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MINIMAL SETS OF FOLIATIONS

ON COMPLEX PROJECTIVE SPACES

by G. GAMAGHO, A. LINS NETO and P. SAD

Dedicated to Ren^ Thorn

with admiration.

This paper is concerned with the study of global properties of codimension one

holomorphic foliations on projective spaces. The exposition deals with the case of

dimension two for reasons of simplicity; some of the results extend naturally to higher

dimensions.

So let us consider a polynomial differential equation in C2

(1) P(^) dy - Q^,j) dx = 0,

where P and Q are relatively prime polynomials. Such an equation defines a foliation

by complex curves, with a finite number of singularities, which extends itself to the

projective space CP(2); this is done as follows: a point of CP(2) has three different

affine coordinates (A*,^), {u, v) and (^ w) related by

(2) u == Ifx, v ==ylx and z == \\y^ w == x\y.

Therefore (1) becomes in the coordinates {u, v) e C2

(3) ?(M, v) dv — C[(M, v) du = 0,

where "P^, v) == uk+l P(I/M, v[u) and (^{u, v) == u\vP(\fu, vfu) — Q(I/M, vfu)] where

k eN is the smallest integer necessary to grant a polynomial equation in (3). In the

same way the equation (1) may be transformed to the coordinates (z, w) e C2. Thus

a foliation ^r, with a finite set sing (e^) of singularities, is defined in CP(2) $ we are

interested in the limit sets of the leaves of y. A basic question refers to the existence
of singularities of the foliation in all these subsets. Although we do not provide an answer

to such a question, we present some results that may play a role in the understanding

of the problem. Let us proceed to state them.
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A minimal set of y is a nonempty closed invariant subset of CP(2) which contains

no proper subset with these properties; if it is not a singularity, we say that the minimal
set is nontrivial.

We start Section 1 by proving that y has at most one nontrivial minimal set; also,

under generic conditions imposed on the singularities, all leaves accumulate on that set. The proof

relies upon the application of the Maximum Principle for harmonic functions in order

to analyse the distance between leaves. Although the question about the existence of

a nontrivial minimal set is still unsettled, it is interesting to remark two facts: first, among

the filiations possessing only generic singularities, the subset of those without minimal leaves is

nonempty and open in a suitable topology (to be discussed later). Also, in the special situation

when a one-dimensional invariant algebraic subvariety exists, a result of [3] implies

that only this algebraic subvariety can possibly be the minimal set (a simpler proof

is provided here), but this possibility is ruled out as a consequence of the appendix of [2].

In fact, if we try to push further the ideas of this appendix, we naturally realize that

the leaves of a nontrivial minimal set in projective spaces have exponential growth; this is discussed

in Section 2. More generally, it is shown that a filiation with a nontrivial minimal set does

not admit an invariant transverse measure with support in that set. At this point, it is worth

regarding the situation from the standpoint of real codimension one G^-foliations. It

is known that an exceptional minimal set has a leaf of exponential growth (see [6]);

the basic reason is the presence of a hyperbolic contraction in the holonomy group of

some leaf of that set. In our case the real codimension is two and we have no information

about holonomy groups; what allows us to prove the growth property is the very special

geometry of projective spaces.
Now we are motivated to look for more geometrical information. Starting with

the construction of a Hermitian metric which has strict negative curvature along leaves

not accumulating on singularities, we immediately reach upon the fact that all leaves

in the minimal set are hyperbolic Riemann surfaces (see Section 3). Even a stronger statement

is true: the family of uniformizations of leaves in the minimal set is a compact family, a result

derived after comparing complete conformal Riemannian metrics in the unit disc of C

to the Poincar^ metric. We close Section 4 with a byproduct of both geometrical and

dynamical analysis, namely: the leaves in the minimal set have no parabolic ends. Let us mention

here that the last two theorems we have stated above are related to the results obtained

in [8] by A. Verjovski in a different context.

We acknowledge interesting conversations with I. Kupka.

1. Uniqueness of minimal sets

We start this section by proving a geometrical property of minimal sets.

