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MANIFOLDS

Domenico Perrone

Abstract

We show that the Reeb vector field of an almost cosymplectic three-manifold is

minimal if and only if it is an eigenvector of the Ricci operator. Then, we show that

Reeb vector field x of an almost cosymplectic three-manifold M is minimal if and only

if M is ðk; m; nÞ-space on an open dense subset. After, using the notion of strongly

normal unit vector field introduced in [8], we study the minimality of x for an almost

cosymplectic ð2nþ 1Þ-manifold. Finally, we classify a special class of almost cosym-

plectic three-manifold whose Reeb vector field is minimal.

1. Introduction

Let ðM; gÞ be a Riemannian manifold and ðT 1M; gSÞ its unit tangent sphere
bundle equipped with the Sasaki metric gS induced by the Riemannian metric g.
A unit vector field V on M determines an immersion V : M ! ðT 1M; gSÞ.
When M is compact, the volume of V is the volume of the corresponding sub-
manifold ðM;V �gSÞ of ðT 1M; gSÞ. This gives a functional defined on the set
X1ðMÞ of all unit vector fields on ðM; gÞ. A unit vector field V is said to be
a minimal vector field if it is a critical point for the volume functional
F : X1ðMÞ ! R. This functional has been studied in [4] where similar notion
is introduced when M is also non-compact. One remarkable fact is that V is a
minimal unit vector field if and only if the submanifold ðM;V �gSÞ is minimal,
that is, the mean curvature vector field vanishes. The study of the minimal unit
vector fields is motivated from the work of Gluck-Ziller [6] where they considered
the problem of determining those unit vector fields V which have minimal
volume. In particular, Gluck-Ziller [6] proved that on the unit sphere S3 these
optimal unit vector fields are the Hopf vector fields (see also [13] for a di¤erent
proof ). In in the last fifteen years, many papers have been published containing
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examples and general results on minimal unit vector fields in di¤erent geometrical
situations (see, for example, [4], [5], [8], [9], [12], [13], [14]).

An interesting geometrical situation, in which a distinguished vector field
appears in a natural way, is given by an almost contact metric manifold where
we have the Reeb vector field x, also called the characteristic vector field. It is a
unit field and plays a fundamental role in the study of the Riemannian geometry
of an almost contact metric manifold [1]. The purpose of this paper is to study,
mainly in dimension three, almost cosymplectic manifolds whose Reeb vector
field is minimal. In Section 2 we give some results on the geometry of an almost
cosymplectic manifold. In Section 3, we show that the Reeb vector field of an
almost cosymplectic three-manifold is minimal if and only if it is an eigenvector
of the Ricci operator. In particular the minimality condition for the Reeb vector
field of an almost cosymplectic three-manifold is invariant for a D-homothetic
deformation. In Section 4 we explicitly the Ricci tensor of an almost cosym-
plectic three-manifold M, then we show that Reeb vector field x of M is a
minimal if and only if M is ðk; m; nÞ-space on an open dense subset. After, using
the notion of strongly normal unit vector field introduced in [8], we study the
minimality of x for an almost cosymplectic ð2nþ 1Þ-manifold. Finally, we
classify a special class of almost cosymplectic three-manifolds whose Reeb vector
field is minimal.

2. Almost cosymplectic manifolds

An almost contact structure ðx; f; hÞ on a di¤erentiable manifold M consists
of a tensor field f of type ð1; 1Þ, a tangent vector field x (called the Reeb vector
field or the characteristic vector field ), and a di¤erential 1-form h such that

f2 ¼ �I þ hn x; hðxÞ ¼ 1:

As a consequence, the dimension of M is odd ð¼ 2nþ 1Þ, fðxÞ ¼ 0 and h � f ¼ 0.
Given an almost contact structure ðf; x; hÞ on M, an associated metric is a
Riemannian metric g on M such that

gðfX ; fYÞ ¼ gðX ;Y Þ � hðX ÞhðYÞ;

for any X ;Y A XðMÞ, and then hðX Þ ¼ gðx;XÞ. Associated metrics are known
to exist (cf. [1], p. 34). The extended object ðf; x; h; gÞ is an almost contact metric
structure. The 2-form F defined by

FðX ;YÞ ¼ gðX ; fY Þ for any X ;Y A XðMÞ

is called the fundamental 2-form.
Note that an almost contact metric structure on an orientable ð2nþ 1Þ-

dimensional manifold M may be regarded as a reduction of the structure group
of M to UðnÞ � 1. If an almost contact metric structure satisfies in addition the
contact condition ðdhÞðX ;YÞ ¼ FðX ;Y Þ; then ðf; x; h; gÞ is called a contact metric
structure.
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For a given Riemannian manifold ðM; gÞ, we denote by ‘ the Levi-Civita
connection, by R the corresponding Riemann curvature tensor given by

RXY ¼ ‘½X ;Y � � ½‘X ;‘Y �;
by Ric the Ricci tensor and by Q the corresponding Ricci operator defined by
gðQX ;YÞ ¼ RicðX ;YÞ.

