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Abstract

This paper addresses three questions related to minimal triangulations
of a 3-dimensional convex polytope P .

• Can the minimal number of tetrahedra in a triangulation be de-
creased if one allows the use of interior points of P as vertices?

• Can a dissection of P use fewer tetrahedra than a triangulation?

• Does the size of a minimal triangulation depend on the concrete
realization of P ?

The main result of the this paper is that all these questions have an
affirmative answer. Even stronger the gaps of size produced by allowing
interior vertices or by using dissections may be linear in the number of
points.

1 Introduction.

Let A be a point configuration in Rd with its convex hull conv(A) having di-
mension d. A set of d-simplices with vertices in A is a dissection of A if no pair

∗Several of the results of this paper were obtained by the second author around 1992 but

remained unpublished. Independently, the remaining authors worked on these problems after

several researchers brought them to their attention. Here we present a joint final version.
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of simplices has an interior point in common and their union equals conv(A).
A dissection is a triangulation of A if in addition any pair of simplices inter-
sects at a common face. Following the standard use in the literature (see for
instance [13]), we say that a triangulation (dissection) of a convex polytope P
is a triangulation (dissection) of the vertices of P . Notice that in this defini-
tion no additional points are allowed. In contrast to this, we will be interested
on triangulations of point sets with additional interior points besides those of
P and will called them triangulations of P with interior points. The size of a
dissection is the number of d–simplices it contains. We call a triangulation or
a dissection minimal/maximal when its size is the smallest/largest among all
the triangulations or respectively all dissections. Note that dissections do not
necessarily form simplicial complexes.

In this paper we solve two questions about triangulations and dissections,
and present several relevant consequences:

First, in Section 3 we investigate the behavior of sizes of triangulations under
the addition of new interior points. Independently Böhm [5] and Gritzmann and
Klee [10] raised the issue that it is conceivable that by using auxiliary interior
points the size of a triangulation of the new set of points could be smaller than
a minimal triangulation of the original set. As pointed out in section 8.4 of [10],
this question is relevant in the study of complexity classes of basic problems in
computational convexity. In this article we exhibit a family of 3-dimensional
polytopes that indeed have this property. This behavior is reminiscent of the
fact that adding points can also reduce the size of a Delaunay triangulation
[3, 6].

Second, we show in Section 3 that dissections can require fewer simplices
than triangulations. We show that a linear difference between the size of a
minimal triangulation and a minimal dissection is indeed possible. The question
whether this could happen had been raised several times [5, 7, 12, 10]. The
solution of the questions depends on two simple geometric lemmas that will be
useful throughout the paper. They are proved in Section 2. The main results
of Section 3 can be stated as follows:

Theorem 1.1 There is a family of simplicial convex 3–polytopes Pm with the
following properties:

1. all triangulations of Pm are larger than a triangulation with one interior
point. This gap can be linear.

2. all triangulations of Pm are larger than the minimal dissections of Pm.
This gap can be linear.

Moreover, the approximate shape of the polytope can be prescribed.

Theorem 1.2 1. Given three numbers h0 ≥ 1, k ≥ 1, ε > 0 and a convex
body K ⊆ R3 there is a simplicial convex 3–polytope P with δ(K, P ) < ε
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(Hausdorff distance) such that every triangulation of P has at least k tetra-
hedra more than a triangulation of P with h0 suitably chosen additional
interior points.

2. For a 3–polytope P , if adding n′ new interior points allows for a smaller
triangulation than a minimal triangulation of P , then n′ < ei where ei is
the number of interior edges in a minimal triangulation of P . In particu-
lar, it is impossible to have such behavior for 3–polytopes whose minimal
triangulations use one or no interior edges.

A famous open question in computational geometry asks for the computa-
tional complexity of finding minimal triangulations of convex polyhedra [2]. A
related problem is whether the smallest size of a triangulation of a convex poly-
tope is a determined from the face lattice or if it can change with the coordinates
(see [8]). We present the negative answer in Section 4.

Theorem 1.3 The minimal size of a triangulation of a convex 3–polytope is
not an invariant of the face lattice. There is a simplicial 3-polytope with 10
vertices for which the minimal number of tetrahedra possible in a triangulation
depends on its coordinates. The example is smallest possible in dimension and
number of vertices.

