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Implementation of Digital 
Rational Lossless Systems 
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Abstract-Digital lossless transfer matrices and vectors (power-com- 

plementary vectors) have recently found applications in digital filter 

hank systems, both single rate and multirate. In this paper,  two new 

structures for the implementation of rational lossless systems are  pre- 

sented. The first structure represents a characterization of single-in- 

put, multioutput lossless systems in terms of complex planar rotations, 

whereas the second structure offers a representation of M-input, 

M-output lossless systems in terms of unit-norm vectors. This property 

makes the second structure desirable in applications that involve op- 

timization of the parameters. Modifications of the second structure for 

implementing single-input, multioutput, and  LBR systems a re  also in- 

cluded. The main importance of the structures is that they a re  com- 

pletely general, i.e., they span the entire set of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM x 1 and M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx M 
lossless systems. This is demonstrated in the paper by showing that any 

such system can he synthesized using these structures. The structures 

are  also minimal in the sense that  they use the smallest number of sca- 

lar delays and  parameters to implement a lossless system of given de- 

gree and dimensions. A design example to demonstrate the main re- 

sults is included. 

I. INTRODUCTION 

IGITAL filter banks [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI]-[3], [7] find a variety of ap- D plications, as in subband coding systems [ 11, voice- 

privacy systems [4], and spectral estimation systems [5]. 
A filter bank is basically a collection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM filters which 
either splits a signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n )  into M subband signals ,q ( n )  
(analysis bank, Fig. l(a)) or combined M signals yp  ( n )  
into one signal y ( n )  (synthesis bank, Fig. l(b)). 

An analysis bank is said to be power complementary 
(PC) if the filters are such that 

M -  I 

h = O  IHL(f?’”)l* = c vu  ( 1 )  

where c is a nonzero constant. An analysis bank is char- 
acterized by an M x 1 transfer matrix h ( z )  = ( H O ( z )  
H l ( z )  * * . H M - I ( z ) ) T a n d  a synthesis bank by a 1 x M 
transfer matrixfT(z) = (FO(z) F l ( z )  . F M - l ( z ) ) .  The 
PC property ( I )  of the analysis bank is equivalent to 

h ’ ( e f w )  h ( e ’ “ )  = c V U  ( 2 )  

where the superscript dagger stands for transpose conju- 
gation. This property has been called the “losslessness” 
property [6] in a number of past publications. If h ( z )  sat- 
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Fig. I .  (a) The analysis bank. (b) The synthesis bank 

isfies (2) we shall say that it is a lossless vector. The ad- 

vantage of imposing this property has been discussed in 
[7], [8]. In certain applications, such as in multirate filter 

bank systems (called quadrature mirror filters or QMF), 
a more general type of losslessness property is often im- 
posed. This is the losslessness of an M x M transfer ma- 
trix called the polyphase matrix, which has been elabo- 

rated in [7], [9]. 
Because of the importance of lossless vectors and ma- 

trices in filter bank systems, it is of interest to find general 
structures and realization procedures for such systems. 
Some partial results which deal with special cases have 
indeed been reported in the past. For example, [IO] con- 
siders the synthesis of M X 1 FIR lossless systems with 
real coefficients. On the other hand, [ l  I ] ,  [12] deal with 

a special type of 2 x 1 IIR lossless system with real coef- 
ficients, where each of the IIR filters H,(z) and H l ( z )  is 
a linear combination of two all-pass functions. A recent 
tutorial on losslessness can be found in [27]. In [22], the 
problem of factorizing scattering matrices into degree-one 
factors is considered. Finally, [9] deals with a state-space 

approach for the realization of M x M real-coefficient FIR 
transfer matrices. 

The purpose of this paper is to obtain a complete gen- 
eralization of lossless systems, so that the results in [ 101- 
[ 121 are special cases. Even though discrete-time lossless 
systems have been found to be of tremendous importance 
in the above-mentioned recent signal-processing applica- 
tions, it has not been possible in the past to obtain a self- 
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contained and unified documentation of discrete-time FIR 
and IIR lossless systems including M X M and M X 1 

systems. An excellent reference in continuous-time loss- 
less systems is the text by Belevitch [15]. In this paper, 
we have chosen not to translate the results of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[15] by use 
of bilinear transforms, for two reasons. First, a direct dis- 
crete-time approach leads to a self-contained presenta- 
tion, opening up wider readership. And second, such a 
direct derivation is often simpler and leads to newer im- 
plementations. Some portions of the results of this paper 
have appeared in a recent conference proceedings [26]. 

This paper is organized as follows: In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, some 
interesting properties of lossless matrices are reviewed. 

