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INTRODUCTION

Let X((NN) be the compactified coarse moduli scheme over Z of elliptic
curves together with a cyclic subgroup of order N. In chapter 1 the minimal
resolution of Xo(V) over Z[}] is determined. In chapter 2 we describe the
stable reduction of Xo(p*N) at p for p > 5, where p is a prime that does
not divide N. It would be very interesting to known the stable reduction
of Xo(p™N) at p, but wild ramification keeps me from finding it.

In a forthcoming chapter the actions of the Hecke algebra and the
inertia group on the stable reduction will be studied. I hope that this
(faithful) representation of the Hecke algebra will lead to an efficient
algorithm for computing all Weil curves with a given conductor. Such an
algorithm has already been found in the case of a prime (and maybe also
square free) conductor by J.F. Mestre [12]. Until I heard from his results
I was developing the same theory. Also the relation to A. Pizers Brandt
matrix representation of the Hecke algebra [13] [14] should become clear.
Finally I want to thank dr. B. van Geemen for the idea of reducing Hecke
operators mod p, and for his proofreading.

After this text was written in November 1986, the actions of the
Hecke algebra and the inertia group have been studied in the authors thesis
(Stable models of modular curves and applications, Utrecht, June 1989, to
be published). This resulted in an analog of the so-called “graph method” of
Mestre and Oesterlé [12], and also gave new information concerning strong
modular parametrizations of elliptic curves. Another application was given
in an article (to appear in Astérisque) to the computation of the action
of the Hecke algebra on the groups of connected components of reductions
mod p of Néron models over Z of jacobians of modular curves. Again,
I would like to thank my thesis adviser F. Oort and especially B. van
Geemen for their advice and support.

NOTATIONS

In this paper, we will freely use notations introduced in the book of
Katz and Mazur [9]. For the convenience of the reader, we will list the
places where a definition of some of these notations can be found. A few
other remarks should be made. Often, “irreducible component” will mean
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the reduced subscheme corresponding to it. We will also use the expression
“local equation” for what should really be called a formal local equation.

(Ell) modular stack of elliptic curves [9] 4.1.

(Ell/R) modular stack of elliptic curves over base schemes over
Spec(R) [9] 4.13.

P moduli problem : a contravariant functor from (Ell) or
(Ell/R) to (Sets), see [9] 4.2.

- M(P) (fine) moduli scheme associated to a representable moduli
problem, [9] 4.3.

M(P) coarse moduli scheme associated to a moduli problem P
which is relatively representable and affine, [9] 8.1 If P is
representable, then it is just M(P).

M(P) compactified coarse moduli scheme, [9] 8.6.
M(P) compactified moduli scheme, [9] 8.6.

[TCo(N)] the moduli problem that assigns to E/S the set of I'g(NV)-
structures on E/S, see [9] 3.4 and 5.1.

[(a, b)-cyclic] the moduli problem on (Ell/F,), where p is a prime,
assigning to E/S the set of (a,b)-cyclic subgroups of E/S,
see [9] 13.4.3 and 13.4.5.

(Ig(p™)] the moduli problem on (Ell/F,) that assigns to E/S/F,
the set of Igusa-structures of level p™ on E/S, see [9] 12.3.

[ExIg(p™,)] the moduli problem on (EIl/F,) that assigns to E/S/F,
the set of i-exotic Igusa-structures of level p™ on E/S, see
9] 12.10.5.1.

1. THE MINIMAL RESOLUTION OF X,(p"N) AT p>5
1.1. Outline of the results and computations in this chapter.

1.1.1. Let p > 3 be a prime, N > 0 an integer that is not divisible
by p, and n > 1. Let [[o(p"N)] be the category fibered in groupoids
over the category (Sch) of schemes which classifies cyclic p™N-isogenies
between elliptic curves (n.b. not between generalized elliptic curves). Then
[Co(p™N)] is an algebraic stack because of [3] Ch. III, Thm. 2.5, and [9]
Thm. 6.6.1.
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Remark 1.1.1.1. — The Mr(x) which is described in [4] Ch. III, §1,
is not an algebraic stack. For a p-gon with its p-torsion subgroup is an
object of Mr(p2). This object has infinitesimal automorphisms. Note that
in the M, of [3] Ch. III, Thm. 2.5, n-gons may only occur at points where
the characteristic does not divide n.

Let Xo(p"N) be the compactified coarse moduli scheme M([To(p"N))
as constructed in [9] Ch. 8, and let Xo(p™N) be the minimal resolution of
Xo(p™N). We will give a complete description of X,(p"N) ®z F,, in terms
of Xo(N) ®z F,.

Description 1.1.1.2. — The graph and local equations of )’E)(p"N )®z
F, can be found in (1.4). The non-reduced irreducible components of
X~0(p"N )®z F, are isomorphic to the corresponding infinitesimal neighbo-
rhoods of the zero sections of their normal bundles. The conormal bundle
of the reduced (a,b)-component (with a,b > 0) is :

_bl

la
(Qg(o(N)®sz (CuSpS))®P (D),

where D can be found in Table 1.6.3.2.

1.1.2. The computation runs as follows. First we show that Xo(p"N) is
regular at the cusps, so there is no problem at infinity. Then we introduce
an auxiliary level structure P to view M([I'o(p"N)]) as a quotient of a
regular scheme M(P,[[o(p"N)]) by the action of a finite group.

The only non-trivial stabilizer groups we encounter are cyclic of order
2 or 3. Since p > 5 the quotients we consider commute with all base changes
we will perform, and the quotient of a closed subscheme will be its image
in the quotient.

The scheme M(P, [[4(p"N)])®z F, is completely described in terms
of M(P,[To(N)])®z Fpin [9] Thm. 13.4.7. This description yields enough
information to get the result.

1.1.3. We use the notation of [9] Thm. 13.4.7 : M(P,[To(p"N)]) ®z
F, is the disjoint union, with crossings at the supersingular points, of
the n + 1 schemes M(P,[[z(N)], [(a,b)-cyclic]) for a + b = n. The
multiplicity of the (a,b)-component is ¢(p™*(>:?), so only the (n,0) and
the (0,n)-components are reduced. By taking the quotient we see that
Xo(p"N) ®z F, consists of n + 1 irreducible components all isomorphic
to Xo(N) ®z F, which intersect at every supersingular point and nowhere
else. The multiplicity of the (a,b)-component is ¢(p™*(2:)), It follows that
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Xo(p"N) — Spec(Z) is smooth on the ordinary part of the (n,0) and
(0,n)-components; since Spec(Z) is regular, Xo(p"N) is regular at those
points.

Consider the points in the finite part of Xo(p"N) ®z Fp which :
1. have extra automorphisms, and
2. are supersingular or have a # 0 # b.

It is easily checked that these points are isolated in Xo(p"N) for the
property of having extra automorphisms. By purity of branch locus, they
must be singular in the surface Xo(p™N). We will not use this, because it
follows directly from the calculations we will do.