2 Two useful lemmas.

The following elementary formula shows that many of the arguments about the
number of tetrahedra in a triangulation can be reduced to study the number
of interior edges. Similar formulas have been written already many times in
the literature (see for instance, Lemma 2.1 in [9] or [16]). The proof is a simple
application of Euler’s formula for triangulated 2-spheres and 3-balls and we omit
the easy details.

Lemma 2.1 Let P be a 3-polytope with n boundary vertices and n′ interior
auxiliary vertices. For a triangulation T of P that uses the n′ interior points
the number of tetrahedra in T , denoted #T , is related to the number of interior
edges ei of T by the formula:

#T = ei + n− 3− n′.

We now present a lemma that showcases the main non-trivial effect we will
use in all the examples. The lemma shows that a certain substructure in the
face lattice of a polytope forces certain interior edges to appear in triangulations
of sufficiently small size.

Lemma 2.2 Let P be a convex 3-polytope, that contains the following collection
of triangular facets: (a, qi, qi+1), and (b, qi, qi+1) for i = 1, . . . , m−1 (see Figure
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Figure 1: The key structure of Lemma 2.2
.

1), with the additional restriction that conv{q1, qm} goes through the interior of
P .

Then for each triangulation of P that does not use the edge ab the number
of interior edges ei is at least m− 2.

Proof: Since conv{q1, qm} is in the interior of P , we obtain the following simple
fact: For all |i − j| ≥ 2, if qiqj is an edge of a triangulation, it will be also
an interior edge. The proof of the lemma proceeds by induction on m. The
property is satisfied for m = 3. We can assume that all vertices qi, with 2 ≤
i ≤ m − 1, are incident to at least one interior edge of the triangulation T .
Here are the reasons: (1) A qi untouched by an interior edge belongs to the
tetrahedra σi,a = (a, qi−1, qi, qi+1) and σi,b = (b, qi−1, qi, qi+1). This is because
the triangle (a, qi, qi+1) is in some simplex, and if the fourth point is some other
vertex besides qi−1 or b we have an interior edge touching qi. Furthermore the
fourth point cannot be b since in this case the edge ab would be present. (2) By
chopping off these two tetrahedra together with the vertex qi (i.e. considering the
convex hull of all of P ’s vertices except qi) we can apply induction to guarantee
that the remaining triangulation T \ σi,a, σi,b has at least m− 3 interior edges.
Together with the edge qi−1qi+1 they amount for m− 2 interior edges in T .

Following the above assumption, we set up a one-to-one map from the set
{q2, . . . , qm−1} to a subset of the interior edges that touch them: The vertices
qi come along a polygonal curve in a canonical order which is reflected by their
indices. We mark and orient the interior edges qiv that touch a vertex qi as
follows: If v 6∈ {q1, . . . , qm}, we call the edge qiv special, otherwise we orient it
from smaller to larger index. For the vertices qi with special edges incident to
them, we map qi to one of those. If a vertex qi has no special edges, but has
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outgoing interior edges, we map it to the outgoing edge qiqk with the smallest
index k. We are left with the case of those qi that have only incoming interior
edges incident to qi. Consider the triangle aqiqi+1. It has to be in some tetrahe-
dron of T whose fourth point is bound to be a qja

with ja < i. Likewise bqiqi+1

is in a tetrahedron with fourth point qjb
with jb < i. If both ja = jb = i − 1,

there can be no interior edges incident to qi (see above), a contradiction. Let j
be any of ja, jb such that j < i− 1. Map qi to qjqi+1.

We claim that the given map is one-to-one. If some vertex qi maps to the
special edge qjv, then necessarily i = j. There are potentially two vertices that
can be mapped to an interior edge qjqk with j < k: qj when qjqk is the chosen
outgoing edge of qj and qk−1, in case qk−1 has only incoming edges. In the latter
case one of the tetrahedra (a, qj , qk−1, qk) and (b, qj , qk−1, qk) has to be in the
triangulation, and qj will be mapped to the smaller indexed edge qjqk−1. This
is an interior edge since j < k − 2, so qj cannot also be mapped to qjqk. The
injectivity of the map is proven.