In Section 111, a general lattice structure for PC IIR vec- 
tors is derived and its synthesis procedure is described. A 
design example is also presented to demonstrate the re- 
sults. In Section IV, a new characterization for degree- 
one IIR lossless matrices is introduced, and used to obtain 
structural representations for M x M lossless IIR matrices 
and M x 1 PC IIR vectors of arbitrary degree. The M x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A4 structures derived in Section IV-B are generalized IIR 
versions of the FIR structures used earlier in [ 131 for QMF 
design, where it was necessary to optimize the coefficients 
of a lossless FIR real-coefficient polyphase matrix in or- 
der to obtain good analysis-bank filters which satisfy the 

perfect reconstruction requirement. The M X 1 IIR struc- 
tures derived in Section IV-C are again generalizations of 
an FIR version used in [ 141, once again for the QMF de- 
sign problem. The M x l synthesis procedure is useful in 
the process of initializing an analysis filter in  [14], prior 
to the optimization process. Some interesting properties 
of these structures such as orthogonality and minimality 
are discussed in Section V. Finally, some concluding re- 
marks are given in Section VI. 

The following notations are used in the paper: Super- 
script zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT stands for matrix (or vector) transposition, 
whereas the superscript dagger ( t ) stands for transposi- 

tion followed by complex conjugation. Boldface letters 
indicate matrices and vectors. The superscript asterisk ( * )  
stands for complex conjugation, while the subscript as- 
terisk denotes conjugation of coefficients of a function or 
a matrix. The tilde on a matrix F ( z )  is defined such that 
E ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF , f , ( z - ' ) ,  and for matrices with real coefficients 
E ( z )  = F ' ( z - ' ) .  Thus on the unit  circle, E ( z )  = F ' ( z ) .  
The hat accent on, a polynomial P( z )  = Cy$' p , z  pi is 
defined such that P ( z )  = z p ' M p " P , ( z - ' ) .  The notation 

a ( z )  1 b ( z )  will be read as a ( z )  divides b ( z ) .  Finally, 
the Euclidean norm of a vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is designated by the sym- 
bol IIxII, so that IIxII = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. 

11. MULTI-INPUT, MULTIOUTPUT LOSSLESS SYSTEMS: 
SOME DEFINITIONS A N D  PROPERTIES 

In this section, we will give the definitions and the 

mathematical background for multi-input multioutput 
(MIMO) lossless systems that will be required in the com- 
ing sections, as well as some properties of MIMO lossless 
systems that will not be put into use in this paper, but still 
are of considerable interest by themselves. 

A. Some Useful Dejnitions About MIMO Systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1) Matrix Fraction Descriptions for  MIMO Sys- 

tems: An M-input, P-output system characterized by a P 
x M transfer matrix H ( z )  with rational entries can often 
be given a matrix fraction description (MFD) [ 171. This 
description is an extension of the rational function repre- 
sentation for the scalar case. In the following, we will use 
the form 

H ( z )  = Q - ' ( z )  P ( z )  ( 3 )  

known as a leji MFD, where Q ( z )  and P ( z ) ,  respec- 
tively, are the P x P denominator and P x M numerator 

matrices. The polynomial matrices P (  z )  and Q( z )  can be 
expressed as 

N 

~ ( z >  = C p ( n ) z N p "  

Q ( z )  = q ( n ) z N p "  ( 4 )  

, i = o  

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
If = o  

where q(  n )  are P x P and p ( n  ) are P x M .  Notice that 
only positive powers of z appear in (4). This is not a loss 
of generality since we can multiply the matrices Q( z )  and 
P (  z )  with the scalar z pN to obtain equivalent represen- 

tations for ~ ( z )  in  z - I .  
Given P ( z )  and Q ( z ) ,  suppose that we can write 

where L ( z )  is a P x P polynomial matrix. Then L ( z )  is 
said to be a left common divisor (LCD) of Q ( z )  and P ( z ) .  
Note that Q F ' ( z )  Pl(z)  is also a valid MFD f o r H ( z ) .  An 

LCD L ( z )  of Q (  z )  and P (  z )  is said to be a greatest LCD 
(GLCD) of Q ( z )  and P ( z )  if every other LCD L , ( z )  of 
Q ( z )  and P ( z )  is a left-factor of L ( z ) ,  i .e.,  

L ( z )  = L,(Z) W ( z )  ( 6 )  

for some polynomial matrix W ( z ) .  Given an MFD Q - ' ( z )  
P ( z ) for H ( z ) , if we can identify and cancel off a GLCD, 
the resulting MFD for H ( z )  is said to be irreducible. Note 
that irreducible MFD's are not unique, since given an ir- 
reducible MFD e - ' ( ~ )  P ( z ) ,  we can generate infinitely 
many others of the form Q - ' ( z )  P ( z )  simply by writing 

where W ( z )  is any P x P unimodular' matrix. The ma- 
trices Q ( z )  and P ( z )  describing an irreducible MFD are 
said to be leji coprime. 