1.1.4. The first observation we make is that the points on M(P, [['o(p"N)])
which are candidates to become singular in the quotient, are all singular in
M(P,[To(p"N)]) ®z F,. Hence at such a point, the cotangent space of the
surface equals the cotangent space of the p-fibre. Since we know all about
this fibre, we know the actions of the stabilizer groups on the cotangent
spaces. We can then apply [15] Thm. 1’ of Serre :

THEOREM 1.1.4.1. — Let A be a noetherian regular local ring with
maximal ideal m and residue field k. Let G be a finite subgroup of Aut(A),
and let AC denote the ring of G-invariants of A. Suppose that :

.1. the characteristic of k does not divide the order of G,
2. G acts trivially on k,
3. A is a finitely generated A®-module.

Then A€ is regular if and only if the image of G in Auty(m/m?) is generated
by pseudo-reflections.

Remark 1.1.4.2. — An element o of Autg(V), where V is a vector
space over k, is called a pseudo-reflection if rank(1l — o) < 1.

1.1.5. We consider a point x in M(P, [['o(p"N)]) satisfying the conditions
1 and 2 of 1.1.3. If we find that the image of x in the quotient Xo(p™NV)
is a singular point, then we replace M(P,[lo(p"N)]) by its blow up
in x. The second observation we make is that in doing so we do not
loose any essential information. The reason for this is the following. The
completion of the strict Henselization of M(P, [[z(p"N)]) at x is of the
form A := W{[z,y]]/(f), where z and y are local moduli of source and target
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(cf. [9] Thm. 13.4.7 with P := (P,[[o(N)])). We can write f = fo + pfi
with :

n n a—1
fo= (@ —pe-9y") J[ @ -
a+b=n
a,b>0

b=l 0 1 e . .
)P~ if x is supersingular,

fo= (:1:”‘1_1 - y”b_l)”_1 with a + b =n and a,b > 0, if x is ordinary.

Because A is regular, fi has to be a unit in W{[z,y]], and (z,y) is a
system of parameters at x. The blow up of A at x can be covered by
two open affines. One of these is Spec(A), where A = W[z, vz]|[v]/(f)
with f~(a:,v) = f(z,zv), and f = fo + pfi. On this part of the blow
up, the exceptional divisor (this is the preimage of x) is described by the
equation : & = 0. It follows that W [v][[z]]/(f) is the completion of A along
the exceptional divisor.

We see from this that after blowing up we still know the p-fibre +
action, and we can repeat the procedure until the quotient will be regular.
Then we know the p-fibre of the quotient, and after contracting —1-curves
we have the minimal resolution.

1.1.6. There is still more to know, namely the global structure of the
non-reduced irreducible components (the description in [9] Thm. 13.4.7
only gives the fibre of the non-compactified moduli scheme). Following the
construction of the minimal resolution we will determine the conormal
bundles of the reduced (a,b)-components. We express these bundles in
terms of Xo(N) ®z F,. The statements of description 1.1.1.2 then follow
from the fact that the degrees of these line bundles are sufficiently large.

1.2. Xo(p"N) is regular at infinity.

1.2.1. In this section we do not need the restrictions p > 3 and n > 1. Let P
be the moduli problem ([I'(12)], [I'o(M)]) on (Ell), where M is an arbitrary
non-negative integer, and let G = GL2(Z/12Z). Then by [9] Proposition
8.11.7 we have an isomorphism :

M(P)z((q)) —Prate(a)/z((a))/ {£1}-

Taking the quotient by G and applying [9] Proposition 7.3.1, Theorem 7.4.2
and Corollary 8.11.9 gives :

M([Co(M))z((a)y— Lo (M) Tate(a)/2((a)) -
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This implies that the finite Z[[g]]-scheme C@s([FO(M )]) is the normaliza-
tion of Z[[q]] in the finite normal Z((q))-scheme [To(M )] Tate(q)/2((q))-

Applying factorization into prime powers ([9] Lemma 3.5.1) we get
an isomorphism :

[Co (™ N)]Tate(a)/2(() — L0 (2™ )] Tate(a)/2((0)) X 2((2)) [[0 (V)] Tate(a)/2((a))-

We will first compute the two factors of the right hand side.

1.2.2. By 1.2.1 and [9] Thm. 13.6.6, CTls\ps([I‘o(p")]) is the normalization
of Spec(Z{[g]]) in

Spec(Z((q))) | | Spec(Z((a))[z)/ (=" — ) | |
LI spec(z((@)l2)/(25(=""" /"))

a+b=n

a,b>0
Of course the normalization of Z[[q]] in Z((q)) is Z[[q]] itself. The normali-
zation of Z[[q]] in Z((q))[z]/(z?" —q) is Z[[q]][x] / (x?" —q) because it is ﬁmte
over Z[[q]] and regular. If a > b then LAY R w1th T =z/q""
and we must find the normalization of Z[[q]] in Spec(Z((q))[z]/(®:(x))),
which is Spec(Z([q]][z]/(®, x))) because it is regular and ﬁmte over Z[[q]]-
Now suppose b >a > 1, then 2P /q”a b= gt l, with z = 2#"~ “Jq, ie:

b—a

2P~ = gz. So we must find the normalization of Z[[g]] in :

(Z((q))[z]/ (2" "))/ (""" - qz),

)

which is :
1

(Z([a)l[z]/@p (=" NI/ (""" = qz),”

because it is regular and finite over Z[[g]]. We have proved the following
proposition.

ProposiTION 1.2.2.1. — The Z[[q]]-scheme Cﬁs([l"o(pn)]) is isomor-
phic to :

Spec(Z(g]) | [ Spec(zlle® "D [ [ Speczigslial ]

s
[T Spec(Z(Gpelllalllel/ (2" = Gea)),
A

and hence is regular.
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1.2.3. We see from the proposition above that locally etale on Spec(Z[1/p])
the Z[[g]]-scheme Cusps([I'o(p™)]) is isomorphic to a disjoint union of
schemes of the type Spec(Z[[¢'/]]), with ﬂzn This implies that locally
etale on Spec(Z[1/N]) the Z[g]]-scheme Cusps([I'o(IV)]) is isomorphic to
a disjoint union of schemes of the type Spec(Z[[¢*//]]), with f|N. Now we
form the fibre product :

X := Cusps([To(p™)]) Xz(1q)) Cusps([To(N)]) xz Z[1/N].

The normalization of X is then Cusps([To(p"N)]) xz Z[1/N].

We see that in the decomposition of X that comes from the de-
composition of Cfs\ps([r‘o(p")]) (see Proposition 1.2.2.1), the (n,0), (0,n)
and (a,b)-components with a > b are regular. For the (n,0) and (0,n)-
components one uses the fact that Xo(p") — Spec(Z) is smooth at the
cusps of these two components. The (a, b)-components of X withb > a >0
are locally etale isomorphic to :

Spec(Z[Gpe [[z]][2]/ (27" — GpazT)),

so they cause a problem. One way to get out of this is to let the involution
W, act. The action of Wy» on [['g(p™)] is defined by :

a

(¢2E1 —PEQ)H((ﬁtZEz—’E]).