Proposition 1. — Let ̂  be a nontrivial minimal set of the filiation y. Then Ji intersects

every 1-dimensional algebraic subset of CP(2).
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Proof. — Let SC CP(2) be an algebraic set of dimension 1. Suppose that S has

degree k and is given in the affine coordinate system {x^y) = {x \y : 1) byf{x,y) = 0,
where / is a polynomial of degree k. For a, b, c > 0, consider the function

1/(^)12

Pa^.c^j) = 9(^j0
{a+b\x\

2
+c\y\

2
)

k
'

Since/has degree k, 9 can be extended as a real analytic function in CP(2). For

instance, in the coordinate system (1 : v : u), u = l/^, v ==yfx, the expression of 9 is

/^/

T(8'" = (..M^T- î.iy .̂ •" = "W-- '/">•

From the above, it can be easily proved that S = 9-1(0). Suppose by way of

contradiction that ^ n S = 0. In this case 9 | ̂  has a positive minimum, say

9 | J( > 9(^0) = a > 0, where po e J K . Let ^ : JK ->- R be defined by ^i{p) = log(9(/?)),

/? e^f. Clearly ^ ̂  4'(A>) === °̂§ a ̂  — °°* On the other hand 4/ is superharmonic along
the leaves of y contained mJK. In fact, if z ^p{z) = {x{z),jy{z)) is a local holomorphic

parametrization of a leaf LC^, then ^(p{z)) > — oo and

^-^(.))=2^.1og|/(^))|

- ̂  ^_log(a + b 1 ̂ ) p + c\y{z) p)

=-A(a+i|^)|2+d^)12)-2

. {ab | ^(^) p + ac \y\z) \^+bc\ x{z)y\z) - y[z) x\z) ̂

<0 .

In particular, this implies that ^, and also 9, are constant along the leaf L of ^

through RQ. Since this leaf is dense in ̂ , it follows that 9 is constant in ̂ . This fact

is independent of a, i, c, so that, for any triple (a, b, c) e (0, + oo)3 there exists a > 0

such that \f(p) [2/fc == a(a + b \ x |2 + c \y |2) for every p == {x,y) e J K . It is not difficult

to see that this is impossible. Hence ^K n S = 0. •
As a consequence, if A C CP(2) is a 1-dimensional invariant algebraic subvariety,

then ^K = A, which is impossible as we will see in Section 2.
Let us now proceed to prove the main result of this Section; another proof of it

was shown to us by H. Rosenberg.

Theorem 1. — The foliation ^ has at most one nontrivial minimal set.

Proof. — Let^ be a nontrivial minimal set of^, and L a (nonsingular) leaf of e ,̂

such that L n sing(<^") == 0. It is enough to prove that L n Jl 4= 0. Suppose on the
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contrary that L n ̂  === 0. Let (x,y) == {x \y : 1) be an affine coordinate system on CP(2).

Consider in C2 = { (x :y : 1); x,y e C } C CP(2) the euclidean metric

^((^Jl), (^2^2)) = V| ̂ i - ̂  |2 + bl ~^2 |2-

Let c '̂ == J( n C2 and F == L n C2. Then ^/ and F are closed subsets of C2. Set
d == ^(F,^') = mf{d^p, q) \p e F, q eJiC }. We assert that d> 0 and that there are

points PQ e F and ^o e^?' such that d === ^(j&o? ^o)-
In fact, let p be the Fubini-Study metric in CP(2), induced by the Hermitian

metric whose quadratic form is

^ _ \ d x \
2
+ \ d y \

2
+ \ x d y - y d x \

2

s ~ ( l + l ^ + M 2 ) 2

It is not difficult to check that, given PQ 4= Pi ^ C2, then

(4) p(A î) ^ i ^f^^ ̂  ̂  d^ p^1 + (°(A) ̂ P i ) )

where 8 (A) 5 A) ls Ae euclidean distance between the origin and the line segment which
joins PQ and p-^. Now let (pn)n-^i and (?J^i be sequences in F and J i ' such that

lim^oo ^(^n5 ^J = .̂ Since Ji and L are compact, we can Suppose that p^ ->po eL

and ^ -> q^ GJI. Ifj&o? ^0 e C^ we have rf = d^p^ q^ > 0, and we are done. Suppose
by way of contradiction that this is not the case. Then, RQ, q^ eLoo = CP(2) — C2,

because (d^{p^ fn))n^.i
 ls bounded. This implies also that lim^oo 8(p^y y j = + o o

and therefore p(^o? fo)
 == 0, and po = ^o, a contradiction. This proves the assertion.