Roughly speaking the main use of Lemma 2.2 is the possibility to force
the occurrence of many interior edges when other interior edges are absent.
Our solutions of the open questions rely on a combination of this effect with a
famous example, that appears in many textbooks of discrete and computational
geometry, Schönhardt’s example of a non-triangulable non-convex polyhedron
(see [13, 14, 15, 17, 18]). The example, obtained from “twisting” a triangular
prism, has the property that cannot be triangulated nor dissected unless we
add a new point and then the triangulation is unique. A variation of the same
example is a triangulation of the boundary of a triangular prism that chooses
boundary edges in a “cyclic” manner. Such boundary triangulation cannot be
extended to a triangulation of the whole convex hull.

3 Adding points or dissecting can reduce the

size.

Proof: (of Theorem 1.1) Consider a triangular prism with bottom triangle
(A1, A2, A3) and top triangle (B1, B2, B3) where both triangles are identical,
parallel, equilateral, and vertex Ai lies directly below the vertex Bi. Denote by
ni,j the inner normal to the quadrilateral facet (Ai, Aj , Bi, Bj) (see the figure
below for a description). In each of its quadrilateral facets we will put m points
following a diagonal AiBj but slightly lifted to be in a parabola. The points
we add will have coordinates along three parabolic curves C1,2, C2,3, and C3,1.

For the definition of these curves let p(λ) = (λ− 1/2)2 − 1/4, and ε > 0 a very
small number.

C1,2 = λA1 + (1− λ)B2 + εp(λ)n1,2,
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Figure 2: The polytope Pm and its Schlegel diagram.

C2,3 = λA2 + (1− λ)B3 + εp(λ)n2,3,

C3,1 = λA3 + (1− λ)B1 + εp(λ)n3,1.

Note that the curve Ci,j joins the vertices Ai and Bj . The pattern of the
curves follows cyclically arranged diagonals as in the case of Schönhardt’s poly-
hedron. Take m points along each of the curves C1,2, C2,3, C3,1 that we de-
note by q1(Ci,j), q2(Ci,j), . . . , qm(Ci,j). We will take those points such that
all the triangles (qk(C1,2), B2, B3) are pierced by the edge B1A2, the triangles
(qk(C2,3), B3, B1) are pierced by the edge B2A3, and similarly the triangles
(qk(C3,1), B1, B2) are pierced by the edge B3A1. These piercing conditions
are easily achieved by accumulating the points low enough toward the trian-
gle (A1, A2, A3). We observe that the sequences of points produce, when taking
the convex hull, 2(m + 1) triangular facets, m + 1 on each side of the diagonal.
This is exactly the situation of Lemma 2.2. The resulting 3-polytope, containing
3m + 6 vertices, will be denoted by Pm. The polytope Pm is the union of the
original prism with three “caps” placed on top of the quadrilateral facets. We
show in Figure 2 the case for m = 5.

Now we construct a triangulation Tv of Pm that uses an auxiliary interior
point v within the prism conv(A1, A2, A3, B1, B2, B3). At each cap of the poly-
tope Pm we triangulate in a “stacked” way, namely by choosing the tetrahedra
of the form (qk(Ci,j), qk+1(Ci,j), Bi, Aj). For each curve Ci,j we get m + 1
tetrahedra. Complete the triangulation by coning from v to the eight trian-
gles that triangulate the boundary of conv(A1, A2, A3, B1, B2, B3). We have a
triangulation, using the interior point v, with 3m + 11 tetrahedra.

We now construct a dissection D of Pm. We do not use any interior points.
Triangulate the three caps as before in a stacked way, then for the interior of the
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Figure 3: A twisted version of Pm, based on Schönhardt’s example.

prism triangulate arbitrarily. All triangulations of the prism are combinatorially
the same and have three simplices. The dissection D has size 3m + 6.