This action induces one on Xo(p™N), and it interchanges the (a,b) and
(b, a)-components of the p-fibre, and hence interchanges the (a, b) and (b, a)-
components of the scheme of cusps. Then it follows that the components
with b > a > 0 are regular too. Of course, we could also have directly com-
puted the normalization. Anyhow, we have proved the following theorem.

THEOREM 1.2.3.1. — The scheme Xy(N) is regular at infinity for
all N.

1.3. Computations.

1.3.1. In this section we will do the computations that are outlined in 1.1.5.
By the blow up X of a scheme X in a sheaf of ideals I we will mean the
X-scheme Proj(®,>0I™), as in [5] II 8.1.3. It is clear from this definition
that blowing up commutes with flat base change : if Y — X is flat, then
the fibered product ¥ x x X is the blow up of Y in the inverse image sheaf
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of ideals of I. We will use this in the case where X is the spectrum of a
noetherian ring A, and Y is the spectrum of some completion A of A.

In our application, X = Spec(A4), where A is a regular local ring of
dimension 2, and X is the blow up of X in the sheaf of ideals of the closed
point x. Let z, y be a set of parameters of A. According to [5] IV Proposition
19.4.11, X is the closed subscheme of PL = Proj(A[U, ,V]) defined by the
equation zV — yU = 0, and Xis regular. The scheme X is covered by the
two open affines D, (U) and D, (V), where

D, (V) = Spec(Alul/(z — yu)), D (U) = Spec(A[v]/(y — v)).

On D, (V) and D4 (U), the inverse image of x, which we call the exceptional
divisor, is described by the equations : y = 0 and = = 0, respectively.

To be even more specific, we will have A = W([z,y]]/(f), where
f = fo+pfi, with f; a unit in W{[z,y]] and fo as in 1.1.5. In that case,

Al)/(y - 2v) = W([z,y]llv]/(y — zv, f) = Wiz, ao]]]/ (),

where f = f(z, zv). Note that the completion of this ring along the
exceptional divisor is given by W[v][[z]]/ (f). For the other open affine,
we have an analogous formula. It follows that we can repeat this blowing
up procedure at an arbitrary point of the exceptional divisor.

1.3.2. The case j = 1728, supersingular (hence p = —1(4)).

Let k := F,. The point x of the moduli stack [[o(p™)] we consider
corresponds to : F™ : E — E, where E is the elliptic curve over k given
by the Weierstrass equation : Y2 = X3 — X, which has Autx(E) = Z/(4),
with generator [i]# : X — —X,Y — Y, with i € k* of order 4. The group
Autg(x) is then cyclic of order 4 with generator :

E —— FE

[i]J l (=1)"[4]

F"
E —— FE.

The elliptic curve over k[[t]] given by Y? = X3 — X +¢ is a universal formal
deformation of E, and [i] acts on it by : X — —X,| Y — Y, t — —t
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(note that the equation is preserved). It follows that ¢ is a coordinate of
the universal formal deformation space of E, such that [¢] act on t by :

t— —t.

Let = and y be the local moduli of source and target at x, both
corresponding to ¢. Then [¢] acts on z and y by : £ — —z, y — —y. The
universal formal deformation space of x is isomorphic to the completion of
the strict Henselization of M(P,[Io(p"NN)]) at some point over x, where
P is some moduli problem that is etale over (Ell). As in 1.1.5, we have

A= W[[‘T’y”/(f)’ with f = fO +pf17 fl a unit in W[[:L"y]]a and

n n a—1 b—1
fo=(" —y)@-y") [] @ —y* )"
a+b=n
a,b>0

Figure 1.3.2.1 gives a picture of the special fibre.

a>b
a=1b
a<b

Figure 1.3.2.1.

The action of [{] on the cotangent space at x is not a pseudo-reflection,
hence we blow up A in its maximal ideal. As explained above, the result
is covered by the two open affines D, (V) and D, (U). We visualize the
situation in figure 1.3.2.2 :

v = 1, coordinates y, u = z/y

- 1

a>b a=b

(R I
N

. a=1b , a<b
u=1,z, v=y/z
Figure 1.3.2.2.

The action of [i] on u and v is given by : u — u, v — v. The locus of
fixed points is now exactly the exceptional divisor. It follows from these
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formulas that, at every point of the exceptional divisor, the action of [] on
the cotangent space is given by a pseudo-reflection. By Theorem 1.1.4.1,
the quotient by [¢] is regular. Since D, (V) and D, (U) are stable under the
action of [¢], this quotient is covered by the quotients of Dy (V') and D (U)
by the action of [i]. Coordinates are given by 32, u and 2, v, respectively.
It is a matter of administration to express fo in these coordinates. We
visualize the quotient in figure 1.3.2.3.

coordinates { = y2, u = %

s 2 —v=0 u—t 2 =0
a=1b
a>b (if n = 0(2)) a<b
u=1 P!, selfinter-
section —2,
multiplicity :
s=0 t=0 142
E-‘zll-p 2 ifn=0(2)
n-!
v=1 p ? ifan=1(2).
| - 1

coordinates s = z2, v =

8 |

Figure 1.3.2.3.

The multiplicities of the (a,b)-components are unchanged. The selfinter-
section of the quotient of the exceptional divisor can be obtained from the
intersection theory in [2] exp. X.

1.3.8. The case j = 1728, ordinary (hence p = 1(4)), (a, b)-component.

We suppose that a # 0, b # 0. This point x of the moduli stack [T'o(p")],
together with a generator [i] of Autg(x) corresponds to :

1749 20

il J j (il
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The computation in this case is the same as the one in 1.3.2, the only
difference is that the special fibre has only one component at x. There are

now three cases corresponding to @ > b, a = b and @ < b. We draw three
more pictures.

s=0 P!, selfintersection : —2

multiplicity : ‘%l .p?

coordinates s = z2, v = %

Figure 1.3.3.1. Case a > b > 0.

coordinates t = y?, u = 5 .
f !
u=1
s=0 t=0 P!, selfintersection : —2
multiplicity : p-1 pl= p—2 ph!
2 2
v=1
L i

coordinates s = z2, v = %

Figure 1.3.3.2. Case a = b (if n = 0(2)).



MINIMAL RESOLUTION AND STABLE REDUCTION 43

coordinates t = y2, u = -;-
r Ll
+
1=0 P!, selfintersection : —2
multiplicity : 2 1 pem

Figure 1.3.3.3. Case 0 < a < b.