After a rotation and a translation in C2 we can suppose that PQ == (0, 0) and

q^ == (0,^0)5 \VQ | == ^- Suppose first that j&o ls not a singularity of ^r. Let Lj^ and Lg
be the leaves of ^ through po and qo respectively. Since d = ^(-^', F) = rfg(^o3 ^o)?
the^-axis is normal to Li at po and to Lg at qo. This implies that we can parametrize Li

and Lg locally asj/ ==ji(^) andj^ ==y^{x) respectively, where y^ andj/g are analytic in
a disc D == { x; \ x \ < s }. Let 9 : D -> R be defined by <p(^) = log \y^{x) —^[x) |.

Since d == d ^ J K ' , F) > 0, we have \y^{x) —y^x) \ ̂  dfor all A: e D and |j^(0) —j^i(O) | = d.

This implies that 9 is a harmonic function in D with a minimum at x == 0. Therefore

9 = d in D, andj^(^) ==J/l(A:) +J^o f01' a^ ^ eD. By analytic continuation, it follows
that L2 n C2 = T(Li n C2), where T[x,y) = [x,y +j^o)- From Proposition 1, it follows
that there exists a sequence q n = ( x ^ ^ y ^ ) eLg such that x^ -> oo. The sequence

Pn == (^J^n -J^o) is in Li and d,{p^ yj = [^ |. It follows from (4) that p(^, yj -> 0,
and so Li n c^ + 0. Since Li C L, we also have L n ^K + 0, a contradiction. •

There is a case where we still have L n ^K 4= 0 even if L n sur^e^) 4= 0? namely
when the following condition holds: (*) whenever a singularity of y belongs to L, at least

one of its local separatrices is contained in L as well (a local separatrix of po e sing(^") is an

analytic immersion s: D* -> CP(2) such that s(D*) is contained in a leaf of ̂  and lim^ ̂  s{t) = po).

In order to prove this, let us keep the notation of the above proof, but this time

assuming that po e F n sing(^).



MINIMAL SETS OF FOLIATIONS ON COMPLEX PROJECTIVE SPACES 191

Observe that thej^-axis is normal to Lg and ^05 ^d so Lg can be parametrized

locally asj^ =jg(^), wherej^O) =J;o9J/2(0) == 0- From the hypothesis, L contains some
local analytic separatrix ofj&o, say S. This separatrix has a Puiseux's parametrization

of the form (B(T) = (T^T)), | T | < s, where j^(T) = T^T), a(0) =1= 0, m, n^ 1.

Consider the harmonic function

<p(T) = log^CP^T)), (T^T-)))) = log I^CP1) -^(T) |.

As before, 9 has a minimum at T = 0, and soj^T") =j^i(T) + j /o , |T |<e . This

implies that the parametrization ofS can be written as T h-> (T^j^T") — jo). Since the

Puiseux parametrization is injective, it follows that n = 1 and (B(T) = (T,j^(T) —j^).

From this and analytic continuation, it is possible to construct sequences p^ = (A^,J^) e L^

and ^ = (A^,J^ +J\)) eL2, where lim^oo x^ = oo and L^ is the leaf of ^ which

contains S. As before, this implies that L n ̂  =h 0. •

Condition (*) is satisfied, for example, when any singularity of ̂  has, as linearized

equation (in suitable coordinates), the 1-form

\x dy — [Ly dx == 0

where X. (A =(= 0 and X/(JL ^ R. In this case we say that the singularity belongs to the Poincar^

domain. In fact, in this situation (which is frequent as we will see in a moment) we have

a slight improvement.

Proposition 2. — Suppose all singularities of 3^ belong to the Poincare domain. Let L»i and Lg

be non singular leaves of y\ then L^ n L^ =t= 0.

In particular, if there is a minimal set J( for ^ (which is unique), then any non-

singular leaf accumulates on it.

Before closing this Section, we discuss briefly how to introduce a topology in the

space SC of foliations of CP(2) (see [5]). In this topology, 3£ is the disjoint union of

connected components 2K'„ containing the foliations of degree n e N. The degree of 3^ e SE

is the number of tangencies of y with a generic complex line of CP(2). In affine coor-

dinates, y e X\ is written as

P dy — Q^dx = 0

where P = Po + PI + ... + P^ + ̂ , Q= Qo + Qi + • • • + Qn +^; Pp Q.,,
0 < j ̂  n, are homogeneous polynomials of degree j e N, and g is a homogeneous poly-

nomial of degree n. A neighborhood of 3^ in 3E'„ contains the foliations, whose equations

involve homogeneous polynomials with coefficients close to the ones of y.

