corresponds to leaving the corrupted state unchanged while
shifting the ancilla by a quantity equal to the syndrome, i.e.,

N„���s��� � �0�A… = ���s��� � �s��A. �30�

At this point, the measurement of the ancilla provides the
syndrome s� and one restores the original signal state by
applying the corresponding inverse operator X−s� to ���s���.

It is known that the last procedure, i.e., the error correc-
tion stage, can be also implemented in a unitary manner. In
fact, we can define the correction operator

C: = 	
s=−k

k

X−s�s�A�s� , �31�

and applying it to the final state of Eq. �30�. In such a way
we get
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C„���s��� � �s��A… = ���0�� � �s��A,

thus recovering the initial encoded state of Eq. �25�. Note
that the two unitary operators of Eqs. �29� and �31� can be
compacted together in a unique recovery operator

R: = CN = 	
r,s=−k

k

X−rP�s� � �r�A�r�XA
s . �32�

The above derivation simply shows how the recovery proce-
dure works properly when a logical state ���0�� is affected by
amplitude error shifts which are correctable, i.e., which fall
within the distance of the code. More generally, we may ask
how the recovery works when such errors are not necessarily
correctable. This is a question that must be answered if we
want to test these codes in a quantum communication sce-
nario where the decoherence of a channel can be very strong.
To this purpose we must first derive the effect of recovery on
a completely arbitrary state of the qudit.

Thus, let us consider an arbitrary state

 = 	
i,j=0

D−1

ij�i��j�, ij: = �i��j� , �33�

of a qudit with dimension D=4k+2. The joint action of the
recovery operator reads

R� � �0�A�0��R† = 	
s,s�=−k

k

X−sP�s�P†�s��Xs� � �s�A�s�� .

�34�

If we now trace out the ancilla, we get the recovery map
acting on the qudit state

ER�� = 	
s=−k

k

X−sP�s�P†�s�Xs. �35�

By virtue of Eqs. �28� and �33�, it is equal to

ER�� = ��0,0��0��0� + ��0,2k + 1��0��2k + 1� + ��2k + 1,0�

��2k + 1��0� + ��2k + 1,2k + 1��2k + 1��2k + 1� , �36�

where

��x,y�: = 	
s=−k

k

x�s,y�s. �37�

2. Phase errors

For correcting phase errors the procedure is perfectly
analogous to the previous one. It is sufficient to exchange the
role of X and Z and account for the rotated code words of the

phase code ��0�˜ , �2k+1�˜�. Thus, the action of recovery on an
arbitrary state  of the system is now described by the map

ẼR�� = �̃�0,0��0�˜�0�˜ + �̃�0,2k + 1��0�˜�2k + 1�˜ + �̃�2k + 1,0�

��2k + 1�˜�0�˜ + �̃�2k + 1,2k + 1��2k + 1�˜�2k + 1�˜ , �38�

with

�̃�x,y�: = 	
s=−k

k

̃x�s,y�s, �39�

and ̃ij : = �i�˜�j �˜. In order to express these formulas in the
computational �Z� basis, we apply Eq. �7� yielding

̃ij = 	
l,m=0

D−1

Hil
�lmHmj =

1

D
	

l,m=0

D−1

lm�il−mj . �40�

Therefore,

�̃�x,y� =
1

D
	

l,m=0

D−1

lm�− 1�xl−ym��l − m,D� , �41�

where

��l − m,D�: = 	
s=−k

k

�s�l−m� =
sin

��l−m�
2

sin
��l−m�

D

, �42�

and D=4k+2 as usual. The formula of Eq. �38� is crucial for
our purposes. In fact, it will enable us to test the correcting

performance of our minimal phase code ��0�˜ , �2k+1�˜� in a
quantum communication scenario where the prevalent effect
of decoherence is ascribable to phase damping.