2) Poles and Zeros of a MIMO System: The transfer 
matrix H ( z )  is said to have apole at z,, if any of its entries 
has a pole ac 2,. If an irreducible MFD Q - ' ( z )  P ( z )  for 
H ( z )  is assumed, z,, is a pole of H ( z )  if and only if it is 

a zero of the polynomial det Q ( z ) .  
The normal rank r, of P ( z )  is defined to be max; [rank 

P(z)]. We define z o  to be zero of H ( z ) ,  if rank P ( z o )  < 

' A  square matrix W( :) which  has det  W( z )  = c. where c is a constant 
independent of: is said t o  be unimodular.  
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r,,. For a system with P = M = r,,, the zeros H ( z )  coin- 
cide with the zeros of det P ( z ) .  

3) The Degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMIMO System: As in the scalar 
case, the smallest number of scalar delay elements z - '  
required to implement H ( z )  is called the degree (or 
McMillan degree) of H ( z ) .  To determine the degree of 
H ( z ) ,  we start with an irreducible MFD Q - ' ( z )  P ( z )  for 

H ( z ) .  It can be proved [17] that with such an MFD 

deg H ( z )  = deg det Q ( z ) .  ( 8 )  

It is meaningful to consider an irreducible MFD in order 
to define the degree, since if the MFD is reducible, one 
can cancel off LCD's to obtain other MDF's which have 
lower order denominator determinants. This process can 
be continued until an irreducible MFD for H ( z )  is 

reached. 
It is in general not possible to determine the degree of 

a given matrix H ( z )  by inspection. However, in the spe- 

cial case of an M x 1 vector 

where the polynomials P, ( z ) ,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI i I M - 1 and d ( z )  
do not have any factors common to all of them, the degree 
is given by the maximum degree over all rational func- 

tions PI ( z ) / d ( z ) .  

B. MIMO Lossless Systems 

A P x M transfer matrix H ( z )  with rational entries is 
lossless if all its entries are stable, and if it is unitary on 

the unit circle, i.e., it satisfies 

H t ( e t w )  H ( e J W )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACZ,,, v w  ( 10) 

for some positive scalar c. Equation (10) can also be writ- 
ten as 

A(z) ~ ( z )  = CZ,,, forz  = erw .  (11) 

Since (1 1) holds for every point on the unit circle, and 
H ( z )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(z) are analytic except for an isolated set of 
points in  the z plane, we conclude by analytical contin- 
uation [ 151 that it holds for all values of z .  Hence we can 
also identify a matrix H ( z )  as lossless if it is stable and 
satisfies 

f i ( z ) H ( z )  * cz vz. (12)  

A special case of lossless matrices are stable PC vec- 
tors. An M x 1 vector H ( z )  = (HO(z) H l ( z )  * 

H,,, - ,( z ) ) is said to be PC if ( I )  holds. Another special 
case of lossless matrices are lossless bounded real (LBR) 
matrices. A lossless matrix H ( z )  is LBR if H ( z )  is real 
for real z .  

A matrix H (  z )  which satisfies (1 1) for all z is said to 
be paraunitary. Thus a lossless system is stable and par- 

aunitary. The paraunitary property of a lossless H ( z )  in- 
duces several other secondary properties on H ( z ) .  In the 
following, we will state some of these properties without 
proof (the proofs can be found in [27]). Some of these 
properties will be crucially employed in the coming sec- 
tions. 

Property 1: The determinant of a lossless square ma- 
trix H (  z )  is a stable all-pass function. In the special case 
where H ( z )  is FIR, the determinant is a pure delay. 

Property 2: Given a square lossless matrix H ( z ) ,  CY is 
a pole if and only if 1 /CY * is a zero. 

Property 3: For a square lossless matrix H ( z ) ,  deg 

H ( z )  = deg det H ( z ) .  
Property 3 is a very important characteristic of lossless 

matrices which will be used several times in the coming 

sections. 

C. The Smith-McMillan Form of an M x M Lossless 
Matrix 

In the following, we will focus on the Smith-McMillan 
form [15], [17] of an M x M lossless matrix H ( z ) .  This 

result is a discrete-time version of the one to be found in 
the classical text on network theory by Belevitch [ 151. 

Let us first consider an M x M matrix G ( z )  with ra- 

tional entries in z that are in reduced form. G ( z )  can be 
written as 

where N ( z )  is an M x M polynomial matrix and d ( z )  is 
the monic least common multiple of the denominators of 
the entries of G ( z ) .  It can be shown [23] that N ( z )  can 
be expressed as 

N ( z )  = U ( z )  A(z)  V ( z )  (14a) 

where U ( z )  and V ( z )  are M X M unimodular matrices 

and A ( z )  is the Smith form [17] of N ( z ) ,  given by 

r :  normal rank of N ( z )  ( 14b) 

with the polynomials h ,  ( z )  satisfying the divisibility 

property 

( 1 4 ~ )  h , ( z )  I X ; + ~ ( Z ) ,  o I i I r - 2. 