It is not difficult to check that the subset 8ft ̂  C 3K\ of'foliations, all of whose singularities

belong to the Poincare domain, is an open dense subset of 3K\. The local topology of ^ e 8ft ̂

sit p e sing(^') is such that the leaves cross transversely any small sphere placed around

^eCP(2).

Proposition 3. — The subset of foliations of 8ft ̂  without nontrivial minimal sets is open

and nonempty.
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2. Growth of the leaves of minimal sets

Let us now introduce the Fubini-Study metric in CP(2), namely

^ ̂  | dx |2 + | dy |2 + | x dy -y dx |2

(1 + | X |2 + \y | 2 ) 2 •

What makes it particularly interesting is that the associated 2-form

JQ ̂  ^ d x A d x + d j y / ^ d j y + (x dy — j d x ) A (a; dy —y dx)

(1 + | X |2 + |j |2)2

is given by the formula

Q=i88log{l + |^ |2+ j^ |2 )

and the area of a standard domain D C F (F is a leaf) is

W^-! ^.
•<7tJD

Let us define a = - 8 log(l + | x |2 + |j» |2), so that Q = i 9a.

Suppose there is a minimal set ^C CP(2) of ^ and assume that

(y,J) =(0,oo) eCP(2)

does not belong to J(. The first projection p{x,y) = x induces on E = CP(2)\(y,J)

the structure of a fibre bundle over CP(1) = (J^O). Without loss of generaUty'we

can assume that the fiber through x == oo, y == 0 is transverse to Ji.

Let 7) =
 8y (o) dx be defined outside the algebraic curve Q,(A-,J»O == 0.

Lemma. — T = or + T] is a well defined \-form on E\{(a-,j>) eC2; f{x,jy) == 0}.

Proof. — Consider the 1-forms

s^-aiog^+l^+H^ ^=^(L\du, y=y+^

where P, Q,are as in (3) (remember that (1) changes to (3) under

G{x,y) ==(«,») ={lfx,^x)).

Let us prove that G*? = T. Since 3' = - 8 log(l + | u [2 + | y |2), we find that

p*~ dx ,
(j (T = — + (T.

A;

Also

~ _ i FP(I/«,P/») -Q,(l/«,p/«)1
^l uP(llu,vlu) \

ih,9^]^^^_^(Q^A\^
8v[u uf{x,^\ u u8v[f{x,^fdtl'
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SO that

G^-^-^V-^
x ^ \PA x

'!
dx 8 /Q\ dx

= — — + — — \dx=— — + n.
x 8y \P ] x '

Therefore G*Y= r. •

Suppose now tha.tp == (^o,j»'o) e E is a point where P(A'o»-?'o) = 0 an(! Q^o^o) + 0-
The leaf F through p can be written locally as the curve

00

x - XQ == S a^y -yo)\ a^ + 0.
j=m

Definition. — The integer 0(F,^) == m — 1 eN is the order of tangency of F with

the fiber of E through p e E.

/< is easily verified that

O(F^) =-Res(Yj|^).

Consider now a standard domain (in the sense of Whitney) DC F; assume that

all points p^ ... 5 ̂  of tangency between D and the fibers of E lie in int D and assume

that none of these points belongs to the fiber x = oo.

The following result plays the same role in our context of the First Fundamental

Theorem in Nevanlinna's theory for analytic curves in projective spaces.

Theorem. - A(D) == — f T - S^, 0(F ,̂).
47C JBD

Proof. — The formula is a consequence of Stokes9 Theorem. Consider small

discs DI, . . . 3 Dfc contained in D around the points p^, .. .,^$ we then have

f . T = f . ^
^(D\UJLiDy) JD\U^iDy

or I ^ T == f T — S f T, where £)= D\ U D,.
J6 J s D ^-iJaD, ^==1

Since T = (T + T], we get rfrjs == ^[5 == - Q|g and A(t)) = — f a|p=— f rfr.
t 47TJD ^JD

From the above Definition it follows that

f T = f CT - 27TZO(F^,).

J 8 Dy J a Dy

Therefore

A(£>) = - f T - S — f a - S 0(F,/>,).
^TT J a D 3 = 1 47W J a D. "̂ == 1

25
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As D, ->pj we get:

A ( D ) - f T- S 0(F,^,). •
^JSD 3-1

Remark. — We can apply the above formula to show that there are no compact

leaves. Indeed, if F is a compact leaf, it has to be a smooth algebraic subvariety ofCP(2)

(otherwise its singularities would also be singularities of the foliation). Now we just
consider D == F in the formula and get A(F) < 0, a contradiction.