III. PHASE-DAMPING CHANNEL FOR QUDITS

The phase-damping �or phase-flip� channel for a qubit can
be defined by the following Kraus decomposition �16�:

E�� = 	
i=0

1

EiEi
†, �43�

with Kraus operators

E0 =
1 + �

2
I, E1 =
1 − �

2
Z , �44�

where I is the two-dimensional identity operator and Z is
given by Eq. �4� with D=2. One can describe the phase-
damping channel in an equivalent way, by adopting two dif-
ferent Kraus operators, related to those of Eq. �44� by a uni-
tary transformation

E�� = E0�E0�
† + E1�E1�

†, �45�

where now

E0� = �0��0� + ��1��1�, E1� = 
1 − �2�1��1� . �46�

The two Kraus decompositions of the phase-damping chan-
nel for qubits, Eqs. �43� and �45�, suggest two different gen-
eralizations to the general case of dimension D. The decom-
position of Eq. �43� can be straightforwardly generalized as

E�� = 	
m=0

D−1

EmEm
† , �47�

with
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Em =
�D − 1

m
�1 − �

2
m�1 + �

2
D−1−m

Zm, �48�

which can be seen as a particular example of a Weyl channel
�17�, which is generally defined as

 � E�� = 	
m,n=0

D−1

�m,n�ZnXm��XmZn�†, �49�

with 0��m,n�1 such that 	m,n=0
d−1 �m,n=1.

There is, however, a different way to define the phase-
damping channel for a D-dimensional spin system, which is
more closely related to the usual physical meaning of phase
damping. In fact, phase damping usually means that decoher-
ence affects the elements of a given basis leaving the ele-
ments of the complementary basis unchanged. As a conse-
quence, in the basis of the unaffected states, decoherence
destroys only the off-diagonal elements of the density matrix
of the qudit state. �It is evident that here we are convention-
ally fixing the elements �j� of the computational Z basis as
the unchanged ones, but it is understood that a complemen-
tary damping channel can be symmetrically defined.�

The second definition of the phase-damping channel for a
qudit is suggested by Ref. �18� that has shown that the Kraus
decomposition of Eq. �45� is equivalent to another Kraus
decomposition,

E�� = 	
i=0

�

EiEi
†, �50�

with an infinite number of Ei, which in the case of qubits, are
given by

Ei = �i0�0��0� +
��− 2 ln ��i/2


i!
�1��1� . �51�

The straightforward generalization of such a channel in D
dimensions has been already studied in Ref. �14� and has
Kraus operators

Ei: = 	
j=0

D−1
�j
− 2 ln ��i� j2


i!
�j��j� . �52�

In all these examples, the parameter �� �0,1� describes the
strength of the damping �14�. Such a parameter can be as-
sumed independent from D because it usually depends only
on the bath characteristics, e.g., in the Markov approxima-
tion it depends upon the spectral density of the bath only
�19�. One can parametrize �=e−�, where � is proportional to
the probability of a phase error, so that phase damping is
larger for smaller �. In particular, �→1− and �→0+ corre-
spond to the weak and strong damping limit, respectively.

It is easy to check from Eqs. �50� and �52�, that an arbi-
trary density operator =	i,j=0

D−1 ij�i��j� is mapped into the out-
put density operator given by

E�� = 	
i,j=0

D−1

ij�
�i − j�2

�i��j� , �53�

i.e., we have, as expected, partial suppression of only the
off-diagonal matrix elements of the state in the computa-
tional Z basis. This latter equation shows why this second
definition of the phase-damping channel for qudits repro-
duces the usual phase decoherence effect.

IV. INPUT-OUTPUT FIDELITIES

Once we have defined the two kinds of phase-damping
channels for a qudit, the Weyl channel of Eqs. �47� and �48�
and the conventional phase-damping channel of Eq. �53�, we
can consider their action upon our minimal phase code

��0�˜ , �2k+1�˜�. Here, we encode a logical qubit into a qudit
�with dimension D=4k+2� by means of these code words,
and we analyze the effects of phase damping with and with-
out error recovery. Such effects are quantified in terms of
fidelity of the output logical state with respect to the input.
The results are then compared to the case where a bare qubit
is sent through the channel, i.e., when neither encoding nor
decoding is performed.

