Minimal Scene Descriptions from Structure from Motion Models

Song Cao and Noah Snavely

Department of Computer Science, Cornell University

Introduction

- How much data do we need to describe a location?

- Context: 3D scene reconstructions by Structure from Motion
- Goal: Compute compact representations of SfM reconstructions for location recognition - Benefits: Reduce the memory and computational cost of a location recognition system - Take-home message: We can summarize an SfM model with $<2 \%$ of points, while keeping reasonable recognition performance, aided by selecting distinctive points.

input from Structure from Motion
- An image set \mathcal{I} of size m and 3D point set \mathcal{P} of size $n(n \gg m)$
- Visibility matrix M of size $m \times n: M_{i j}=\left\{\begin{array}{l}1, \text { point } P_{j} \text { is visible in image } I_{i} \\ 0, \text { otherwise }\end{array}\right.$
- A descriptor mean for each 3D point

Obiectives

- Goal: Compute a small subset \mathcal{P}^{\prime} of \mathcal{P} that captures as much data as possible
- Previous Approach [1]: K-cover algorithm - greedy algorithm that maximizes coverage - Our Approach: an point selection algorithm that considers
- 1. coverage: any new image has a high probability of seeing a large number of points in \mathcal{P}

2. distinctiveness: the descriptors in \mathcal{P}^{\prime} are sufficiently distinct from one another

Why Distinctiveness?

Large portion of
descriptors are
confusing!

- Select points that both
ensure coverage and
distinct reduces errors
in matching process

Maximizing Expected Coverage

- Treat visibility as probabilistic event: P_{j} is visible in each database image l_{i} with probability $p_{i j}$
- Goal: to find a subset \mathcal{P}^{\prime} that maximizes the probabilities of each image seeing $\geq K$ points in \mathcal{P}^{\prime}

$$
S\left(\mathcal{P}^{\prime}\right)=\sum_{i \in \mathcal{I}} \operatorname{Pr}\left(v_{i, \mathcal{P}^{\prime}} \geq K\right)
$$

- Gain of adding point $P_{j}: G\left(j, \mathcal{P}^{\prime}\right)=S\left(\mathcal{P}^{\prime} \cup\left\{P_{j}\right\}\right)-S\left(\mathcal{P}^{\prime}\right)$
- Bootstrapping problem: If image I_{i} sees fewer than $K-1$ points in \mathcal{P}^{\prime}, then the gain for adding any new point to \mathcal{P}^{\prime} w.r.t. \boldsymbol{l}_{i} is zero
- Initial point set: We first need to cover each image with K points to yield a non-zero gain

Selecting an Initial Set of Distinctive Points

- 1. Gain of adding point P_{j} by K-cover (KC) algorithm [1]

$$
G_{K c}\left(j, \mathcal{P}^{\prime}\right)=\sum_{l_{i} \in \mathcal{I} \backslash C} M_{i j}
$$

2. Weight factor for encouraging distinctiveness $\left(d_{\min }(j)\right.$ is the nearest distance from P_{j} to current selected \mathcal{P}^{\prime})

$$
w_{d}\left(d_{\min }(j)\right)=\left\{\begin{array}{cc}
d_{\min }(j) / d, & d_{\min }(j)<d \\
1, & d_{\min }(j) \geq d
\end{array}\right.
$$

- 3. Greedily select the point with highest weighted gain

$$
G_{K C D}\left(j, \mathcal{P}^{\prime}\right)=w_{d}\left(d_{\min }(j)\right) G_{K C}\left(j, \mathcal{P}^{\prime}\right)
$$

4. Repeat Step 3 until all images are covered by at least K points

Probabilistic K-cover Algorithm

- 1. Assuming constant p for each $p_{i j}$, the number - . Assuming constant p for each $p_{i j}$, the number
of points in the chosen subset \mathcal{P}^{\prime} image I_{i} sees of points in the chosen subs
follows binomial distribution

$$
\operatorname{Pr}\left(v_{i, \mathcal{P}^{\prime}}=K^{\prime}\right)=\binom{C_{i}}{K^{\prime}} p^{K^{\prime}}(1-p)^{C_{i}-K^{\prime}}
$$

- 2. Gain of adding point P_{j} (e.g. dotted red v.s. red on the right)

$$
G_{K C P}\left(j, \mathcal{P}^{\prime}\right)=\sum_{i \in \mathcal{I} \backslash C} p_{i j} \operatorname{Pr}\left(v_{i, \mathcal{P}^{\prime}}=K-1\right)
$$

- 3. Greedily choose the point $P_{j^{*}}$ that maximizes $G_{K C P}\left(j, \mathcal{P}^{\prime}\right)$ and update $\operatorname{Pr}\left(v_{i, \mathcal{P}^{\prime}}=K^{\prime}\right)$

4. Repeat from Step 3 until a specified percentage of images are covered.

Datasets

Dataset	\# DB Imgs	\# 3D Points	\# Queries
Dubrovnik [1]	6,044	$1,886,884$	800
Aachen [2]	4,479	$1,980,036$	369
Landmarks [3]	205,813	$38,190,865$	10,000

Registration Performance

- Methods: the K-cover algorithm (KC)[1], our initial point set selection algorithm only (KCD), and our full approach including the probabilistic K-cover algorithm (KCP)
- Compare the performances of scene descriptions with the same number of points

Dubrovnik Dataset [1]				
\# query images: 800, registered by full set: 99.50%				
K	$12(9)$	$20(12)$	$30(20)$	$50(35)$
\# points	5,788	10,349	17,241	31,752
\% points	0.31%	0.55%	0.91%	1.68%
KC	58.00%	77.06%	86.00%	91.81%
KCD	62.88%	78.88%	87.38%	92.50%
KCP	64.25%	79.13%	87.25%	93.38%
Aachen Dataset [2]				
\# query images: 369, registered by full set: 88.08%				
K	$30(20)$	$50(32)$	$80(52)$	$100(65)$
\# points	13,299	23,675	40,377	52,161
\% points	0.67%	1.20%	2.04%	2.63%
KC	50.95%	62.06%	66.40%	71.27%
KCD	54.20%	63.14%	69.38%	72.36%
KCP	56.37%	64.23%	70.19%	73.98%

Landmarks Dataset [3]
\# query images: 10,000 , registered by full set: 94.33% \# query images: 10,000 , registered by full set: 94.33% $\begin{array}{ccccc}\text { K } & 6(4) & 9(6) & 12(9) & 20(12) \\ \text { \# points } & 140,306 & 222,161 & 311,035 & 571,864\end{array}$ $\begin{array}{ccccc}\text { \# points } & 140,306 & 222,161 & 311,035 & 571,864 \\ \% \text { points } & 0.37 \% & 0.58 \% & 0.81 \% & 1.50 \%\end{array}$

\% points	0.37%	0.58%	0.81%	1.50%
KC	44.84%	59.86%	69.56%	81.06%
KCD	45.45%	61.26%	70.59%	81.04%

KCD	45.45%	61.26%	70.59%	81.04%
KCP	$\mathbf{4 5 . 9 0 \%}$	$\mathbf{6 1 . 5 0 \%}$	$\mathbf{7 1 . 8 7 \%}$	81.45%

Reference

1] Y. Li, N. Snavely, and D. Huttenlocher. Location recognition using prioritized feature matching. In ECCV, 2010.
${ }^{2}$ T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image retrieval for image-based localization revisited. In BMVC, 2012.
[3] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide pose estimation using 3d point clouds. In ECCV, 2012

