Minimal Scene Descriptions from Structure from Motion Models

Song Cao and Noah Snavely
Department of Computer Science, Cornell University

Introduction Maximizing Expected Coverage
~ How much data do we need to describe a location? - Treat visibility as probabilistic event: P; is visible in each database image /; with probability p;
» Context: 3D scene reconstructions by Structure from Motion . Goal: to find a subset P’ that maximizes the probabilities of each image seeing > K points in P’
» Goal: Compute compact representations of SfM reconstructions for location recognition S(P') = Z Pr(vip > K)
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» Benefits: Reduce the memory and computational cost of a location recognition system

» lake-home message: We can summarize an SfM model with < 2% of points, while > Gainofadding point 72 GU, P') = S(PTU{Fj}) — S(P)
keeping reasonable recognition performance, aided by selecting distinctive points. » Bootstrapping problem: If image /; sees fewer than K — 1 points in P/, then the gain for adding any new
Ty e e : point to P’ w.r.t. I; is zero

» Initial point set: We first need to cover each image with K points to yield a non-zero gain

Dataset # DB Imgs # 3D Points  # Queries
Dubrovnik [1] 6,044 1,886,884 800
Aachen [2] 4,479 1,980,036 369
Landmarks [3] 205,813 38,190,865 10,000

Registration Performance

» Methods: the K-cover algorithm (KC)[1], our initial point
set selection algorithm only (KCD), and our full approach
including the probabilistic K-cover algorithm (KCP)

» Compare the performances of scene descriptions with the
same number of points
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Selecting an Initial Set of Distinctive Points

o AR T S R W | | | | T si80 Dubrovnik Dataset [1]
T b T e woa » 1. Gain of adding point P; by K-cover (KC) algorithm [1] T R o ~ # query images: 800, registered by full set: 99.50%
S T o v Groli, P) = ) M; N K 12(9)  20(12)  30(20) 50 (35)
Original Points Selected Points leT\C o - - o o # points 5,788 10,349 17,241 31,752
#ofpoints: 1886884 | #ofpointsidt7s2 . 2. Weight factor for encouraging distinctiveness (aiin(j) is E I B o o
Registration performance: 99.50% Registration performance: 93.38% the nearest distance from P/ to current selected 7;/) 0.12 D?-Stmstm:m - A\ - r : (CD 62.880/0 78.880/0 87-38%(: 92-500/0
[ dini)/d. dhn) < d e M ' o5%  79.13% B7.05%  93.38%
Input from Structure from Motion Wa(Cmin(/)) = { mmgj)/ d:::gg S 4 d;1ao( Y 1 (CF | 64.25% 79.19% 87.25% 93.38%
| S o | I ' Aachen Dataset [2]
» An image set 7 of size m and 3D point set P of size n (n > m) » 3. Greedily select the point with highest weighted gain f‘ % # query images: 369, registered by full set: 88.08%
Visibil M of & . J 1, point P; is visible in image Gkeolf; P') = Wa(Amin(f)) Gke(/, P') Lot i K 30(20) 50(32) 80(32) 100 (65)
> Visipility matrix M ot size m x n: Mj =3 5" 5tharwise . -/ #points 13,299 23,675 40,377 52,161
| | ’ » 4. Repeat Step 3 until all images are covered by at least K S s O\ : % points  0.67% 1 20% 5 04, 5 639
- A descriptor mean for each 3D point points i KC  50.95% 62.06% 66.40%  71.27%
e KCD 54.20% 63.14% 69.38% 72.36%
Objectives KCP  56.37% 64.23% 70.19% 73.98%

Probabilistic K-cover Algorithm

» Goal: Compute a small subset P’ of P that captures as much data as possible | Landmarks Dataset [3]
| | | o . 1. Assuming constant p for each p;, the number # query images: 10,000, registered by full set: 94.33%
» Previous Approach [1]: K-cover algorithm - greedy algorithm that maximizes coverage of points in the chosen subset P’ image ; sees Probabilty that # ; K t 1 fO(gée; 2292(?231 31? (093)5 52701 (;623)4
» Our Approach: an point selection algorithm that considers follows binomial distribution o POINtS = = = ,
Jprosen Gl polt ° ! . - UGN o 5 o %points  0.37%  0.58%  0.81%  1.50%
» 1. coverage: any new image has a high probability of seeing a large number of points in P Pr(vip = K') = (K/)p (1 — p)~ é o —o— 0998 KC 44 84% 5986% 6956%  81.06%
» 2. distinctiveness: the descriptors in P’ are sufficiently distinct from one another ﬁ /H\\ KCD 45 459, 61.26% 70.59%, 81.04%
» 2. Gain of adding point P; (e.g. dotted red v.s. red 5 o / \ KCP 4590% 61.50°% 71.87% 81.45%
Why Distinctiveness? on the right) g \
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ensure coverage and 4. Repeat from Step 3 until a specified . Distributions of three images covered by 15, 20 g
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