1.3.4. The case j = 0, supersingular, n = 0(2) (hence p = —1(3)).

This point of the moduli stack [[o(p™)] corresponds to : F* : E — E,
where F is the elliptic curve over k given by the Weierstrass equation :
Y? = X3 — 1, which has Auty(E) cyclic of order 6, with generator
p): X - ¢71X,Y — -V, with ¢ € k* of order 3. The group Auty(x) is
cyclic of order 6 with generator p :

F™
E —— FE

[p] J J o]

F’n
E E

We can choose again a coordinate ¢ of the universal formal deformation
space of E such that [p] : ¢ — (t. Namely, in this case a universal formal
deformation is given by : Y2 = X3 + ¢tX — 1, and [p] acts on it by :
X~ (X, Y — =Y, t— (t. As in 1.3.2, we take the local moduli z and
y of source and target to be equal to ¢. Then the deformation space of x is
W[z, y]l/(fo + pf1), with :

n n a—1
o=@ —y)@-v") [] @ -
a+b=0
a,b>0

b—1,.
P
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and [p] acts on it by : z — (z,y + (y. Since [p] does not act on the
cotangent space of x by a pseudo-reflection, we blow up in x. The situation is
now the same as in figure 1.3.2.2 : the locus of fixed points is the exceptional
divisor, and at every fixed point, [p] acts on the cotangent space by a
pseudo-reflection. Figure 1.3.4.1 gives a picture of the quotient.

coordinates t = ¢°, u = 5—

PLET
a>b a=1b a<b et ® =0
u=1
s=0 t=0 P!, selfinter. : —3
14—

e e .p+l

e-b-1 multiplicity : =
3 —v=0

v=1
L g

3

coordinates s = z°, v = %

Figure 1.3.4.1.

1.3.5. The case j = 0, supersingular, n = 1(2) (still p = —1(3)).

This point x of [[o(p")], together with a generator [p] of Auty(x) corres-
ponds to :

F™
E —— E

[p] l l )

Fn
E E

From this we get the action [p] : £ — (z,y — (y on the local moduli of
source and target. We blow up because the action on the cotangent space
of the deformation space of x is not by a pseudo-reflection. The resulting
situation is pictured in figure 1.3.5.1.

We are left with two fixed points. There the action is not given by a
pseudo-reflection. We blow up in these points. Figure 1.3.5.2 gives the new
situation.

n
2
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. z
coordinates y, u = —

—
a<kb
—
n-t
. . . 2
fixed point multiplicity : 2-p
. z (z\ y=0 | P, selfintersection : —1
action :
vi— (v z=0 \
fixed point
-1
action : {y = C_ly
B — ur—(lu
coordinates z, v = %
Figure 1.3.5.1.
n-1

P1 selfintersection : —1, multiplicity : 3p 2

\ P!, selfintersection : —3
n-1
multiplicity : 2p 2
coordmates
action : 't = (z \

analogous situation
Figure 1.3.5.2.

Now the action at the fixed points is given by pseudo-reflections, so we
take the quotient. The situation then looks like the one in figure 1.3.5.2,
but the selfintersections —1 have turned into -3, and the -3 has turned
into —1 (because the quotient map has degree 3 on this P}). We contract
this last one, see for example [10] Thm. 27.1. The selfintersections of the
remaining two P}’s are —2. The final state is pictured in figure 1.3.5.3.

2

selﬁntersectxon

P!,
/ \ multiplicity : 'p

-1
2

Figure 1.3.5.3.



46 BAS EDIXHOVEN

1.3.6. The case j = 0, ordinary (hence p = 1(3)), on the (a,b)-component.

We suppose that a # 0, b # 0. The point x together with the automorphism
[p] corresponds to :

ViFe

[o] l l [o]

VbFu
_—

Hence the action to consider is [p]* : £ — (z,y — Cy. The computation is
the same as in 1.3.4, but now the divisor has only one component, and we
have the three cases a > b, a = b and a < b. We draw three pictures.

po-b_l

8 3 —v=0

s=0 P!, selfinter. : —3

mult. : p_;_l_ p?

s |

coord. s =23, v =
Figure 1.3.6.1. Case a > b > 0.

z
coord. t=¢3, u= 7

mult. : o= p*l= p__;_l -ph-!

t=0 P!, selfinter.: -3
-1
o

coord. s=z%, v = %

Figure 1.3.6.2. Case a = b (if n = 0(2)).
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coord. t =¢%, u= z

<

t=0 ‘ P}, selfinter. : —3

mult. : }:;—1- .p*-!

Figure 1.3.6.3. Case 0 < a < b.

1.4. Graph and local equations of X;(p"N) @z -F,.

1.4.1. By “graph of Xo(p"N) ®z F,” we mean the data :
1. the irreducible components,
2. their multiplicities,
3. where they intersect.
The local equations then give the intersection numbers. We describe step

by step how to get all this. Let k = F,,.

1.4.2. Step 1. Take the disjoint union of n + 1 copies of X(N) ®z k, and
let ® be the morphism :

o I_I Xo(N)®z k— Xo(N)®z k
atb=n
given by :
the identity morphism if a > b,
(absolute Frobenius)®~* ® idy if a < b.
Give the (a, b)-component multiplicity ¢(p™(a:)).

1.4.3. Step 2. At every supersingular point x of Xo(N) ®z k contract
&~ x to one point. The local equation at such a point is :

@ ~u)e-y") J[ @ - =0
a+b=n
a,b>0
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1.4.4. Step 3. Let x € Xo(IN)(k) be a point with Autg(x) = Z/4Z (these are
the points in Xo(/N)(k) corresponding to an elliptic curve with j-invariant
123, together with a cyclic subgroup of order N which is invariant under
the automorphism of order 4). If x is supersingular (this corresponds to
p = —1(4)) then replace the unique point lying over x by figure 1.3.2.3. If
x is ordinary (p = 1(4)) then let {z,|a + b = n} be the set of points lying
x, and replace x4 by figure

1.3.3.1,iffa>b>0,
1.3.3.2,ifa = b,
1.3.33,if0 < a < b.

The multiplicities are left unchanged.

1.4.5. Step 4. Let x € Xo(IN)(k) be a point with Auty(z) = Z/6Z (in
this case j(E) = 0, and the cyclic N-group has to be invariant under the
automorphism of order 6). If x is supersingular (p = —1(3)) then replace
the unique point lying over x by figure

1.3.4.1,if n = 0(2),
1.3.5.3,if n = 1(2).

If x is ordinary (p = 1(3)) then let {x,la + b = n} be the set of points
lying over x, and replace x4, by figure

1.36.1,ifa > b>0,
1.36.2,ifa=b,
1.3.6.3,iff 0 <a < b.

1.5. X,(p?), for example.

1.5.1. The case Xo(pN) is done in [3] VI §6, see also the appendix of [11].
We will apply section 1.4 in the case Xy (p?), that is, we give the results.
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1.5.2. The case p = 1(12). Write p = 12k + 1. The number of supersingular
j—invariantgvis k, and j = 0,123 are both ordinary. Figure 1.5.2.1 gives a
picture of Xo(p?) ®z F,.

1 -1

—

there are
k of these.

j=1728 2| €D | genus=12k2—3k—1.

j=0 '3—__@

Figure 1.5.2.1.

In this picture the numbers in circles denote selfintersections, the other
numbers denote multiplicities. The irreducible components are just pro-
jective lines over F,. From this picture one can compute the genus of
Xo(p?) ®z F,, and hence the genus of Xo(p?) ®z C (cf. [2] X, compare [8]
V, exc. 1.3). It is a nice verification to show that it is indeed 12k? — 3k — 1.

