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Abstract

Second order saturated (SOS) designs allow the estimation of a saturated model

consisting of main effects and two-factor interactions. Apart from being useful in

their own right, SOS designs have recently found applications in the construction

of space-filling designs. The paper introduces the notion of minimal SOS designs to

facilitate the study of SOS designs, and presents some characterizing and construc-

tion results on minimal SOS designs. Both regular and nonregular minimal SOS

designs are considered, and their applications to the construction of space-filling

designs are discussed.

Key words and phrases: clear effect; maximal design; nonregular design; space-filling

design; strong orthogonal array.
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1. Introduction

Second order saturated (SOS) designs allow the estimation of saturated models con-

sisting of main effects and two-factor interactions. They make the most efficient use of

the degrees of freedom by allocating all of them to the estimation of the factorial effects

of the first two orders, which are the most important orders according to effect hierarchy.

SOS designs were first introduced in Block and Mee (2003), and were also discussed in

Chen and Cheng (2004) under the notion of estimation index. Some constructions of

nonregular SOS designs were explored by Cheng, Mee and Yee (2008). For more details

about SOS designs, we refer to Mee (2009, Section 7.2) and Cheng (2014, Section 11.2).

SOS designs are important in their own right, and become more so due to their utility

in designing computer experiments. It is widely accepted that space-filling designs are

appropriate choices for computer experiments (Santner, Williams and Notz 2003). Among

the available methods for constructing space-filling designs, the method based on orthogo-

nal arrays is very attractive as it provides designs that enjoy some guaranteed space-filling

properties in low dimensional projections. This line of research started with Latin hy-

percubes, which are orthogonal arrays of strength one, in McKay, Beckman and Conover

(1979), and continued with the work of Owen (1992) and Tang (1993). A significant

enhancement to the idea is the recent introduction of strong orthogonal arrays (SOAs) in

He and Tang (2013), Liu and Liu (2015), and He, Cheng and Tang (2018). SOAs can be

used to construct designs that have better space-filling properties than those constructed

by using ordinary orthogonal arrays. In the process of constructing SOAs using regular

2m−p designs, He, Cheng and Tang (2018) found that all such SOAs can be constructed

from SOS designs.

This paper aims at conducting a comprehensive study on the applications of regular

and nonregular SOS designs to the construction of SOAs, which is done through the in-
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troduction of minimal SOS designs. The notion of minimal SOS designs is useful because,

as will be seen later, all SOS designs can be generated from minimal ones. Furthermore,

to produce SOAs that can accommodate more factors, one needs SOS designs with fewer

factors. Section 2 reviews some material on SOAs of strength 2+ from He, Cheng and

Tang (2018), in particular, how SOS designs can be used to construct SOAs. Section 3

first presents a characterizing result for regular minimal SOS designs using clear effects,

and then shows that the four constructions in He, Cheng and Tang (2018) all produce

minimal SOS designs. This section goes on to import some results from projective geom-

etry and coding theory, thanks to the equivalence of regular SOS designs to 1-saturating

sets and duals of linear codes with covering radius 2. These results allow us to improve

the bounds on the maximum number of factors in an SOA of strength 2+, obtained in

He, Cheng and Tang (2018). In Section 4, we turn our attention to nonregular SOS de-

signs. Extensions of the four constructions of regular SOS designs in He, Cheng and Tang

(2018) to nonregular designs are first presented, and it is shown that they all give minimal

SOS designs. We then discuss the use of these nonregular minimal SOS designs for con-

structing SOAs of strength 2+. In addition to more flexible run sizes, SOAs constructed

from nonregular SOS designs have other advantages including possibly better three- and

higher-dimensional projections. Furthermore, nonregular SOS designs provide more op-

tions for constructing SOAs since often there are many more nonisomorphic nonregular

designs than regular ones. Section 5 concludes the paper with a discussion.

2. Second Order Saturated Designs and Strong Orthogonal Ar-

rays

One major focus of this paper is the two-level SOS designs. The following definition

applies to both regular or nonregular designs.

Definition 1. A two-level fractional factorial design with n runs and m factors is second
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order saturated (SOS) if it can be used to estimate all of the m main effects together with

at least one set of n − 1 −m two-factor interactions (assuming that all the other effects

are negligible).

Regular SOS designs were first considered by Block and Mee (2003). Under such

a design one can entertain a model with the largest number of two-factor interactions.

Independently, Chen and Cheng (2004) defined a notion of estimation index. It is well

known that each regular design is equivalent to a linear code; then the estimation index

is the same as the covering radius of the dual code, and a design is SOS if and only if the

estimation index is equal to 2.

Given a design of resolution IV, if one factor is added, the resulting design may have

resolution III. A resolution IV design is called maximal if no factor can be added to main-

tain resolution IV. This concept is useful since all resolution IV designs can be obtained as

projections of maximal resolution IV designs. It follows from a geometric result in Bruen,

Haddad and Wehlau (1998) that two-level designs of resolution IV are maximal if and

only if they have estimation index 2. Therefore a resolution IV design is maximal if and

only if it is SOS. An important byproduct of this result is that every two-level resolution

IV design is a projection of a certain SOS design of resolution IV, a fact also observed

by Block and Mee (2003). Thus, in addition to the capability of entertaining the largest

number of two-factor interactions, another important practical value of SOS designs of

resolution IV is that they can be used to generate all resolution IV designs of the same

run size via projections. For example, there are three 32-run two-level SOS designs of

resolution IV: a 216−11, a 210−5, and a 29−4. All the other 32-run resolution IV designs

can be obtained by deleting factors from one of these three designs.

Unexpectedly and interestingly, SOS designs have a third application: they can be

used to construct strong orthogonal arrays. We use OA(n,m, s1 × · · · × sm, t) to denote
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an orthogonal array of strength t in n runs for m factors with its jth factor having sj

levels, 0, 1, . . . , sj − 1. If s1 = · · · = sm = s, the array is denoted as OA(n,m, s, t) for

simplicity. Hedayat, Sloane and Stufken (1999) and Dey and Mukerjee (1999) are two

good general references for orthogonal arrays.

An n×m matrix with entries from {0, 1, . . . , s2−1} is called an SOA of strength 2+ for

n runs and m factors at s2 levels, if any subarray of two columns can be collapsed into an

OA(n, 2, s2 × s, 2) and an OA(n, 2, s× s2, 2). We denote this array by SOA(n,m, s2, 2+).

