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Abstract. A necessary and sufficient condition for the Reeb vector field of a three di-
mensional non-Kenmotsu almost Kenmotsu manifold to be minimal is obtained. Using this
result, we obtain some classifications of some types of (k, µ, ν)-almost Kenmotsu manifolds.
Also, we give some characterizations of the minimality of the Reeb vector fields of (k, µ, ν)-
almost Kenmotsu manifolds. In addition, we prove that the Reeb vector field of an almost
Kenmotsu manifold with conformal Reeb foliation is minimal.
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1. Introduction

Let (M, g) be a Riemannian manifold of dimension m and (T 1M, gS) its unit

tangent sphere bundle furnished with the standard Sasakian metric gS (not to be

confused with the well-known Sasakian structure in contact geometry). Then every

unit tangent vector field V on M defines an immersion from (M, g) into (T 1M, gS).

When M is compact and orientable, the energy and the volume of V are just the

energy of the corresponding immersion and the volume of the submanifold (M,V ∗gS)

of the unit tangent sphere bundle, respectively. From this, one may obtain two

functions on the space X1(M) of all unit vector fields on M . Generally, V is said

to be harmonic and minimal if it is a critical point of the energy function and the
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volume function defined on X1(M), respectively. We remark that two similar notions

were introduced and studied by Gil-Medrano [7] even if M is non-compact and non-

orientable. We also observe that V is minimal if and only if the corresponding

submanifold (M,V ∗gS) of (T
1M, gS) is minimal. However, harmonic vector field does

not necessarily imply harmonic maps. Many authors have studied the minimality

and harmonicity of the unit vector fields on several kinds of Riemannian manifolds,

see for example [2], [8] and [9].

In the framework of almost contact geometry, the minimality and harmonicity of

the Reeb vector field were also studied by many authors from different points of

view. In [10], González-Dávila and Vanhecke proved that the Reeb vector field of

a Kenmotsu manifold is minimal. Also, the same authors in [11] characterized the

minimality of the Reeb vector field of a three dimensional contact metric manifold.

A complete classification of contact metric manifolds of dimension three such that

the Reeb vector field is minimal and harmonic was obtained by Perrone in [20]. Also,

Koufogiorgos et al. in [15] proved that the harmonicity of the Reeb vector field ξ of

a contact metric three-manifold implies that ξ belongs to the (k, µ, ν)-nullity distribu-

tion on an open and dense subset. With regard to the three dimensional cosymplectic

manifolds, Perrone in [22], [21] proved that the Reeb vector field is minimal if and

only if it is harmonic, and this is also equivalent to that it is an eigenvector field of

the Ricci operator. The studies of the harmonicity of the Reeb vector field of almost

Kenmotsu manifolds are rare. Perrone in [21] obtained a necessary and sufficient

condition for the Reeb vector field of an α-Kenmotsu manifold to be harmonic, that

is, it is an eigenvector field of the Ricci operator. In addition, the author proved that

the Reeb vector field of an α-Kenmotsu manifold (α 6= 0) never defines a harmonic

map. As a special case of trans-Sasakian manifolds, the harmonicity of the Reeb

vector field of β-Kenmotsu manifolds was also presented by Vergara-Diaz and Wood

in [24].

In the present paper, we start to study the minimality of the Reeb vector field of

an almost Kenmotsu manifold. After some necessary preliminaries regarding almost

contact metric manifolds and minimal and harmonic unit vector fields are given in

Section 2, in Section 3 we present a necessary condition for the Reeb vector field of

a three dimensional almost Kenmotsu manifold to be minimal. As an application

of the above result, some classification results for almost Kenmotsu manifolds of

dimension three under additional conditions are also obtained. Finally, following

González-Dávila and Vanhecke [10], we characterize the minimality of the Reeb vector

field of almost Kenmotsu manifolds of dimension greater than three with conformal

Reeb foliations.
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2. Preliminaries