1.5.3. The case p = 5(12). Write p = 12k + 5. See figure 1.5.3.1.

1 p-1 1
there are
k of these.
p-1
j=1728 2 | ©)
<L£D genus = 12k2 + 5k.
ptl
i=0 O

Figure 1.5.3.1.
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1.5.4. The case p = 7(12). Write p = 12k + 7. See figure 1.5.4.1.
1 p-1 1

there are
k of these.

_ IG-D genus = 12k249k+1.

Figure 1.5.4.1.

1.5.5. The case p = 11(12). Write p = 12k + 11. See figure 1.5.5.1.

1 p-1 1

there are
k of these.
3)

. 1
j = 1128 €9 2t
genus = 12k% + 17k + 6.
=0 ) p+1
J 3

Figure 1.5.5.1.

1.6. Global structure of )?B(p"N) Rz F,.

1.6.1. In this section we determine the global structure of the non-reduced
irreducible components in Xo(p"N) ®z F, and M(P, [[o(p")]) ®z F, in
terms of Xo(N) ®z F, and M(P) ®z F,. We will apply the following
theorem.

THEOREM 1.6.1.1. Let X — S be an integral regular two dimensional
scheme flat and proper over the spectrum of a discrete valuation ring. Let
s be the closed point of S, and let X; be the special fibre. Let Y be an
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irreducible component of X, and suppose that Y is smooth over k := k(s),
let N be the multiplicity of Y in X, and let T be the sheaf of ideals of Y
in X. Let Y,, be the n-th infinitesimal neighborhood of Y = Y; in X . Finally
suppose that there is given a projection : ’

Yo Y  idy,
and that -Y.Y > 2.genus(Y) — 2. Then there exists an isomorphism :

Y, —— Specy,(Oy, ®I/I*®... 0 IN-1/IV)
N v
Yo

(this means that Yy _1 + projection is isomorphic to the N — 1-th infinite-
simal neighborhood of the zero section in the normal bundle on Y;).

Proof. — Let Z — Y be the normal bundle of Yy in X :
Z = Specy, (Symm(Z/Z?)) = Specy, (Oy, ®I/T° @ T*/T° ®...).

For N =1 the proof is trivial, hence we assume that N > 1. The projection
Yn-1 — Y gives us a projection Y; — Yj. This results in an isomorphism
of sheaves of rings Oy, = Oy, ® I/Z°. This means that we have a closed

immersion :
a1 —- Z

N v
Yo

‘We have to show that this closed immersion can be lifted to Y_1. In order
to do this, we use obstruction theory as in [7]. §4, i.e. we apply [6] exp.
III Cor. 5.2 + the first alinea following this. Suppose that we have a Y-
morphism g, : Y, — Z lifting ¢;, with 1 < n < N — 1. Note that such a
gn is automatically a closed immersion. We will now show that g, can be
lifted to a Yp-morphism gn4+1 : Yoq1 — Z. Let P(gy,) be the sheaf of sets
on Yy with

P(g,)(U) = {liftings gn+1 of g, over U}

for every open subset U of Y. According to [6] exp. III Cor. 5.2, P(g,) is
a G-torsor, where

G = g;(QIZ/Yo)V ®0Yn In+l /In+2.

We have now to show that P(g,) has a global section, i.e., that P(g,)
is trivial as a G-torsor. The totality of G-torsors (up to isomorphism) is
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parametrized by H'(Yy,G), hence a sufficient condition for the existence
of a lifting g,+1 is that H'(Yy, G) = 0. Therefore we compute G. Note that
since Z"*1 /72 is a Oy-module, G is a Oy-module too. Let go : Yy — Z
be the zero section. Then we have :

G = gg(QIZ/YO)V ®OY In+1/zn+2 — (I/Iz)v R0y (I/I2)®n+1 — (1/12)®n.

Note that G is an invertible Oy-module. The calculation of G gives :
deg(G) = n deg(Z/I?) = n(-Y.Y). We can write X; = NY + R as
divisors on X, with R effective and not containing Y. Then it follows that
0=Y.X; = N(Y.Y)+Y.R. Since Y.R is non-negative, —Y.Y is non-negative
too. We find that deg(G) > —Y.Y > 2.genus(Y') — 2. By Serre duality on
Y this implies that H'(Y,,G) = 0.

1.6.2. It remains to determine the conormal bundles of the irreducible
components of the curves Xo(p"N) ®z F, and M(P,[[o(p")]) ®z Fp,
and to show that the conditions of Thm. 1.6.1.1 are satisfied. Let £ denote
the conormal bundle of a component Y of type (a,b) with a,b > 0. The
intersection of Y with the other components gives us ¢(p™(¢:?)deg(L),
and hence the degree of L itself.

In the rigidified case [9] Thm. 13.4.7 tells us that M(P, (a, b)-cyclic)
is isomorphic to the ¢(p™in(®:b))_th infinitesimal neighborhood of the graph
of Fle=?l (Frobenius iterated |a — b| times) in M(P) xz M(P) xz F,.
This gives us an isomorphism :

la—bj

LlM(’P)@F,,_—‘_’(Q}Vl(‘P)®F,,)

and hence :
la—b]

L—(QL )&P

F(P)QF, (D),

with D a cuspidal divisor. Since we know the degree of £, we know the
degree of D. A modular interpretation of the cusps would be helpful at this
point, but since we do not have one, we proceed in a not so elegant way.

For P representable finite etale Galois over (Ell/Z,) the divisor D has
to be equally distributed over the cusps. Let us compute the degree of £ on
the (a,b)-component Y in this case. Since this degree for (a,b) is the same
as for (b,a), we may suppose that b > a > 0. Let m be the multiplicity of
Y, then we have :

deg(L) = -YY =m ™} (Y.-mY) =m ' (Y.X,-mY) = m~ (Y. ) mcC),
C#Y



MINIMAL RESOLUTION AND STABLE REDUCTION 53

where the sum is over the components C of X, other than Y, and where
the m¢ denote their multiplicities. Hence :

mdeg(L) = Z me(Y.C) = Z My Slgar,
C#Y 0<a'<n
a'#a
where m, denotes the multiplicity of the (a',n — a')-component, where
s is the number of super-singular points on Y, and where I, , is the
local intersection number of the (a,b) and (a',n — a’)-components at a
supersmgular pomt According to [9] Thm. 13.4.7, m, is the minimum of
#(p*) and ¢(p™*). From the local equation for Xo(p"N ) ®z F, at such
a point (see [9] Thm. 13.4.7) it follows that

—2 . ’
p“* if 0<a <e< 3

loor = pn—Qal if a<d < 12—"
1 if §<a.

Evaluating the sum gives :

2s
p—lp

b—a

deg(L) =2m~1spno7! =

We can compute s using the Kodaira-Spencer isomorphism of [9] Thm.
10.13.11 and the Hasse invariant [9] Thm. 12.4.3 :

0L (cusps) ——w®2, () (5.8.)——w®@=1),

M(P)®F, M(P)QF,

From these two formulas we see that :
deg(Q R(P)GF, (cusps)).