Here collapsing s2 levels to s levels is according to [a/s] for a = 0, 1, . . . , s2 − 1 where [x]

denotes the greatest integer not exceeding x. While an s-level orthogonal array of strength

2 can be used to construct a Latin hypercube design which contains an equal number of

points in each cell of s × s grids in all two-dimensional projections, a Latin hypercube

design constructed from an SOA(n,m, s2, 2+) has the better space filling property that

it contains the same number points in each cell of finer s × s2 and s2 × s grids in all

two-dimensional projections.

Example 1. Displayed below are an SOA(16, 10, 22, 2+) (design on the left) and a Latin

hypercube design constructed from it:






























































































2 2 2 2 2 2 0 0 0 0

2 2 0 2 0 0 1 2 2 2

2 0 2 0 2 1 2 1 2 2

2 0 0 0 0 3 3 3 0 0

0 2 2 1 1 2 2 2 1 2

0 2 0 1 3 0 3 0 3 0
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1 3 1 0 2 1 0 3 0 3

1 3 3 0 0 3 1 1 2 1
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8 9 10 11 8 10 0 2 3 3

10 10 1 10 1 3 7 8 9 10

9 3 11 3 11 7 10 6 11 9

11 0 0 1 3 12 14 15 2 2

2 8 8 5 4 11 8 10 6 11

0 11 2 6 13 2 15 0 15 0

1 2 9 12 5 4 2 14 12 1

3 1 3 15 15 14 6 7 7 8

7 7 4 8 10 9 11 9 10 7

5 5 14 9 0 0 12 3 1 12

6 15 6 2 9 5 1 12 0 13

4 13 13 0 2 15 4 4 8 4

13 4 5 7 7 8 3 1 13 14

12 6 15 4 14 1 5 11 5 6

14 12 7 13 6 6 9 5 4 5

15 14 12 14 12 13 13 13 14 15































































































.

The SOA has the property that when the entries 0, 1, 2, and 3 in any column are replaced

5

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing)



by 0, 0, 1, and 1 respectively, then in the 16 × 2 matrix formed by the resulting column

and any other original column, all the eight ordered pairs of {0, 1} and {0, 1, 2, 3} appear

equally often as rows. The Latin hypercube design on the right is obtained from the SOA

by replacing the four occurrences of i, i = 0, 1, 2, 3, by a permutation of 4i, 4i+ 1, 4i+ 2

and 4i + 3, respectively. If we divide all the entries by 16, and consider each row as a

point, then we obtain 16 points in the 10-dimensional unit cube [0, 1)10. This design has

the uniformity property that there are 2 points in each cell of 4× 2 and 2× 4 grids in all

two-dimensional projections. For a design constructed from a two-level orthogonal array

of strength two, only stratification in 2× 2 grids is guaranteed.

He, Cheng and Tang (2018) gave the following result, which provides a complete

characterization of SOAs of strength 2+ and also shows how they can be constructed

from ordinary orthogonal arrays.

Lemma 1. An SOA(n,m, s2, 2+), say D, exists if and only if there exist two arrays A and

B where A = (a1, . . . , am) is an OA(n,m, s, 2) and B = (b1, . . . , bm) is an OA(n,m, s, 1)

such that (aj, ak, bk) is an orthogonal array of strength 3 for any j 6= k. The three arrays

are linked through D = sA+B.

Theorem 1 of He, Cheng and Tang (2018) showed how Lemma 1 can be applied to

two-level regular designs. As usual, we use C = (cij)n×m where cij = ±1 to represent

a two-level factorial design of n runs for m factors. A regular saturated design S of 2k

runs for 2k − 1 factors can be obtained by first writing down a full factorial for k factors

and then adding all possible interaction columns. Then each regular 2m−p design C with

p = m− k consists of m columns of S. The set of columns that are not in C, denoted by

C = S \ C, is called the complementary design of C. Being regular, S has the property

that ab ∈ S for any a, b ∈ S, a 6= b, where ab stands for the interaction column of a and

b. If C is SOS, then the 2k − 1 degrees of freedom of S = C ∪ C correspond to the main

effects and a set of 2k − 1−m two-factor interactions of the m factors in C. (Our use of
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the union symbol technically corresponds to a matrix augmentation, and the above C ∪C

represents a matrix obtained by combining the column vectors of C with those of C.)

This gives a very simple description of C: each d ∈ C can be expressed as d = ab for some

a, b ∈ C. Let C be (a1, . . . , am′), where m′ = 2k−1−m and ai = bici with bi, ci ∈ C for all

i = 1, . . . , m′. As shown in the proof of Theorem 1 in He, Cheng, and Tang (2018), this

implies that (aj , ak, bk) is an orthogonal array of strength 3 for any j 6= k. Thus Lemma

1 is applicable. Following this lemma, one can construct an SOA(n,m′, 22, 2+) by taking

A = C = (a1, . . . , am′) and B = (b1, . . . , bm′). Then D = A + B/2 + 3/2 is a desired

SOA(n,m′, 22, 2+). Note that since, for two-level designs, the two levels in Lemma 1 are

represented by 0 and 1, to apply Lemma 1, first we need to transform −1 and 1 to 0

and 1, respectively. Thus, instead of D = 2A + B as stated in Lemma 1, we should use

D = A+B/2 + 3/2 here.

Example 2. Let (x1, x2, x3, x4) be a full 2
4 factorial in 16 runs. Then C = (x1, x2, x3, x4,

x1x2x3x4) is an SOS design. Note that this design has defining relation I = 12345. It

has resolution V with the 5 main effects and 10 2fis distributed in the 15 alias sets, and

hence is SOS. By the discussions above, to construct an SOA by using Lemma 1, we

can let A = C = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x1x2x3, x1x2x4, x1x3x4, x2x3x4), and

choose an appropriate B = (b1, . . . , b10). Denote the ith column of A by ai; then for all

i = 1, . . . , 10, any bi such that both bi and aibi are columns of C will do. One choice is

B = (x1, x1, x1, x2, x2, x3, x4, x3, x2, x1). Then D = A+B/2+3/2 is the SOA(16, 10, 4, 2+)

as shown in Example 1.

3. Minimal SOS Designs and Results on Regular Factorials

3.1 SOS designs and their minimality

Let C be an SOS design. Obviously, adding a factor to C still gives an SOS design.

When a factor is deleted from C, the resulting design can be SOS but is not necessarily so.
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If the resulting design from deleting one factor from C is still SOS, then we can continue

the process of deleting a factor from the current SOS design until no factor can be deleted

to maintain being SOS. At the end, we must obtain an SOS design such that if any factor

is removed, the resulting design is no longer SOS.