Let us encode an arbitrary pure state cos�� /2��0�
+ei� sin�� /2��1� of a qubit into a coherent superposition of
phase code words, i.e.,

��,�� = cos
�

2
�0�˜ + ei� sin

�

2
�2k + 1�˜ . �54�

In the computational basis, the logical state of Eq. �54� reads

��,�� =
1


D
	
l=0

D−1 �cos
�

2
+ �− 1�lei� sin

�

2
��l� , �55�

and the corresponding density operator is given by

��,�� = ��,����,�� =
1

D
	

l,m=0

D−1

�lm�l��m� , �56�

where

�lm: = �cos
�

2
+ �− 1�lei� sin

�

2
��cos

�

2
+ �− 1�me−i� sin

�

2
� .

�57�

The effects of the phase-damping Weyl channel and of the
conventional phase-damping channel on this logical state can
be described with a unified formalism. In fact, one can write
the output state of the channel for the two cases as

E���,��� =
1

D
	

l,m=0

D−1

�lmfr��,l − m��l��m� , �58�

where r=1 refers to the conventional phase-damping chan-
nel, r=2 to the Weyl channel, and

f1��,l − m� = ��l − m�2
�59�
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f2��,l − m� = ��1 − �

2
��l−m� + �1 + �

2
�D−1

. �60�

All the results can be expressed in terms of these two func-
tions associated to each channel. In order to estimate the
decoherence effects we compute the fidelity between the in-
put and output states

Fdamp��,��: = ��,��E���,�����,��

=
1

D2 	
l,m=0

D−1

��lm�2fr��,l − m� , �61�

and, then, average this quantity over all the possible input
states

Fdamp: =
1

4�
�

0

�

sin �d��
0

2�

d�Fdamp��,��

=
1

3D2 	
l,m=0

D−1

�3 + �− 1�l−m�fr��,l − m� . �62�

The behavior of the averaged fidelity is shown for the two
cases in Fig. 2, where �a� refers to the r=1 conventional
phase-damping channel and �b� to the r=2 Weyl channel. In
both cases we note that the decoherence effect of the channel
increases with the dimension D.

Let us now apply the recovery map of Eq. �38� to the
corrupted state of Eq. �58�. The output �recovered� state is
then given by

rec��,��: = ẼR�E���,���� . �63�

By inserting the matrix elements lm=D−1�lmfr�� , l−m� of
the corrupted state E��� ,��� into Eq. �41� we get the corre-

sponding �̃ coefficients

�̃�x,y� =
1

D2 	
l,m=0

D−1

�lmfr��,l − m��− 1�xl−ym��l − m,D� ,

�64�

which, in turn, must be substituted into Eq. �38� in order to
give the final explicit expression of the recovered state
rec�� ,��. The input-output fidelity then becomes

Frec��,��: = ��,��rec��,����,��

=
1

D2 	
l,m=0

D−1

�lmfr��,l − m���l − m,D�

��cos2�

2
+ �− 1�−msin �

2
ei� + �− 1�lsin �

2
e−i�

+ �− 1�l−m sin2�

2
� , �65�

and its average over all possible input states takes the form

Frec: =
1

4�
�

0

�

sin �d��
0

2�

d�Frec��,��

=
1

3D2 	
l,m=0

D−1

�3 + �− 1�l−m�fr��,l − m���l − m,D� ,

�66�

Note that the recovery fidelity of Eq. �66� has the same form
as the damped fidelity of Eq. �62� except for the presence of
the kernel-like term ��l−m ,D� in Eq. �42�. This term for-
mally takes the recovery operation into account and is there-
fore responsible for the very different behaviors of Frec and
Fdamp. Such a term is equal to 1 only in the trivial case of a
qubit �D=2⇔k=0� for which we have Frec=Fdamp, as is
intuitively expected. In fact, in this case, the logical qubit is
simply encoded into another qubit and therefore remains un-
encoded.