It follows that for P representable finite etale Galois over (Ell/Z ) we have
that :

1.6.2.1 L—(QL (cusps))®?" ™"

M(P)®F,
Let us now consider the moduli problem (P,[To(N)]). The morphism
from this moduli problem to P is finite and etale. It follows that the
morphism from M(P, [To(N)]) to M(P) can only be ramified along the
cusps. From [9] Thim. 8.6.8 if follows that locally etale the morphism from
Cusps(’P [To(N))) to Cusps(’P) is of the form

Spec(Z,llq"/*]1) — Spec(Z,[lg"/*])),
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with d and e both prime to p. This implies that the pullback of the
conormal bundle of the (a, b)-component of M(P, [['((p")]) is the conormal
bundle of the (a, b)-component of M(P, [[o(p"N)]), and that the pullback
1 i Ol

of QH(‘P)@F,, (cusps) is Q‘M(P,[I‘O(N)])®F,, (cusps). It follows that we have
the isomorphism 1.6.2.1 for P replaced by (P, [[o(NV)].

It is now obvious that the only non-obvious condition of Thm. 1.6.1.1
(=YY > 2g(Y) — 2) is satisfied in the rigidified case.

1.6.3 Following the construction of E(p"N ) as the quotient of a blow up
of M(P,[[o(p™N)]) we get on the (a,b)-component of Xo(p"N) ®z F, :

~ la—b|
1.6.3.1 L—(Qx,(n)eF, (cusps))®”" (D),

with D a divisor supported on the points in the finite part which have extra
~ automorphisms. In order to compute D, we have to see what happens to £
and Q' when we blow up or take a quotient. Let P be a point on the (a, b)-
component such that its image in )?;)(p"N ) has extra automorphisms. After
d blow ups in P, the conormal bundle of the (a, b)-component is isomorphic
(Zariski locally at P) to (Q_I.M( - N)])®Fp)®p'""" (dP), and the stabilizer
Gp of P acts on the cotangent space at P by pseudo-reflections. Let z be a
local coordinate on the (a, b)-component at P, and let e be the order of Gp.
Then u := 2° is a local coordinate on the quotient of the (a, b)-component,

pla=l . 1 @ple-tl
and (du) , as a section of (QA_A(P,[FO(N)])Qan) (dP), has a zero at

p of order d + (e — 1)pl*=®l. It follows that on the quotient it has a zero of

d+ (e —1)plo~*l
e

order . The results in the various cases are summarized in

the following table, which gives the multiplicity of P in D.

Table 1.6.3.2

j=1728 (p'e~ +1)/2
j= ordinary (p = 1(3)) (2p*b +1)/3
supersingular (p= —-1(3)) n=0(2) (2pl*—t +1)/3

n=1(2) | 2(p*+1)/3

If is now obvious from the isomorphism 1.6.3.1, plus the fact that D in Table
1.6.3.2 is an effective divisor, that the condition “~Y.Y > 2¢(Y) — 2” of
Thm. 1.6.1.1 is satisfied.
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2. THE STABLE REDUCTION OF X,(p?’N) AT p>5

2.1. The result.

2.1.1. THEOREM. — Let P be a representable finite etale moduli
problem over (Ell/W), where W is the ring of Witt vectors over k := F,,.
We suppose that p > 5. Then the curve M(P, [['o(p?)]) over W acquires
stable reduction over W[z]/(z(P°~1/2 — p). The special fibre of the stable
model is as follows :

- \
T supe{singula.r
points
[ ] /

(M(P) @w k)™ \ / M(P)®w k M(P) @w k

M(P,[Ig(p))/ £1)

The horizontal curves are all isomorphic to the smooth model C of
the singular curve given by the equation : yP*! = x(x — 1)P~!. The points
on C over z = 0, x = oo are glued to the outer components. The two points
over x = 1 are glued to the two middle components.

2.1.2. THEOREM. — Let k := F, with p > 5, W := W (k). Let P
be relatively representable finite etale over (Ell/W), e.g. P = [[o(N)] with
(p, N) = 1. Then the curve M(P, [To(p?)]) over W acquires stable reduction
over W(z] /(2 ~1)/2 _p). The special fibre of the stable model is as follows :



56 BAS EDIXHOVEN

supersingular
points

~t 7

(M(P) ®@w k)™ \ / M(P) ®w k M(P) ®@w k

M(P,[Ig(p))/ 1)

The horizontal component over a supersingular point x on M(P) ® k
is isomorphic to the smooth model of the singular curve given by :
yPHl=z(x —1)P71  if Autg(x) = Z/(2)
y P2 = g(z — 1)P1 if Autg(x) =Z/(4)
y PO = gz —1)P71  if Autg(x) = Z/(6).

The points over £ = 0, x = 0o are glued to the outer components. The two
points over x = 1 are glued to the two middle components.

2.1.3. The proof of these theorems is given in sections 2.2, 2.3 and 2.4.
2.2. Formal computations.

2.2.1. For simplicity we work over W := W (k), where k := F,. Let P
denote a representable moduli problem on (Ell/W), which is finite etale
over (Ell/W). Let X, denote M(P, [['o(p?)]). This is a regular W-scheme.
The finite part of its special fibre is described in [9] Thm. 13.4.7. This fibre
is a Cartier divisor on Xj,. To get normal crossings it suffices to blow up
once in each supersingular point. Let X; denote this blow up. The special
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fibre of X; is a Cartier divisor with normal crossings. Its pictures is in
figure 2.2.1.1.

p+1
exceptional /

curves
N

components : (2,0) (1,1) 0,2)

p+1

Figure 2.2.1.1. Picture of X; ® y k. The numbers denote the multiplicities.

2.2.2. The least common multiple of the multiplicities of the components
of X, ®w k is (p? — 1)/2. Let Wy := W[t]/(t®*-D/2 — p), and let t € W;
denote the image of ¢. Define X, := X; ®w Wi, and let Xo — X5 be its
normalization. This sz will be our stable model, and therefore we want
to compute its special fibre. First we do this formally, i.e. we compute the
complete local rings of Xo.

Let x be a closed point of X1 ®w k = X2 ®w, k. Then (5;(1 . is of
the form W {[x,y]]/(z%y® — p), with a,b € {0,1,p -1, p+ 1}, a # 0 and
{a,b} # {1,p — 1}. This gives OX“ = Wz, y))/(z2y® — t#*-D/2), We
must find its normalization, since (by [5] IV, 7.8.2 and 7.8.3 (vii))

X, x X, Spec(@xz,x) = Spec (this normalization).
We treat the different cases separately.

2.2.2.1 The case b=0, a = 1.

The ring in question is regular, hence normal.

2.2.2.2 Thecaseb=0,a=p— 1.

We can write :

-1 _ 4(p*-1)/2 H (z — (tP+D/2),
CEI‘»p—l(Wl)

From this it follows :

Xz xx, Spec(Ox,,) = ]_[ Spec(Wi [[z, y]]/(x — CtPHD/2)),
Ceﬂp—l(Wl)
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In this case the normalization is regular too.