Definition 2. An SOS design is said to be minimal if the design resulting from deleting

any factor is no longer SOS.

Let (x1, x2, x3) be a full 23 factorial in 8 runs. Then C = (x1, x2, x3, x1x2x3) is a

minimal SOS design. The SOS design of 16 runs for 5 factors in Example 2 is also

minimal.

Our discussion leading to Definition 2 also explains why minimal SOS designs are

useful, which we summarize in a lemma.

Lemma 2. Any SOS design is either minimal or can be obtained by adding factors to a

minimal SOS design.

Lemma 2 says that all SOS designs can be constructed if all minimal SOS designs are

available. Therefore, studies on SOS designs can be focused on minimal SOS designs.

Furthermore, by Theorem 1 of He, Cheng, and Tang (2018), using a regular SOS design

of n runs for m factors, one can construct an n-run SOA of strength 2+ for n − 1 − m

factors. In order to construct SOAs with more factors, we need SOS designs with fewer

factors. Thus SOS designs with fewer factors are of interest.

The next two subsections are devoted to regular minimal SOS designs. We will deal

with nonregular SOS designs in Section 4.

3.2 Characterization and construction of regular minimal SOS designs

A main effect or two-factor interaction (2fi) is said to be clear if it is not aliased with
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any other main effect or 2fi. Under the reasonable assumption that interactions of order

three or higher are negligible, a clear effect is estimable regardless of other effects. For a

detailed discussion on clear effects, we refer to Cheng (2014, Chapter 10). The next result

provides a complete characterization of a regular SOS design being minimal through clear

effects.

Theorem 1. Let C = (c1, . . . , cm) be a regular SOS design with cj denoting its jth

column. Then C is a minimal SOS design if and only if for any i = 1, . . . , m, at least one

of the following m effects is clear: main effect ci and all 2fi’s cicj with j 6= i.

Theorem 1 is obvious, not really needing a proof. It simply recognizes the fact that

the design given by deleting column ci from C remains SOS, if and only if none of ci and

cicj with j 6= i is clear. Theorem 1 may be mathematically simple but it is a very useful

result as will be seen throughout the paper. The next corollary offers a first taste.

Corollary 1. (i) If an SOS design has resolution IV or higher, then it must be minimal.

(ii) A minimal SOS design of resolution III must have at least one clear 2fi.

(iii) For a minimal SOS design of n = 2k runs and m factors, we must have that m ≤ n/2.

Proof. Part (i) of Corollary 1 is true because all main effects are clear in a resolution IV

or higher design. Part (ii) follows as some main effects cannot be clear in a resolution III

design, meaning that some 2fi’s have to be clear because of Theorem 1. Parts (i) and (ii)

say that a minimal SOS design is either of resolution IV or higher, or have some clear

2fi’s, both of which imply that m ≤ n/2 (Cheng 2014, Corollary 9.6 and Theorem 10.7).

Of the two results, the first is from Rao’s bound and the second was originally obtained

by Chen and Hedayat (1998). This proves Corollary 1(iii).

He, Cheng and Tang (2018) presented four constructions of regular SOS designs. Using

Theorem 1, we will show that these SOS designs are actually minimal. Again let S be the
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saturated design based on k independent factors which we denote by a1, . . . , ak1, b1, . . . , bk2

where k1 ≥ 2, k2 ≥ 2 and k1 + k2 = k. Consider two subsets P and Q of S, where P

consists of a1, . . . , ak1 and all their interaction columns and Q consists of b1, . . . , bk2 and

all their interaction columns. All four constructions build SOS designs using P and Q.

Construction 1: C1 = P ∪Q.

Construction 2: C2 = (P \ {a1}) ∪ (Q \ {b1}) ∪ {a1b1}.

Construction 3: C3 = (P \ {a1}) ∪ (a1Q).

Construction 4: C4 = (b1P ) ∪ (a1Q \ {a1b1}).

Construction 1 gives a design with n = 2k runs and 2k1 + 2k2 − 2 factors while Con-

structions 2-4 all produce designs with the same run size but 2k1 + 2k2 − 3 factors, where

k1 ≥ 2, k2 ≥ 2 and k1 + k2 = k ≥ 4.

Theorem 2. Designs C1, C2, C3 and C4 given by Constructions 1–4 are all minimal SOS

designs.

Proof. That C1, C2, C3 and C4 are all SOS has been established in He, Cheng and Tang

(2018). Design C4 has resolution IV and is thus minimal by Corollary 1(i). For design

C1, it is obvious that the 2fi pq is clear for any p ∈ P and any q ∈ Q, implying that C1

is minimal by Theorem 1. Design C2 is minimal because pq, a1b1p and a1b1q are all clear

for any p ∈ P \ {a1} and any q ∈ Q \ {b1}. Design C3 is minimal because pq is clear for

any p ∈ P \ {a1} and any q ∈ a1Q.

By Corollary 1, all SOS designs of resolution IV are minimal. On the other hand, it

was mentioned in Section 2 that maximal designs of resolution IV are SOS. Therefore we

have the following simple result:

Corollary 2. All maximal resolution IV designs are minimal SOS designs.
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Chen and Cheng (2006) examined the structures and constructions of maximal designs

with n/4+1 or more factors. In contrast, the minimal SOS designs given by Constructions

1–4 all have fewer than n/4 + 1 factors unless k1 = 2 or k2 = 2. Finally, we note that

Constructions 1 and 4 were also given in Tang, Ma, Ingram and Wang (2002) in their

studies of clear 2fi’s.

3.3 Imports from projective geometry and coding theory

It is well known that constructing a regular 2m−p design amounts to choosing m points,

one point for each factor, from the 2m−p−1 points in an (m−p−1)-dimensional projective

geometry based on the Galois field GF (2) = {0, 1}. Each line in this geometry contains

three points. Then a two-factor interaction can be identified with the third point on the

line determined by the points corresponding to the two factors. A set A of points is called

a 1-saturating set if every point in the complement of A is on the line determined by a

certain pair of points in A. Thus it is clear that regular SOS designs are equivalent to

1-saturating sets and regular minimal SOS designs are equivalent to minimal 1-saturating

sets. Regular SOS designs also have a coding theory connection since the dual codes of

linear codes with covering radius 2 are equivalent to 1-saturating sets. In this subsection,

we import some results from projective geometry and coding theory.