Let us now consider 

and reduce the entries of A ( z ) / d ( z )  to the lowest terms, 
i.e., write 

such that 6; ( z )  and 4, ( z )  are relatively prime. With this, 
G ( z )  can be expressed as 

G ( z )  = U ( z )  A(z )  V ( z )  ( 16a) 

where the matrix A ( z )  given by 

A ( z )  = (.i.; 1 1) (16b) 

M - r  
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is known as the Smith-McMillan form [24] of G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  and 

the polynomials zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE; ( z ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4i ( z )  satisfy the obvious divisi- 
bility properties 

c, ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 e ,+  ' ( Z )  (16c) 

for 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI i I r - 2. The poles and zeros of G ( z )  can 
alternatively be defined as the roots of the denominator 
polynomials 4, ( z )  and the numerator polynomials ci ( z  1, 
respectively, of the Smith-McMillan form A ( z ) .  The 
polynomial matrices U ( z )  and V ( z )  in (16a) are highly 
nonunique [23], whereas the Smith-McMillan form A ( z )  
of G ( z )  is unique except for ordering of entries and scale 
factors. This uniqueness property of the Smith-McMillan 
form will be evident later when we consider the concept 

of valuations [25]. 
Let us now consider the Smith-McMillan form of an M 

x M FIR lossless matrix H ( z ) .  Since H ( z )  is FIR, it 

follows from Property 2 of Section 11-B that 

det H ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ~ Z - ( ~ - ' )  (17) 

where cI is a nonzero complex constant, and K - 1 is the 
McMillan degree of H ( z ) .  On the other hand, since H ( z )  
= U ( z )  A ( z )  V ( z )  

det H ( z )  = c2 det A(z)  (18) 

where c2 = det U ( z )  det V ( z )  is a complex constant. It 
follows from the diagonal nature of the Smith-McMillan 
form A ( z ) ,  and a comparison of (1 7) and (1 8) that 

A ( z )  = diag [z-'"I (19) 

where ni are integers such that 0 I no I n, I * * I 

n M - '  and Er=-: nk = K - 1.  
The next thing to consider is the case of an M X M 

lossless matrix with rational entries in z .  Before we do so, 
however, we will look into the concept of valuations [ 171, 
[25] which will be useful later in obtaining the Smith- 
McMillan form of such a matrix. Suppose that we write 
a rational function g ( z )  as g(z) = ( p ( z ) / q ( z ) )  ( z  - 
a),'. where p ( z )  and q ( z )  are relatively prime and not 

divisible by ( z  - a ) ,  and a is a finite pole or zero of 
g(z).  The integer U, is called the valuation ofg ( z )  ar a.  
This definition can be generalized for rational matrices in 

the following way [25]. Given a matrix G ( z )  with ra- 
tional entries, the ith valuation of G ( z )  at cy is defined as 

where a ranges over the set of all finite poles and zeros 
of G ( z )  and the minimum is taken over all i x i minors 

Now suppose that we write the nontrivial part of the 
I G I ( i )  of G ( z ) .  

Smith-McMillan form of G ( 2 )  as 

A ( z )  = A,(z) 
U 

where a ranges over the set of poles and zeros of G ( z ) ,  
and A , ( z )  has the form 

M - r \  0 0 1  ' ' 

In (21b), the integers ui ( a )  have positive sign if a ap- 
pears as a zero on the ith diagonal entry of A ( z )  and neg- 
ative sign if it appears as a pole. As a consequence of the 

divisibility properties stated in (16c), (16d), ui ( a )  satisfy 
u()(a) I a , ( a )  I . * I U,- I ( a ) .  Due to the special 
form of A, (z ) ,  it follows that 

u o ( a )  = u;')(Ac2) 

uI  = zrL2)(A,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT z,L' '(Aa) 

where a is a finite pole or zero of G ( z ) .  However, it can 
be shown [ 171 using (16a), unimodularity of the matrices 
U ( z ) ,  V ( z )  and the Cauchy-Binet theorem [17], [19] that 

u;)(A,)  = zj:)(A) = u : ) ( G ) .  (23) 

This gives us a direct way of constructing the Smith- 
McMillan form A ( z )  of G ( z )  based entirely on the val- 

uations of G ( z ) .  The method also demonstrates the 
uniqueness of the Smith-McMillan form. 