From Lemma 2.2 we have that triangulations that do not use all the edges
B1A2, B2A3, or B3A1 will have at least m interior edges (note, we apply the
lemma with m + 2 points). In this case Lemma 2.1 implies that the number of
tetrahedra will be at least 4m + 3. On the other hand, we claim that it is im-
possible to have a triangulation that uses those three edges simultaneously. The
reason is the triangular face (B1, B2, B3), must belong to a certain tetrahedron,
and if the fourth point is along one of the curves Ci,j then, by the piercing
conditions, there is a bad intersection with one of the edges B1A2, B2A3, or
B3A1. Hence, the only hope is that the fourth point is another of the points Al,
but this is impossible in a triangulation as two edges will intersect improperly.
In conclusion, any triangulation of Pm that does not use interior points is larger
than the triangulation Tv and larger than the dissection D for m > 8.

Before we come to the proof of Theorem 1.2, we present some observations
on a twisted version of polytope Pm. We will patch several copies of this new
polytope onto simplicial polytopes when constructing the examples of Theorem
1.2. We start with a triangular prism such that the bottom triangle (A1, A2, A3)
and the top triangle (B1, B2, B3) are equilateral, and their barycenters are verti-
cally on top of each other. The bottom triangle should be somewhat larger than
the top triangle. We twist the top triangle by an angle of α degrees creating a
Schönhardt style non-convex polyhedron. Then we patch the sides again with
copies of caps used in Lemma 2.2. We call the resulting convex polytope Pm,α.
Therefore the original example Pm of Theorem 1.1 is isomorphic to Pm,0 (see
Figure 3). The copies will have again the points qk(Ci,j) close to the bottom
triangle to guarantee the piercing conditions as in the proof of Theorem 1.1.
The number ε should be small enough for the points qk(Ci,j) to lie vertically
above the bottom triangle. By vertically above (below) we mean that a line
going vertically down (up) from any of those points pierces (A1, A2, A3).

When the angle α is greater than zero, we are in the situation that the
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dissection D we described becomes impossible, but one can still use an interior
point v to create a triangulation Tv with an interior point, smaller than any
triangulation of the polytope. The proof is identical as the one we discussed for
Theorem 1.1.

An important difference from the example of Theorem 1.1 is that now the
set of possible interior points v to construct Tv is restricted by the twisting
angle α: We call the set of visibility of Pm,α all points p which are below the
plane spanned by the top triangle and satisfy the following condition: The
tetrahedron spanned by B1, B2, B3, and p does not intersect the edges B1A2,
B2A3, or B3A1. It is easy to check that the set of visibility is the union of
four sets (see Figure 3): The tetrahedron S0 bounded by the planes B1B2B3,
B1A1B3, B2A2B1, and B3A3B2; the cone S1, with apex B1 lying between the
planes B1B2B3, B1A1B3, B1A3B2; as well as the analogous cones S2 and S3

with apexes B2 and B3. The reason we want the piercing conditions is exactly
to avoid this set of visibility.

By symmetry, the three planes B1A1B3, B2A2B1, and B3A3B2 intersect
in a point p which lies on the vertical line connecting the barycenters of the
bottom and top faces. If the twisting angle α = π/3, then p is the intersection
of edges B1A2, B2A3, and B3A1. By continuity of a rotation, if α = π/3 − δ
for small δ > 0, the point p is still above the bottom triangle. Therefore S0 has
no points vertically below (A1, A2, A3). Note that the sets S1, S2, S3 do not
contain points vertically below the bottom triangle.

In conclusion, for a suitable twisting angle α the polytope Pm,α will have
four properties: (1) it contains only points in and vertically above its bottom
face, (2) there are no points of visibility vertically below the bottom triangle,
(3) inside Pm,α there is a point which can “see” the top and (by an analogous
argument) the bottom triangular faces, and (4) a new auxiliary interior point
v used in a smaller triangulation Tv must lie strictly in the set of visibility of
Pm,α.

Imagine now a polytope Q, with facet (A1, A2, A3), lying vertically below
this facet. Then Q ∪ Pm,α is a convex polytope. There is a triangulation of
Q ∪ Pm,α using an interior point in Pm,α which does not use A1B3, A2B1,
A3B2, but there is no such triangulation if we do not allow extra interior points
within Pm,α. Via a projective transformation we can transform any polytope
Q′ with a specified triangular facet (A′

1, A
′

2, A
′

3) to such a polytope Q. We can
even arrange for the preimage of Pm,α under this projective transformation to
be as “flat” as we want it to be. Hence we can patch arbitrarily flat isomorphic
copies of Pm,α to any triangular facet of Q′ still obtaining a convex polytope.