2.1. Minimal and harmonic vector fields. Let (M, g) be a Riemannian mani-

fold of dimension m and (T 1M, gS) its unit tangent sphere bundle furnished with

the standard Sasakian metric gS . Then the induced metric from gS on M via a unit

vector field V can be written as

(2.1) (V ∗gS)(X,Y ) = g(X,Y ) + g(∇XV,∇Y V )

for any vector fields X and Y on M , where ∇ denotes the Levi-Civita connection of
the metric g. Let X1(M) denote the set of all unit vector fields onM and V ∈ X

1(M),

then we may define a (1, 1)-type tensor field LV on M by

(2.2) LV = id+(∇V )t ◦ ∇V,

where id is the identity map, and hence we may write V ∗gS = g(LV ·, ·). When
M is compact and orientable, the volume of V is the volume of the corresponding

submanifold (M,V ∗gS) of (T
1M, gS) and can be written as

Vol(V ) =

∫

M

f(V ) dvg,

where f(V ) =
√

det(LV ). We define another (1, 1)-type tensor field KV by

(2.3) KV = f(V )(LV )
−1 ◦ (∇V )t.

According to Gil-Medrano and Llinares-Fuster [8], V is a critical point for the volume

function if and only if the 1-form

(2.4) ωV (X) = trace{Y → (∇Y KV )X}

vanishes on the distribution DV determined by all vector fields orthogonal to V .

Following Gil-Medrano [7], such a critical point is said to be a minimal vector field

even if M is non-compact and non-orientable. It is well-known that the minimality

of V is equivalent to that of the corresponding submanifold.

Moreover, the energy of V is the energy of the map from (M, g) into (T 1M, gS)

and can be written as

E(V ) =
m

2
Vol(M, g) +

1

2

∫

M

‖∇V ‖2 dvg.
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Following Gil-Medrano [7], a unit vector field V is a critical point for the energy

function if and only if the 1-form

(2.5) ̺V (X) = trace{Y → (∇Y (∇V )t)X}

vanishes on the distribution DV. A unit vector field V satisfying this condition is

said to be harmonic.

Furthermore, the map V : (M, g) → (T 1M, gS) defines a harmonic map if and

only if V is a harmonic vector field and, in addition, the 1-form

(2.6) ¯̺V (X) = trace{Y → R(∇Y V, V )X}

vanishes for any vector field X on M , where R denotes the Riemannian curvature

tensor defined by R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

2.2. Almost Kenmotsu manifolds. According to Blair [1], an almost contact

metric structure on a smooth differentiable manifold M2n+1 of dimension 2n+ 1 is

a (ϕ, ξ, η, g)-structure satisfying

ϕ2 = − id+η ⊗ ξ, η(ξ) = 1,(2.7)

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y , where ϕ is a (1, 1)-type tensor field, and ξ is a tan-

gent vector field called the characteristic or the Reeb vector field and η is a 1-form

called the contact form. A Riemannian manifold M2n+1 furnished with an almost

contact metric structure is called an almost contact metric manifold and is denoted

by (M2n+1, ϕ, ξ, η, g).

According to Janssens and Vanhecke [13], an almost Kenmotsu manifold is an

almost contact metric manifold (M2n+1, ϕ, ξ, η, g) such that η is closed and dΦ =

2η ∧ Φ, where the fundamental 2-form Φ of the almost contact metric manifold

M2n+1 is defined by Φ(X,Y ) = g(X,ϕY ) for any vector fields X and Y on M2n+1.

An almost contact metric manifold such that dη = Φ or dη = 0, dΦ = 0 is said to

be a contact metric manifold or an almost cosymplectic manifold, respectively (see

Blair [1]). Given an almost contact metric manifold (M2n+1, ϕ, ξ, η, g), we define on

the product M2n+1 × R an almost complex structure J by

J
(

X, f
d

dt

)

=
(

ϕX − fξ, η(X)
d

dt

)

,

where X denotes a vector field tangent to M2n+1, t is the coordinate of R and f is

a C∞-function on M2n+1 × R. We denote by [ϕ, ϕ] the Nijenhuis tensor of ϕ (see
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Blair [1]). If [ϕ, ϕ] = −2dη ⊗ ξ (or equivalently, the almost complex structure J is

integrable), then the almost contact metric structure is said to be normal.

A normal almost Kenmotsu manifold is called a Kenmotsu manifold (see [13], [14]).