Let us now consider an M X M lossless matrix H ( z )  
with rational entries in z and write 

H ( z )  = U , ( z )  Al(Z> V'(Z)  (24) 

where U , ( z )  and V , ( z )  are unimodular matrices and A l ( z )  
= diag [ E ,  ( z ) / + ,  ( z ) ]  is the Smith-McMillan form of 
H ( z ) .  In (24), all the matrices have entries that are func- 
tions of z .  Let us now rewrite ~ ( z )  as a function of z 
rather than z .  This results in a new rational matrix G ( z  - '  ) 
such that 

H ( z )  = G ( z - ' ) .  ( 2 5 )  

The matrix G ( z - ' )  can be written as 

G ( z - ' )  = U z ( z - ' )  A 2 ( z - ' )  V 2 ( z - ' )  (26) 

where the U, ( z  - I  ) and V,  ( z  - '  ) are unimodular matrices 
in z - '  and A 2 ( z - ' )  = diag [ $ , ( z - ' ) / 7 , ( z - ' ) ] .  We 
should note here, however, that since G ( z  ' ) has entries 
in z - I  rather than in z ,  the matrix A2( z - '  ) does not nec- 

essarily reflect the behavior of G ( z - ' )  at z = 0. Fur- 
thermore, A2( z - '  ) is not a regular Smith-McMillan form 
in the sense that the sum of the degrees of the denominator 

polynomials 7 ,  ( z - ' )  does not necessarily equal the de- 
gree of G ( z  - ' ) .  It follows from (25) and the construct- 
ability of A I (  z )  and A2( z - '  ) from the valuations of H (  z )  
and G ( z  - ' ) ,  respectively, that 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcJ, is a complex constant, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdJ, is an integer and j,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* * * , j,- I represents a permutation of the integers 0, 

* , M - 1. On the other hand, since H ( z )  is lossless zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H ( z )  = [ c ( z - l ) ] - i .  (28) 

If we substitute (24) and (26) for H ( z )  and G ( z - I )  in 

(28), we obtain 

Ul(z)  Al(z)  VI(Z) = U,T(z) A L L ( z )  vFT(z). (29) 

Since U l ( z ) ,  U 2 ( z ) ,  U,:(z), and V,;(z) are all uni- 
modular matrices in z ,  A I (  z )  and A 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ( z )  must both be 
Smith-McMillan forms for the same matrix H ( z ) .  It fol- 
lows from the uniqueness of the Smith-McMillan form 

that A l ( z )  and AT;( z )  are the same except for scale fac- 
tors, delays, and a possible relabeling of entries, i.e., 

If we substitute for q k , , * ( z ) / $ k , , * ( z )  in (30) using (27), we 

obtain 

where cb is a complex constant, dIi is an integer and lo,  
. . .  , 1,- I is a permutation of the integers 0, * * M - 
1.  Since tJ ( z )  and 6J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  are relatively prime, (31) im- 
plies that 

‘J ( z )  = al/zb’86/,(Z) ( 3 2 )  

where b,, is an integer and a/, is complex. It is intuitively 
clear (and is proved in the Appendix) that (32) together 
with the divisibility properties stated in (16c), (16d) fix 
the permutation lo, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf M -  I as fJ = M - 1 - j ,  for 0 
5 j I M - 1.  With this, (32) becomes 

OM- I , ,. 
€J ( z )  = U M -  I - J  z 6 M -  I -, ( z )  (33a) 

and A 1 ( z )  has the form 

Note that some properties of lossless matrices stated in 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11-B such as the all-pass nature of the determinant 
and the existence of a pole at 1 /a* for every zero at cr 
(and vice versa), follow as corrollaries of this result. 

111. A GENERAL STRUCTURE FOR PC IIR VECTORS 

In this section, we will introduce a completely general 
structure for implementing PC IIR vectors. This structure 
is a generalization of the structure described in [ lo]  for 
real-coefficient PC FIR vectors. In the following, we will 
consider the 2-component case first and then generalize 
the results to M components. 

A .  A Lattice Structure fo r  Two-Component PC IIR 
Vectors 

be written as 
Consider a PC IIR vector of degree K - 1 which can 

The scalars p K  - I ,  I ,  qK - I ,  I ,  and z, are in general complex. 
We assume without loss of generality that P K -  l (z) ,  
Q K -  l ( z ) ,  and d K -  l ( z )  do not have a factor common to 

all of them, as such a factor can be determined and can- 
celled. Losslessness of H ,  - I ( z )  implies that 

P K -  I ( Z )  P K -  I ( Z )  + Q K -  I ( Z )  Q K -  i (z)  

= b- i(Z) dK- l(Z) V Z  (35a) 

or, equivalently, taking the complex conjugate of both 
sides of (35a) 

We shall use this property in the synthesis procedure. 