Let us now proceed to prove the growth property for a leaf F contained in the
minimal set J(. Consider the function

y(r) = A(D,),

where Dy is the disc of radius r > 0 centered at some fixed pointy e F. According to [6]
it is enough to show that

lin,inf̂ >0.
r—— A(D,)

where f(8 Dy) is the lenght ofDy and the variable r e R^. avoids a countable subset ofR.
Let

 {Ps }?=i be th
^ set of tangencies of F with the fibers of E. Since mtJK == 0,

we may assume, without loss of generality, that

(a!) {Pi}^i n E^ = 0, where E^ is the fiber x == oo,

(ocg) 0(F,/^) = 1, 1 <:j< oo (which simply means that F crosses P(A?,J^) == 0 at smooth
points).

We may then choose closed discs F 3 D, a p , such that

(03) D ,nD,=0 i f z + j ,

(aj D, n E^ = 0, 1 ̂  i < oo,

(ag) each D,. projects univalently onto a disc £), contained in the fiber of E through p^
^

with radius _ ^ ^ < 8, where 5 e R will be chosen below.

Now, take a sequence ^ -> oo such that B D^ n (E^ u {j&, }^Li) = 0, % == 1, 2 ...
From the Theorem we have:

A(DJ+ S 0(F,/>,)
DyCintD^

Let us set

= — f T + — s f T- S 0(F,^).
^7r •/aD^\UyDy ^^; 3'JaD^nDy+0 DynaD^+0

B,= S [O(/ , />,)+—f J
^'GNi L ^TTZJaD-nD. J' 8 D^ n Dy

and €„ = S 1 fn = ^ 9— 7)?
JGNa ^U^D^nDyJGNo ZTTZ J i
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where N3. = {j e N; D, n D^ + 0 and j&, e int D^ } and N3 = {j e N; D, n a D, =f= 0
and^. ^intD, }. It follows that

(*) A(DJ+ S 0(F^,)+B^+G^
»y e int D^

=-[f .-sf 4
^TC UaD^\UyDy 3 JDjH^D^+0 J

Lemma. — For 8 > 0 (̂  condition (a^) flioy^ jwa^ enough, we have Re B^ ̂  0 ̂

Re €„ ̂  0.

1 r 1 r
Proo/. — We have to look to 0(F,^.) + —: T] == —; -- ̂

2m J Q D^ n Dy STCZ J (^^ ̂

FIG. 1

The disc D^ can be parametrized byj/^ (^(j),j^), where y e £),. (see (ag) above).

Let/(jQ == ~^(^)^) ==/(^),j0. Thus

r r 0A; ^ r l y ^— T ) = — ^ A ? = - —dy
J(b,a) J(b,a) ̂  J(b,a) f ^

-f ^K^^)^)^
J(b^f V

where (?, S) C 0f)^ Now, if^, = (^J^)? we have

1 0/ 1

J 8y {xu)^ ^T^y, + ̂ {x "" XJ^ "~^)5

where | y/A? — .v,,^ ~-^) | ^ 2^ (y > 0) for all j e N provided that 8 > 0 is small

enough. It follows that

I f 1 r
^o.-L ^~-^^^^)^^9- \(?,\\dy\^^(b,a),

^7n J(b^) ^J(b,'a)
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where l{b, a) is the length of (b, a) (see Figure 1), and

Re
^I f _ 1 f

2^L-^Re^i27riJ(6.a) 2wJ^^^—J,

= 9(6, 2) - Y^, a),

- Y^, 2)

where Q{b, a) is the angular variation from b to a in the positive sense. Finally we see
that, for 8 > 0 small enough,

R e — f -^0,
^7n •/(&,(»)

so that B^ 0.

Similarly we can prove that €„ ̂  0.

