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Summary. We describe a graph theoretical technique for assessing intrinsic
patterns in point data sets. A unique construction, the minimal spanning tree, can
be associated with any point data set given all the inter-point separations. This
construction enables the skeletal pattern of galaxy clustering to be singled out in
quantitative fashion and differs from other statistics applied to these data sets. We
describe and apply this technique to two- and three-dimensional distributions of
galaxies and also to comparable random samples and numerical simulations. The
observed CfA and Zwicky data exhibit characteristic distributions of edge-lengths
in their minimal spanning trees which are distinct from those found in random
samples. These statistics are also re-evaluated after normalizing to account for the
level of clustering in the samples.

1 Introduction

The availability of the CfA redshift survey (Davis et al. 1983) has provoked theorists to evaluate
the statistical significance of apparent filamentary features in the observed two- and
three-dimensional distribution of galaxies (Kuhn & Uson 1982; Einasto et al. 1982; Bhavsar &
Barrow 1983, 1984; Dekel & West 1985). Traditional statistical measures, like the two-point
correlation function introduced by Totsuji & Kihara (1969) and used extensively by Peebles
(1980), are not sensitive to specific patterns or linear features in the luminous matter distribution
and must be supplemented by additional statistics that more effectively measure the extent of
intrinsic one- and two-dimensional features. This question is of some importance because it has
been suggested, but not rigorously demonstrated, that the ‘pancake’ and ‘hierarchical’ theories of
galaxy formation might produce very different degrees of filamentarity in the distribution of
visible galaxies (Zeldovich, Einasto & Shandarin 1982). A number of simple geometric ideas
have been tried in order to quantify linear patterns in two-dimensional data sets (Kuhn & Uson
1982; Moody, Turner & Gott 1983; Dekel & Aarseth 1984) and percolation analyses have been
performed on various observational samples and numerical simulations of clustering (Bhavsar &
Barrow 1983, 1984; Einasto et al. 1982; Dekel & West 1985). So far, none of these measures
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Figure 1. The recognition of pattern by the human eye. The eye perceives the intrinsic point pattern as a set of
concentric circles near the centre of the array but towards the outside the predominant effect is that of petal-like
curves. This arises because the eye reinforces the nearest-neighbour relationships. Near the centre the nearest
neighbours to any point lie on the same circle but towards the outside they lie on adjacent circles of different radius. If
one looks now at this same picture along the plane of the page, then the perceived patterns alter dramatically because
the eye now perceives the nearest neighbour distances in projection. The ‘real’ patterns intrinsic to this array are
concentric circles and radial straight lines through the centre but both are disguised by the pattern recognition
technique of the human eye. The overlaying of a transparency of the same array produces further unusual patterns.

appears to be a compelling discriminator of filamentary structure, able to distinguish between
alternate theoretical models. Here, we introduce and illustrate the use of a technique which
employs concepts borrowed from graph theory (Ore 1962). It provides a quantitative measure of
intrinsic pattern within a point data set. It can also be employed as a filament-finding algorithm.

It is illuminating to carry out an experiment which illustrates the way in which the human eye’s
perception of pattern is dominated by nearest neighbour effects. The pattern shown in Fig. 1 is
simply an array of concentric rings of dots. Each ring contains the same number of dots and is
displaced relative to adjacent rings so that dots on every other ring lie on radial straight lines
through the centre of the ring system. Thus the built-in pattern is a mixture of circles and radial
lines. However, if we look at the figure we notice that the eye traces circles near the centre but
petal-like patterns towards the outside. These are the patterns which trace out the nearest
neighbour relationships between points. If one looks at the figure along the plane of the page the
perceived patterns are changed completely into a nested array of ‘figure eights’. Any slight
bending of the page during this exercise can create other, different apparent patterns. In this case,
when looking along the edge of the page, the inter-point distances are viewed in projection and so
are changed, hence the eye is led to pick out a new dominant pattern.

This experiment shows how subjective pattern recognition can be and how sensitive the
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impression obtained by the eye actually is to minor perturbations which affect nearest neighbour
distances. It is worth noting that so far, the presence of filamentary structure in the distribution of
galaxies is a subjective visual impression only.