Following S.I. Goldberg and K. Yano [7], an almost contact metric manifold
ðM; f; x; h; gÞ is said to be an almost cosymplectic manifold if both the funda-
mental 2-form F and the 1-form h are closed, that is,

dF ¼ 0 and dh ¼ 0:

The identity dh ¼ 0 shows that the distribution ker h ¼ 0 is integrable and its
(maximal) integral submanifolds are hypersurfaces of M. The restrictions of F
and h to the associated foliation are closed forms, so that any leave is an almost
Kaehler submanifold. An almost cosymplectic manifold M is cosymplectic if
the underlying almost contact metric structure is normal, that is, ½f; f� ¼ 0, where
½f; f� is the Nijenhuis tensor of the tensor field f defined by

½f; f�ðX ;YÞ ¼ f2½X ;Y � þ ½fX ; fY � � f½fX ;Y � � f½X ; fY �
for any X ;Y A XðMÞ. A cosymplectic manifolds has Kaehlerian leaves, however
there are almost cosymplectic manifolds with Kaehlerian leaves which are not
cosymplectic manifolds [11]. Besides, an almost contact metric manifold is
cosymplectic if and only if ‘f ¼ 0. Normality is known to imply that x is
parallel, that is, ‘x ¼ 0 (as a consequence of fx ¼ 0 and ‘f ¼ 0). In dimension
three an almost contact metric manifold is cosymplectic if and only if x is parallel
(cf. [10], p. 248).

A cosymplectic manifold is locally the product of a Kähler manifold and
an interval in R. There are however examples of cosymplectic manifolds which
aren’t globally the product of a Kähler manifold and a real 1-dimensional mani-
fold (cf. [1], p. 77). For an almost cosymplectic manifolds we have the following
properties (cf. [2], [15]):

‘xf ¼ 0; ‘x ¼ hf; where h ¼ ð1=2ÞLxf;ð2:1Þ
hf ¼ �fh; hx ¼ 0; tr h ¼ 0; div x ¼ 0 andð2:2Þ

‘xh ¼ h2fþ fl;ð2:3Þ
where l is the Jacobi operator associated to the Reeb vector field: l ¼ Rð�; xÞx.
From ‘x ¼ hf, we have that h ¼ 0 if and only if x is parallel. Moreover, from

ðLxgÞðX ;Y Þ ¼ gð‘Xx;YÞ þ gð‘Yx;X Þ ¼ gðhfX ;Y Þ þ gðX ; hfY Þ ¼ 2gðhfX ;Y Þ;
we get that h ¼ 0, i.e. ‘x ¼ 0, if and only if x is Killing.

Next, let ðM; h; g; x; jÞ be a three-dimensional almost cosymplectic manifold.
Let U1 be the open subset of M where h0 0 and U2 the open subset of points
p A M such that h ¼ 0 in a neighborhood of p. Then, U1 UU2 is an open dense
subset of M. For any point p A U1 UU2 there exists a local orthonormal basis
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fx; e1; e2 ¼ fe1g of smooth eigenvectors of h in a neighborhood of p. On U1 we
put he1 ¼ le1, where l is a non-vanishing smooth function which we suppose
to be positive. From (2.2), we have he2 ¼ �le2. We note that the eigenvalue
function l is continuos on M and smooth on U1 UU2. Then we have

Lemma 2.1. On U1 we have

‘xe1 ¼ ae2; ‘xe2 ¼ �ae1; ‘e1x ¼ �le2; ‘e2x ¼ �le1;

‘e1e1 ¼
1

2l
fe2ðlÞ þ sðe1Þge2; ‘e2e2 ¼

1

2l
fe1ðlÞ þ sðe2Þge1;

‘e1e2 ¼ lx� 1

2l
fe2ðlÞ þ sðe1Þge1; ‘e2e1 ¼ lx� 1

2l
fe1ðlÞ þ sðe2Þge2;

8>>>><
>>>>:

ð2:4Þ

le1 ¼ �xðlÞe2 þ ðl2 þ 2alÞe1; le2 ¼ �xðlÞe1 þ ðl2 � 2alÞe2;ð2:5Þ

‘xh ¼ xðlÞ
l

I þ 2af

� �
h;ð2:6Þ

where a is a smooth function and s is the 1-form given by Ricðx; �Þ.

Proof. From (2.1) we obtain ‘e1x ¼ hfe1 ¼ �le2 and ‘e2x ¼ hfe2 ¼ �le1.
Since ‘xx ¼ 0, we have ‘xe1 ¼ ae2 and ‘xe2 ¼ �ae1, where a is a smooth
function. Moreover gð‘ei ei; xÞ ¼ �gð‘eix; eiÞ ¼ gðfhei; eiÞ ¼ 0 gives

‘e1e1 ¼ ae2 and ‘e2e2 ¼ be1;

where a, b are smooth functions. Besides,

‘e1e2 ¼ lx� ae1 and ‘e2e1 ¼ lx� be2:

Using these formulas, we get

Rðe1; e2Þx ¼ �‘e1‘e2xþ ‘e2‘e1xþ ‘½e1; e2�x

¼ ðe1ðlÞ � 2blÞe1 � ðe2ðlÞ � 2alÞe2
and hence

sðe1Þ ¼ Ricðx; e1Þ ¼ gðRðe1; e2Þx; e2Þ ¼ 2al� e2ðlÞ;
sðe2Þ ¼ Ricðx; e2Þ ¼ gðRðe2; e1Þx; e1Þ ¼ 2bl� e1ðlÞ:

Then,

a ¼ e2ðlÞ þ sðe1Þ
2l

and b ¼ e1ðlÞ þ sðe2Þ
2l

This completes the proof of (2.4). From

le1 ¼ Rðe1; xÞx ¼ �‘e1‘xxþ ‘x‘e1xþ ‘½e1;x�x

le2 ¼ Rðe2; xÞx ¼ �‘e2‘xxþ ‘x‘e2xþ ‘½e2;x�x;
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using (2.4), we get (2.5). The formulas (2.6) follows from