Proof: (of Theorem 1.2 part (1)) Approximate the convex body K with a sim-
plicial 3–polytope, with at least h0 facets, Q0 that is close to it in the Hausdorff
distance (see [11] for references on approximation by polytopes). On h0 of the
triangular facets of Q0 we stack polytopes Y0, Y1, . . . , Yh0

where each Yi is an
isomorphic copy of a polytope Pm,α and Q1 = Q0 ∪Y1 ∪ Y2 ∪ . . . Yh0

is a convex
polytope still ε-close to K. This stacking procedure is possible by the above
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discussion.

If one triangulates Yi with an interior point that lies in its visibility set one
finds a very small triangulation, but the auxiliary point is forced to lie in the
visibility sets by construction of each copy Yi. Moreover, the visibility sets of
different Yi, Yj are disjoint from each other and from Q0. The rest of Q1 is
the original polytope Q0 that triangulate minimally. Thus if we add h0 points
to the interior of Q1 we can produce a triangulation that has at least k fewer
tetrahedra than the minimal triangulation of Q1 without new points, since for
large enough m we can surpass any value k we are given.

Proof: (of Theorem 1.2 part (2)) We use the equation #T = ei + n − 3 − n′.
from Lemma 2.1 where #T denotes the number of tetrahedra in T , n (n′) equals
the number of boundary (interior) vertices, and n′ = 0 before we add interior
points.

If using the n′ interior auxiliary points reduces the size of the triangulation,
then we get the inequality e∗i +n−3−n′ < ei +n−3, where e∗i is the number of
interior edges in the new triangulation T ′ that uses interior vertices. Notice that
since every interior point is in at least 4 interior edges, 4n′ ≤ 2e∗i . In conclusion
n′ < ei. The rest of the statement follows immediately.

Note that if in the triangulation Tv of Theorem 1.1 we take the new point
v not in the interior of Pm, but rather on the relative interior of (A1, A2, A3),
then there is a bigger difference between the size of Tv and any triangulation
of Pm because there are at least three fewer interior edges. Hence we conclude
that triangulating a convex polytope using new auxiliary boundary points can
result on smaller triangulations as well. It is natural to ask what happens when
we add points in the exterior since we have looked at adding the points at the
interior or the boundary of the polytope. The following proposition summarizes
the answer:

Proposition 3.1 There are polytopes whose minimal triangulations are larger
than the minimal triangulations of the new polytopes obtained by adding a new
exterior point, this gap can be linear in fixed dimension three or even grow
exponentially if we allow the dimension to grow.

Example 3.2 Take an m-antiprism with vertices {(cos(2iπ/m), sin(2iπ/m), 0),
(cos((2i + 1)π/m), sin((2i + 1)π/m), 1) : i ∈ {0, . . . , m− 1}. It is a polytope in
R3 having 2m vertices. A minimal triangulation has cardinality 3m−5 (see [8]).
Adding a new vertex (0, 0, M), M large enough, makes the polytope stacked,
having minimal triangulation of cardinality 2m− 2 (see Figure 4).

Take a d-dimensional crosspolytope (d ≥ 4) with vertices {ei,−dei : i ∈
{1, . . . , d}}. By calculating the volume of the d-simplices of a crosspolytope
with vertices {ei,−ei : i ∈ {1, . . . , d}}, it can be seen that all triangulations
have cardinality 2d−1. Adding a vertex (d/(2d − 1) − ε, . . . , d/(2d − 1) − ε)
with ε > 0 small makes the polytope stacked, having minimal triangulation of
cardinality d+1. The same effect can actually be achieved using 0/1 coordinates.
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Figure 4: 4-antiprism (left) and the stacked polytope with a new vertex (right)

4 Minimal triangulations and coordinate changes.

In [8] the question was raised whether the minimal triangulation could be an
invariant of the face lattice. We present the smallest example with variable size
of minimal triangulation. This implies that any algorithm to compute minimal
triangulations of 3–polytopes must take into account the coordinates of the
polytope, not only its face lattice.