Davydov, Marcugini and Pambianco (2006) presented an array of various construction

methods for minimal 1-saturating sets. Their Constructions A and B are equivalent to

our Constructions 1 and 2 in Section 3.2, respectively. In design language, we will present

one of their other methods as it gives SOS designs with smaller numbers of factors than

our Constructions 1-4. As commented in the paragraph following Lemma 2, SOS designs

with fewer factors are of interest because they result in SOAs with a larger number of

factors.

Recall that our Construction 1 gives a minimal SOS design with 2k1 + 2k2 − 2 factors,
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and Constructions 2-4 all produce minimal SOS designs with 2k1 + 2k2 − 3 factors, where

k1 ≥ 2, k2 ≥ 2 and k1+k2 = k ≥ 4. But if k ≥ 7, a minimal SOS design with 2k1 +2k2 −4

factors can be constructed for k1 ≥ 3, k2 ≥ 4 and k1 + k2 = k. This is Construction C of

Davydov, Marcugini and Pambianco (2006), which is detailed below.

Let S, P and Q be defined as in Section 3.2. Let p1p2p3 = q1q2q3 = 1 be two defining

words of length 3, where p1, p2, p3 ∈ P , q1, q2, q3 ∈ Q, and 1 is the all-ones column. Take

any q4 ∈ Q \ {q1, q2, q3}. Consider

C5 = (P \ {p1, p2, p3}) ∪ (Q \ {q1, q2, q3, q4}) ∪ {p1q3, p2q3, p3q1, p3q2, p3q4}.

Lemma 3. (Davydov, Marcugini and Pambianco 2006) Design C5 given above is a

minimal SOS design of n = 2k runs with 2k1 + 2k2 − 4 factors, where k1 ≥ 3, k2 ≥ 4 and

k = k1 + k2 ≥ 7.

Yet, for k ≥ 7, SOS designs with even smaller numbers of factors can be constructed,

which were given in Theorems 1 and 2 of Gabidulin, Davydov and Tombak (1991) in

terms of duals of linear codes with covering radius 2. We summarize their results in a

lemma.

Lemma 4. (Gabidulin, Davydov and Tombak 1991) For k ≥ 7, an SOS design of n = 2k

runs for m factors can be constructed where

m =











5× 2w−2 − 1 if k = 2w − 1,

7× 2w−2 − 2 if k = 2w.

To the best of our knowledge, whether or not the SOS designs given in Lemma 4

are minimal has not been established in the literature of coding theory and projective

geometry. We are able to provide an affirmative answer to the question.

Proposition 1. The SOS designs in Lemma 4 are minimal.
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The proof is rather lengthy and thus given in the Appendix.

Example 3. For k = 7 and thus w = 4, the construction in Lemma 4 gives an SOS

design with n = 2k = 128 runs for m = 5 × 2w−2 − 1 = 19 factors. The design matrix is

given by taking all linear combinations of the rows of

B =



















000 1111 1111 1111 1111
011 0011 0011 0011 0000
101 0101 0101 0101 0000
000 0011 0101 0110 0011
000 0110 0011 0101 0101
000 0000 0000 1111 1111
000 0000 1111 0000 1111



















with all calculations within GF (2) = {0, 1}. The resulting design can be converted to

a version with familiar levels ±1 by changing 0 to −1. According to Proposition 1, this

SOS design is minimal. It is of resolution III, having one word of length 3, which is given

by the first three columns. To compare, for k = 7 and n = 128, Construction 1 can

give a minimal SOS design with 22 factors, Constructions 2–4 can generate minimal SOS

designs with 21 factors, and Lemma 3 gives a minimal SOS design with 20 factors. For

k = 8, the construction in Lemma 4 gives an SOS design with 256 runs for 26 factors,

which is also minimal by Proposition 1.

Let mk be the largest m for an SOA(2k, m, 4, 2+) based on regular designs to exist.

Using Constructions 2–4, He, Cheng and Tang (2018) obtained a general lower bound on

mk. Lemma 4 offers an improvement for k ≥ 7.

Proposition 2. We have that for k ≥ 7

mk ≥

{

2k − 5× 2w−2 if k = 2w − 1,
2k − 7× 2w−2 + 1 if k = 2w.

Davydov, Marcugini and Pambianco (2006) also did a complete enumeration of all

minimal 1-saturating sets in small geometries, and their Table 1 thus classifies all regular
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minimal SOS designs for up to 64 runs and all regular minimal SOS designs with m ≤ 20

for 128 runs. We give a summary of their results in our Table 1 for the benefit of design

researchers.

Table 1. Classification of all regular minimal SOS designs for n≤64 and n=128 with m≤20.

n m III IV total
8 4 1 1 2
16 5 0 1 1
16 6 1 0 1
16 8 1 1 2
32 9 1 1 2
32 10 6 1 7
32 11 1 0 1
32 16 1 1 2
64 13 7 1 8
64 14 19 0 19
64 15 14 0 14
64 16 16 0 16
64 17 48 5 53
64 18 108 1 109
64 20 1 1 2
64 32 1 1 2
128 19 5 0 5
128 20 36 0 36

For given n and m, the last column of Table 1 gives the number of all regular minimal

SOS designs, while the third and fourth columns give the numbers of minimal SOS designs

of resolution III and IV, respectively. For example, with n = 64 runs and m = 13 factors,

there are exactly 7 minimal SOS designs of resolution III, one minimal SOS design of

resolution IV, and 8 minimal SOS designs in total.

Table 2 of Davydov, Marcugini and Pambianco (2006) contains more computer search

results, using which we can obtain lower and upper bounds on m′

k, the size of the smallest

regular minimal SOS design for 7 ≤ k ≤ 10. These bounds on m′

k can then be used

to obtain upper and lower bounds on mk, the greatest m such that an SOA(2k, m, 4, 2+)

based on regular designs exists, since m′

k+mk = 2k−1. Our Table 2 updates and expands
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Table 1 of He, Cheng and Tang (2018). For completeness, we include information on both

m′

k and mk in Table 2. For 4 ≤ k ≤ 7, the m′

k and mk values are exact. For 8 ≤ k ≤ 10,

Table 2 gives the best known lower and upper bounds. For example 25 ≤ m′

8 ≤ 26 and

229 ≤ m8 ≤ 230.