ð‘xhÞx ¼ 0 ¼ xðlÞ
l

I þ 2af

� �
hx;

ð‘xhÞe1 ¼ xðlÞe1 � 2ahe2 ¼
xðlÞ
l

I þ 2af

� �
he1;

ð‘xhÞe2 ¼ �xðlÞe2 � 2ahfe2 ¼
xðlÞ
l

I þ 2af

� �
he2: r

From (2.5) we deduce that

Ricðx; xÞ ¼ �2l2 ¼ �tr h2:ð2:7Þ

Proposition 2.1. Let ðM; x; f; h; gÞ be an almost cosymplectic manifold of
dimension 2nþ 1. Then, for any X A ker h, kXk ¼ 1, the vertical sectional cur-
vature satisfies the following properties:

Kðx;X Þ ¼ �khXk2 � gðð‘xhÞX ; fX Þ;ð2:8Þ
Kðx;XÞ � Kðx; fXÞ ¼ �2gðð‘xhÞX ; fX Þ:ð2:9Þ

In particular, ‘xh ¼ 0 implies

Kðx;X Þ ¼ Kðx; fXÞa 0;

and Kðx;X Þ ¼ Kðx; fXÞ ¼ 0 if and only if h ¼ 0.

Proof. From (2.3) we have

Kðx;XÞ ¼ Rðx;X ; x;X Þ ¼ �gðlX ;XÞ ¼ gðfð‘xhÞX ; fXÞ � gðh2X ;XÞ
and

Kðx; fXÞ ¼ Rðx; fX ; x; fX Þ ¼ gðð‘xhÞfX ; f2XÞ � gðh2X ;X Þ;
Then, since ð‘xhÞf ¼ �f‘xh, we get (2.9). r

Proposition 2.2. Let ðM; x; f; h; gÞ be an almost cosymplectic three-
manifold. Then,

Ricðe; feÞ ¼ gðð‘xhÞe; eÞ;ð2:10Þ

Ricðe; eÞ ¼ ðr=2Þ þ ðtr h2=2Þ � gðð‘xhÞe; feÞ;ð2:11Þ

Ricðfe; feÞ ¼ ðr=2Þ þ ðtr h2=2Þ þ gðð‘xhÞe; feÞ:ð2:12Þ

for any e A ker h, kek ¼ 1.

Proof. Since

Ricðe; eÞ ¼ Rðe; fe; e; feÞ þ Rðx; e; x; eÞ;
Ricðfe; feÞ ¼ Rðe; fe; e; feÞ þ Rðx; fe; x; feÞ;
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from (2.9) we get

Ricðfe; feÞ � Ricðe; eÞ ¼ 2gðð‘xhÞe; feÞ:ð2:13Þ
Of course (2.13) holds for any e A ker h. Then, for any e; e 0 A ker h, using (2.13)
and f‘xh ¼ �ð‘xhÞf, we get

Ricðfe; fe 0Þ � Ricðe; e 0Þ ¼ 2gðð‘xhÞe; fe 0Þ:ð2:14Þ

If we put e 0 ¼ fe, from (2.14) we obtain (2.10); (2.11) and (2.12) follow from
(2.13) and (2.7) because the scalar curvature r is given by

r ¼ tr Ric ¼ Ricðe; eÞ þ Ricðfe; feÞ þ Ricðx; xÞ

¼ 2 Ricðe; eÞ þ 2gðð‘xhÞe; feÞ � tr h2: r

3. Minimality of x in dimension three

Let ðM; gÞ be a Riemannian manifold and ðT 1M; gSÞ its unit tangent sphere
bundle equipped with the Sasaki metric gS. A unit vector field V on M deter-
mines an immersion V : ðM; gÞ ! ðT 1M; gSÞ. When M is compact, the volume
of V , that we denote by FðVÞ, is the volume of the Riemannian manifold
ðM;V �gSÞ. This gives a functional F : X1ðMÞ ! R defined on the set X1ðMÞ of
all unit vector fields on ðM; gÞ. The metric V �gS is related to the metric g by
the identity

ðV �gSÞðX ;YÞ ¼ gðLVX ;Y Þ;
where LV is the tensor of type ð1; 1Þ defined by

LV ¼ I þ ð‘VÞ t � ‘V :

Then

FðVÞ :¼
ð
M

vV �gS ¼
ð
M

f ðVÞvg;

where f ðVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det LV

p
. Consider the 1-form oV defined by

oV ðXÞ ¼ trðY 7! ð‘YKV ÞXÞ;
where KV is the tensor of type ð1; 1Þ defined by

KV ¼ f ðVÞ½L�1
V ð‘VÞ t�:

The unit vector field V is called a minimal vector field if it is critical for the
volume functional F defined on the set X1ðMÞ. The corresponding critical point
condition

oV ðAÞ ¼ 0 for any A A V?;

has been determined in [4], where similar notion is introduced when M is also
non-compact. One remarkable fact is that V is a minimal unit vector field if
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and only if V : ðM; gÞ ! ðT 1M; gSÞ is a minimal immersion, that is, the mean
curvature vector field is zero. Unit Killing vector fields on a manifold of
constant sectional curvature are minimal [4]. Hopf vector fields on S2nþ1 and
Reeb vector fields of K-contact manifolds are minimal with respect to the Sasaki
metric gS ([4], [8]) and, more in general, with respect to a class of g-natural metric
of Kaluza-Klein type [14].