a lower order system 
Given H K  - l ( z )  as in (34a), we would like to generate 

such that it is lossless (i.e., PC and stable) and of degree 
K - 2. Repeated application of this process then results 
in a structural realization for H K -  I (  z ) .  Each element of 
H K  - *( z )  should be generated by a linear combination of 

the elements H K -  l ( z ) .  Consider the simplest possible lin- 
ear combination [ a P , _ , ( z )  + / 3 Q K - l ( z ) ] / d K - I ( z ) .  
This has a lower degree if cx and /3 are chosen such that 

aP,- I ( Z )  + P Q K -  ~ ( z )  has a factor ( 1  - z l z - I )  which 
can be cancelled with the denominator dK- r ( z ) .  An ob- 

vious choice for this is to let cx = 0, = 1 if Q K -  l ( z l )  
= 0, and cx = 1,  P = - ( P K - I ( ~ l ) / Q K - I ( ~ I ) )  other- 
wise. Thus we have generated one component of 

H,-~(z), viz (PK-*(z)/dK-?(z) where P K - ? ( z )  and 
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dK-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  are polynomials of degree less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 given 

by 

We now need to find the other linear combination which 
would generate the second component Q K  - 2( z ) / d K  - ?( z )  
of H K P 2 ( z ) .  The complete reduction can be expressed as 

( P K - 2 ( z ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a  0 ) ( P K - I ( z ) )  

Q K - ~ z )  - . ( z )  b ( z )  Q K - I ( ~ )  
. (38)  - 

d K - 2 ( 2 )  d K -  I (z )  

It remains to choose u ( z )  and b ( z )  such that a ( z )  
P K -  I (z )  + b ( z )  Q K -  I ( z )  has the factor ( 1  - z l z - ' ) .  In 
addition, we require the 2 X 2 matrix in  (38) to be para- 
unitary so that the left-hand side in (38), which is 

HK - ( z  ), is PC. One obvious choice of a ( z  ), b ( z  ) which 
makes the 2 x 2 matrix paraunitary is 

. ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-p*, b ( z )  = a*. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(39) 

With this, 

~ ( z )  PK- I(L) + b ( z )  Q K -  i ( z )  

= - P * ~ ' , - , ( Z )  + a * Q K - l ( z )  (40a) 

becomes -PK-  l ( z )  if Q K -  1(z1) = 0 ,  and 

otherwise. In either case, in view of (35b) and the fact 
that d, - I (  zI ) = 0, the linear combination (40a) becomes 
zero at 1 / z  f rather than at z I .  We shall therefore define 

1 - z l z - l  
- z y  + z - I  . (Z)  = -p* 

so that 

U ( Z )  P K - I ( z )  + b ( ~ )  Q K - I ( ~ )  Q K - ~ ( z )  (42)  
- 

d K -  I ( z )  dK - 2( z 1 

where d, - ?( z )  is the K - 2 degree polynomial defined in 
(37) and Q , - ? ( z )  is the K - 2 (or lower) degree poly- 

nomial 

With the choice of (41), we can write 

where 

is paraunitary. This ensures that H K - , ( z )  is PC. Since 
the poles of H K  - 2( z ) are a subset of the poles of H K  - I ( z  1, 
stability of H K  - 2( z )  is guaranteed so that H K  - *( z )  is a 2 
x 1 lossless system of reduced degree. 

It is convenient to obtain a normalized matrix Sl(z)  by 
scaling T l (z ) ,  by multiplying with the scalar cI = 

l /dla12 + (p(' so that s l (z)  Sl (z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ for all z .  We 
would then have 

where s1 and c ,  are real numbers such that c: + sf = 1 
and 8 ,  is a real quantity. After such normalization, we 
finally arrive at 

HK- I ( z )  = W I k )  H K - 2 ( z )  (46a) 

where W l ( z )  = S ; ' ( z )  so that 

( 46b 1 
Since W,( z )  is paraunitary and stable (because I zI I < 1, 
zI being a pole of H K -  l ( z ) ) ,  we note that W l ( z )  is loss- 
less. This gives us a realization for the lossless system 

HK- l ( z )  in terms of the lower degree lossless system 

H K  - z )  and the 2 x 2 degree-one lossless system W,( z ) ,  
as illustrated in Fig. 2. 

We thus have established degree reduction by extract- 
ing the pole at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzI. Clearly, this step can be repeated to 
extract the poles at z , ,  2 I j I K - 1 ,  resulting in a 
reduced degree PC vector each time, until finally a zero- 
degree PC (i.e., unit-norm) vector is reached. This can 
be expressed by the recursion 

H K - I - , ( z )  S , ( Z )  HK-, ,  1 I j I K - 1 (47a) 

where S, ( z )  has the form 

and Ho( z )  = H ,  is a unit-norm constant vector. The com- 
plete synthesis procedure can be expressed as 

Ho = S , - I ( Z )  . . . & ( z )  SI(Z) H K - I ( ~ ) .  ( 4 8 )  
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P K - q ( Z ) l d K - , ( z )  a-D---[:::- W K - l ( Z )  WK-*(Z)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1 

0,- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Z ) i d  K- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) - 
D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" 0  - W,P, 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  The lattice structure implementation of a two-component PC 1IR 
lossless vector H, ~ , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z ) .  Fig. 2. Pertaining to the synthesis procedure of Section 111-A. 