2 Minimal spanning trees

Any distribution of points in space has associated with it a unique network (Gower & Ross 1969;
Abraham 1962; Zahn 1971), called its minimal spanning tree (MST), which picks out the
dominant pattern of connectedness in a manner which emphasizes its intrinsic linear associations.
This enables the skeletal pattern within a point data set to be singled out in a systematic and
repeatable fashion. Quantitative properties of the MST can be calculated for comparative
purposes and used to define randomness in a manner that differs from other criteria used in
previous studies of galaxy clustering.

Our data set is termed a graph (Iyanaga & Kawada 1980) and will be composed of a collection
of nodes (galaxies), edges (straight lines joining galaxies) and edge-lengths (distances between
galaxies). A sequence of edges joining nodes is a path; a closed path is called a circuit and a graph
will be called connected if there is a path between any pair of nodes. The number of edges
emanating from a node is called its degree. A connected graph containing no circuits is a free. If
the tree of a connected graph, I, contains all the nodes of the data set then it is called a spanning
tree. The length of a tree is defined to be the linear sum of the lengths of its component edges. The
minimal spanning tree (MST) of T is the spanning tree of minimum length. If no two edge-lengths
are equal the MST of I will be unique. A k-branck is a path of k edges connecting a node of degree
1 to a node of degree exceeding 2 with all intervening nodes of degree 2.

The simplest algorithm to construct explicitly the MST of a graph, I, first picks an arbitrary
node of I" and then adds the connected edge of smallest length. This edge and the two nodes at its
ends form the partial tree, T1,. The kth partial tree, Iy, is formed by adding to I, _, the shortest
edge connecting I, _; to any nodes of I' not already in IT;_;. If I contains n nodes then I, _; is
the required MST. The construction of the MST is closely related to the formulation of the
well-known ‘travelling sale;sman’ problem (Kruskal 1956), and our algorithm is based upon the
fact that any sub-tree of the MST of I' will itself be an MST for the graph formed by the nodes of
the sub-tree.

The procedure described above picks out the underlying shape of the data set in a manner that
is in accord with the eye’s response (it is interesting to notice the correspondence between MST’s
and the lines that the ancients drew between the stars to create the graphs we call the
constellations).

In order to distil off the dominant features of the MST above ‘noise’ it is sometimes
advantageous to perform two further reducing operations (Clark & Miller 1966; Zahn 1971) on
the MST:

(i) Pruning: An MST is pruned to level p when all k-branches with k<p have been removed.
(ii) Separating: Remove from the MST any edges whose length exceeds some cut-off. For
example, if />3 (/) where (/) is the mean length of paths in the MST.

Operation (i) removes from the MST superficial ‘foliage’ which plays no role in delineating the
principal pattern. Operation (ii) enables distinct subclusters to be isolated and ‘accidental’ long
linkages arising from low point-densities to be eliminated. It also enables ‘field’ clumps to be
identified. The skeletal MST that results after pruning and/or separating may consist of several
disjoint pieces and can be subjected to various quantitative analyses. In Fig. 2 the process of MST
construction followed by operations (i) and (ii) is illustrated by a simple two-dimensional
example.
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Figure 2. The construction and reduction of a minimal spanning tree (MST). (a) A point data set. (b) MST
constructed according to the prescription given in Section 2 of the text. (c) Pruned MST; all nodes in (b) of degree one
connected to nodes with degree exceeding two have been removed along with their connecting edges. (d) Separated
and pruned MST; all edges of (c) exceeding a critical length have been removed.

One of the great advantages of the MST is that it selects a well-defined subset of all the possible
connections between nodes. For a set of n modes, n(n—1)/2 different separations are possible.
The MST will pick out a unique set of (n—1) edge-lengths (although the actual sequence of
connected nodes in an MST is not unique unless all the internode distances are different, the
distribution of edge-lengths is). This, together with its ability to map out the main features of a
graph, suggests that MST analysis may be well suited tq the study of filamentary structure in the
distribution of galaxies.

3 Applications in two dimensions

In order to illustrate the effectiveness of MST analysis we shall first apply the method to some
random distributions and real galaxy catalogues in two dimensions where the results are easy to
visualize. Our graphs consist of galaxies as nodes and angular separations as edge-lengths. As
there appears to exist no general theory as to the expected structure of MST’s (the work of Erdos
& Renyi (1960) on random graphs does not investigate MST’s), these experiments will allow us to
build up a picture of the structure and robustness of MST’s. The MST’s we display have been
generated by computer using the construction algorithm discussed above. Since the MST is
unique in practice, the constructive process can begin at any point of the data set. In this paper we
shall be interested principally in one quantitative property of the MST: the fraction, F(l), of edges
of length lin the MST. The lengths, /, are scaled by the mean edge-length of all edges in the MST,
(). This gives a measure of pairwise correlations within a specially selected subset that uniquely
traces the intrinsic pattern of the distribution.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny oz uo 1sanb Ag 858566/ L/1/91 Z/o101e/Seiuwl/woo dnoolwepeode)/:sdiy Wwoly papeojumoq