Now we use Lemma 2.1 to derive a minimality condition for the Reeb vector
field x of an almost cosymplectic three-manifold.

Theorem 3.1. Let ðM; x; f; h; gÞ be an almost cosymplectic three-manifold.
Then, the 1-form ox is given by

ox ¼ Ricðx; �Þ:ð3:1Þ

So, x is minimal if and only if x is an eigenvector of the Ricci operator.

Proof. We recal that U1 UU2 is an open dense subset of M. For any point
p A U1 UU2 there exists a local orthonormal basis fx; e1; e2 ¼ fe1g of smooth
eigenvectors of h in a neighborhood of p. On U1 we put he1 ¼ le1, where l is a
non-vanishing smooth function which we suppose to be positive, and he2 ¼ �le2.
Now, on U1 we determine 1-form ox, which is defined by

oxðXÞ ¼ trðY 7! ð‘YKxÞX Þ:

From (2.1), we get

Lx ¼ I þ ð‘xÞ tð‘xÞ ¼ I þ h2

and so

Lxx ¼ x; Lxe1 ¼ ð1þ l2Þe1; Lxe2 ¼ ð1þ l2Þe2:

Now, we determine the tensor

Kx ¼ f ðxÞL�1
x ð‘xÞ t ¼ f ðxÞL�1

x hf; where f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Lx

p
¼ ð1þ l2Þ:

Since

L�1
x x ¼ x; L�1

x ei ¼ ð1=ð1þ l2ÞÞei ði ¼ 1; 2Þ;
we find

Kxx ¼ 0; Kxei ¼ �lei ði ¼ 1; 2Þ:

Moreover, using Lemma 2.1, we find

ð‘xKxÞe1 ¼ 2ale1 � xðlÞe2; ð‘xKxÞe2 ¼ �xðlÞe1 � 2ale1;

ð‘e1KxÞe1 ¼ �l2xþ ðsðe1Þ þ e2ðlÞÞe1 � e1ðlÞe2;
ð‘e1KxÞe2 ¼ �e1ðlÞe1 � ðsðe1Þ þ e2ðlÞÞe2;
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ð‘e1KxÞx ¼ �l2e1; ð‘e2KxÞx ¼ �l2e2;

ð‘e2KxÞe1 ¼ �ðsðe2Þ þ e1ðlÞÞe1 � e2ðlÞe2;
ð‘e2KxÞe2 ¼ �l2x� e2ðlÞe1 þ ðsðe2Þ þ e1ðlÞÞe2:

All these formulas imply that

oxðe1Þ ¼ gðð‘xKxÞe1; xÞ þ gðð‘e1KxÞe1; e1Þ þ gðð‘e2KxÞe1; e2Þ ¼ sðe1Þ;
oxðe2Þ ¼ gðð‘xKxÞe2; xÞ þ gðð‘e1KxÞe2; e1Þ þ gðð‘e2KxÞe2; e2Þ ¼ sðe2Þ;
oxðxÞ ¼ gðð‘xKxÞx; xÞ þ gðð‘e1KxÞx; e1Þ þ gðð‘e2KxÞx; e2Þ ¼ Ricðx; xÞ;

Therefore, ox ¼ Ricðx; �Þ on U1. If the set U2 is not empty, then the restriction
of the almost cosymplectic structure on U2 is cosympletic, that is , ‘x ¼ 0. In
such case, we get ox ¼ 0 ¼ Ricðx; �Þ. Then, ox ¼ Ricðx; �Þ on U1 UU2 and so on
M because the open set U1 UU2 is dense in M and the tensors ox and Ricðx; �Þ
are continuos on M. r

Remark 3.1. The minimality condition for the Reeb vector field of an
almost cosymplectic three-manifold is invariant for a D-homothetic deformation
of type

f 0 ¼ f x 0 ¼ ð1=bÞx; h 0 ¼ bh; g 0 ¼ tgþ ðb2 � tÞhn h

where t is a positive constant, b is a smooth function with bðpÞ0 0 for any
p A M and db5h ¼ 0. In fact, in [16] we proved that for a such deformation x 0

is an eigenvector of the Ricci operator Q 0 if and only if x is an eigenvector of the
Ricci operator Q.

4. Almost cosymplectic (k, m, n)-spaces and minimality

We start this section with the following

Proposition 4.1. The Ricci tensor of an almost cosymplectic three-manifold
is given (locally) by

Q ¼ aI þ bhn xþ f‘xh� sðf2Þn xþ sðe1Þhn e1 þ sðe2Þhn e2ð4:1Þ

where a ¼ ðrþ tr h2Þ=2 and b ¼ �ðrþ 3 tr h2Þ=2.

Proof. Let fx; e1; e2 ¼ fe1g be a local orthonormal f-basis. We put

Q1 ¼ Q� aI � bhn x;

and

~QQ1 ¼ f‘xh� sðf2Þn xþ sðe1Þhn e1 þ sðe2Þhn e2;

where a ¼ ðrþ tr h2Þ=2 and b ¼ �ðrþ 3 tr h2Þ=2. Using (2.7) and ð‘xhÞðxÞ ¼ 0,
we get
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Q1x ¼ Qx� ðaþ bÞx

¼ Ricðx; xÞxþ sðe1Þe1 þ sðe2Þe2 þ ðtr h2Þx
¼ sðe1Þe1 þ sðe2Þe2
¼ ~QQ1x:

