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Minimal Representation of Convex Polyhedral Sets 1 

J ,  T E L G E N  2 

Communicated by O. L. Mangasarian 

Abstract. A system of linear inequality and equality constraints deter- 
mines a convex polyhedral set of feasible solutions S. We consider the 
relation of all individual constraints to S, paying special attention to 
redundancy and implicit equalities. The main theorem derived here 
states that the total number of constraints together determining $ is 
minimal if and only if the system contains no redundant constraints 
and/or implicit equalities. It is shown that the existing theory on the 
representation of convex polyhedral sets is a special case of the theory 
developed here. 

Key Words. Minimal representation, systems of linear cofistraints, 
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1. Introduction 

Systems of linear equality constraints have been studied extensively 
in the past, but systems of linear inequality constraints elicited virtually no 
interest until the advent of game theory in 1944 and linear programming 
in 1947. However,  after the formulation of many practical problems as 
linear programming problems and the development of the simplex method 
by Dantzig (Ref. 2), a widespread interest in systems of linear constraints 
arose. 

Only recently, the emphasis in these studies has shifted from the system 
as a whole to the individual constraints. Until the early sixties, systems of 
linear equalities and inequalities were studied from a system point of view, 

1 The author is indebted to Dr. A. C. F. Vorst (Erasmus University, Rotterdam, Holland) 
for stimulating discussions and comments, which led to considerable improvements in many 
proofs° Most of the material in this paper originally appeared in the author's dissertation 
(Ref. 1). The present form was prepared with partial support from a NATO Science 
Fellowship for the Netherlands Organization for the Advancement of Pure Research (ZWO) 
and a CORE Research Fellowship. 
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in the sense that the system was more important than the individual 
constraints. A number of interesting results were derived for the solvability 
and the geometric properties of a system of linear constraints without 
considering the constraints individually (Refs. 3-6). 

From the early sixties on, a number of papers were published treating 
the subject from a constraint point of view, in the sense that more attention 
is paid to the individual constraints within the system. As a consequence, 
for example, redundancy, which is a phenomenon typically related to 
individual constraints within a system, was taken into consideration. As a 
witness, the first paper entirely devoted to redundancy was written in 1962 
by Boot (Ref. 7). Other papers examplifying this approach are Refs. 8-10. 

Here, we combine both approaches to derive a minimality property 
for general systems of linear constraints. We consider a system of both 
equality and inequality constraints in the form 

Ax =a, Bx<~b, (1) 

with 

A~Rm~ ×'~, a~Rmo, B~Rmb ×', b ~ R ~ ,  x ~ R  '~. 

The rows of A and B are denoted by Ai and Bi, respectively. The feasible 
region corresponding to the system (1) is denoted as 

S ={x ~R"tAx =a, Bx <~b}. 

Throughout this paper, it is assumed that there exists a feasible solution 
for (1), i.e., 

8 ~ O .  

Redundant constraints can be omitted from the system (1) without 
changing S. In Section 2, we consider both redundant inequality constraints 
and redundant equality constraints in some detail. 

Implicit equalities are inequality constraints that are satisfied as an 
equality in all solutions x ~ S. Therefore, they may be replaced by (explicit) 
equality constraints without changing S. We elaborate on the topic of 
implicit equalities in Section 3 and develop some interesting relations 
between redundant constraints and implicit equalities. 

In Section 4, we introduce the concept of a minimal representation of 
a convex polyhedral set. Then, we proceed to prove the main theorem, 
which asserts that a system of linear constraints is a minimal representation 
if and only if the system contains no redundant constraints and no implicit 
equalities. 

We conclude with a section on existing theory, in which it is shown 
that our result is a generalization of the theory as given by Shefi, Luenberger, 
and Eckhardt (Refs. 11-13). 
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2. Redundancy 

Redundant constraints in the system (1) do not play a role in determin- 
ing the feasible region S: they can be omitted without changing S. To 
define redundant constraints more formally, we denote, for fixed k : 

S k = {x ~ R "tAix = ai, V i ¢  k, B x  <~ b,}, 

Sk = {x ~ R ~ I A x  = a, B~x <~ bl, Vi  # k }. 