http://adsabs.harvard.edu/abs/1985MNRAS.216...17B

7B,

FTOBSWNRAS, Z16- 717

Galaxy clustering 21
X10
9,
DEC
(deq) . ZWICKY
7_ . * . : .
6 . Camel .
o. .‘.‘ ... A4 . .: . . o* *
5-4 :"‘ * “ .o'o e o * ..
S e .« ° .°. LR ]
l"_ .. | ) .... .: .o: * ".' .
C . Lt *.e s e,
3— . .... * .:.. - ::.‘;..°..... . .. . .
2] . :.o. > Qe ’ . . .
o. ..l‘.. ..... . .et. *e * . Cee
14 '..o LI * .g’::: . :
* .‘ : - ..‘. ., ’. ..': . °
0 . o \:.. .« .o .‘.
-2 -1 0 1 2 3 4 5 6 7 8 9 10 1"
X10
¢ (deg)
Fig. 3 (a)
X10
9,
DEC
(deg) 4 POISSON
7] . . .. .. . . .
6 et ’ y .
. . s . %e .o ® .. .. . . . -
54 .. . :. .... . . * ..o ' .0. .- \..
°Le ' : . :.' %t .
3N ST e T Lo
.: * .'. ...: .2 . . H :. S 0 T
2 N Ca :. . . s . ....
1] “ee .. . .::. _:..:. . .- - -.. SN
0 T .? b T .: |. ’I. ..I — =‘..’| r. .. .l T —
-2 -1 0 1 2 3 & 5 6 7 8 07 N
X10
@ (deg)
Fig. 3(b)

Figure 3. Two-dimensional samples and minimal spanning trees. The angular positions of: (a) all 1091 Zwicky galaxies
and (b) the equivalent random sample. ‘Dec’ is the delination in the equatorial coordinates system and ¢ is an
azimuthal angle. The North Galactic Pole is at Dec=22.6°, ¢ =45°. The resulting MSTs, pruned to level 10 (i.c. all
k-branches with k<10 removed) are shown (c) Zwicky sample MST, and (d) the random sample MST. The mean
edge-lengths used in each case were (/,)=0.0215 rad and (/;)=0.0267 rad: (e) the pruned and separated Zwicky MST,
(f) the pruned and separated random MST. The cut-offs used in (e) and (f) are 2(/,) and 1.6(/,) respectively and
correspond to the same absolute angular separation of 0.043 rad. It should be noted that Figs 3(a) and (b) are not
conformal mappings of the celestial sphere and distortions occur at large declinations (for example at Dec=90° a
point is mapped into a line).
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Figure 3 - continued

In Fig. 3 we display 1091 galaxies in the North Galactic Cap defined by §=0° and b"'=40° from
the Zwicky 14 mag catalogue (Zwicky et al. 1961-68) and a Poisson data set of 1091 galaxies
occupying the same sky area. In each case we have also illustrated the full MST and the pruned
and separated MST. Pruning was performed to level 10 (that is, all k-branches with k<10 were
removed) and the cut-offs used in separating were measured in units of the mean edge-length, (/).
Since (/) differs for the Zwicky (z) and Poisson (r) samples, the cut-offs used, at 2(/), and 1.6(/),
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Figure 3 — continued

for the Zwicky and Poisson samples respectively, were chosen so that they correspond to the same
absolute angular separation of 0.043 radians in each case. Changing the value of the cut-off scale
is similar to changing the radius of the spheres around each node in a percolation analysis
(Bhavsar & Barrow 1983, 1984).