Now it is easy to see that there exists c > 0 such that

IaD^\UyDy

T <^(DJ

^̂ JDand a ^./(DJ,s
| •' ^ Dy <-> 8 Dy, * 0

so that from (*) we find

2c
A(D,,) + 20(F,/>,) + Re B» + Re G, ^ ^/(B DJ,

which implies

li.ninf'-̂ O.
fn^00 A(Dy^D.,)

Another proof of the growth property follows (see [7]) from the next

Theorem 2. — Let ^( be a nontrivial minimal set of y. Then there is no ^'transverse

invariant measure with support on e .̂

Proof. — Suppose on the contrary that v is such a measure. Then this implies the

existence of a current ^ associated to e^f with the following property:

Given a local chart of ̂ , (U, a), where a : U -> C is a distinguished map, there

is a measure v^j on a(U) = plaque space, such that for any differential form <x) with
support in U

(5) <0) ,^>=J^O))^(7r) ,

where TC denotes a plaque of (U, a).
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We define the asymptotic Chern class of^ as follows: Let (U,., a,)^ be a covering

of^ by local charts of ^ and (U,., 9,.) a partition of unity subordinated to the cove-
ring (U^). Then

(6) c^) = S f (f 9,W ©^, a,)) ^.(Tr),c{^) =2. 9,W (̂ , a,) d^W
^°lJay(Uy)^=1 •/a.(TL-) WIT /

where .̂ = v^. and © is the curvature form associated to a connection V on the normal

bundle N(c^) to the foliation restricted to Ji.

It can be verified that c{^K) is independent from all the choices. Now, given any

section X ofN(^) such that on each leaf its zeros form a locally finite set in the topology

of the leaf, we can define an index Ind(X,c^) as follows. As before, cover ^K with a

finite number of charts of < ,̂ (U,, a,.), and suppose that: (a) the foliated part of 8V j

does not meet ̂  and the vertical part of 8\Jj does not meet Zer(X, ̂ ), the set of zeros

of X. (b) 9, = 1 on Zer(X,^) for all j = 1, ..., N. Then

Ind(X,̂ ) = S f 7i(X, 9,, TT) rfv,(7r),
^l Jay(Uy)

where n(X, 9,, TC) == S 9, (A?) Ind(X, x).
x e Zer(X, 7t)

Now, we prove that

c{J(} ==Ind(X,^).

In fact, let NQ = N(M)\zero section and p : N@ -> ̂  the fiber projection restricted

to NQ. Then there exists a form ^ on N@ such that i) p*(Q) == d^ and ii) if ^ : N@ -> N
is the injection of the fiber Ng then z^(^) is a generator of ?(N9 ). So if DC TT^ is a

small disc contained in the plaque ofx centered at x, then we have Ind(X, x) == | X* ^.
.̂. ^ J 3 D

Therefore,

Ind(X,^)= S (f 9/X^))^)
^l Way(Uy) /

= S f [ f ^9, A X*4/ + f 9 rfX^I ^,(7T)

^iJaydTy) UTT^ JTT^ J

= S f ( f <f9, A X* ̂ ) rfv,(7T) + S f 9© rfv,(7T)

•»' ̂  1 J a;(U,) \J n^ J J=l J a,(U.)•»'- 1 J ay(Uy) \J^ / 3=1 J ay(Uy)

== < S fl?9, A X'18 ^, %' > + c{JK) = c{Ji} since S ̂ 9, = 0.

Now, there are sections of N(e^f) admitting zeros. To see this it is enough to take a linea

vector field on CP(2) such that it is tangent to ^ at some regular point. So c{^K) + 0.

Moreover, since ̂  is embedded in a foliation, the connection V in N(^f) is flat, thus

c[^) == 0 and this is a contradiction.
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3. Hyperbolicity in minimal sets

We proceed to discuss now the construction of metrics which induce negative

Gaussian curvature on the leaves of a foliation of CP(2).

Let y be a holomorphic foliation on CP(2) of degree n ̂  2. As we have seen,

y can be expressed in the affine coordinate system (x,y) == {x \y : 1) by a differential

equation of the form P dy — Q^dx = 0, where P = p + xg and Q,= q 4-J^? P ^d

q polynomials of degree ̂  n and g a homogeneous polynomial of degree n. The leaves

of y \ C2 are defined locally as the solutions of the complex differential equation

(!') ^==P(^), ji=Q(^).

If we set R(A:,J/) =yP{x,y) — xQ^(x,jy) =-yp[x,y) — xq[x,y), then R has degree

< n + I? and the leaves of ^ in the affine coordinate system {v, u) == (1 : u : u), are the

solutions of the complex differential equation

(3') u = P(^.), . = ̂ {u, v),

where P(u, v) == u"4-1 P(I/M, vfu) and d(^ ^) == un+l R(I/M, y/^.

Analogously, the leaves of 3^ in the coordinate system {z, w) = ( z : 1 : w) are

the solutions of the differential equation

(7) z = P(^, w), w == Q(^, w),

where P(^, w) == — ^n+l R(^, 1/w) and Q(^ w) == ^n+l Q(^, 1/w).