Definition 2.1. The constraint Agx  = ak, 1 <- k <~ m, ,  is a redundant  
equality constraint in the system (1) if and only if 

S k =S. 

Definition 2.2. The constraint Bkx <<- ba  1 <~ k <~ rob, is a redundant  
inequality constraint in the system (1) if and only if 

Sk = S. 

In these definitions, it should be noted that there is a difference between 
identifying a constraint as being redundant and removing that constraint. 
Since the concept of redundancy is defined relative to the system (1), 
removing one redundant constraint changes the system and may cause 
other (originally) redundant constraints to become nonredundant. 

Although the definition of redundant constraints is not generally agreed 
upon in the literature, the topic has been studied quite extensively in the 
last two decades. Papers mainly considering the theory are Refs. 8 and 
11-14; methods to identify redundant constraints are presented in Refs. 
1, 7, 9 and 15-21. A good deaI of this work is motivated by the possible 
use of these techniques in mathematical programming algorithms and the 
expected gains, both in terms of computations and in terms of knowledge, 
in some applications (Refs. 15 and 21-24). A survey of these developments, 
together with extensive computational experience, is given in Ref. 25. 

The redundancy of an equality constraint is related to the rank of the 
matrix A, denoted by r (A) ,  by the following well-known theorem. 

Theorem 2.1. The constraint A k x  = ak is redundant in the system (1) 
if r ( A )  does not change by removing Ak from A. 

As a direct consequence, we have the following corollary, 

Corollary 2.1. The system (1) contains at least one redundant 
equality constraint if 

r(A)<mo. 
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The converse of the corollary is obviously not true, since any redundant 
equality may be replaced by two inequalities such as to make r (a)= ma. 
Only under some additional assumptions can it be proved that the system 
(1) contains redundant equality constraints if and only if r ( A ) < m a  
(Theorem 3.3). Furthermore, note that it is not necessarily true that every 
equality constraint is redundant if r(A) < m,~. 

Next, we define 

uk (x) = bk - Bkx. 

Then, it follows from Definition 2.3 that 

Bkx <~ bk, 1 <-- k ~ mb, 

is a redundant inequality if and only if 

ak = min{uk (x)tx e Sk} I> 0. (2) 

To see this, note that 

if and only if 

Sk = S  

B~x <~ bk, Vx e Sk, 

which is equivalent to (2). 
If ak = 0, then the inequality is termed weakly redundant; if ak > 0, it 

is termed strongly redundant. Unless explicitly mentioned otherwise, the 
term "redundant"  will be used to indicate constraints that are either strongly 
or weakly redundant. A redundant inequality constraint is related to the 
feasibility of a system of linear constraints by the turnover lemma. 

Lemma 2.1. (Turnover Lemma,  Re[. 7.) The constraint Bkx <~ bk is 
redundant in the system (1) if and only if the system 

A x  = a, 

Bix <~ bi, Vi # k, (3) 

Bkx > bk 

is infeasible. 
Some more relations between redundancy of a constraint and feasibility 

of a system of linear constraints can be obtained by dualizing the linear 
programming problem (2). As an example, we mention the following 
theorem. 
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Theorem 2.2. (Ref. i ) .  The constraint Bkx ~ bk is redundant  in the 
system (1) if and only if the system 

A Tw + BTv =0, 

aTw + b Tv <~0, 

vi >! O, V i ~ k, 

Vk = - 1  

is feasible. 

3. Implicit Equalities 

Some inequalities may be replaced by equalities without enlarging the 
dimension (number of variables) of the system. Deno te  

K~ ={x ~R~lBkx = bk}. 

Then,  we define implicit equalities as follows. 3 

Definition 3.1. The constraint Bkx <- bk in the system (1) is an implicit 
equality if and only if 

S c  Vk. 