The Zwicky and random MST’s have a quite different structure. The Zwicky MST has distinct
directional bias and filamentary structure, contains few disjoint pieces and free ends, whereas the
random MST exhibits no directional bias and contains a large number of small loops with many
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free ends. By examining Fig. 3 one can see roughly how many branches would be removed from
the MST when the cut-off length is varied. When separated, the MST of the Poisson distribution
breaks up into many more disjoint pieces than the Zwicky MST. These differences reflect the
purely visual differences between the two data sets. The Zwicky MST also picks out a dominant
linear feature at ¢ ~40° whereas the Poisson MST exhibits no significant deviations from isotropy.
Fig. 3(a) and (b) are not conformal mappings of the celestial sphere. This alters the appearance of
trees near Dec=90°. In order to evaluate the ability of the MST operation to identify low-density
filamentary features in a data set we have added a linear feature containing 20 points to the
random data of Fig. 3. The resulting MST is shown in Fig. 4.
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Figure 4. Detection of a linear filament. The effect on the MST shown in Fig. 3(d) of adding a linear feature of 20
points to the random point distribution shown in Fig. 3(a). Whereas such a small perturbation would have a negligible

effect upon averaged statistics like the two-point correlation function of the sample, it is clearly highlighted by the
MST construction.

T T
-2 -1 0 1 2

The MST clearly picks out the linear feature we have superimposed and remains virtually
unperturbed elsewhere. In general, the MST of any data set will be unchanged by any
perturbation that conserves the ordering of the edge-lengths; in particular, this includes
translations, rotations and dilations.

We have examined the number of nodes of a given degree to see if there were significant
differences in the number of free ends (nodes of degree 1) or in the number of ‘linear branches’ (if
there are long linear sections with few side-branches then we expect more nodes of degree 2).
However, there were no striking differences between Zwicky and Poisson cases. The effect of
pruning on the distribution of node degree was also the same for both types of sample.

Because of the convoluted appearance of the branches in the Poisson MST’s, we also looked at
the distribution of branch lengths and end-to-end separations. We define the branch length to be
the piecewise sum of the edge-lengths along any path, whereas the end-to-end separation is the
shortest distance between the first and last nodes of a branch. By comparing these two quantities
for a given branch of the MST it was hoped that we could identify long linear branches (branch
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Figure 5. Frequency distribution of two-dimensional MST edge-lengths. The F(!) versus //{l) distributions for the full
MSTs of the (a) Zwicky and (b) random data sets displayed in Fig. 3. The F(/) distribution for the random sample is

well described by a Gaussian centred on (/). The Zwicky distribution exhibits a relative exc

ess of large and small
separations.
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length=~end-to-end separation) and distinguish them from convoluted random branches (branch
length>end-to-end separation). However, there were too few branches present in these samples
to obtain significant results. Analysis of larger data sets might improve the chances of extracting
useful information of this sort.

In Fig. 5 we show the frequency distributions of the edge lengths, F(/), in the full MST’s for the
Zwicky and Poisson samples before pruning and separating. The F(/) distribution for the MST of
the random data has a Gaussian form centred on (/) while F(/) for the Zwicky sample has an
exponential fall-off with a significantly larger contribution at small and large //{/). One of the
things this displays is the fact that the Zwicky data is more clustered than the random sample. It
also suggests the presence of more subclustering and field objects which result in large / values.

In order to test the stability of these forms for F(/), the full MST was successively pruned down
to level 50. At each stage the mean length of all edges remaining on the pruned tree was found and
then used to give a new F(/). The forms of the F(/) distributions for both Zwicky and Poisson data
sets were found to be remarkably stable at all levels of pruning even though more than 75 per cent
of all the nodes were removed during the pruning process.

We have also run several different random realizations of 1091 points, with different values of
(I) and have found the same form of MST structure illustrated in Fig. 3 and the same Gaussian
F(l) form as displayed in Fig. 5. These features appear to be robust and it would be interesting to
calculate the expected form of F(/) analytically using the Central Limit Theorem. Such robustness
does not exist for percolation statistics (Dekel & West 1985).

Since F(/) just classified the separations between a specially chosen collection of galaxy pairs
we would like to know if it contains information that differs significantly from that carried by the
two-point angular correlation function, w(6), (Totsuji & Kihara 1969; Peebles 1980). We note
first that, whereas w(6) measures only average properties of a distribution, F(/) is sensitive to

X107
8
RIZ) |

ZWICKY

Fig. 6{aj

Figure 6. Frequency distribution of two-dimensional MST edge-lengths relative to all two-point separations. The
R(!) versus I/(I) distributions for the (a) Zwicky and (b) random samples. These distributions normalize the F(/)
distributions to allow for the two-point correlations between all points and indicate that the F(/) distributions carry
different information about the clustering, especially at small separations.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny oz uo 1sanb Agq 858566/ L/1/91 Z/o1o1 e/Seiuwl/wod dnoolwepede)/:sdiy woly papeojumoq


http://adsabs.harvard.edu/abs/1985MNRAS.216...17B

FT9BSWNRAS Z16- ~."17B!