Moreover, using (2.10) and (2.11), we have

Q1e1 ¼ Qe1 � ae1

¼ sðe1Þxþ Ricðe1; e1Þe1 þ Ricðe1; e2Þe2 � ae1

¼ sðe1Þx� gðð‘xhÞe1; fe1Þe1 þ gðð‘xhÞe1; e1Þe2
¼ sðe1Þxþ gðfð‘xhÞe1; e1Þe1 þ gðfð‘xhÞe1; e2Þe2
¼ sðe1Þxþ fð‘xhÞe1 � gðfð‘xhÞe1; xÞx
¼ sðe1Þxþ fð‘xhÞe1
¼ ~QQ1e1:

Analogously, we get Q1e2 ¼ ~QQ1e2. Therefore, Q1 ¼ ~QQ1 and hence we obtain
(4.1). r

Now, we recall the following

Definition 4.1. An almost cosymplectic ð2nþ 1Þ-manifold ðM; x; f; h; gÞ is
said to be a ðk; m; nÞ-space if the curvature tensor satisfies the following condition

RðX ;Y Þx ¼ kðhðXÞY � hðY ÞXÞ þ mðhðXÞhY � hðY ÞhX Þð4:2Þ
þ nðhðX ÞfhY � hðY ÞfhXÞ;

where k, m, n are smooth functions. Such definition was introduced in [2] with
the additional condition that k; m; n A RhðMÞ, where RhðMÞ is the subring of the
smooth functions f on M for which df5h ¼ 0, or equivalently df ¼ xð f Þh.

Theorem 4.1. Let ðM; x; f; h; gÞ be an almost cosymplectic three-manifold.
If M is a ðk; m; nÞ-space, then x is a minimal unit vector field. Conversely, if x is
minimal, then M is a ðk; m; nÞ-space on an open dense subset of M.

Proof. Let us suppose that M is a ðk; m; nÞ-space. From (4.2) we have
RðX ;Y Þx ¼ 0 for any X ;Y A ker h and hence RicðX ; xÞ ¼ 0 for any X ;Y A ker h.
Then Qx ¼ Ricðx; xÞx and by (2.7) we get Qx ¼ �ðtr h2Þx. So, by Theorem
3.1, x is minimal. Vice versa, we suppose that x is minimal, that is, x is an
eigenvector of the Ricci operator Q. From now, we use the notations introduced
in Lemma 2.1. If the open set U2 is non-empthy, then it inherits the almost
cosymplectic structure of M. In particular such structure is cosympletic, and
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since

RðX ;Y Þx ¼ ð‘Y‘xÞX � ð‘X‘xÞY ;

we get RðX ;Y Þx ¼ 0. Then M is a ðk; m; nÞ-space with k ¼ m ¼ n ¼ 0. Next,
let U1 be a non-empthy set and let fx; e1; e2g be the local f-basis described in
Lemma 2.1. Since x is minimal, the 1-form s ¼ 0 and by Proposition 4.1 we
have

Q ¼ aI þ bhn xþ f‘xh

from which using (2.6) we obtain

Q ¼ aI þ bhn xþ xðlÞ
l

fh� 2ah:ð4:3Þ

On the other hand, for a tree-dimensional Riemannian manifold the curvature
tensor is completely determined by the Ricci operator. In our case, we have

RðX ;YÞx ¼ hðX ÞQY � hðY ÞQX � gðQY ; xÞX þ gðQX ; xÞY

� r

2
ðhðX ÞY � hðYÞXÞ:

So, using (4.3) we get

RðX ;Y Þx ¼ ð�l2ÞðhðX ÞY � hðYÞXÞ � 2aðhðXÞhY � hðY ÞhX Þ

þ xðlÞ
l

ðhðX ÞfhY � hðY ÞhX Þ

which is the formulas (4.2) with k ¼ �l2, m ¼ �2a and n ¼ xðlÞ=l on the open
set U1. Therefore, the almost cosymplectic structure defines a ðk; m; nÞ-space on
U1 UU2. r

Remark 4.1. Let ðM; x; f; h; gÞ be a ðk; m; nÞ-almost cosymplectic three-
manifold. Then, from the proof of Theorem 4.1 we get

Qx ¼ �ðtr h2Þx; k ¼ �l2 a 0; m ¼ �2a and ln ¼ xðlÞ:
We recall that a unit vector field is said to be a harmonic vector field

if it satisfies the critical point condition for the energy functional EðVÞ ¼
ð1=2Þ

Ð
M
kdVk2 ¼ ðm=2Þ volðMÞ þ ð1=2Þ

Ð
M
k‘Vk2vg restricted to the space of

all unit vector fields, where m ¼ dim M. We refer to the recent monograph
[3] for more information about harmonic vector fields. In [16] we study the
harmonicity of the Reeb vector field for locally conformal almost cosymplectic
manifolds. In particular, we have the following (which is also implicit in
Goldberg and Yano’s work [7]).

Proposition 4.2. Let ðM; f; x; h; gÞ be an almost cosymplectic three-
manifold. Then, x is a harmonic vector field if and only if it is an eigenvector
of the Ricci operator.
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Then, Theorem 3.1 and Proposition 4.2 give the following

Theorem 4.2. Let ðM; x; f; h; gÞ be an almost cosymplectic three-manifold.
Then, x is a minimal unit vector field if and only if x is a harmonic unit vector field.