Denote  

~k = max{uk(x )tx s &}. (4) 

Then, we can prove the following theorem.  

Theorem 3.1. The constraint Bkx <~ bk is an implicit equality in the 
system (1) if and only if 

I/k = O. 

Proof. 

we see that 

I f  Part. From 

max{uk(x)!x ~ Sk} = O, 

Bkx >i bk, Vx ~ St. 

s The concept of implicit equalities introduced here is similar to the concept of unstable 
inequalities (see, e.g., Ref. 10). In the present context, our terminology seems to be 
preferable. 
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For all x e S, we have 

together, this yields 

i.e., 

thus, 

Only I f  Part. If 

is an implicit equality, then 

Thus, 

implying that 

Bkx <~ bk ; 

Bkx = bk, 

x ~ Vk, Vx ~S;  

S c  Vk. 

Bkx <~ bk 

Uk(X) = 0, Vx ~S. 

max{bk -Bgx lx  e Sk, Bkx <~bk} = O, 

max{uk (x )lx e &}  = ffa = O. [] 

Note  that, by Theorem 3.1, some similarity is shown between implicit 
equality constraints and redundant inequality constraints. Replacing the 
max operator in (4) by a min operator yields (2). Based on this observation, 
an algorithm to identify implicit equalities is derived from an algorithm to 
identify redundant  inequality constraints (Ref. 1). 

Again by dualizing the linear programming problem (4), we may obtain 
some theorems relating the feasibility of a system of linear constraints to 
an implicit equality. As an example, we mention the following theorem. 

Theorem 3.2. (Re]:. i ) .  The constraint Bkx <~ bk is an implicit equality 
in the system (1) if and only if the system 

A rw + BTv = -B~, 

aVw + b Tv =--bk, 

v~>O 

is feasible. 
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In the remainder of this section, we establish some relations between 
redundant constraints and implicit equalities in the system (1). We use the 
following notation: 

ra = ma + rat,, 

r = n -- ma, 

V = X  ~ R " I A x  = a .  

We denote by lin(S) the smallest linear manifold containing S, i.e., 
the subset of R "  consisting of all linear combinations of vectors from S. 
By S, we denote the relative interior of S in lin(S). Finally, we define 

dim S = dim(lin(S)). 

First, we prove three lemmas. 

Lemma 3.1. If, in the system (t), 

tTi > O, Vi, 

then 

= {x E R ' ~ t A x  = a, B x  <b}.  

Proof.  First, suppose that x ' e  R "  is such that 

A x '  = a  and B x '  < b .  

Then, around x', there is an e-ball o(x ' ,  ~) such that 

B z  < b, V z  ~ o (x ' ,  ~). 

Any 

x ~ {o(x ' ,  e)  A lin(S)} 

is a linear combination of x' and elements from S, and so 

A x  = a ;  

thus, 

z ~ S .  

Therefore,  

{ o ( x ' , E ) ~ l i n ( S ) } ~ S  and x '~S .  

For the remainder of the proof, it might be helpful to consider Fig. 1. 
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Z / 

Fig. 1. Second part of the proof of Lemma 3.1. 

and 

but 

Now, suppose that x '  E R "  is such that 

A x ' = a  

Since, in the system (1), 

Bix'<b~, Vi = 2  . . . . .  rob, 

BlX' = bl. 

tTi > 0, Vi, 

there is a point  z E S, with Blz  < bl. We have to prove  that there is a point  
w in any {o (x', e) c~ lin(S)}, with w a S. Choose 

w = h x ' + ( 1 - A ) z ,  wi thh  = I + E .  

Then,  

Blw = (1 + E)Blx ' -  eBlz 

= ( l + ~ ) b l - e b l  = bl;  

thus, w ~ S. 

L e m m a  3.2. (Interior Point Lemma, Ref. 26.) 
tTi > 0, Vi, then S # Q .  