It is well-known that on an almost Kenmotsu manifold the normality condition holds

if and only if the relation

(2.8) (∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX

holds for any vector fields X,Y . Moreover, a normal contact metric or almost cosym-

plectic manifold is said to be a Sasakian or cosymplectic manifold, respectively.

The following three symmetric operators l = R(·, ξ)ξ, h = Lξϕ/2 and h′ = h ◦ ϕ
play key roles in the studies of the geometry of the almost Kenmotsu manifolds,

where L is the Lie differentiation. From Dileo and Pastore [4], [5], we now collect
some properties of almost Kenmotsu manifolds as follows:

hξ = lξ = 0, tr h = tr(h′) = 0, hϕ+ ϕh = 0,(2.9)

∇ξ = h′ + id−η ⊗ ξ,(2.10)

ϕlϕ− l = 2(h2 − ϕ2),(2.11)

∇ξh = −ϕ− 2h− ϕh2 − ϕl,(2.12)

tr(l) = S(ξ, ξ) = g(Qξ, ξ) = −2n− tr h2,(2.13)

where S denotes the Ricci curvature tensor and Q the associated Ricci operator.

Throughout this paper, we denote by D the distribution D = ker η, which is of

dimension 2n. Then it is easy to check that each integral manifold of D, with the
restriction of ϕ, admits an almost Kähler structure. If the associated almost Kähler

structure is integrable, or equivalently (see [5]),

(2.14) (∇Xϕ)Y = g(ϕX + hX, Y )ξ − η(Y )(ϕX + hX)

for any vector fields X,Y , then we say that M2n+1 is CR-integrable. Obviously,

equations (2.8) and (2.14) yield the following.

Proposition 2.1. An almost Kenmotsu manifold is Kenmotsu if and only if it

is CR-integrable and h is vanishing. In particular, a three dimensional almost Ken-

motsu manifold is Kenmotsu if and only if h is vanishing.
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3. Minimal Reeb vector fields on almost Kenmotsu manifolds

In this section, let (M3, ϕ, ξ, η, g) be a three dimensional almost Kenmotsu mani-

fold. Let U1 be the open subset of M
3 such that h 6= 0 and U2 the open subset

of M3 which is defined as U2 = {p ∈ M3 : h = 0 in a neighborhood of p}. There-
fore, U1 ∪U2 is an open and dense subset of M

3 and there exists a local orthonormal

basis {ξ, e, ϕe} of three smooth unit eigenvectors of h for any point p ∈ U1 ∪ U2.

On U1, we may set he = λe and hence hϕe = −λϕe, where λ is a positive func-

tion on U1. Note that the eigenvalue function λ is continuous on M3 and smooth

on U1 ∪ U2.

Lemma 3.1 ([3], Lemma 6). On U1 we have

∇ξξ = 0, ∇ξe = aϕe, ∇ξϕe = −ae,(3.1)

∇eξ = e− λϕe, ∇ee = −ξ − bϕe, ∇eϕe = λξ + be,

∇ϕeξ = −λe+ ϕe, ∇ϕee = λξ + cϕe, ∇ϕeϕe = −ξ − ce,

where a, b, c are smooth functions.

Applying Lemma 3.1 in the Jacobi identity

[[ξ, e], ϕe] + [[e, ϕe], ξ] + [[ϕe, ξ], e] = 0

yields that

e(λ) − ξ(b)− e(a) + c(λ− a)− b = 0,(3.2)

ϕe(λ)− ξ(c) + ϕe(a) + b(λ+ a)− c = 0.

Moreover, applying Lemma 3.1, we have (see also [3]) the following.