In [8], the authors introduced the notion of strongly normal unit vector field.
A unit vector field V on a Riemannian manifold is called strongly normal if

gðð‘X‘VÞY ;ZÞ ¼ 0 for any X ;Y ;Z ? V :

Most of the results obtained in [8] are based on this notion because a strongly
normal unit vector field is minimal. Now, we show the following

Theorem 4.3. Let ðM; x; f; h; gÞ be an almost cosymplectic ð2nþ 1Þ-
manifold. If M is a ðk; m; nÞ-space, then x is strongly normal and hence minimal,
with X ðtr h2Þ ¼ 0 for any X A ker h.

Proof. Let U1 be the open subset of M where h0 0 and U2 the open subset
of points p A M such that h ¼ 0 in a neighborhood of p. Then, U1 UU2 is an
open dense subset of M. If U2 is not empty, then the restriction of the almost
contact metric structure to U2 is cosymplectic and in this case ‘x ¼ 0 and
h ¼ 0. So, on U2, x is strongly normal and h ¼ 0. Next, let U1 be non-empty.
On U1, from (4.2) we get

lX ¼ RðX ; xÞx ¼ kðhðXÞx� XÞ � mhX � nfhX ;

lfX ¼ RðfX ; xÞx ¼ �kfX � mhfX � nhX ;

and hence

flX þ lfX ¼ �2kfX :

Moreover, from (3.2) of [15] we have flX þ lfX ¼ 2h2fX . Then,

h2 ¼ kf2; where k < 0:ð4:4Þ
For an arbitrary almost cosymplectic manifold, the following curvature identity is
well known [10]

RðX ;Y ; fZ; xÞ � RðfX ; fY ; fZ; xÞ � RðfX ;Y ;Z; xÞ � RðX ; fY ;Z; xÞ
¼ �2ð‘fhZFÞðX ;Y Þ

On the other hand, RðX ;YÞx ¼ 0 for any X ;Y A ker h and hence

ð‘fhZFÞðX ;Y Þ ¼ 0 for any X ;Y A ker h:

Replacing Z by fhZ in this formula, and taking into account of (4.4), we get

ð‘ZFÞðX ;YÞ ¼ 0 for any X ;Y A ker h;

that is

gðð‘ZfÞY ;XÞ ¼ 0 for any X ;Y A ker h;
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which is equivalent to

ð‘ZfÞY ¼ gð‘ZfÞY ; xÞx ¼ �gð‘ZfÞx;YÞx;
that is

ð‘ZfÞY ¼ gðhZ;YÞx;ð4:5Þ
for Z arbitrary and Y A ker h. From (4.4) and (4.5), we have

ð‘ZhÞhY ¼ kgðhZ; fYÞx:ð4:6Þ
Since k < 0 on U1, from (4.5) and (4.6) we get that ð‘XhÞY and ð‘XfÞY are
proportional to x for any X ;Y A ker h. Then, since ‘x ¼ hf, we get

ð‘X‘xÞY ¼ ð‘XhÞfY þ hð‘XfÞY for any X ;Y A ker h

which shows that x is strongly normal (and hence minimal) on U1. Since
x is strongly normal on U1 UU2, we get that gðð‘X ð‘xÞY ;ZÞ ¼ 0 for any
X ;Y ;Z A ker h: Therefore x is strongly normal on M. Now, let E be a
unit eigenvector of h: hE ¼ lE and hfE ¼ �lfE, l ¼

ffiffiffiffiffiffiffi
�k

p
. Since ð‘E‘xÞE

¼ ð‘EhÞfE þ hð‘EfÞE is proportional to x, we get EðlÞ ¼ 0. Similarly we find
ðfEÞðlÞ ¼ 0, and so Xðtr h2Þ ¼ 0 for any X A ker h. r

In dimension three, we get

Proposition 4.3. Let ðM; x; f; h; gÞ be an almost cosymplectic three-
manifold. Then, the following statements are equivalent.

a) x is a strongly normal unit vector field;
b) x is minimal and X ðtr h2Þ ¼ 0 for any X A ker h;
c) M is an almost cosymplectic ðk; m; nÞ-space on an open dense subset of M.

Proof. a) ) b). If x is strongly normal, from [8] we have that x is
minimal. Moreover, if fx; e1; e2 ¼ fe1g is a local orthonormal f-basis of eigen-
vector of h, using Lemma 2.1 we find

ð‘e1‘xÞe1 ¼ �l2xþ e2ðlÞe1 � e1ðlÞe2;
ð‘e1‘xÞe2 ¼ ð‘e2‘xÞe1 ¼ �e1ðlÞe1 � e2ðlÞe2;
ð‘e2‘xÞe2 ¼ �ð‘e1‘xÞe1 � 2l2x;

8><
>:ð4:7Þ

and so x strongly normal implies e1ðlÞ ¼ e2ðlÞ ¼ 0, that is, Xðtr h2Þ ¼ 0 for
any X A ker h. b) ) c). Follows from Theorem 4.1. c) ) a). If M is an
almost cosymplectic ðk; m; nÞ-space on an open dense subset U of M, then x is
strongly normal on the open dense subset U, that is gðð‘X‘xÞY ;ZÞ ¼ 0 for any
X ;Y ;Z A ker h on U and hence on M. r

Using the invariant p :¼ k‘xhk �
ffiffiffi
2

p
khk2, we get the following

Theorem 4.4. Let ðM; x; f; h; gÞ be an almost cosymplectic three-manifold.
Then, the following statements are equivalent.
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a) x is a strongly normal unit vector field with k‘xhk and khk constant along
the integral curves of x;

b) x is minimal with k‘xhk and khk constant;
c) M is cosymplectic or is locally isometric to a simply connected unimodular

Lie group ~GG equipped with a left invariant almost cosymplectic structure.
More precisely:

– if p > 0, ~GG is the group ~EEð2Þ, universal covering of the group of rigid
motions of the Euclidean 2-space;

– if p ¼ 0, ~GG is the Heisenberg group H 3;
– if p < 0, ~GG is the group Eð1; 1Þ of the rigid motions of the Minkowski

2-space.