[] 

If, in the system (1), 
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P r o o f .  F r o m  

~ > O, Vi, 

we see that,  for  all i, there  is a point  y i ~ Si such that  

Biy i < bi. 

Consider  

It is easy to see that  

which means  that  

n,t b 

y = (1/rab) E Yi. 
i = 1  

A y = a  and B y < b ,  

L e m m a  3.3. If the system (1) satisfies r ( A )  = m~ and gi > O, Vi, then 

dim S = n - m .  = r.  

Proof .  F r o m  the  interior point  lemma,  we know that  there is a point  
y e g such that  {V c~ o (y, e)} c S. Because  of r (A )  = ma, we have 

d im(V)  = n - ma = r;  

therefore ,  for some basis (a 1 . . . . .  at) ,  we can write 

V = y  + h l a l + "  • "+Mar,  

Fu r the rmore ,  36  > 0 such that,  if 

then 

and 

(/~1, • - . ,  Ar) T e R  ~. 

Vi,  

{y +h~a~+. • • + h,a,} e o(y, E), 

y, y + 8 a l  . . . . .  y +8c~, e { V  :~ o(y,  e)}. 

Since 6oq . . . . .  6a ,  are l inearly independent ,  we have 

d i m { V n  o(y,  e)}~>r, 

which implies that  

d i m S  ~ r .  
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But, since S c V, we also have 

thus, 

dim S ~<r; 

dim S = r. [] 

Using these lemmas, we can prove the following theorems, which apply 
to situations in which implicit equalities are explicitly stated as equalities. 
By definition, the set of feasible solutions S does not change under such 
an operation. 

Theorem 3.3. The system (1) in which t~i > 0, Vi contains redundant  
equalities if and only if r ( A ) <  ma. 

Proof. f fPart .  It follows from Corollary 2.1. 
Only I f  Part. Suppose that 

r ( A ) = m a  and d i > 0 ,  Vi. 

Then, 

dim S = n - m.  

(Lemma 3.3). If there are redundant  equalities in the system, we can remove 
them, and the new system still has 

~71 > 0, ¥i,  

and now satisfies 

r (a  ) = m~, 

too. Then, according to Lemma 3.3, 

d i m S = n - m ' a > n - m ' ,  

and this contradicts the assumption. 

Lemma 3.4. If the system (1) contains exactly one inequality con- 
straint which is an implicit equality, then this inequality constraint is 
redundant  as well. 

Proof.  Assume that the first inequality is an implicit equality, 

B l x  = bl, Vx e S. 

Then,  the system 

Bix ~ bl, i = 2 . . . . .  rob, 
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contains no implicit equalities; hence, according to the interior point lemma, 
there is an y ~ S such that 

Biy < bi, Vi  = 2 . . . .  , rob. 

Suppose that the first inequality is not redundant. Then, there is a point 
z ~ $1, with 

B~z  > bl.  

Take 

Since 

we have 

But 

w(h) = h z  + (1-h)y .  

o ( y , E ) c &  and z e S 1 ,  

1 w(h)~S1, for -~e<~A <~1. 

/~IW( 1 ) = _ ½ E B I Z  %. 1 (1 + ~e)Bly < -½ebl + (1 + ½E)ba = bl. 

Thus, the first inequality is not an implicit equality, contradicting the 
assumption. [] 

~i'his lemma is useful in proving the following theorem. 

Theorem 3.4. If, in the system (1), all implicit equalities are replaced 
by equality constraints, then the new system contains at least one redundant 
equality. 

Proof. Replacing an implicit equality 

Bix ~ bi 

by an equality constraint is equivalent to adding the constraint 

Bix >I bi 

to the system. The latter constraint is obviously redundant. Furthermore, 
the last implicit equality is redundant by Lemma 3.4; and, if both 

Bix  <~ bi and B~x >l bi 

are redundant, the equality is redundant as well. [] 

Finally, note that a strongly redundant constraint is not an implicit 
equality, and conversely. 
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4. Minimal Representation 

The set of feasible solutions S for the system (1) may be represented 
in various ways, i.e., by different sets of linear constraints. 