Lemma 3.2. On U1, the Ricci operator can be written as

Qξ = −2(λ2 + 1)ξ − (ϕe(λ) + 2λb)e− (e(λ) + 2λc)ϕe,

Qe = −(ϕe(λ) + 2λb)ξ − (e(c) + ϕe(b) + b2 + c2 + 2λa+ 2)e+ (ξ(λ) + 2λ)ϕe,

Qϕe = −(e(λ) + 2λc)ξ + (ξ(λ) + 2λ)e− (e(c) + ϕe(b) + b2 + c2 − 2λa+ 2)ϕe,

with respect to the local basis {ξ, e, ϕe}.
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We remark that González-Dávila and Vanhecke [10], Proposition 3.12, proved

that the Reeb vector field of a Kenmotsu manifold is minimal. In what follows,

applying Proposition 2.1 and Lemmas 3.1 and 3.2, we present a characterization of

the minimality of the Reeb vector field of a three dimensional non-Kenmotsu almost

Kenmotsu manifold.

Theorem 3.1. The Reeb vector field of a three dimensional non-Kenmotsu almost

Kenmotsu manifold is minimal if and only if on U1 the relation

(3.3)







e(λ) =
1

4
λ(λ2 + 2)η(Qe)− 1

2
λ2η(Qϕe),

ϕe(λ) =
1

4
λ(λ2 + 2)η(Qϕe)− 1

2
λ2η(Qe)

holds, where the eigenvalue function λ of h is positive and smooth on nonempty U1.

P r o o f. Let (M3, ϕ, ξ, η, g) be a three dimensional strictly almost Kenmotsu

manifold. From (2.10) we see easily that ∇ξ is a symmetric operator with respect to

the metric g. Then it follows from equations (2.1) and (2.2) that

(3.4) (∇ξ)t = (∇ξ) = h′ + id−η ⊗ ξ and Lξ = h2 + 2h′ + 2 id−η ⊗ ξ.

Also, Lξ can be presented using the local basis {ξ, e, ϕe} as follows:

(3.5) Lξ(ξ) = ξ, Lξ(e) = (λ2 + 2)e− 2λϕe, Lξ(ϕe) = (λ2 + 2)ϕe − 2λe.

Therefore, a simple computation using (3.5) gives that

(3.6) f(ξ) =
√

det(Lξ) =
√

λ4 + 4.

Making use of relation (3.5), we obtain (Lξ)
−1 which is expressed in terms of the

local basis {ξ, e, ϕe} as follows:

(Lξ)
−1(ξ) = ξ, (Lξ)

−1(e) =
λ2 + 2

λ4 + 4
e+

2λ

λ4 + 4
ϕe,(3.7)

(Lξ)
−1(ϕe) =

2λ

λ4 + 4
e+

λ2 + 2

λ4 + 4
ϕe.

Putting relations (3.4)–(3.7) into equation (2.3) yields that

Kξ(ξ) = 0, Kξ(e) =
2− λ2

√
λ4 + 4

e− λ3

√
λ4 + 4

ϕe,(3.8)

Kξ(ϕe) =
2− λ2

√
λ4 + 4

ϕe− λ3

√
λ4 + 4

e.
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In order to simplify the notation, in what follows we set

(3.9) α =
2− λ2

√
λ4 + 4

and β =
λ3

√
λ4 + 4

.

Thus, applying Lemma 3.1 and relations (3.8) and (3.9), we obtain the formulas

(∇ξKξ)(e) = (ξ(α) + 2aβ)e− ξ(β)ϕe,(3.10)

(∇eKξ)(e) = −(α+ λβ)ξ + (e(α)− 2bβ)e− e(β)ϕe,

(∇ϕeKξ)(e) = (λα + β)ξ + (ϕe(α) + 2cβ)e− ϕe(β)ϕe,

and

(∇ξKξ)(ϕe) = −ξ(β)e + (ξ(α) − 2aβ)ϕe,(3.11)

(∇eKξ)(ϕe) = (λα + β)ξ − e(β)e + (e(α) + 2bβ)ϕe,

(∇ϕeKξ)(ϕe) = −(α+ λβ)ξ − ϕe(β)e + (ϕe(α) − 2cβ)ϕe.

Using relation (2.4) and taking into account (3.10), we have

(3.12) ωξ(e) = e(α)− 2bβ − ϕe(β).

Similarly, it follows from relations (2.4) and (3.11) that

(3.13) ωξ(ϕe) = −e(β) + ϕe(α) − 2cβ.