Table 2. The smallest number m′

k of factors for a regular minimal SOS design and the

largest number mk of factors for an SOA of strength 2+ based on regular designs.

k n = 2k m′

k mk

4 16 5 10
5 32 9 22
6 64 13 50
7 128 19 108
8 256 [25, 26] [229, 230]
9 512 [34, 39] [472, 477]
10 1024 [47, 51] [972, 976]

4. Nonregular Minimal SOS Designs and Their Applications

4.1 Characterization and construction

Orthogonal arrays have been introduced in Section 2. Throughout this subsection, the

two levels in an OA(n,m, 2, t) are denoted by ±1 rather than 0 and 1. An OA(n,m, 2, 2)

is said to be a nonregular design if it is not regular. For a review of nonregular designs, see

Xu, Phoa and Wong (2009). Prior to Sun and Wu (1993), nonregular designs were called

irregular (e.g. Addelman 1961). Hadamard matrices provide rich sources of nonregular

designs though not every nonregular design can be imbedded into a Hadamard matrix;

see Sun, Li and Ye (2008) and Bulutoglu and Kaziska (2009) for details. A main effect

or 2fi is called clear in a nonregular design if it is orthogonal to all other main effects and

2fi’s (Tang 2006).

Our general discussion on SOS designs and their minimality in Section 3.1 applies to

nonregular designs as well as regular designs. Theorem 1 in Section 3 gives a complete
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characterization of a regular SOS design being minimal. A similar result also holds for

nonregular designs.

Theorem 3. Let C = (c1, . . . , cm) be an SOS design, regular or nonregular. Then C is

minimal if for any i = 1, . . . , m, at least one of the m effects ci and cicj with j 6= i is

clear.

Similar to Theorem 1, Theorem 3 says that the condition of existence of certain clear

effects is still sufficient for a nonregular SOS design to be minimal. Unlike Theorem 1, the

necessity part cannot hold in general for nonregular designs. To illustrate this, consider

the following example. There are exactly two inequivalent OA(12, 5, 2, 2)s (Sun, Li and

Ye 2008), and on a computer we can easily check that one of them is SOS and the other

is not. The one that is SOS must also be minimal as there are not enough degrees of

freedom for any OA(12, 4, 2, 2) to be SOS. On the other hand, an OA(12, 5, 2, 2) cannot

have any clear effect for otherwise the run size has to be a multiple of 8 (Tang 2006).

Proposition 1 of Tang (2006) is for the existence of a clear 2fi and the same argument also

applies to a clear main effect.

Corollary 3. If an OA(n,m, 2, 3) is SOS, then it must be minimal.

This result follows from Theorem 3 because all main effects are clear in an orthogonal

array of strength 3. Cheng, Mee and Yee (2008) introduced some constructions of SOS

OA(n,m, 2, 3)s, which are all minimal according to Corollary 3. These minimal SOS

designs have relatively large numbers of factors; for example their first construction gives

m = n/4+1. For the purpose of constructing SOAs, it is desirable to obtain some minimal

SOS designs with smaller numbers of factors, which we discuss next.

It turns out that the four constructions in Section 3 can all be adapted to the setting

of nonregular designs. Let Hn1
= (1n1

, a1, . . . , an1−1) and Hn2
= (1n2

, b1, . . . , bn2−1) be
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two Hadamard matrices of orders n1 ≥ 4 and n2 ≥ 4, respectively, where 1n1
is a column

vector of n1 ones. Let pi = ai ⊗ 1n2
for i = 1, . . . , n1 − 1, and qj = 1n1

⊗ bj for j =

1, . . . , n2 − 1. Further let P = {p1, . . . , pn1−1} and Q = {q1, . . . , qn2−1}. Consider the

following constructions:

Construction (i): C1 = P ∪Q.

Construction (ii): C2 = (P \ {p1}) ∪ (Q \ {q1}) ∪ {p1q1}.

Construction (iii): C3 = (P \ {p1}) ∪ (p1Q).

Construction (iv): C4 = (q1P ) ∪ (p1Q \ {p1q1}).

All four designs have n1n2 runs. Design C1 has n1 + n2 − 2 factors and designs C2, C3

and C4 have n1 + n2 − 3 factors.

Theorem 4. Designs C1, C2, C3 and C4 given above are minimal SOS designs.

Proof. For brevity, we only give proofs for Constructions (i) and (ii). The proofs for Con-

structions (iii) and (iv) use similar ideas although they are more tedious and complicated.

First consider design C1 = P ∪ Q from Construction (i). The Hadamard matrix

Hn1
⊗ Hn2

then consists of 1n1n2
, all main effect columns in P , all main effect columns

in Q and all interaction columns pq where p ∈ P and q ∈ Q. This shows that design

C1 = P ∪ Q is SOS. As any 2fi pq with p ∈ P and q ∈ Q is obviously clear, design C1 is

minimal by Theorem 3.

Now consider design C2 from Construction (ii). We first decompose the set of n1n2

columns in Hadamard matrix Hn1
⊗Hn2

into a union of six disjoint subsets as given by

Hn1
⊗Hn2

= R0 ∪ R1 ∪R2 ∪ R3 ∪R4 ∪R5,

where R0 = {1n1n2
}, R1 = P , R2 = Q, R3 = p1Q, R4 = q1P \ {p1q1} and R5 = {piqj | i =

2, . . . , n1−1; j = 2, . . . , n2−1}. To prove that design C2 = (P \{p1})∪(Q\{q1})∪{p1q1} is

SOS, we need to show that for each Rj where j = 1, . . . , 5, we can choose a set of linearly
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independent main effects or 2fi’s from design C2 such that they span the same linear

subspace as that spanned by the columns ofRj . As every column in R5 is a 2fi of design C2,

the job is done for R5. Now consider R1 = P . If we can find a 2fi pipj of design C2 where

2 ≤ i < j ≤ n1−1 such that it is not orthogonal to p1, then the main effects p2, . . . , pn1−1

of C2 plus this 2fi pipj are linearly independent and thus span the linear subspace spanned

by R1 = P . Such a 2fi must exist; otherwise p2, . . . , pn1−1, p1p2, . . . , p1pn1−1 are mutually

orthogonal within the linear subspace spanned by P , which is a contradiction. The same

argument works for R2 = Q. We now turn our attention to R3 = p1Q. Since the column

vectors p1q1, p1q1q2, . . . , p1q1qn2−1 are mutually orthogonal and all belong to L(R3), the

linear subspace spanned by the columns of R3 = p1Q, they therefore span L(R3). But

p1q1 is a main effect of design C2, and p1q1qj for j ≥ 2 is a 2fi between factor p1q1 and

factor qj of design C2. This takes care of R3. The same argument used for R3, with just a

bit of modification, also works for R4. We have thus proved that design C2 is SOS. That

design C2 is minimal follows from the fact that the 2fi of factor pi and factor qj is clear

for all i ≥ 2 and j ≥ 2 and that the main effect p1q1 is also clear.