Definition 4.1. A m i n i m a l  r e p r e s e n t a t i o n  of the set S is a system of 
linear constraints (1) with 

S = {x e R " I A x  = a,  B x  <~ b} ,  

such that every other system describing S has at least m constraints. 
In this section, we will give necessary and sufficient conditions for the 

system (1) to be a minimal representation. First we prove some temmas. 

Lemma 4.1. If the system (1) satisfies 

r ( A  ) = ma ,  

t~ < 0 ,  tT~ > 0 ,  Vi, 

then the system 
A x  = a ,  

B l x  = b l ,  (5) 

B i x  ~ bi, V i  = 2 . . . . .  rob, 

contains no redundant  equalities and implicit equalities. 

Proof.  Assume that the system (5) contains a redundant  equality. 
Then, there is some h ~ R ''° such that 

B1 = A1AI +" • • + h,~ A.~o. 

This yields, for all x ~ V, 

B l x  = h 1 A  i x  +"  • • + h m . A m ~ x  = h la~ +" • • + hm,flm,~ = c, 

c a constant; and this leads to a contradiction, since b 1 t> c contradicts 

~i < 0, Vi, 

and bl ~< c contradicts 
tTi > O, Vi, 

for the system (1). Therefore,  

and the system (5) contains no redundant  equalities. 
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Fig. 2. Proving the second part of Lemma 4.1. 

In following the proof  that the system contains no implicit equalities, 
Fig. 2 might be helpful. According to the interior point  lemma,  there is 
some x '  s V with 

Since 

B i x '  < bi, V i .  

~7~ > 0, Vi, 

for the system (1) there is some x"~ V with 

B l X " > b t  

and 

B i x "  ~ bi, 

Choose 0 < h < 1 such that 

This is possible for 

i = 2 ,  . . . , mb.  

B l ( ~ X '  q- (1 - h )x") = b l .  

,t = ( b l - B l x ' ) / ( B l x " - B l x ' ) .  

For all 2 ~< i ~< mb, we have 

Bi (hx' + ( 1  - ,~ ) x " )  = hB~x' + ( 1  - h )Bix" < ,~b~ + ( 1  - h )b~ = bi. 

So 

• 2 = A x ' + ( 1 - h ) x "  
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q 

satisfies 

Fig. 3. Situation for Corollary 4.1 and Lemma 4.2. 

A £  = a, 

B l ~ = b l ,  

Bi£ < b~, Vi  = 2 . . . . .  mb; 

therefore,  the system (5) contains no implicit equalities. [] 
Figure 3 might provide some help in studying the following corollary 

and the next lemma.  

Corollary 4.1. If the system (1) satisfies 

r ( A ) = m a ,  

ui < O, ui > O, Vi, 

then for any i e (1 . . . . .  mb), there is a convex set Oi such that 

O i m ( S i n V ~ )  and d i m Q i = r - 1 .  

Proof. 

Take 

For all x E (Si ~ Vi), we have 

A x  = a, 

Bix = b i ,  

Bix <~ bi, W # i. 

Then, clearly, Qi is convex. According to I~mma 4.1 the conditions for 
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Lemma 3.3 are satisfied in this new system, and thus 

dim Qi = r - 1. 

Lemma 4.2. If, in the system (1), 

ffi > 0, Vi, 

then for any convex set Q, with 

Q c ( S \ g )  and d i m Q = r - 1 ,  

there is some Vj with 

O ~  Vi. 

Proof.  Suppose that no V i contains Q. Then, 

ffi > 0, Vi, 

implies that, for all ], there is an yi e Q such that 

Ay j = a, 

Bj<bi, 
Biy j ~ bi, Vi ~ ]. 