Note that h 6= 0 and hence U1 is a nonempty subset of M
3; from Lemma 3.2 we

have that

(3.14) η(Qe) = −(ϕe(λ) + 2λb) and η(Qϕe) = −(e(λ) + 2λc).

Putting α = (2− λ2)/
√
λ4 + 4 and β = λ3/

√
λ4 + 4 into equations (3.12) and (3.13),

and making use of (3.14), we obtain (3.3). This completes the proof. �

As an application of Theorem 3.1, we obtain the following result.

Theorem 3.2. The Reeb vector field of a three dimensional non-Kenmotsu

(k, µ, ν)-almost Kenmotsu manifold is minimal if and only if dk ∧ η = 0.
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P r o o f. By a three dimensional (k, µ, ν)-almost Kenmotsu manifold M3 we

mean an almost Kenmotsu manifold such that the Reeb vector field ξ belongs to the

(k, µ, ν)-nullity distribution, that is

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY )(3.15)

+ ν(η(Y )h′X − η(X)h′Y )

for any vector fields X , Y , where k, µ, ν are smooth functions on M3. Using

(2.9), from (3.15) we have that ξ is an eigenvector field of the Ricci operator with

eigenvalue 2k. Moreover, putting Y = ξ into (3.15) gives that

(3.16) l = −kϕ2 + µh+ νh′,

and using this in equation (2.11) yields that

(3.17) h2 = (k + 1)ϕ2.

Applying Proposition 2.1, from (3.17) we have that M3 is non-Kenmotsu if and

only if h 6= 0, or equivalently, k < −1. Also, from (3.17) we see that the positive

eigenvalue function λ of h is given by λ =
√
−k − 1. Using this and Qξ = 2kξ in

relation (3.3), we conclude that ξ is minimal if and only if k is invariant along the

distribution D, or equivalently, dk ∧ η = 0. �

Remark 3.1. On an almost Kenmotsu manifold, any (k, µ, ν)-condition reduces

to a generalized (k, µ)-condition when ν = 0 and a generalized (k, ν)′-condition

when µ = 0 (see [19] and [23]). If both k and µ are constant, then a generalized

(k, µ)′-condition or generalized (k, µ)-condition is just the (k, µ)′-condition or (k, µ)-

condition, respectively. For more details see [5].

Remark 3.2. Pastore and Saltarelli in [19] constructed some generalized (k, µ)

and (k, µ)′-almost Kenmotsu manifolds in any odd dimensions. Moreover, some lo-

cal classification results of three dimensional generalized (k, µ) and (k, µ)′-almost

Kenmotsu manifolds such that dk ∧ η = 0 and k < −1 were also obtained by

Saltarelli [23]. Thus, applying Theorem 3.2, we find many examples of three di-

mensional non-Kenmotsu almost Kenmotsu manifolds for which ξ is minimal. See,

for example, [19], Section 6, and also [23], Remarks 4.1, 5.1.

Applying again Theorem 3.2, we give now some classification results for three

dimensional (k, µ, ν)-almost Kenmotsu manifolds.

Proposition 3.1. Let M3 be a three dimensional non-Kenmotsu (k, 0, ν)-almost

Kenmotsu manifold. If the Reeb vector field ξ is minimal and k is invariant along ξ,

then M3 is locally isometric to a non-unimodular Lie group equipped with a left

invariant almost Kenmotsu structure.
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P r o o f. If on a three dimensional non-Kenmotsu (k, 0, ν)-almost Kenmotsu

manifold the Reeb vector field ξ is minimal and k is invariant along ξ, then it follows

from Theorem 3.2 that k is a constant less than −1. Since on any (k, µ, ν)-almost

Kenmotsu manifold we have equations (3.16) and (3.17), using this in equation (2.12)

we have that

(3.18) ∇ξh = −(ν + 2)h.

We consider a unit eigenvector field e of h with a positive constant eigenvalue λ. Then

the action of (3.18) on e gives that h∇ξe = λ∇ξe+λ(ν +2)e, and the inner product

of this with e gives that ν = −2. Therefore, M3 is a (k, 0,−2)-almost Kenmotsu

manifold with k a constant. Finally, from [5], Theorem 5.1, we observe that a non-

Kenmotsu (k,−2)′-almost Kenmotsu manifold of dimension three is locally isometric

to a non-unimodular Lie group. This completes the proof. �

Corollary 3.1. A three dimensional non-Kenmotsu (−2, 0, ν)-almost Kenmotsu

manifold with minimal Reeb vector field is locally isometric to the Riemannian pro-

duct H2(−4)× R.