2.2.2.3 The case b=0,a =p+1.
Just as in (2.2.2.2) we get :

Xaxx, Spec(Ox,)= || SpecWille, yll/(z — ¢t®172)).
(Eup+1(Wh)

2.2.2.4 Thecaseb=1,a=p+ 1.

We can split the base change Spec(W;) — Spec(W) up in two. Let
W, := W|z]/(2P*! — p), and let z denote the image of z in W,. First
we compute the normalization of Ws([z,y]]/(zP*'y — 2#*!). To do this,
we blow it up along the ideal (z,z), i.e. we set z := uz. This gives us
Wa[[z,y,u])/(z — uz,y — uPt?), or, equivalently : Wa[[z, y]]/(z — uz). After
the base change Spec(W;) — Spec(W2) we get Wi [[z, u]]/(uz — tP~1/2),
Its singular locus is given by u = £ =t = 0, so it is the closed point. The
exceptional divisor of the minimal resolution is a chain of projective lines.
This implies that W, [[z, u]]/(uz — t(?~1)/2) is normal. We have :

X2 xx, Spec(Ox,.) = Spec(Wi[z, ull/(uz — t®?=/2),
with y = uP*!. In this case the normalization is not regular.

2.2.2.5 Thecasea=p—1,b=p+ 1.

We split the base change Spec(W;) — Spec(W) up in three. Let Wy :=
W(2]/(2% — p), and let 2 denote the image of z in W,. We write zP~1yP+! —
22 = (zPD/2y(p+1)/2 _ 5)(g(p=1)/2y(p+1)/2 4 4) The normalization of
Spec(Ws|[z, y]]/(zP~1yP+! — 22)) is isomorphic to the disjoint union of two
copies of Spec(Ws|[z,y]]/(z(P~1)/2y(P+1)/2 _ 2)) (here one uses that either

p—1 p+l. odd). Let W3 := Wa[s]/(sP*1)/2 — 2), and let s denote

2 %2

the image of s in W3. We blow up W[z, y]]/(z(P~1)/2y(p+1)/2 _ s(p+1)/2))
along (y, s), i.e. we set s = uy. This gives Ws[[z,y,u]]/(s — uy, z(P~1/2 —
y(®*t1/2), We blow it up along (z,u), i.e. we set £ = wvu. This gives
W[y, u, v]]/(s — uy, v®1/2 —u) = Ws[[y, v]]/(s — v®~1)/2y). We blow up
Wi [y, v]]/(#P~1)/2 — v(P=1)/2y) along (t,v), i.e. we set ¢ = uv. This gives
Wi [y, v, w])/(t — wo,uP~D/2 — y) = Wy [[u,v]]/(t — wv), which is regular.
Hence we have :

X2 x x,5pec(Ox, ) = Spec(W[[v, ull/(t—uv)) | | Spec(Wi [[v, u])/ (t—uv)).
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2.2.3. Now look at figure 2.2.1.1, and consider XV2®W1 k — X; ®w k. From
the computations in (2.2.2) it follows that :

1. over each of the outer two vertical components lies one component,
and the map is an isomorphism,

2. over each of the horizontal components lies one component, the map
has degree p + 1 and ramifies in the following way :

> Bt
><)p+1 ><)p+l
p+ll X)?%l—
*— —e °

3. over the (1,1)-component there are one or two components, and the
ramification is as follows :

><) 55 ><) 5
il szt sg 2y

-

It follows that there are two possible pictures :

- A

[

Our task it :
o to determine the horizontal components,

o to decide between the two pictures, and to determine the vertical
component(s).

2.2.4. We will now compute the horizontal components. Let x be a
supersingular point of Xo @w k. We write @Xo,x = W(lz,yll/(fo + pf),
with fo = (27" —y)(z —y)P~Y(z - y?'), and f1 a unit of W([z,y]]. We blow
up 19 Xo iN its maximal ideal. As explained in 1.3.1, an affine open part
of the result is W[[v, zv])[v]/(f), with f(z,v) = f(z,vz) and f = fo +pfi.
Taking the completion of this ring along the exceptional divisors gives
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W)l[z]]/(f). Let Wy := W[z]/(2P*! — p), and let z denote the image
of z in W;. After extension of scalars to W; we have : W [v]{[z]]/(fo+pf1)-
We blow this up along the ideal (z, z), i.e. we write z := uz. We get :

Wi o, ]/ (@ (u2)? =1 = v)(1 = 0)P~1 (1 — 07 (uz)?" 1) + f),

where the completion is with respect to the principle ideal (uz), and

f1 = filv,uz) = fi(uz,vuz). The curve we are looking for is described
by the equation z = 0. Substituting z = 0 in the equation above yields
wPT(=v)(1 — v)P~! + £1(0,0) = 0. It follows that (in new coordinates) a
(singular) model of our smooth curve is given by the equation :

yPt =gz — 1P

2.3. Determination of the vertical components.

2.3.1. In this section we determine the “vertical components(s)” that arise
in the computations of 2.2.2. These vertical components are evolution
products of the (1,1)-component of M(P, [[o(p?)]) ®w k. They already
live in the normalization of M(P, [[o(p?)]) ®w W1, where W; is ramified
over W of degree p — 1. Since they are stable, they will not evolve any
further, whatever base changes and normalizations we let them undergo.
We will determine them in two different ways.

2.3.2. The first method. Let W := W((,2], W is ramified over W of degree
p(p—1). A remarked in 2.3.1, we must determine the irreducible components
of the special fibre of the normalization of M(P, [[¢(p?)]) ®w W;. This
normalization is :

M(P,[C(p*)?"))/G,  with G = {(3 :)} C SLy(Z/p*Z).
We see this as follows : the normalization of M(P,[[(p?)]) ®w W, is

Heew, ) M(P, [ (p?)®]), now take quotients.
P

Note that the order of G is divisible by p. Therefore the special fibre
of the quotient may not be the same as the quotient of the special fibre.
However the morphism :

2321 (M(P,[L(*)*") ®w, k)/G — (M(P,[L(*)*"))/G) ®w, k
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is surjective and radicial ([9] A7.2.1). The M(P) ®w k-scheme
M(P,[T(p?)°®"]) ®w, k is described in [9] Thm. 13.7.6. It is the disjoint
union, with crossings at the supersingular points, of the M(P) ®w k-
schemes M(P, [ExIg(p?,2)]), indexed by P'(Z/(p?)). The group G acts
on P(Z/(p?)) by :

(z:9) ((t) tfl) = (tz : sz +t71y).

This action has 4 orbits. They are generated by (0:1), (1:0), (p:1) and
(dp : 1), with d a non-square in Fp. The first two orbits correspond to the
(2,0) and (0,2)-components of [['o(p?)] ® k. The other two give the curve(s)
we are looking for. At this moment we see that the (1,1)-component gets
replaced by two components. Hence the first of the two pictures in 2.2.3 is
the correct one.