Take 

m b 

y =(1~rob) Z YJ. 
j = l  

Then, by the convexity of Q, we have y e Q and 

Ay  = a, By < b. 

Thus, y c $, contradicting the fact that 

Q c (S\$). ~ . 

Note that it may be proved that Q c V i for exactly one ]; this, however, 
is not required for the following lemma. 

Lemma 4.3.  If, in the system (1), 

ffl > O, Vi, 

then 

V¢: Vi, for all]. 
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Proof.  Suppose that there is some ] such that V c V/. Then, 

Bjx = bj, Vx ~ V, 

implying that 

max{bj - B/x Ix e V}  = O. 

But, since S c V, this yields 

max{b/-Bsx Ix e S} <~ O, 

contradicting 

tTi > O, Vi. []  

Lemma 4.4. If the system (1) satisfies 

r(A ) = rn~, 

~i < O, ~ > O, Vi, 

then V is the smallest linear manifold which contains both Ok and Oi, 
k ~ ], with 

Ok c ( V k n S k ) ,  O j c ( V i n S j ) ,  

dim Ok = dim Q~ = r - 1. 

Proof.  The linear manifold V contains Qk and Qj, by definition; 

dim V = r. 

Suppose that there is another  linear manifold W, containing Qk and Qj; since 

dim Qk = dim Qj = r - 1, 

we must have 

If 

then 

since 

dim W > ~ r - 1 .  

d i m W = r  and W # V ,  

dim ( V ~  W) = r -  1, 

(Vc~ W ) =  W' 
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contains Qk and Qj. Thus, W' would also be a linear manifold that contains 
both Qk and Qi. Hence,  we may restrict ourselves to the case 

dim W = r - 1. 

Since both W and Vk are linear manifolds and Ok C gk, we have W c Vk ; 
similarly, W c Vj. From the assumption, we have W c V; thus, 

but, since 

W c ( V c ~  V ~  Vi); 

dim (V c~ Vk) = r -  1 

(Lemma 3.3), this implies that 

( v ~  vk)~ v,.. 

The latter is impossible, because of the following (see also Fig. 4). 
Choose some x' e g (interior point lemma); thus, 

Bix < bi, Vi. 

Choose x" ~ Sk such that 

which is possible according to 

BkX" 2~ bk, 

~i < 0, Vi. 

Then,  there is some 0 < A < 1 with 

Bk (hX' + (1 -- h)X") = bk. 

J 

Fig. 4. Proving Lemma 4.4. 
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Define 

since 

also 

However ,  

therefore 

thus 

£ = h x ' +  (1 - h)x"; 

£ e V  and £ e V k ,  

Ze(Vc~ Vk). 

Bf i  = hBjx' + (1 - h  )Bjx" <b i + (1 - h ) b j  = bj; 

2e v~, 

(vkc~ v ) ¢  %. [] 

At this point we are fully equipped to prove the main theorem. 

Theorem 4,1. Minimal Representation Theorem. The system (1) is a 
minimal representation of the set S if and only if it contains no redundant  
constraints and no implicit equalities. 

Proof.  Note that the system (1) contains no redundant  constraints 
and implicit equalities if and only if 

r (A)=ma,  

at < O, Vi, 

ul > O, Vi. 

I f  Part. Suppose that there is another system (indicated by primes) 
that also represents S, but with m ' <  m. We assume that 

r (A') = ma', 

at < 0, Vi, 

tT~, > 0, Vi, 

for that system as well. 
First, we prove that the number  of equalities in both systems is equal. 

Then, we prove that the sets of points satisfying all equality constraints 
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are the same for both systems. According to Lemma 3.3, 

dim S = n - rn. = r; 

however, also 

and therefore 

d i m S = n - m ~  =r,  

~..1 a = m a. 

The smallest linear manifold containing S has dimension n -rn~, but also 

S c V  and d i m V = n - m a ;  

therefore, V is the smallest linear manifold containing S. The same is true 
for V', and thus 

V ' =  I4 

Now, we show that every inequality constraint in one system corresponds 
to at least one inequality in the other system, but no two correspond to 
the same inequality. This implies that the number of inequality constraints 
in both systems is equal. 