It follows that the set of singularities of SF is given by

(8) sing(J?') == { P = 0 } n {Q=0} n { R = 0 }.

Now consider the Hermitian metric in C2 — sing(^) whose associated quadratic

form is

(9) a (1 I M2 I Irl2)"-1 l^+l^+l^-^l2( ) ^ - ( ^ l ^ l+bD |P(^)|^+|Q(^)|^+|R(^)|2'

where C2
 == {{x \y : 1) e CP(2); x^y e C }. It is not difficult to see that the expression

of p. in the coordinate system (1 : v : u) is

do) .-(i+i.i.+i.r).-..-!*'! '̂* '̂'̂ '̂̂ .>- ^ - t - l I - t - l I) ] P(.̂ ) |.+]%(,,,,,) |.+!£(„,,,) ].

Its expression in the coordinate system { z : 1 : w) is analogous. Therefore (JL extends

to CP(2) — su^^) and defines a Riemannian metric in this set. Let us compute the

curvature of [L restricted to a leaf of ̂ .

The leaf of y through po = (^o^o) e C2 can be parametrized locally by

P(T) == (A:(T),j(T)), where p{T), | T | < e, is the solution of (1') such that ?{0) == p^.

The quadratic form induced in L by this parametrization is given by

^ == (1 + 1 x(T) |2 + b(T) I2)-11 dT |2 - <KT) | dT \2
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because ^(T) = P(;c(T)^(T)) and y(T) == Q«T),^(T)). On the other hand, the

Gaussian curvature of L at the point p(T) is given by

K(T) = - -
2
— -a- -1 log +(T).

<j/(T) BT BT

A direct computation shows that

^ ̂  log W = (^ - 1) ̂  ̂  log(l + 1 ^(T) |2 + |j.(T) |2)

^ I ̂ (T) |2 + |y(T) |2 + I ̂ y(T) ~j^(T) |2

^ ; (1+|<T) |2+|J / (T) |2)2

(^ - 1) FOT^(T))
(1+[^(T) |2+|^T) |2)2 5

where F(^j/) = | P{x^) |2 + i Q )̂ |2 + | R(^^) |2.

This implies that K(T) = k{x{T),jy{T)), where

k^y) = - 2{n - 1) F(^^)/(l + | ^ |2 + \y \
2
)^

1
.

Since F > 0 in C2 — sing(^p'), it follows that the curvature of the leaves of 3F in

the metric (JL is < 0. It is not difficult to see that the function k extends to CP(2) —• sing(^),

and the curvature of the leaf L through ?Q e CP(2) — sing^) at ?Q is k{po). From this

argument we obtain the following result:

Theorem 3. — There exists a Hermitian metric in CP(2) — sing(̂ r) which induces

negative Gaussian curvature on the leaves of y. In particular^ if ̂  has a nontrivial minimal set ̂ ,

then any leaf of ̂ K is hyperbolic (in the sense that it is covered by the unit disc of C).

Proof. — Let (JL be the Riemannian metric given by (10). As we have seen, there

exists a function k: CP(2) — sing(<^") -> (— oo, 0) such that the curvature of the leaf

of ^ through p is k{p). Suppose that ^r has a nontrivial minimal set c .̂ Then ̂  is a

compact subset of CP(2) — sing(^). It follows that there are numbers 0 < B < G such

that — G < k{p) < — B for all p e^. This implies that the universal covering of any

leafLC^ is the unit disc ([4]).

4. Consequences of hyperbolicity

In the last section we proved that the leaves of the minimal set Jl of a foliation ^

have strict negative curvature induced by a suitable Riemannian metric in CP(2)\sing(<^').

We are going to explore now some quantitative consequences of this fact.
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The first basic tool is the following (see [4]):

Theorem (Ahlfors). — Let L be a one-dimensional Kaehler manifold with metric ̂  whose

Gaussian curvature is bounded above by a negative constant — B. Then every holomorphic map
9 : D -> L satisfies

,-̂
where ̂  is the Poincare metric of the unit disc D C C.

This result implies the following in our context. Let L be a leaf contained in J{

and y : D -> L a unifbrmization for L. Set L = L n C2; then L is locally parametrized
by the complex time T e C in such a way that

^ = P(^), ^ - Q.(^).