Proof: (of Theorem 1.3) The example is given by the 3–polytope with 10 vertices
shown in Figure 5. The polytope is made by superimposing two copies of the
combinatorial structure used in Lemma 2.2. If the points A, B, C, D are
coplanar then one of the edges AB or CD cannot be in a triangulation at the
same time. Hence by lemmas 2.1 and 2.2, any triangulation has at least 10
simplices.

On the other hand, one can arrange the z-coordinates of A, B, C and D in
such a way that the edge AB is above the edge CD. This way it has a unique
minimal triangulation with 9 simplices (A, C, D, H), (A, B, C, D), (A, B, E, F ),
(A, B, D, E), (C, D, I, J), (A, B, C, G), (C, D, H, I), (A, B, F, G), (B, C, D, J).
The triangulation above is possible since the tetrahedron (A, B, C, D) exists and
does not intersect the other simplices.

The fact that this example is minimal in dimension and number of vertices
is a consequence of the following lemmas:

Lemma 4.1 If a triangulation T of a 3-polytope P uses at most one interior
edge, then for any polytope P ′ with the same face lattice, the set of simplices T ′

corresponding to T is still a triangulation.

Proof: We have to show two things: First, that T ′ still defines a simplicial
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Figure 5: a view of the polyhedron with variable minimal triangulation.

complex, i.e., the tetrahedra of T ′ are all full-dimensional and intersect properly.
Second, that all points of P ′ belong to one of the tetrahedra of T ′.

Changing the coordinatization of P to the coordinates of P ′ while maintain-
ing the face lattice gives us a bijection f of the vertices of P and of P ′. In our
proof we refer to the vertices of P ′ by primed letters, e.g., f(v) = v′ for v a
vertex of P . The bijection f can be canonically extended to map T to T ′, or,
for that matter, (abstract) faces of simplices in T to (abstract) faces of simplices
in T ′. Note that interior edges in P are always mapped to interior edges in P ′,
and that edges on the boundary will stay on the boundary. For the proof of the
lemma we will use that the vertices in P ′ lie in convex position and that the
simplices in T ′ use at most one interior edge.

We prove now that the tetrahedra of T ′ are all full-dimensional. Any simplex
in T ′ uses at most one interior edge. It has therefore vertices v1, v2 and v3

which are connected by edges which lie on the boundary. If the fourth point
had collapsed into a coplanarity with the other three points, it is forced, by v1v2,
v2v3, v1v3 being boundary edges, to lie in conv(v1, v2, v3). This contradicts its
being in convex position. Hence all simplices of T ′ are full-dimensional.

Suppose two simplices in T ′ intersect improperly; that is, not in a common
face. Such a bad intersection occurs if a pair of faces of T ′ forms a new min-
imal Radon partition (their relative interiors intersect) or in oriented matroid
terminology a circuit [19]. In three dimensions the only five possible circuits are
presented in Figure 6. Obviously, the cases (A), (B), and (C) change the face
lattice when they occur because a vertex becomes an interior point.
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Figure 6: Possible bad intersections of faces of tetrahedra.

Consider now the pair of edges related to case (D). At least one of them
is exterior since we only have one interior edge inside T . Their intersection
point is therefore on the boundary of P ′. Hence both edges have to be exterior
edges lying in a common two-face of P ′. This implies that their preimages in P
already intersected improperly which is impossible since T was a triangulation.
Case (D) is forbidden.

For case (E) note that if the edge a′b′ intersects the triangle (x′y′z′) in P ′,
then a′b′ is interior; leaving the other three edges x′y′, x′z′, y′z′ to be exterior.
This is also true for their preimages. This forces that, for the old coordinates
when relint(ab) and relint(xyz) were disjoint, the vertices a, b were in the same
side of the hyperplane spanned by x, y, and z; otherwise one of the edges xy,
xz, yz is also interior. Finally, the vertices x, y, z form a cut of the graph of the
polytope because their edges are all in the boundary. But then the face lattice
was changed when going from the old to the new coordinates because the cut
leaves the points a, b on the same side of the hyperplane but later they lie on
opposite sides.