Choose 

i ~ (1 . . . . .  rob);  

Corollary 4.1 says that there is some 

Q~ ~ (St c~ Vi), 

for this i; and according to Lemma 4.2, there is some V~, corresponding 
to this Q~. Thus, related to any i, there is an i'. Suppose now that, for i 3] ,  
we have i' = f ' ,  thus 

thus 

Vl, = Vs,, 

Q i c V i ,  and QicVi , ;  

but, according to Lemma 4.4, the smallest linear manifold containing both 
Q~ and Q~- is V. Therefore, V ~ Vi, which would be contradicting Lemma 
4.3. Thus, for i ~/', we have i' ~ j ' ,  and therefore 

In the same way, we prove that 

ttt  ~ ~ t'~b~ 
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and thus 

mb--/Y/b.  

Only I f  Part. Suppose that the system (1) contains redundant con- 
straints; these may be removed to obtain a smaller system. This contradicts 
the fact that the system is a minimal representation. Suppose that the 
system (1) contains implicit equations; replacing all of them by equality 
constraints would make at least one of them redundant (Theorem 3.4), so 
this one may be removed to obtain a smaller system. Again, this is a 
contradiction to the minimality of the representation. [] 

It is worthwhile to mention that, in fact, we have proved a slightly 
stronger theorem: not only the minimal number of constraints is uniquely 
determined, but also the number of equalities and inequalities in the 
minimal representation is unique. But, even though these numbers are 
unique, the minimal representation in itself is not unique. 

At this point, we should stress two important features of the minimal 
representation theorem: given the knowledge of which constraints are 
redundant and of which equalities are implicit, no transformations of the 
system are necessary to obtain the minimal representation. Even more 
important is the fact that the theorem implicitly guarantees that every 
reduction of the system is a step in the right direction. It is not possible to 
get a locally minimal representation by a specific order in which redundant 
constraints and implicit equalities are removed. 

5. Relation with Existing Theory 

Existing theory on the representation of a convex polyhedral set can 
be shown to arise as a special case of the result in the previous section. 
First, we consider the work of Shefi (Ref. 11), modified and extended by 
Luenberger (Ref. 12). 

Definition 5.1. (Refs. 11 and 12). 
for the convex polyhedral set T is a system of linear constraints 

with 

such that: 

(i) for 

Dx = d, x <- O, 

A minimal similar representation 

(6) 

= {x ~ R ,atD x = d, x ~ 0}, 

D E R ~ X ~ ,  x~R~% O~R ~, d ~ R  ~, 
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there is a linear invertible mapping Z, called a similarity transformation, 
that maps lin(T) onto lin(T), such that 

X(T) = 7 ~ and ~--1(~)= T;  

(ii) md is minimal; 
(iii) nd is minimal. 
Loosely speaking, this means that a minimal similar representation of 

a set T is a system of linear equalities in nonnegative variables that 
determines a set T with the same shape and dimensions as T and does 
this in the smallest number  of equalities and the smallest number  of 
variables. 

The main difference between a minimal representation and a minimal 
similar representation is that the latter is embedded in a linear manifold 
of smallest possible dimension and is given relative to that linear manifold. 

Shefi and Luenberger  introduce the following terminology: 
Null variables are defined to be zero in every feasible solution; in our 

terminology, this means that the corresponding inequality constraint is an 
implicit equality. Null variables can be removed by striking out the corres- 
ponding column in the matrix D and adding the equality xj = 0. 

Nonextremal variables are those variables such that the corresponding 
nonnegative constraint xj = 0 is redundant.  Nonextremal variables can be 
removed from the system by eliminating them from a constraint in which 
they have a nonzero coefficient. Then, this constraint can be replaced by 
a definition of the removed variable in terms of the other variables; e.g., 
if xl is nonextremal and a~l # 0, then the constraint 

i aljxj = b~ 
j = l  

may be replaced by 

xl=(1/all)(bl - ~ al~xi). 
j=2 

Now, we can prove the following theorem. 