Since

we find

,^-(1+H2 , | |^-x I^+I^+I^-^P

' " " IP^.^+IQ^.^+IR^)!2

,, - ̂  , i^,|,. ,̂ -. (I P I2 + I Ql2 + I ̂ -^P I2) I dT |^
• ' I P ^ + I Q ^ + I ^ Q . - ^ P I 2

-(I +1^|2+|J ' |2)"-1 |<^T|2 .
Therefore

(̂ L<nT=
( l + l ^ l ' + l j l 2 ) " - 1 '

If we consider now T = T(z), where {x,y) = <p(z), we find

dz\
2

mwd.^^^^_^,
so that

T^)|<
^ VB(I - M2)'

(
<a ^ \

We observe that S{z) =9* P — + Q — ) is a meromorphic vector field in D
Bx ^]

with poles at the point (p-^I^L) of order n — 1 e N, if the tangency order of ^ with
the line CP(2)\C2 is n e N, and with no zeros. It follows that

^-nJQ b

is well-defined. We have reached the following conclusion:
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Theorem 4. — The complex time T e C which parametrizes a leaf L ofJK is a multivalued

Block function, i.e.:

1) there exists T : D -> C, a holomorphic function, such that T == T o 9 satisfies

^=P.(^), ^=Q^);

2) sup^gp | T'(;?)| (1 — | z |2) < oo. In fact, the upper bound can be taken as the lowest value

of the curvature of L (in absolute value).

The same inequality as in Ahlfors9 Theorem leads to another interesting conclusion

Theorem 5. — The family of uniformizations of the leaves in the minimal set is a normal

family (according to the topology of uniform convergence in compact subsets).

Proof. — Let y : D -> L be a uniformization for the leafL. Given z^ z^ e D we have

^(9(^1). 9(^2)) < f V^L = f Vy^
J<p(c) J c

< (V:S:^=•K-ll2d^z,),
J C

where cC D is the geodesic from ^ e D to ^ e D, and rf^, rfp denote the distances in L
and D defined by (JL^ and {jip.

It follows that the family of uniformizations is equicontinuous.

A natural question now is: what about the limit functions of this family? Are

they also uniformizations? The answer is positive, but first we have to state a sort of
converse to Ahlfors9 Theorem.

Theorem (Bland and Kalka, see \Y\). — Let T) be a conformal complete metric in the unit

disc D such that — C < ^ < — - B < 0 , where k is the Gaussian curvature of T). Then

^
Let us apply this result to a uniformization 9 : D -> L C ̂ : since the Gauss cur-

vature k of L satisfies — G < ^ ̂  — B < 0, we find

^9W

The uniformization 9 is then a local quasi-isometry, since we have simultaneously

^D ^ »/ \ .. (̂ D

-G^^B"-

26
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Theorem 6. — The family of uniformizations of the leaves of ̂  is a compact family.

Proof. — This is quite simple at this point. Given a sequence <p^: D -> CP(2)

in the family, we may assume from Theorem 5 that <?„ -> 9 uniformly in compact subsets

ofD. Iff == lim^,o ?n(0), it is clear that y maps D into the leafof^ through^ e CP(2).
From

^D. .,, v . ^D
Q < Pn^L) ^ g

we get

^D . *, \ ^ ̂
-Q< 9 (^) ^ g--

Therefore 9 is a local quasi-isometry from D into the leaf, so it is a covering map.

To close this section, we make a last remark. Let <p : D -> L be a uniformization

of L C ̂  and suppose that the fundamental polygon in D has a parabolic vertex a e 8 D.

This means that an angle A of vertex a e () D inside the fundamental polygon has bounded

hyperbolic area, so that the area according to the metric 9*(^i,) ls a^so fi1111^ Thus,

9 (A) has finite p^-area. Since ^f is a minimal set, we find that 9 (A) ==c^. Therefore,

i(p e 9 (A) and R() 9 p is a small region contained in 9 (A), we get, from the local trivia-

lization theorem for foliations, that RQ is accumulated by regions R^C9(A) contained

in different plaques. All these regions have comparable p^-areas, that is

P area(Ro) < area(R^) ^ a area(Ro)

for constants a> 0, P > 0. Therefore 9 (A) has infinite ^-area, a contradiction. We

have proven the following

Theorem 7. — The leaves of the minimal set have no parabolic ends.

M. Gromov pointed out to us that the curvature of the normal bundle to the
foliation ^ is positive. Thus Omen's Maximum Principle [9] may be useful in proving

the existence of leaves with nontrivial holonomy.
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