In the next subsection, we will examine how to use the designs given by Constructions

(i)-(iv) to construct SOAs of strength 2+.

Small orthogonal arrays were completely enumerated by Sun, Li and Ye (2008) and

Schoen, Eendebak and Nguyen (2010). Using these existing results, we conduct a complete

search of OA(n,m, 2, t)s that are minimal SOS designs for t = 2 with n = 12, 16 and 20,

and for t = 3 with n = 16, 24, 32 and 40. Table 3 presents a summary of all minimal

SOS designs for these parameters. For given strength t and pair (n,m), the last column

of Table 3 gives the number Nminsos of OA(n,m, 2, t)s that are minimal SOS designs.

For comparison, we also include in Table 3 the number Nall of all nonisomorphic designs

and the number Nsos of all SOS designs. For example, there are in all 474 nonisomorphic
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OA(20, 7, 2, 2)s, out of which 339 arrays are SOS. Among the 339 SOS designs, 22 of them

are minimal SOS designs. For another example, Table 3 shows that there exist exactly

three OA(16, 5, 2, 2)s that are minimal SOS designs. If we look at Table 1, we conclude

that one of these minimal SOS designs is regular and the other two are nonregular.

Table 3. Classification of all OA(n,m, 2, t)s that are minimal SOS designs for t = 2

with n = 12, 16 and 20, and for t = 3 with n = 16, 24, 32 and 40, where Nall, Nsos, and

Nminsos denote the number of all nonisomorphic designs, the number of SOS designs and

the number of minimal SOS designs, respectively.

t (n,m) Nall Nsos Nminsos
2 (12, 5) 2 1 1

2 (16, 5) 11 3 3

2 (16, 6) 27 14 2

2 (16, 8) 80 80 2

2 (20, 6) 75 15 15

2 (20, 7) 474 339 22

2 (20, 9) 2477 2466 1

3 (16, 5) 2 1 1

3 (16, 8) 1 1 1

3 (24, 12) 1 1 1

3 (32, 9) 34 6 6

3 (32, 10) 32 1 1

3 (32, 16) 5 5 5

3 (40, 20) 3 3 3

4.2 Applications to strong orthogonal arrays

In this subsection, we consider the problem of constructing SOA(n,m, 4, 2+)s. Ac-

cording to Lemma 1, we first need to find two arrays A and B where A = (a1, . . . , am)

is an OA(n,m, 2, 2) and B = (b1, . . . , bm) is an OA(n,m, 2, 1) such that (aj , ak, bk) has

strength 3 for any j 6= k, and then, as noted in the paragraph following Lemma 1, obtain

an SOA(n,m, 4, 2+) via D = A +B/2 + 3/2.
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He, Cheng and Tang (2018) examined how to obtain A and B if their columns are

to be selected from a saturated regular design. We now consider obtaining A and B by

choosing their columns from a saturated orthogonal array, which can be nonregular.

Theorem 5. Let S be an OA(n, n− 1, 2, 2). If an SOA(n,m, 4, 2+) is to be constructed

using D = A+B/2+3/2 with the columns of A and B selected from S, then it is necessary

and sufficient that for any column a ∈ A, there exists a column b ∈ S \ A such that ab is

orthogonal to all columns in A.

Theorem 5 extends Theorem 1 of He, Cheng and Tang (2018) and includes the latter

as a special case, as one can easily see that the condition for array A in Theorem 5 is

equivalent to S \ A being SOS if S is a regular saturated design. We omit the proof for

Theorem 5 because it is very similar to that for Theorem 1 of He, Cheng and Tang (2018).

Theorem 5 is actually constructive. Suppose that A = (a1, . . . , am) satisfies the re-

quired condition in Theorem 5, meaning that for any ai, there exists a column in S \ A,

say bi, such that aibi is orthogonal to all aj ’s. Then we simply take B = (b1, . . . , bm).

Remark 1. When S is a nonregular saturated design, the condition for array A in

Theorem 5 may not be equivalent to S \ A being SOS. Further discussion on this issue

will be given in Section 5. It is therefore not true that every nonregular SOS design can

be used to construct an SOA(n,m, 4, 2+). On the other hand, as shown below, almost all

SOS designs given by Contructions (i)-(iv) allow the construction of SOAs.

All minimal SOS designs obtained by Constructions (i)-(iii) can be used to construct

SOA(n,m, 4, 2+)s. The minimal SOS designs obtained by Construction (iv) can also be

used provided that one of Hn1
and Hn2

is regular. Details are given as follows. Note that

S = Hn1
⊗Hn2

\ {1n1n2
}.

Construction (i). Let A1 = S \ C1. All columns in A1 have form pq for p ∈ P and

q ∈ Q. For any a = pq ∈ A1, we take b = p.
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Construction (ii). Let A2 = S \ C2. For a = piqj ∈ A2 where i, j ≥ 2, we take b = pi.

For a = p1, take b = p2. For a = q1, take b = q2. For a = p1qj where j ≥ 2, take b = p1q1.

For a = q1pi where i ≥ 2, take b = p1q1.

Construction (iii). Let A3 = S \C3. For a = piqj where i ≥ 2, j ≥ 1, we take b = p1qj .

For a = p1, take b = p2. For a = qj where j ≥ 1, take b = p1qj′ where j′ 6= j.

Construction (iv). Assume Hn1
is regular. Let A4 = S \C4. For a = pi, take b = pi′q1

where i′ 6= i. For a = qj , take b = p1qj′ where j′ 6= j. For a = piqj where i ≥ 2 and j ≥ 2,

take b = pi′q1 where pi′ = p1pi, which is possible because Hn1
is regular.

We can verify routinely that each of the A1, A2, A3, A4 satisfies the condition in The-

orem 5. The above also shows how to obtain the corresponding B1, B2, B3, B4. Using

D = A + B/2 + 3/2, we can then obtain D1, D2, D3, D4. We summarize these develop-

ments in a theorem.

Theorem 6. Design D1 is an SOA(n1n2, m, 4, 2+) with m = n1n2 − n1 − n2 + 1, and

designs D2, D3, D4 are all SOA(n1n2, m, 4, 2+)s with m = n1n2 − n1 − n2 + 2.