Proof. From Proposition 4.3, we get that x is a strongly normal unit vector
field with xðk‘xhkÞ ¼ xðkhkÞ ¼ 0 if and only if x is minimal with khk constant
and xðk‘xhkÞ ¼ 0. Now, we show that k‘xhk is constant. We use notations of
Lemma 2.1. If U2 is not empty, then the restriction of the almost contact metric
structure to U2 is cosymplectic and in this case k‘xhk ¼ khk ¼ const: ¼ 0. Next,
let U1 be non-empty and let ðx; e1; e2Þ be a local f-basis on U1 as in Lemma

2.1. In this case k‘xhk2 ¼ 8l2a2. Since x is minimal and l is constant, from
(4.1), using (2.6), we get

Qx ¼ �2l2x;

Qe1 ¼
r

2
þ l2 � 2al

� �
e1;

Qe2 ¼
r

2
þ l2 þ 2al

� �
e2;

8>>>>><
>>>>>:

from which we easily get

ð‘xQÞx ¼ 0;

ð‘e1QÞe1 ¼ e1
r

2

� �
� 2le1ðaÞ

� �
e1;

ð‘e2QÞe2 ¼ e2
r

2

� �
þ 2le2ðaÞ

� �
e2:

8>>>>><
>>>>>:

Then, using the formula

1

2
X ðrÞ ¼

X
i

gðð‘Ei
QÞEi;XÞ

where fEig is an local orthonormal basis, we get

e1
r

2

� �
¼ e1

r

2

� �
� 2le1ðaÞ;

e2
r

2

� �
¼ e2

r

2

� �
þ 2le2ðaÞ:

8>>><
>>>:
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So, e1ðaÞ ¼ e2ðaÞ ¼ 0 and hence, since xðk‘xhkÞ ¼ 0 gives xðaÞ ¼ 0, we obtain
that a is locally constant on U1. Since l is continuous, it follows that M ¼ U1

and hence l and a are globally constant. Now, we show b) ) c). If M is not
cosymplectic, as before we get that l and a are globally constant on M, and
Lemma 2.1 gives

½x; e1� ¼ c2e2; ½x; e2� ¼ c1e1 and ½e1; e2� ¼ 0;

where c1 ¼ l� a and c2 ¼ lþ a are constant. From this we obtain that M is
locally isometric to a unimodular Lie group with a left-invariant almost cosym-
plectic structure (see [[17], p. 10] and Theorem 4.1 of [15]). In [15] (see Theorem
4.1) we classify the simply connected homogeneous almost cosymplectic three-
manifolds using, in the unimodular case, the sign of the invariant p ¼
kLxhk � 2khk2. On the other hand, by Lemma 2.1, we find

kLxhk2 � 4khk4 ¼ k‘xhk2 � 2khk4:

Then, we can replace the invariant p by the invariant p :¼ k‘xhk �
ffiffiffi
2

p
khk2,

and the classification of c) follows from Theorem 4.1 of [15]. Of course, if M
is cosymplectic or a Lie group listed in c), Theorem 4.1 of [15] gives that x is
an eigenvector of the Ricci operator, and so it is minimal, with k‘xhk and khk
constant. r

Corollary 4.1. Let M be an almost cosymplecyic three-manifold with x
minimal. If M has constant vertical sectional curvature, then it is cosymplectic or
is locally isometric to the Lie group Eð1; 1Þ equipped with a left invariant almost
cosymplectic structure of negative vertical sectional curvature.

Proof. We consider the notations of Lemma 2.1. If U1 is empty, the
structure is cosymplectic and in this case the vertical sectional curvature vanishes.
Now, we suppose that the open set U1 is not empty. Since the vertical sectional
curvature is constant, and the 1-form s ¼ 0, from (2.5) we have

�l2 � 2al ¼ Kðx; e1Þ ¼ const: ¼ Kðx; e2Þ ¼ �l2 þ 2al

from which we get a ¼ 0 and l ¼ const. on U1. Since l is continuos, it follows
that M ¼ U1 and thus a and l are globally constant. In particular, the functions
k‘xhk and khk are constant and the invariant p :¼ k‘xhk �

ffiffiffi
2

p
khk2 ¼ �

ffiffiffi
2

p
khk2

< 0. Then, Theorem 4.4 gives that M is locally isometric to the Lie group
Eð1; 1Þ, of the rigid motions of the Minkowski 2-space, equipped with a left
invariant almost cosymplectic structure. In such case, for any unit vector field
X A ker h, the vertical sectional curvature Kðx;XÞ ¼ const: ¼ �l2 < 0. Indeed,
if X ¼ a1e1 þ a2e2, from (2.5) one gets

Kðx;XÞ ¼ a21Kðx; e1Þ þ a22Kðx; e2Þ � 2a1a2gðle1; e2Þ

¼ �a21gðle1; e1Þ � a22gðle2; e2Þ ¼ �l2 < 0: r
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Remark 4.2. The Lie groups listed in c) of Theorem 4.4 are examples
of ðk; m; nÞ-spaces with k, m constant and n ¼ 0. Moreover, since by Theorem
4.2 the minimality condition of x is equivalent (for almost cosymplectic three-
manifolds) to the harmonicity condition, Theorem 4.4 and Corollary 4.1 give a
partial answer to a question posed in [16].