P r o o f. From [5], Theorem 5.1, we know that a (k, µ)′-almost Kenmotsu mani-

fold is locally isometric to either the Riemannian warped product Hn+1(k−2λ)×fR
n

or the warped product Bn+1(k + 2λ) ×f ′ R
n, where n > 1, and f = ce(1−λ)t and

f ′ = c′e(1+λ)t for certain constants c and c′. Then the proof follows directly from

proofs of Proposition 3.1 and Theorem 3.2. �

Proposition 3.2. Let M3 be a three dimensional (k, µ, 0)-almost Kenmotsu

manifold. Then the Reeb vector field ξ is minimal and k is invariant along ξ if and

only if M3 is a Kenmotsu manifold.

P r o o f. Suppose that M3 is a three dimensional non-Kenmotsu (k, µ, 0)-almost

Kenmotsu manifold. By Proposition 2.1 we have h 6= 0 and hence by (3.17) we

have k < −1. Therefore, applying Theorem 3.2, if ξ is minimal and ξ(k) = 0, we

obtain that k is a constant. In this context, from [19], Proposition 3.2, we have that

ξ(k) = −4(k + 1). Since k is a constant, it follows that k = −1, a contradiction.

The converse follows directly from Theorem 3.1. Moreover, from (2.10) we have that

R(X,Y )ξ = η(X)(Y + h′Y ) − η(Y )(X + h′X) + (∇Xh′)Y − (∇Y h
′)X and using

h = 0 in this equation gives that R(X,Y )ξ = −η(Y )X+ η(X)Y . This completes the

proof. �

Applying Theorem 3.1, we now characterize the minimality of the Reeb vector

field ξ of a class of almost Kenmotsu manifolds.
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Proposition 3.3. The Reeb vector field of a three dimensional non-Kenmotsu

almost Kenmotsu manifold with η-parallel h′ is minimal if and only if it is an eigen-

vector field of the Ricci operator.

P r o o f. The tensor field h′ is said to be η-parallel if g((∇Xh′)Y, Z) = 0 for any

vector fields X,Y, Z ∈ D. From [6], Proposition 3, we know that the parallelism of h′

on an almost Kenmotsu manifold implies that the eigenvalues of h′ are constant

along the distribution D. In view of h2 = h′2 and the fact that the eigenvalue

function λ of h on U1 is positive, it follows from Theorem 3.1 that ξ is minimal if

and only if (λ2 + 2)η(Qe) = 2λη(Qϕe) and (λ2 + 2)η(Qϕe) = 2λη(Qe). It follows

that η(Qe) = η(Qϕe) = 0 and this is equivalent to ξ being an eigenvector field of

the Ricci operator. �

Since a local conformal almost cosymplectic structure (ϕ, ξ, η, ω, g) reduces to an

almost Kenmotsu structure if ω = η (see Olszak [17], Theorem 3.1), then the charac-

terization of the harmonicity of the Reeb vector field of almost Kenmotsu manifolds

is given as follows.

Lemma 3.3 ([21], Theorem 4.1). The Reeb vector field of an almost Kenmotsu

manifold is harmonic if and only if it is an eigenvector field of the Ricci operator.

Remark 3.3. Following Proposition 2.1 and the proof of Proposition 3.2, on

a three dimensional Kenmotsu manifold M3 we have R(X,Y )ξ = −η(Y )X + η(X)Y

for any vector fields X,Y . Thus, by Lemma 3.3, we state that the Reeb vector field

of M3 is harmonic.

Following González-Dávila and Vanhecke [10], [11], we have the next result.

Lemma 3.4 ([10], [12]). Any three dimensional non-unimodular Lie group admits

a left invariant minimal and harmonic unit vector field.

Applying the above Lemmas 3.3 and 3.4, we present a classification of three di-

mensional almost Kenmotsu manifolds.