Our qudit phase code can be compared with an n-qubit
repetition code. Actually, for a given D=4k+2, the integer n
should be chosen as odd�log2 D�, that is, as the odd integer
closest to log2 D from above. For an n-qubit repetition code,
starting from Eq. �44�, we straightforwardly get

Frec = 	
k=0

�n−1�/2 �n

k
�1 + �

2
n−k�1 − �

2
k

+
1

3 	
k=�n+1�/2

n �n

k


��1 + �

2
n−k�1 − �

2
k

. �67�

Notice that this result holds for both channels, and moreover,
for n=2 it corresponds to one qubit code, i.e., to unencoded
qubit.
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FIG. 2. Averaged input-output fidelities Fdamp in the case of a
damped qudit. �a� refers to the conventional phase-damping chan-
nel, while �b� refers to the Weyl channel. Fidelities are plotted ver-
sus the damping parameter � and for different dimensions D
=30,18,6 ,2 from bottom to top.
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The correcting power of our qudit phase code is shown in
Fig. 3, where the recovery fidelity of Eq. �66� has been plot-
ted as a function of the channel decoherence parameter � for
several dimensions D=4k+2, for the two examples of phase-
damped channels, the conventional phase-damping channel
in Fig. 3�a� and the Weyl channel in Fig. 3�b�.

In Fig. 3�a� we see that in the case of conventional phase
damping the qudit code performs better and better for in-
creasing dimension and always outperforms the unencoded
case D=2 �lower dashed line in Fig. 3�a��. More precisely, in
both limits �→1− �weak damping� and �→0+ �strong
damping� the correction scheme does not depend on D.
However, the improvement with respect to the unencoded
transmission of the qudit is remarkable in the intermediate
regime �see Fig. 3�a��. We have also made the comparison
with the block encoding. Actually, the dotted lines from top
to bottom in Fig. 3�a� refer to the repetition code of dimen-
sion 32,8,2 �using 5,3,1 qubits�, respectively. This code al-
ways outperforms the qudit code proposed here for any D,
showing that even though useful, our qudit codes are not
optimal in the case of the conventional phase-damping chan-
nel. This is, however, not surprising because the qudit code is
very different from repetition codes and it is not designed to
cancel errors at first order in the error probability as do the
latter codes.

The situation for the Weyl channel shown in Fig. 3�b� is
more involved. In this case, the correcting power of the qudit

code increases for increasing D only at small phase damping
�→1, while worsening for increasing dimension in the
strong damping limit �→0. This means that for a Weyl
channel the qudit code outperforms the unencoded case D
=2 only at large � ���0.7� and therefore it is useful only in
the weak damping limit. In this limit however, contrary to
what happens for the conventional phase-damping channel,
the qudit code becomes particularly useful because it can
outperform even the repetition code �dotted lines from top to
bottom in Fig. 3�b� refer to the repetition code of dimension
32,8,2, respectively�. In particular, while the qudit code of
D=6 does not outperform the three-qubit repetition code, the
qudit code of D=18 outperforms the three-qubit repetition
code, and quite remarkably the qudit code of D=30 outper-
forms the five-qubit repetition code.

Finally, the qudit code turns into a noneffective code
while decreasing � �worsening for increasing dimension�,
because it is tailored to correct errors of weight up to k while
in such a limit errors of higher weight become more and
more probable.

A. State-dependent fidelity

Besides the average fidelity, it is also interesting to ana-
lyze the state-dependent fidelity Frec�� ,�� of Eq. �65�. Both
phase-damping channels act on the phase of the states and
therefore in both cases the eigenstates of Z are unaffected by
decoherence, as can be easily checked. It is interesting to see
what happens to the encoded states in the presence of the
recovery procedure of Sec. II D. By construction, the two

quantum code words �+ � : = �0�˜ and �−� : = �2k+1�˜ of our
phase code are stabilized by X2 and connected by the logical

phase gate Z̄ : =Z2k+1. As a consequence, they are signifi-
cantly affected by both phase-damping channels even in the
presence of error correction. For the conventional phase-
damping channel the two fidelities satisfy the simple relation

Frec�0,0� = Frec��,0� →
1

2
for � → 0+, �68�

i.e., they are completely dephased under the effect of strong
phase damping. In the Weyl channel case the effect is even
stronger and for strong phase damping �→0 one has
Frec�0,0�=Frec�� ,0��0 at large enough D. However, one
can still find an encoded basis which is unaffected by phase
damping in the presence of error correction. Such a basis is
formed by the rotated code words given by the two simple
superpositions of the initial code words,