The following is an example of non-homogeneous almost cosymplectic three-
manifold whose Reeb vector field is minimal.

Example 4.1. Let M ¼ R3 with the cartesian coordinates ðx; y; zÞ. We
consider the Riemannian metric

g ¼ d2xþ d2y� 2yð f1ðzÞ=f3ðzÞÞ dxdz� 2xð f2ðzÞ=f3ðzÞÞ dydzþ f ðzÞ d2z;ð4:8Þ
and the vector fields

e1 ¼
q

qx
; e2 ¼

q

qy
; e3 ¼ yf1ðzÞ

q

qx
þ xf2ðzÞ

q

qy
þ f3ðzÞ

q

qz
;

where f1ðzÞ, f2ðzÞ, f3ðzÞ are arbitray smooth functions of the variable z, with
f3ðzÞ0 0 for any z A R, and f ðzÞ ¼ ððy2f 21 ðzÞ þ x2f 22 ðzÞ þ 1Þ=f 2

3 ðzÞÞ. We get
that the vector fields e1, e2, e3 are orthonormal with respect to the metric g in
each point, and satisfy

½e1; e2� ¼ 0; ½e1; e3� ¼ f2ðzÞe2; ½e2; e3� ¼ f1ðzÞe1:ð4:9Þ
We define the vector field x, the 1-form h and the tensor f of type ð1; 1Þ by

x ¼ e3; h ¼ gðx; �Þ; fe3 ¼ 0; fe1 ¼ e2; fe2 ¼ �e1:

Then, ðg; x; h; fÞ is an almost contac metric structure on M. Moreover, we easily
get that the 1-form h and the 2-form FðX ;Y Þ ¼ gðX ; fY Þ are closed. So, the
structure is almost cosymplectic. Using (4.8), (4.9) and the Levi-Civita equation,
we find

ð‘eiejÞ ¼

0 � f1 þ f2

2
e3

f1 þ f2

2
e2

� f1 þ f2

2
e3 0

f1 þ f2

2
e1

f1 � f2

2
e2

f2 � f1

2
e1 0

0
BBBBBB@

1
CCCCCCA
:ð4:10Þ

Then, using (4.10), by a direct calculation we find

Ricðx; xÞ ¼ �ð f1 þ f2Þ2=2; Ricðx; e1Þ ¼ Ricðx; e2Þ ¼ 0:ð4:11Þ
From (4.11) and Theorem 3.1, we get that x is a minimal unit vector field.
From (4.10) we have that tr h2 ¼ ð f1 þ f2Þ2=2 is not constant, and so the
structure is not homogeneous. Moreover, e1ðtr h2Þ ¼ e2ðtr h2Þ ¼ 0 and thus,
by Proposition 4.3, x is strongly normal. Moreover, the three-manifold is a
ðk; m; nÞ-space where k, m, n are not constant.
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Remark 4.3. Let ðM; g; h; f; xÞ be an almost cosymplectic three-manifold.
In [15] (see Theorem 4.2) we proved that x : ðM; gÞ ! ðT 1M; gSÞ is a harmonic
map if and only if x is a harmonic vector field and xðtr h2Þ ¼ 0. Then, Theorem
4.2 gives that x : ðM; gÞ ! ðT 1M; gSÞ is a harmonic map if and only if
x : ðM; x�gSÞ ! ðT 1M; gSÞ is a minimal immersion and xðtr h2Þ ¼ 0. So, in
all the examples listed in Theorem 4.4 the Reeb vector field x determines a
minimal immersion and a harmonic map. Recall that, in general, an isometric
immersion f : ðM1; g1Þ ! ðM2; g2Þ is minimal if and only if it is a harmonic
map. Moreover, a unit vector field V determines an isometric immersion
V : ðM; gÞ ! ðT 1M; gSÞ, that is V �gS ¼ g, if and only if ‘V ¼ 0 (see, for
example, [3]). Therefore, only in the cosymplectic case the Reeb vector field
of an almost cosymplectic three-manifold determines an isometric immersion.

Remark 4.4. A submanifold N of a contact metric manifold ð ~MM; ~gg; ~hh; ~ff; ~xxÞ
is said to be an invariant submanifold if ~ffðTpNÞHTpN for every p A N. The
invariance implies that ~xx is tangent to N at each of its points, and an invariant
submanifold inherits a contact metric structure from the ambient manifold.
Moreover, we have that an invariant submanifold of a contact metric manifold
is minimal ([1], p. 122). Now, let ðM; g; h; f; xÞ be an almost cosymplectic

manifold and let ð~gg; ~hh; ~ff; ~xxÞ the standard contact metric structure on the unit
tangent sphere bundle T 1M, where ~xxðp;uÞ ¼ 2uH is the geodesic flow and
~gg ¼ ð1=4ÞgS. If xðMÞ is an invariant submanifold, then x is minimal. However,
from Theorem 4.1 of [14] we get that xðMÞ is an invariant submanifold of
ðT 1M; ~gg; ~hh; ~ff; ~xxÞ if and only if ð‘xÞ2 ¼ �I on ker h. Since ð‘xÞ2 ¼ ðhfÞ2 ¼ h2

on ker h, we conclude that xðMÞ can not be an invariant submanifold of
ðT 1M; ~gg; ~hh; ~ff; ~xxÞ. This remark corrects the result of Theorem 4.2 in [12].
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