Theorem 5.1. For T #  0 ,  the system (6) is a minimal similar rep- 
resentation of T if and only if it contains no redundant  equations, null 
variables, and nonextremal variables. 
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Proof. I f  Part. If the system (6) contains no redundant  equations, 
null variables, or nonextremal variables, we have 

r (D)=md,  

¢t~ < O, Vi, 

~7i > 0 ,  Vi; 

so, we can apply the main redundancy theorem; therefore,  the system (6) 
is a minimal representation. 

We have proved that the number  of faces of T of dimension equal to 
dim T - 1 is fixed and equal to the number  of inequality constraints. Since 
the number of these faces does not change under a similarity transformation, 
we cannot transform T to a space with smaller dimension. Since we also 
proved that 

dim T = nu - rnd, 

and hence is constant, we cannot find a system with less equations in the 
same number of variables. 

Only I f  Part. Assume that the system (6) is a minimal similar rep- 
resentation. If it contains a redundant  equality, this can be dropped, 
contradicting point (ii) of the definition of a similar representation. If it 
contains a null variable, point (iii) would be contradicted. It it contains a 
nonextremal variable Xk, points (ii) and (iii) are contradicted. []  

Shefi and Luenberger  proved this theorem under the additional 
assumption that T is bounded (Refs. 11 and 12). However,  as shown here, 
by using our result on minimal representations, the theorem holds for more 
general cases too. Therefore,  the result of Shefi and Luenberger  follows 
immediately from Theorem 5.1. 

The minimal similar representation of a set T may seem to be smaller 
than the minimal representation, but  this is an illusion. In fact, this con- 
stitutes an important  point of criticism on the theory of Shefi and Luen- 
berger. 

In the minimal similar representation, a minimal dimension (number 
of variables) is required: variables corresponding to dimensions that are 
dropped are appended to the system as equalities. Their  values can be 
calculated afterward. However ,  this is no reason to consider these variables 
as not being a part of the system. From a practical point of view, there is 
no such thing as lowest dimension: all variables specified in the set T should 
be present  in a minimal representation as well. Therefore,  the variables 
that are appended to the system, in a minimal similar representation, form 
an integral part of the system and should also be incorporated in the 
minimal representation. 
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Another way to interpret this point is to consider the minimal similar 
representation as a one-to-one transformation of the original system. Given 
the minimal similar representation, nothing can be said about the original 
system if the transformation is not known. Therefore, the minimal similar 
representation is useless without this one-to-one transformation. This 
implies that, since the transformation is embedded in the equalities that 
are appended to the system, these equalities should be part of a minimal 
representation, as is done in our theory. 

A minimal similar representation plus the equalities appended to the 
system will never be smaller than our minimal representation. Furthermore, 
our reductions to obtain a minimal representation require no additional 
calculations (after identification of the constraints), whereas in the theory 
of Shefi and Luenberger the removal of nonextremal variables requires 
extra calculations for all the coefficients in the system. 

Eckhardt (Ref. 13) considers systems in which only linear inequality 
constraints are present. By defining unstable inequalities in the same way 
as our implicit equalities, Eckhardt can prove a number of special cases 
(ma = 0) of our theorems and lemmas. 

Assuming that there are no unstable inequality constraints, Eckhardt 
proceeds by defining a minimal representation as a system that contains 
no redundant constraints. Since he addresses the case ma = 0, his notion 
of a minimal representation coincides with the one developed here. 
However, instead of proving the minimality of the number of constraints, 
Eckhardt simply defines a minimal representation in the way sketched 
above. Thus, he avoids a confrontation with the minimal representation 
theorem, even for the simple case in which 

m a = 0  and 8~>0, Vi. 
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