��0�: =
� + � + �− �


2
= �2k + 1�−1/2	

n=0

2k

�2n� , �69�

��1�: =
� + � − �− �


2
= �2k + 1�−1/2	

n=0

2k

�2n + 1� . �70�

One can easily check that these are the eigenstates of the

logical phase gate Z̄ : =Z2k+1 and are connected by the single
shift operator X, i.e.,

F r
ec

0 0.2 0.4 0.6 0.8 1

0.7

0.75

0.8

0.85

0.9

0.95

1

0.8 0.85 0.9 0.95 1

0.94

0.96

0.98

1

6
18

30

η

(a)

F r
ec

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 0.85 0.9 0.95 1

0.98

0.99

1

30
18

6

η

(b)

FIG. 3. Averaged input-output fidelities Frec in the case of a
damped qudit in the presence of the recovery stage. �a� refers to the
conventional phase-damping channel, while �b� refers to the Weyl
channel. Fidelities are plotted versus the damping parameter � and
for different dimensions D=30,18,6. Dashed lines refer, from top
to bottom, to repetition code of dimension 32,8,2 �using 5,3,1
quibts, respectively�. In �a� the qudit code is always worse than the
repetition code, but it performs better than the unencoded case ex-
cept for �→1 �see the inset�. In �b� the qudit code is effective at
small phase damping �→1, where it can outperform the repetition
code �see the inset�.
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Z̄��0� = ��0�, Z̄��1� = − ��1� , �71�

and

X��0� = ��1�, X��1� = ��0� . �72�

In other words, these rotated code words ���0� , ��1�� behave
like the Z eigenstates �0� and �1� of a qubit. In fact, the
corresponding fidelities satisfy, for both phase-damping
channels,

Frec���/2,0� = 1, ∀ k,� , �73�

which is exactly the behavior of the Z-basis eigenstates
�0� , �1� under the action of phase damping �i.e., they remain
unchanged�. However, let us remark that these correspon-
dences with the single-qubit eigenstates hold if and only if
the qudit code words are subject to error correction.

One can explicitly show that the two code words
���0� , ��1�� are perfectly restored by error recovery for any
value of � by making use of Eqs. �38� and �41�, from which
one can verify that

�̃�0,0� = �− 1�u�̃�0,2k + 1�

= �− 1�u�̃�2k + 1,0�

= �̃�2k + 1,2k + 1� = 1/2, �74�

which implies

ẼR�E���u���u��� = ��u���u� . �75�

As a final remark, note how the error correcting properties of
the orthogonal choices �+ � , �−� and ��0� , ��1� are perfectly the
same in the regime of weak damping �where they correct up
to k phase shifts with exactly the same ability�, while their
performances dramatically split when the phase damping be-
comes heavier and it is no-more reducible to the standard
QEC regime.

V. CONCLUSION

In conclusion, we have addressed the problem of how to
profitably exploit the extra space available by embedding a
quantum system into a “larger” one �qudit encoding�. Such
an approach can be useful from the point of view of the
experimental feasibility of quantum error correction
schemes, since the dimension D of the encoding Hilbert
space remains reasonably low. In particular, we have consid-
ered the minimal D which enables the construction of qudit
codes able to restore a logical qubit in specific decoherence
models. These minimal codes are then proven to be efficient
in protecting quantum information against the detrimental
effects of phase damping. This study could shed further light
into the role that Hilbert space dimensions play in quantum
error correction. The opposite problem of quantum data com-
pression could be considered in the same light. That is, data
compression from H2

�n to HD with 2n�D, as it has been
considered in Refs. �20� and �21�.

Possible experimental implementations of these codes and
the corresponding recovery operations require the ability to
efficiently implement the generalized Pauli operators X and Z
in an effective D-dimensional system. An interesting oppor-
tunity is provided by ring-shaped optical lattices, which have
been proposed as a possible quantum simulator of periodic
one-dimensional quantum systems �22�. If we place a single
atom in a ring-shaped lattice with D sites, the ground states
in each site are the basis states. As a consequence, the am-
plitude shift X is realized by tunneling, while the phase shift
Z could be realized by applying controlled local Stark shifts
to the atom.
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