Defining Before we give the generalized synthesis procedure, let 
us recall from Section 111-A that given two polynomials 
A o ( z )  and A , ( z ) ,  we can generate two new polynomials 
B o ( z )  and B , ( z )  such that B o ( z )  is zero at some point zk, 
simply by writing 

w,(z)  = S,'(Z) = 

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I - z ~ ~ z - ~ ) ,  1 I j I  K -  1 

1 - z,z-' -se1* 

(49a ) where 

we can write H K -  l ( z )  as IAI(Zk)l 
c =  

Fig. 3 shows the implementation of this realization of 
H K -  l (z ) .  The internal details of WL ( z )  are as shown in 
Fig. 2 with 1 replaced by k .  This gives us a procedure for 

synthesizing an arbitrary two-component PC IIR vector 
of degree K - 1 as a cascade of K - 1 lossless systems 
of degree one, terminated on the left by a constant 2 x 1 
vector Ho. 

B. Extension of the Synthesis Procedure to 
M-Component PC IIR Vectors 

The synthesis procedure described in Section 111-A can 

be generalized to M-component PC IIR vectors of the form 

( 0 )  
HK-I(Z) = ( P K - d d  

P; ! , ( z )  - * * P i ! ; l ) ( z ) ) T / d K - l ( z )  

( 50a ) 
where 

K -  I 

p"" K - ~ ( Z )  = C p g ! l , l ~ - ' ,  0 I k I M - 1 
I = O  

K -  I 

d,-,(Z) = rI ( 1  - z ; z - y  
I =  I 

Again, without loss of generality, it will be assumed that 

K - I ( ~ ) ,  0 I k I M - 1 and d K -  l ( z )  do not have any 
common factors. At a zero z I  of d, - I (  z ) ,  the polynomials 

K -  I (  z )  satisfy the generalized form of property (35b) of 
Section 111-A which is 

p ( k )  

p ( k )  

M -  I 

P$! ,  (i) [ P $ ! ,  ( z , ) ] *  = 0. (51)  
k = O  

provided that A O ( z )  and A , ( z )  are not both zero at z k .  If 
that is the case, we can just let c = 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = 0 in (52a). 

Let us now consider two sets of polynomials P F! l ( z )  
and Q k! l ( z ) ,  0 I j I M - 1, related by 

where the M x M matrix Uk, + I has the form 

k k + l  

/ I ,  0 0 

k 

O r  k I M - 2 .  (53b)  

It is evident from (53b) that the kth and (k + 1 )th outputs 
of Uk.k + I are linear combinations of the respective input 
polynomials, and the other outputs are directly passed 
from the input in the order they originally appear. In (53a), 
let Uk.k + I be determined such that its kth output polyno- 
mial has a zero at z I .  Clearly, Q F ! l ( z ) ,  0 I k I M - 
2, can be made equal to zero at z I  by determining Uk,k+  I 

as described, for 0 I k 5 M - 2. Since UL,k+  I are un- 
itary matrices and H K -  , ( z )  is PC, the vector (er! l ( z )  
. . . Q k ? K M - l l ' ( ~ ) ) ~ / d ~ - ~ ( z )  is also PC. Therefore, at z I ,  
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the polynomials QF! l ( z )  satisfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI . ,  

( k )  
If we substitute Q K - l ( z l )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 for 0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk I M - 2 in 
(54), we obtain 

which means that the ( M  - 1 )th polynomial ai!,"-, "( z )  
has a zero either at z or at 1 / z  ;". Suppose that e;!,"-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ) (  z I  ) 
= 0. Then all Q K - l ( z ) ,  and therefore, all P K - I ( z )  
have a zero at z l .  This, however, cannot be true since 

K -  l ( z )  and dK - I (  z )  do not have a factor common to 
all, by assumption. Therefore, ( 5 5 )  can only imply 

e;?,"-, I ) (  1 / z ; " )  = 0 so that we can write 

( k )  (k)  

p ( o  

HK-dZ) = (:-I 1 - 0 z l z - : l )  

-zT + z 

U M - 2 . M - I  * * * ~ l , * ~ o , I ~ K - l ( z )  

( 56a 1 
where 

HK-*(z) = (PK-Z(Z) ( 0 )  * - Pi! ;1)(Z))T/dK-2(z) 

(56b)  

and 

We have thus obtained an IIR PC vector H K  - ?( z )  of de- 
gree K - 2 from H K -  l ( ~ )  by extracting its pole at z I .  
Clearly we can repeat the described step to extract the 
other poles. If we define 