The stabilizer group of (p: 1) and (dp: 1) is {((t) tfl> €EG; t? = 1},

01
trivially. We are left with the group (+1 + pZ)/(1 + p?Z) C (Z/p*Z)*.
There is an exact sequence :

This group acts on M(P, [ExIg(p?,2)]). The subgroup {(1 *)} acts

{1} = Q1 +92)/1 +P°Z) - (X1 +9Z)/(1 + pZ) — {£1} - {1}.

We want to determine the quotient of the M(P) ®w k-scheme
M(P, [ExIg(p?,2)]) by the kernel. Consider the following diagram from
[9] Thm. 12.10.6. :

M((Pow k) ), Igr?)]) — M(P,[Exlg(p?,2)))

l pr N\ pre l pr

MPowke™) L MPewk)
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By [9] Thm. 12.6.1(3) we get an isomorphism :

M(P ow k)@, [Ig(p)) — M(P, [Exlg(®?,2)])/((1 +pZ)/(1 + p*Z))
N\ P2  or
M('P ®w k)

Taking the quotient by {+1} gives :

M(P ow k)™, lg®))/{£1}) — M(P, [ExIg(p?,2)))/((£1 + pZ)/(1 + p*Z))
N\ pr2 o
M(P w k)

This is a component of the source of the morphism 2.3.2.1. Both
source and target of this M(P) ®w k-morphism are reduced. A degree
consideration over M(P) ®w k then implies that the component in the
target is M(P, [Ig(p)]/{£1}). We have proved :

THEOREM 2.3.2.2. — In the stable reduction of M(P,[[o(p?)]) the
(1,1)-component gives two components, each M(P)®w k-isomorphic to

M(P, [Ig(p)]/{£1}).

2.3.3. The second method. This method is a global version of the formal
computations of (2.2). Consider M(P,[[o(p?)]). We blow it up in the
supersingular points. Let X be the formal completion of this blow up along
the (1,1)-component. We claim the existence of a global function f on X
such that f2 = p- unit. The divisor of such a f must be (cf. 2.2.1.1) :

(p-1)/2

(p+1)/2

(r+1)/2
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This can be checked in the special fibre itself. Let Z be the ideal of the
reduced (1,1)-component of X, and let X,, be the subscheme of X defined
by Z**!. Then Theorem 1.6.1.1 gives :

Xp—3——Specy, (Ox, ® L& ... LP2),

with £ := Z/Z? the conormal bundle of Xj in X. The isomorphism 1.6.2.1
plus~ the Kodaira-Spencer isomorphism and the Hasse invariant give :
L—w®t1 Let A € w®~1(X,) be the Hasse invariant. Its divisor is
exactly the supersingular locus. Let

A1)z = AB(PHD/2 ¢ B IN(P-1)/2(x ) = £LBFP-1/2(X,).

Then A(p,1)/2 is a global function on X, » which has the right divisor.
We will now try to lift this function to one on X which still has the right
divisor.

Let J be the ideal of the reduced horizontal components. Let n >
p—1. We suppose that we have a lifting f,,—1 to X,,—,. We want to lift it to
a fn, on X,, with f, a global section of (Z"+! 4 J(P+1)/2)/7n+1  Consider
the diagram :

p+1 p+1

(In+1 +J 2 )/In+l . (In+j 2 )/In
I
ptl pHl ptl pl Pl pil
Jr gttt s gyttt g gt
Il

E
(7 * -IMx

Since H!(Xy, J(Pt1)/217|x,) = {0} for n > (p—1)/2, the required f,
exists. This gives us a f on X with f2 = p- unit, and f|x,_, = A(p+1)/2- The
two vertical components of the stable reduction are obtained by extracting
the ((p — 1)/2)-th root of f. This amounts to extracting the ((p — 1)/2)-
root of the Hasse invariant. By [9] Thm. 12.8.2 we see that the vertical
components are M(P, [Ig(p)]/{£1}).

2.4. The coarse case.

Let P be relatively representable finite etale over (Ell/W). Let D be
representable finite etale Galois (with group G) over (Ell/W). Then by
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construction :

M(P) [FO(p2)]) = _M(D, P, [FO(pz)])/G

Let X;/W; be the stable model of M(D, P, [[c(p?)]) as constructed in
2.2.2. From the construction it follows that G operates on X3 /W;. There-
fore X, /G is a model of M(P, [['o(p?)]) ®w W1. The only singularities of its
special fibre are ordinary double points. We will call this model the stable
model of M(P, [['o(p?)]) over W;. Strictly spoken this is not always true,
for the genus can be less than two, and also the condition on the rational
components need not be satisfied. Following the computations of 2.2.4 and
2.3, the statements in Thm. 2.1.2 about the components of (X2/G) ®w, k
are easily checked.

2.5. Examples.

2.5.1. We apply Thm. 2.1.2 to Xo(p?). We draw pictures in the various
cases for p mod 12. The numbers denote the genera of the components.

3k2-3k+1
0 VRN 0

6k

/ 6k
\ 6k

total genus = 12k% — 3k — 1

Figure 2.5.1.1. p = 12k + 1.

3k~ k
0 PN 0
‘ 6k + 2
#:k
6k + 2
i=0 2%

total genus = 12k2 + 5k
Figure 2.5.1.2. p = 12k + 5.
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3k2
0 N\ 0

6k+3
#=k

6k +3

j=1728 3k+1

total genus = 12k% + 9k + 1
Figure 2.5.1.3. p =12k + 7.
3k2 + 2k
0  \ 0

#=k— 6k +5

j=1728 3k +2

i=0 2k +1

total genus = 12k2 + 17k + 6
Figure 2.5.1.4. p = 12k + 11.

2.5.2. The case X(7?). We have the picture :

0 0 00

The elliptic curve over k is the smooth model of : y?2 = z(z — 1)2. The
automorphism of order 4 : (z,y) — (z,2y) fixes the regular point (0,0),

hence the elliptic curve has j = 23® = —1(7). From Table 1 of [1]
we extract : Xo(7?) over Q is the elliptic curve given by the equation :
v  +zy = 2° — 22 — 22 — 1. Its j-invariants is —335%, and indeed

—3353 = —1(7).
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2.5.3. The case X(35%). Let p = 5. We have the picture :

0 0 0 O
2

0

The genus 2 curve is the smooth model C of : 4 = z(z—1)*. Another model
of C is : y? = 2% — 1. In these coordinates a basis for the global differential
formsis : wy := (dz)/y, we := z(dx)/y. The involution W : (z,y) — (—z,y)
acts by : W*w; = —w;, W*ws = w,. The quotient C/W is the elliptic
curve : v2 = u® — 1, it has j = 0. It follows that up to isogeny the jacobian
of C is the product of two elliptic curves, one of which is isogenous to the
curve with j = 0. Since j = 0 is the only supersingular j-invariant mod 5,
it has j = 0. The automorphism (z,y) — (z71,iyz~3) of C interchanges
the two eigenspaces of W acting on the differentials. It follows that both
elliptic curves have j = 0. Table 1 of [1] gives us two strong Weil curves
with conductor 3.52 having potentially good reduction at 5 :

BA: YP+y=2-22-8-7 j=-223"152=0(5)
5B: ¥’ +y=x3+22+2x+4 j=223355=0(5)
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