Galaxy clustering 27
x107"
8-
R(L)
6 POISSON
4
24
0 T T T T U T T 1
0 5 10 15 20 25 30 35 40
-1 2
X10 <>

Fig.6(b)

Figure 6 — continued

changes in the positions of galaxies and contains a built-in propensity towards describing that
distribution of points which dominates the underlying pattern. Although the form F(I)is expected
to be influenced by w(0), the MST selects a special subset of all the possible galaxy pair
separations which is strongly biased towards small angles. A useful quantitative measure of the
likely difference between F(!) and w(0) is R(l), the ratio of the number of separations of length l in
the MST of the data set to Ny, the number of inter-galaxy separations of length [ in the whole data
set. The two-point correlation function is determined from Ny, (see Barrow, Bhavsar & Sonoda
1984, for example). The quantity R(/) can be thought of as a measure of the pattern-
connectedness in which the degree of clustering in the underlying data set has been normalized. In
Fig. 6 we show R(!) for the random and Zwicky two-dimensional data sets.

4 Application to three-dimensional data sets

The three-dimensional analysis proceeds in the same way as in the previous section except that
edge-lengths are now measured as real distances rather than as angles. There is also a practical
problem in that we cannot easily display the three-dimensional data. We applied the analysis of
Sections 2 and 3 to a volume-limited sample taken from the CfA catalogue (Davis ef al. 1983), to
several Poisson data sets and also to two samples taken from numerical simulations. The subset of
the CfA catalogue that we used contained 489 galaxies in the North Galactic Cap, 6=0°, b'=40°
with radial distance <80Mpc; (Hubble velocity <4000kms™'Mpc™?!). The positions of these
galaxies have been corrected for our Virgocentric infall. The Poisson samples also contained 489
galaxies and occupied the same region as the CfA sample. Our numerical simulation data sets are
sub-samples of the 4000 body models of Gott, Turner & Aarseth (1979). The original numerical
simulation data sets gave the positions of galaxies inside a sphere. In order that all the results from
the different data sets could be compared, the simulation subsamples that we used occupied the
same shaped truncated cone as the CfA and Poisson samples. Of the four simulations, we chose
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models II and III (henceforth denoted by GTA II & III) since their two-point correlation
functions, §(r), gave the closest match with the observed power-law form £(r)~r~", y=1.8. GTA
IT and GTA III have different density parameters Q,=0.1 and 1 respectively and were evolved
from initial perturbations with different power spectra (8o/0)aM~/>7"/%; y=—1 and n=0
respectively. GTA IThasy=1.9and GTA Il has y=1.7, and after truncation contained 1634 and
1320 points. The CfA data set, one of the Poisson samples, GTA II and GTA III are shown as
projections on the celestial sphere in Fig. 7. The visual appearance of these point data sets reflects
the differences in the value of the two-point correlation function §&. GTA II has several tight
clusters with little filamentary structure; GTA III is more open and does show some linear
structure. It should be remembered that the appearance or non-appearance of linear features
here may be a consequence solely of the projection.* The three-dimensional MST’s were
calculated, and the pruned and separated trees are displayed in Figs 8 and 9. The cut-offs used in
the separation process are measured in units of the respective mean edge-lengths (/) and
correspond to the same absolute separation. Although the Poisson 3D MST is noticeably
different from the others, the simulation MST’s both have the same sort of open structure as the
observations. Looking for measures of filamentary structure based solely on the visual
appearance of the MST’s does not seem too promising since small changes in the cut-offs can have
large effects.

The degrees of all nodes, branch lengths and branch end-to-end separations were all examined
for the four MST’s. As in the two-dimensional case, there were no striking differences in these

CfA POISSON

/ /

X

Fig.8 (a) Fig. 8 (b)
Figure 8. Pruned and separated three-dimensional MSTs. (a) the CfA survey, (b) the Poisson sample. For (a) a
cut-off of 3(/)=10.2 Mpc was used in the separating process and in (b) a cut-off of 1.8(/) which corresponds to the
same absolute distance cut-off asin (a). Inboth cases, only those branches with at least 10 edges are displayed in these

perspective projections. Although (b) appears far more knotted than (a), this feature is dependent upon the relative
sizes of the cut-offs used in each case.

