Introduction

- How much data do we need to describe a location?
- Context: 3D scene reconstructions by Structure from Motion
- Goal: Compute compact representations of SfM reconstructions for location recognition
- Benefits: Reduce the memory and computational cost of a location recognition system
- \blacktriangleright Take-home message: We can summarize an SfM model with < 2% of points, while keeping reasonable recognition performance, aided by selecting distinctive points.

of points: 1,886,884 Registration performance: 99.50%

of points: 31,752 Registration performance: 93.38%

Input from Structure from Motion

- An image set \mathcal{I} of size *m* and 3D point set \mathcal{P} of size *n* ($n \gg m$)
- Visibility matrix *M* of size $m \times n$: $M_{ij} = \langle M_{ij} \rangle$

(1, point P_j is visible in image I_i 0, otherwise

A descriptor mean for each 3D point

Objectives

- Goal: Compute a small subset \mathcal{P}' of \mathcal{P} that captures as much data as possible
- Previous Approach [1]: K-cover algorithm greedy algorithm that maximizes coverage
- Our Approach: an point selection algorithm that considers
- ▶ 1. Coverage: any new image has a high probability of seeing a large number of points in \mathcal{P}'
- **2. distinctiveness:** the descriptors in \mathcal{P}' are sufficiently distinct from one another

Why Distinctiveness?

- Large portion of descriptors are confusing!
- Select points that both ensure coverage and distinct reduces errors in matching process

Department of Computer Science, Cornell University, Ithaca, NY, USA

Minimal Scene Descriptions from Structure from Motion Models

Song Cao and Noah Snavely Department of Computer Science, Cornell University

Maximizing Expected Coverage

- ► Gain of adding point P_i : $G(j, \mathcal{P}') = S(\mathcal{P}' \cup \{P_i\}) S(\mathcal{P}')$
- point to \mathcal{P}' w.r.t. I_i is zero

Selecting an Initial Set of Distinctive Points

- I. Gain of adding point P_i by K-cover (KC) algorithm [1] $G_{KC}(j, \mathcal{P}') = \sum M_{ij}$
- > 2. Weight factor for encouraging **distinctiveness** $(d_{\min}(j))$ is the nearest distance from P_i to current selected \mathcal{P}') $W_d(d_{\min}(j)) =$
- 3. Greedily select the point with highest weighted gain $G_{KCD}(j, \mathcal{P}') = W_d(d_{\min}(j))G_{KC}(j, \mathcal{P}')$
- ► 4. Repeat Step 3 until all images are covered by at least K points

Probabilistic *K*-cover Algorithm

▶ 1. Assuming constant p for each p_{ii} , the number of points in the chosen subset \mathcal{P}' image I_i sees follows binomial distribution

$$Pr(v_{i,\mathcal{P}'} = K') = {\binom{C_i}{K'}}p^{K'}(1 - K')$$

> 2. Gain of adding point P_i (e.g. dotted red v.s. red on the right)

$$\mathsf{G}_{\mathsf{KCP}}(j,\mathcal{P}') = \sum_{i\in\mathcal{I}\setminus\mathcal{C}} p_{ij} \operatorname{\mathsf{Pr}}(v_{i,\mathcal{P}})$$

- ▶ 3. Greedily choose the point P_{i^*} that maximizes $G_{KCP}(j, \mathcal{P}')$ and update $Pr(v_{i, \mathcal{P}'} = K')$
- 4. Repeat from Step 3 until a specified percentage of images are covered.

• Treat visibility as probabilistic event: P_i is visible in each database image I_i with probability p_{ii}

• Goal: to find a subset \mathcal{P}' that maximizes the probabilities of each image seeing $\geq K$ points in \mathcal{P}'

$$\mathsf{S}(\mathcal{P}') = \sum_{i \in \mathcal{I}} \mathsf{Pr}(v_{i,\mathcal{P}'} \geq K)$$

• Bootstrapping problem: If image I_i sees fewer than K - 1 points in \mathcal{P}' , then the gain for adding any new

Initial point set: We first need to cover each image with K points to yield a non-zero gain

and 35 points respectively

Datasets

Dataset	# DB Imgs	# 3D Points	# Queries
Dubrovnik [1]	6,044	1,886,884	800
Aachen [2]	4,479	1,980,036	369
Landmarks [3]	205,813	38,190,865	10,000

Registration Performance

- Methods: the K-cover algorithm (KC)[1], our initial point set selection algorithm only (KCD), and our full approach including the probabilistic *K*-cover algorithm (KCP)
- Compare the performances of scene descriptions with the same number of points

Dubrovnik Dataset [1]						
# query images: 800, registered by full set: 99.50%						
K	12 (9)	20 (12)	30 (20)	50 (35)		
# points	5,788	10,349	17,241	31,752		
% points	0.31%	0.55%	0.91%	1.68%		
KC	58.00%	77.06%	86.00%	91.81%		
KCD	62.88%	78.88%	87.38%	92.50%		
KCP	64.25%	79.13%	87.25%	93.38%		
Aachen Dataset [2]						
# query images: 369, registered by full set: 88.08%						
K	30 (20)	50 (32)	80 (52)	100 (65)		
# points	13,299	23,675	40,377	52,161		
% points	0.67%	1.20%	2.04%	2.63%		
KC	50.95%	62.06%	66.40%	71.27%		
KCD	54.20%	63.14%	69.38%	72.36%		
KCP	56.37%	64.23%	70.19%	73.98%		
Landmarks Dataset [3]						
# query images: 10,000, registered by full set: 94.33%						
K	6 (4)	9 (6)	12 (9)	20 (12)		
# points	140,306	222,161	311,035	571,864		
% points	0.37%	0.58%	0.81%	1.50%		
KC	44.84%	59.86%	69.56%	81.06%		
KCD	45.45%	61.26%	70.59%	81.04%		
KCP	45.90%	61.50%	71.87%	81.45%		

Reference

[1] Y. Li, N. Snavely, and D. Huttenlocher. Location recognition using prioritized feature matching. In ECCV, 2010.

[2] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image retrieval for image-based localization revisited. In BMVC, 2012.

[3] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide pose estimation using 3d point clouds. In ECCV, 2012