Example 4. Take n1 = 4 and n2 = 12. Then D1 is an SOA(48, 33, 4, 2+), and D2, D3, D4

are SOA(48, 34, 4, 2+)s. If we take n1 = n2 = 12, then D1 is an SOA(144, 121, 4, 2+), and

D2, D3 are both SOA(144, 122, 4, 2+)s. Such run sizes cannot be attained by using regular

SOS designs. Note that D4 is not available for n1 = n2 = 12 because Hn1
and Hn2

are

both nonregular.

SOAs constructed from regular designs and those from nonregular designs are different

in their three-dimensional space-filling properties. The distribution of the design points

in the eight cells when projected onto a three-dimension and viewed on a 2 × 2 × 2 grid

is determined by the three corresponding columns of the array A in Lemma 1. This

array of three columns has only two possible structures for regular A but a lot more for

nonregular A.
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Example 5. Hall (1961) identified five nonisomorphic Hadamard matrices of order 16,

denoted by HI , HII , HIII , HIV and HV , respectively, where only HI is regular. Denote

a submatrix consisting of the j1, j2, . . . , jm-th columns of Hi by Hi(j1, j2, . . . , jm), where

i = I, II, III, IV, V . Then it can be verified that all of C1 = HI(7, 11, 12, 13, 14, 15),

C2 = HI(6, 7, 9, 11, 13, 14) and C3 = HII(1, 2, 3, 7, 11, 15) are SOS. All of their complemen-

tary designs A1 = HI(1, 2, 3, 4, 5, 6, 8, 9, 10), A2 = HI(1, 2, 3, 4, 5, 8, 10, 12, 15), and A3 =

HII(4, 5, 6, 8, 9, 10, 12, 13, 14) satisfy the condition of Theorem 5. One can construct

SOA(16, 9, 4, 2+)sDi = Ai+Bi/2+3/2, for i = 1, 2, 3, by choosing B1 = HI(12, 12, 12, 11,

11, 11, 7, 7, 7), B2 = HI(6, 9, 13, 9, 11, 6, 7, 7, 6), and B3 = HII(3, 2, 1, 3, 2, 1, 3, 2, 1). Since

A1 has seven defining words of length three, for D1, there are seven three-dimensional

projections in which there are points in only four of the eight cells in a 2 × 2 × 2 grid.

For D2, there are six such three-dimensional projections. Due to the nonregular structure

of A3, for all three-dimensional projections of D3, there is at least one point in each cell.

The number of four-dimensional projections for which only eight of the sixteen cells in

a 2 × 2 × 2 × 2 grid is occupied is 51, 45, and 9, respectively for D1, D2 and D3. This

comparison shows that D3, which is constructed from a nonregular SOS design, has better

coverage than D1 and D2, which are constructed from regular SOS designs.

5. Discussion

This paper conducts a comprehensive investigation on SOS designs and their minimal-

ity with particular attention on their usefulness in constructing strong orthogonal arrays.

In both regular and nonregular cases, we establish characterizing results for SOS designs

to be minimal, and provide some construction results for minimal SOS designs. In the case

of regular designs, the results from projective geometry and coding theory allow SOAs of

strength 2+ with more factors to be constructed as given in Proposition 2 and Table 2,

as compared with those in He, Cheng and Tang (2018). The nonregular counterparts of
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the four constructions in He, Cheng and Tang (2018) allow us to construct four families

of SOAs of strength 2+.

In the case of regular designs, Grynkiewicz and Lev (2010) studied the structures and

sizes of large 1-saturating sets. Although these results are less useful for us because we

are more concerned with SOS designs with small numbers of factors, it is interesting to

note one result in that paper. They show that while the largest minimal SOS design has

m = n/2, the second largest minimal SOS design must have m = 5n/16, provided that n

is large enough. From Table 1, we see that this is already true for n = 64. The results in

Table 2 of Davydov, Marcugini and Pambianco (2006) also confirm the statement.

One important problem we would like to have a solution for is if the constructions as

in Lemmas 3 and 4 can be adapted to nonregular designs. As the construction for the

design in Lemma 4 heavily relies on the regular structure, it does not seem possible to

make a generalization to nonregular settings. The situation is different, however, for the

construction in Lemma 3. As long as both Hn1
and Hn2

contain a defining word of length

3, there is a nonregular counterpart for the construction. The questions then are if the

resulting design is minimal SOS and if it can be used to construct an SOA of strength

2+. We leave these questions to future research.

The construction of SOAs as given in Theorems 5 and 6 raises an intriguing question,

which is at least of technical interest. Exactly what is the relationship between the

condition in Theorem 5 and the property of being SOS? We know that they are equivalent

in the case of regular designs. In the nonregular case, the following result sheds some light

on the issue.

Lemma 5. Let C, an OA(n,m, 2, 2), be an orthogonal SOS design, meaning that there

exists a set A of n− 1−m mutually orthogonal 2fi’s that are also orthogonal to the main

effects. Then array A satisfies the condition in Theorem 5.
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The proof is straightforward by taking S = A ∪ C, which is an OA(n, n − 1, 2, 2).

Lemma 5 seems to suggest that the condition in Theorem 5 is stronger than being SOS.

A proof or a counterexample is worth seeking in the future.
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Appendix: Proof of Proposition 1

The constructions were given in Theorems 1 and 2 of Gabidulin, Davydov and Tombak

(1991). Our notation in this appendix is different from the main body of our paper.

Instead, we use the notation in Gabidulin, Davydov and Tombak (1991). This is just to

make presentation easier. Let e0 = 0, e1, . . . , eB be the elements of GF (2b), where B =

2b − 1. Further let (ei)
b denote the column vector that is the binary b-bit representation

of ei. Define two matrices Eb and F 2b(ej) as follows

Eb =
[

(e0)
b (e1)

b · · · (eB)
b
]

,

F 2b(ej) =

[

(e0)
b (e1)

b · · · (eB)
b

(e0)
b (e−1

1 ej)
b · · · (e−1

B ej)
b

]

.

Let Eb
0 be E

b with the first column deleted. We use P b(ei) to denote a matrix with the

same column (ei)
b repeated where the number of repetitions is determined by context.