*In order to evaluate the significance of distinctive features in the 3D MST’s one should re-evaluate the results from

the simulations after calculating galaxy positions using the actual velocity distributions [this was done for the
percolation statistics by Bhavsar & Barrow (1984)]. The effects of peculiar velocities can then be evaluated.
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Figure 9. Pruned and separated three-dimensional MSTs: simulations. (a) the simulation GTA I, (b) the simulation
GTA III. (a) has a spatial correlation function with slope 1.9 and is therefore slightly more clustered than the
observational data whilst (b) is slightly less clustered than the observational data and has a correlation function with
slope 1.7. Cut-offs of 3(/);; and 3(/);;; were used in (a) and (b) to enable direct comparison with the results shown in
Fig. 8.
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Figure 10. Frequency distribution of three-dimensional MST edge-lengths. The F(/) versus //(!) distributions for (a)
the CfA survey, (b) the Poisson sample, (c) the simulation GTA II, and (d) the simulation GTA III.
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Figure 10 — continued
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Figure 10 — continued

features for the different data sets. We concentrated therefore mainly on the F(/) and R(/)
distributions. These are shown in Figs 10 and 11. Just as in the 2D case, the Poisson sample F(/)
was well described by a Gaussian distribution centred on (/) and the CfA sample had a relative
excess of large and small edge lengths. Both simulations had an almost exponential fall-off in their
F(I) curves. GTA III decayed more slowly than GTA II and this is, perhaps, expected since GTA
IT has a steeper correlation function. The R(/) distributions show how the MST preferentially
selects small separations.

From &(r) alone, GTA II and GTA III give equally good agreement with the observations.
However, from the F(I) and R(/) distributions GTA III gives a slightly better agreement with the
CfA sample.* There is one feature of the CfA F(/) distribution that neither of the simulations
reproduce. Although all the F(I) distributions are well-described by an exponential tail for
[/{l)>1, there is a noticeable fall-off at small / values in the CfA sample.

5 Conclusions

We have explored some of the consequences of applying a pattern recognition technique drawn
from graph theory to the problem of galaxy clustering. A minimal spanning tree (MST) can be
constructed systematically and uniquely for any point data set given all the pairwise separations.
The resulting MST gives a quantitative measure of the connectedness of a data set that is objective
but which gives a close correspondence to the subjective patterns isolated by the eye.t This
procedure enables observations and theoretical distributions to be compared. In two-
* 1t is interesting that the MST analysis favours the Qy=1 model, just as our percolation analyses did (Bhavsar &
Barrow 1983, 1984). Like percolation analyses, the MST construction picks out different features to the multiplicity
function (Bhavsar, Gott & Aarseth 1981). The multiplicity function measures the detailed distribution of the sizes (or
number) of all structures at different density levels, whereas percolation and MST measure lengths of the largest

structures at different levels.
+The fact the filamentary structure is a visual impression is a further motivation for this type of statistical measure.
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Figure 11. Frequency distribution of three-dimensional MST edge-lengths relative to all two-point separations. The
R(1) versus I/(l) distributions for (a) the CfA survey, (b) the Poisson sample, (c) the simulation GTA II, and (d) the
simulation GTA III.

dimensional examples the configuration of the MST is easily visualized and we found that random
samples generate characteristic MSTs which differ strikingly from the MST of the Zwicky sample
of galaxies. In three dimensions the full MST is not a convenient entity to deal with. However,
there exists a variety of properties of the MST which could be studied. In this study we
concentrated upon two such properties. We found that the distribution of edge-lengths in the
MST of the random points possesses a Gaussian form, centred upon the mean edge-length in both

2
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Figure 11 - continued

the two and three-dimensional random samples, but the observations and numerical simulations
produced exponential-type distributions with a marked excess of small and very large
edge-lengths. In order to evaluate to what extent this distribution function gives different
information about clustering than the two-point correlation function we re-evaluated the
distribution of MST edge-lengths relative to all two-point separations in the full data set.
The MST is a measure of two-point correlations between a sub-set of the data, specially
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selected to trace out the dominant pattern. Although this has only been an introduction to the use
of MSTs, the results so far have been encouraging and further study may reveal more sensitive
measures of filamentary structure. In a subsequent study we shall report on the application of
these methods to the larger n-body simulations of Davis et al. (1985) containing various possible
elementary particles.
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