Theorem 3.3. Let M3 be a three dimensional non-Kenmotsu almost Kenmotsu

manifold. Then the Reeb vector field ξ ofM3 is minimal and harmonic, and both the

scalar curvature r and ‖Q‖ are invariant along ξ if and only ifM3 is locally isometric

to a non-unimodular Lie group equipped with a left invariant almost Kenmotsu

structure.

P r o o f. Applying Lemma 3.3 and Theorem 3.1, if the Reeb vector field of

a three dimensional non-Kenmotsu almost Kenmotsu manifold M3 is minimal and
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harmonic, we obtain that

(3.19) η(Qe) = η(Qϕe) = 0 and e(λ) = ϕe(λ) = 0,

where the eigenvalue function λ of h on the nonempty subset U1 is positive. Then,

using relation (3.19) in Lemma 3.2 gives that

(3.20) b = c = 0.

Using this in relation (3.2) yields that

(3.21) e(a) = ϕe(a) = 0.

In this case, we obtain from Lemma 3.2 that

Qξ = −2(λ2 + 1)ξ,(3.22)

Qe = −2(λa+ 1)e+ (ξ(λ) + 2λ)ϕe,

Qϕe = (ξ(λ) + 2λ)e+ 2(λa− 1)ϕe.

Applying Lemma 3.1, from relations (3.19)–(3.22) we have

(∇ξQ)ξ = −4λξ(λ)ξ,(3.23)

(∇eQ)e = λ(ξ(λ) + 2a)ξ + e(ξ(λ))ϕe,

(∇ϕeQ)ϕe = λ(ξ(λ) − 2a)ξ + ϕe(ξ(λ))e.

Substituting relation (3.23) into the well-known formula

divQ =
1

2
grad(r),

where grad denotes the usual gradient operator with respect to g, and using relation

(3.19), we obtain that the scalar curvature r is a constant if and only if it is invariant

along ξ, or equivalently, tr(h2) is invariant along ξ.

Therefore, under the hypotheses of the theorem, using (3.22) we obtain that the

scalar curvature r = −2(λ2 + 3) is a global constant, where we have used that λ

is continuous. In this context, it follows from relation (3.22) that ‖Q‖2 = 4(λ4 +

2λ2(a2 +2)+ 3). When ‖Q‖ is invariant along ξ, taking into account relation (3.21)
we obtain that a is also a global constant. Consequently, applying Lemma 3.1, we

have that

[ξ, e] = (λ+ a)ϕe− e, [e, ϕe] = 0, [ϕe, ξ] = (a− λ)e + ϕe.
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Following Milnor [16], we state that M3 is locally isometric to a non-unimodular

Lie group equipped with a left invariant almost Kenmotsu structure. Finally, the

converse follows directly from Lemma 3.4. We also refer the reader to Dileo and

Pastore [5], Theorem 5.2 for the construction of the almost Kenmotsu structure on

3-dimensional non-unimodular Lie groups. �

We close this paper by discussing the minimality of the Reeb vector field on almost

Kenmotsu manifolds of dimension greater than three. First, we need the following

lemma.

Lemma 3.5 ([18]). The Reeb foliation of an almost Kenmotsu manifold is con-

formal if and only if h = 0.

By Proposition 2.1 and using Lemma 3.5, we obtain the following result, which is

a generalization of [10], Proposition 3.12.

Proposition 3.4. The Reeb vector field of an almost Kenmotsu manifold with

conformal Reeb foliation is minimal.

P r o o f. Let M2n+1 be an almost Kenmotsu manifold of dimension greater

than 3 whose Reeb foliation kerϕ is conformal. From Lemma 3.5 we have h = 0.

Using this, we obtain from Dileo and Pastore [4], Theorem 2 that M2n+1 is locally

isometric to the warped product C ×et N , where N is an almost Kähler manifold

and the Reeb vector field ξ is tangent to the open interval C with coordinate t. On

the other hand, following [10], Proposition 3.8, we observe that the unit vector field

∂/∂t tangent to R is a minimal vector field on a warped product R ×f M ′. This

completes the proof. �
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