Lemma A. (Gabidulin, Davydov and Tombak 1991, Theorem 1) Let the parity check

matrix of a code be

B2m−1 = [N D Q M G],
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where 2m− 1 = r ≥ 7 and matrices N,D,Q,M and G are, respectively, given by











0 · · · 0
Em−2

0

Pm(e0)











,







1 · · · 1
F 2(m−2)(w1)

0 · · · 0
0 · · · 0






,







1 · · · 1
F 2(m−2)(w2)

0 · · · 0
1 · · · 1






,







1 · · · 1
F 2(m−2)(w3)

1 · · · 1
0 · · · 0






,











1 · · · 1
Pm−2(e0)
Em−2

1 · · · 1
1 · · · 1











,

where w1, w2, w3 ∈ GF (2m−2); w1, w2 6= 0, w1 6= w2, w1 + w2 = w3. Then this code has

covering radius R = 2.

Let C be the design generated by taking linear combinations of the rows of B2m−1

with coefficients from GF (2) = {0, 1}. According to Lemma A, design C is SOS as the

code has covering radius R = 2.

Proposition 1a. The array C, generated by B2m−1, is a minimal SOS design.

Proof. We already know that C is SOS. To show its minimality, we use our Theorem 1

in Section 3. As design C has entries from GF (2) = {0, 1}, a main effect column ci is

clear if ci 6= cj and ci 6= cj + ck for any other columns cj and ck, and a 2fi cicj is clear

if ci + cj 6= ck and ci + cj 6= ck + cl for any other columns ck and cl. Equivalently, one

can verify these properties for the columns of B2m−1. We will prove that each column in

[D,Q,M,G] is clear, and each column in N has a clear 2fi.

Suppose that a column ~d in D is not clear. Then there must exist two other columns

x and y in B2m−1 such that ~d = x + y, where x 6= ~d and y 6= ~d. By examining the first

row and last two rows of B2m−1, we see that ~d = x+ y is possible only if x is a column in

N and y a column in D. Suppose that neither ~d nor y is the first column of D. Since ~d,

x and y have form

~d =











1
(ei)

m−2

(e−1
i w1)

m−2

0
0











, x =













0
(ej)

m−2

0
...
0













, y =











1
(ek)

m−2

(e−1
k w1)

m−2

0
0











,
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it is impossible to have ~d = x + y unless (e−1
i w1)

m−2 = (e−1
k w1)

m−2. But (e−1
i w1)

m−2 =

(e−1
k w1)

m−2 implies ei = ek, which leads to ~d = y. This is a contradiction. It is also

obvious that ~d = x+ y cannot hold if one of ~d and y is the first column of D. Therefore,

~d must be clear. Similarly, one can prove that any column in Q,M or G is also clear.

For any column ~n of N , we will show that ~n + ~d is clear where ~d is any except the

first column of D. Since ~d is clear, we only need to prove ~n+ ~d 6= x+ y for any other two

columns x, y in B2m−1. Again by examining the first row and the last two rows of B2m−1,

the only possible scenario for ~n+ ~d = x+ y is that x is a column of N and y a column of

D. An argument very similar to that in the last paragraph shows that if ~n + ~d = x + y,

then we must have ~n = x and ~d = y. This shows that ~n+ ~d is clear, and thus each column

in N has a clear 2fi. The proof is completed.

LetD1 and B2m−1
1 be the matrices ofD and B2m−1 with their first column (1, 0, . . . , 0)T

deleted, respectively.

Lemma B. (Gabidulin, Davydov and Tombak 1991, Theorem 2) Let the parity check

matrix of a code be

T 2m = [Z Y ],

where 2m = r ≥ 8 and

Z =

[

0 · · · 0
B2m−1

1

]

, Y =

[

1 · · · 1
Em−1

Pm(ei)

]

,

where i ∈ {0, . . . , 2m − 1}. Then the code has covering radius R = 2.

Let N∗, D∗

1, Q
∗, M∗ and G∗ denote the matrices of N , D1, Q, M and G with an added

head row (0, . . . , 0). Partition Y into Y = [Y1, Y2] such that the second row of Y1 is the all-

zeros row, and the second row of Y2 is the all-ones row. Then T 2m can be partitioned into

seven submatrices as T 2m = [N∗, D∗

1, Q
∗,M∗, G∗, Y1, Y2] with N∗, D∗

1, Q
∗,M∗, G∗, Y1, Y2
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given, respectively, by











0 · · · 0
0 · · · 0
Em−2

0

Pm(e0)











,











0 · · · 0
1 · · · 1

F
2(m−2)
0 (w1)
0 · · · 0
0 · · · 0











,











0 · · · 0
1 · · · 1

F 2(m−2)(w2)
0 · · · 0
1 · · · 1











,











0 · · · 0
1 · · · 1

F 2(m−2)(w3)
1 · · · 1
0 · · · 0











,















0 · · · 0
1 · · · 1
Pm−2(e0)
Em−2

1 · · · 1
1 · · · 1















,











1 · · · 1
0 · · · 0
Em−2

Pm(ei)











,











1 · · · 1
1 · · · 1
Em−2

Pm(ei)











,

where F
2(m−2)
0 (w1) is obtained from F 2(m−2)(w1) by deleting its first column which consists

of all zeros.

Proposition 1b. The array C ′, generated by T 2m, is a minimal SOS design.

Proof. We are going to prove that each column in [D∗

1, Q
∗,M∗, G∗] is clear and each

column in [N∗, Y1, Y2] has a clear 2fi.

Since any column of D is clear in B2m−1 (from the proof of Proposition 1a), we have

that if a column ~d in D∗

1 has ~d = x1 + x2 for two other columns x1, x2 from T 2m, then at

least one of x1 and x2 must come from Y . Examining the first two rows of T 2m, we see

that the only possible case is that x1 is from Y1 and x2 is from Y2. Now if we take a look

at the (m + 1)th to (2m − 2)th rows of D∗

1, Y1 and Y2, we see that it is impossible for

~d = x1 + x2 to hold. This is because the (m + 1)th to (2m − 2)th entries of x1 + x2 are

all zeros whereas the corresponding entries of ~d are those of (e−1
i w1)

m−2, which cannot

be all zeros. We have thus established that any column ~d in D∗

1 is clear. According to

the entries in the first and the last two rows of T 2m, one can prove that each column in

[Q∗,M∗, G∗] is also clear.

In a manner almost identical to that of showing a column in D∗

1 is clear as given above,

we can show that the 2fi ~n+ ~d is clear for any column ~n from N∗ and any column ~d from
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D∗

1.

For any column ~y from Y1 or Y2, and any column ~d from D∗

1, we can show that ~y + ~d

is clear. The arguments are, though a bit more involved, also very similar to the above.

We omit the details. This completes the proof.
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