We have shown that the simplices in T ′ form a simplicial complex. Finally,
we show that every point of P ′ belongs to one simplex of T ′. Denote by |T ′| the
point set

⋃
σ′∈T ′ σ (similarly for |T |). We can assume the bijection f is extended

to a one-to-one point map f : |T | = P 7→ |T ′|, and it can be made continuous,
e.g., by taking the canonical affine map on each simplex given by the values of
the vertices of that simplex. Note that the boundary of P is mapped bijectively
to the boundary of P ′. If there were points in P ′ which are not any simplex
of T ′, they have to be in the interior of P ′. Hence, the set of all those points
equals int(P ′) \ |T ′| which is an open set. Actually, so is int(P ′)∩ |T ′| since the
boundary of |T ′| is by continuity and bijectivity of f the boundary of P ′. This
would imply to have a partition of int(P ′) into two open sets which contradicts
the connectivity of int(P ′) in a topological sense. This concludes the proof of
the lemma.
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Lemma 4.2 For convex 3–polytopes with up to nine vertices, the smallest pos-
sible number of tetrahedra in a triangulation is determined by the face lattice.

Proof: First we will give necessary bounds for the number of vertices n and
number of tetrahedra t in a minimal triangulation that is not present in every
coordinatization.

From Lemma 2.1 we know that a triangulation of a polytope with less than
n− 1 tetrahedra has at most one interior edge. By the previous lemma, those
triangulations are invariant under coordinate changes, hence t ≥ n− 1.

A triangulation that exists for all coordinatizations can be made as follows:
select a vertex v, triangulate all facets of P that do not contain v. The tetrahedra
of the triangulation of P are those formed by v and a triangle in the boundary
not in a facet containing v. This procedure is called coning from vertex v or
pulling triangulations, see [13] or [4, 14]. The number of tetrahedra in this
triangulation is the number of triangles in the triangulated boundary minus
the number of triangles in the faces that touch v. The first number is 2n − 4
by Euler’s formula. The second number is the degree of v in the graph Gface

consisting of the vertices of P and all edges between vertices lying in a common
face. This graph contains the graph G′ of any triangulation of the boundary.
By Euler’s formula, G′ has 3n− 6 edges, hence the maximal degree in G′ (and
therefore in Gface is at least d2 · 3n−6

n
e.

We showed that pulling from a vertex v with maximal degree in Gface gives
an invariant triangulation with s(n) := 2n− 4− d2 · 3n−6

n
e tetrahedra. A non-

invariant minimal triangulation must have t < s(n) tetrahedra. Solving for the
equations n− 1 ≤ t < s(n) for n = 4, . . . , 9 gives only the solution n = 9, t = 8.

Consider a convex polytope with nine vertices we show that either no trian-
gulation of size eight is possible or it allows for an invariant triangulation of size
eight or less. We can dispose of the case when P has a vertex v of degree three.
The reason is such a vertex can be chopped off, the convex hull of the remaining
eight points can be triangulated using an invariant triangulation of size no more
than s(8) ≤ 7 by our previous discussion. These at most seven tetrahedra plus
the tetrahedron containing v give a size ≤ 8 invariant triangulation of P .

In the graph Gface there could be a vertex with degree more than five, but
then our pulling procedure yields an invariant triangulation of at most eight
simplices. Hence the only remaining case is that the triangulated planar graph
of the triangulated boundary of P has only vertices of degree four or five. If ni

denotes the number of vertices of degree i, we have that twice the number of
edges is 2 · (3 · 9− 6) = 42 = 5n5 + 4n4 and n5 + n4 = 9. The only non-negative
integer solution is n5 = 6 and n4 = 3. From these degree restrictions and an
easy case analysis, it can be seen that the only triangulated planar graph for
the boundary is given in Figure 7:

We claim that all triangulations, that extend this triangulation of the bound-
ary of P , will have 3 or more interior edges and then have nine or more tetra-
hedra by Lemma 2.1. Assume this is not true. Every boundary triangle is in
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Figure 7: Unique triangulated planar graph with n5 = 6 and n4 = 3

a tetrahedron. The fourth point of the tetrahedron is in an adjacent triangle,
otherwise instantly three interior edges are produced. But the tetrahedra that
cover the triangles (ABX),(AFY ), and (BFZ) will still induce three distinct
interior edges.
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