Sj (Z )  = (;-I 1 - 0 z J z - l )  

-2: + z-I 
( J )  ( J )  ( J )  

U M - 2 . M - I  * * * ~ 1 . 2 ~ O . I  (57) 

( where the superscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj is a reminder that we are working 
with thejth pole z J ) ,  we can describe this process by the 
recursion 

H K - I - ,  ( z )  = S J ( z )  H K - J ( ~ ) ,  1 I j 5 K - 1 

( 5 8 )  

where the degree of the resultant IIR PC vector reduces 
by one at each step until finally a zero-degree unit-norm 

vector Ho is reached. Thus we can express H K -  , ( z )  as 

H K - l ( z )  = w,(z) W ( z )  . . . W K - l  ( z ) H o  (59a) 

where 

w , ( z )  = S,'(Z) = [ubi:l+[uii?ll+ 

( 59b 1 
This expression results in the complete lattice structure 
implementation for H K -  l ( z )  shown in Fig. 4. 

Before we conclude this section, we will briefly de- 
scribe an exercise that we carried out to demonstrate that 
the synthesis procedure of this section really works. Two 
fifth-order elliptic filters H o ( z )  = N O ( z ) / D o ( z )  and & ( z )  
= N2 ( z )  /D2(  z )  were designed independently and then 
scaled such that I Ho(e'")  1' + 1 H2(e ' " )  1'  I 1,  V u .  A 
third filterH,(z) = N I  ( z ) / D , ( z )  was designed withDl(z)  

= D o ( z )  & ( z )  and 

NI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4 NI ( z )  = Do(z)  Do(z) 8 2 ( z )  D2(z) 

- N O W  No(z) D d Z )  N z )  
- I s , ( z )  N d Z )  DO(4 Do(z) 

so that the vector H ( z )  = ( H o ( z )  H l ( z )  H 2 ( z ) ) T i ~  PC. 
H (  z )  was then synthesized using the procedure described 
above. The lattice coefficients obtained as a result of the 

synthesis process were used to reconstruct the three fil- 
ters. The magnitude response plots of the reconstructed 
filters are shown in Fig. 5 and agree completely with the 
responses of the original filters. This example confirms 
that the synthesis procedure of this section can be used to 
synthesize a given PC IIR vector as the cascaded lattice 
structure shown in Fig. 4. 

C. The Minimality of the Structure 
The structure of Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 uses K - 1 scalar delay ele- 

ments to implement a PC IIR vector of degree K - 1, 
hence it is minimal. In the following, we will show that 
it is also minimal in the sense that it uses the smallest 

possible number of parameters required to implement a 
completely general PC IIR vector of given degree and di- 

mension. 
Consider an M x 1 PC IIR vector H K  - I (  z )  as given by 

(50). We will calculate the degrees of freedom that 
HK - I ( z )  has. Note that HK - I ( z )  satisfies the paraunitary 
condition 

M -  1 

a;! l ( z )  P?! I ( ? )  = dK-  l ( z )  d K -  I ( z ) .  (60) 

Both sides of (60) are polynomials of order 2 ( K - 1 ) 
displaying complex conjugate coefficient symmetry. If the 
coefficients of like terms on both sides are equated, we 
obtain K non-redundant equalities, K - 1 of which are 

J r o  
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. (a) The lattice structure implementation of a n  M-component I IR 
(b) Internal details of W, ( z ) .  (c) Internal de- lossless vector H ,  

tails of the kth crisscross in w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(:). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 .  

e -?0.000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z Y 

-40.000 
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N O R M A L I Z F O  F R E Q U E N C Y  

Fig. 5 .  Magnitude response plots ofH,,(:). HI(:),  and H ? ( ; )  

complex, i.e., equivalent to two equations. Therefore, the 

total number of constraints is 2 K - 1. On the other hand, 
H K _ , ( z ) h a s 2 M K +  2 ( K -  1)unknownswhicharethe 
(complex) coefficients and poles. Subtracting the number 
of constraints from the number of unknowns, we find that 
H K -  l ( z )  has a total if 2 M K  - 1 degrees of freedom. 

Let us now suppose that we implement H , -  , ( z )  using 
the structure of Section 111-B. It can easily be shown that 
this implementation has exactly 2 M K  - 1 parameters. 

Hence the structure of Section 111-B represents a general 
M x 1 PC IIR vector of degree K - 1 ,  using as many 
parameters as the number of degrees of freedom that such 

a vector has. Therefore the structure of Section 111-B is 
minimal in the number of parameters it uses. 

IV. STRUCTURES FOR M x M IIR LOSSLESS SYSTEMS 

In this section, we consider some structural represen- 
tations for M x M and M X 1 lossless systems based on 
an algebraic form for general, degree-one IIR lossless ma- 
trices. 

A. A General Form fo r  M x M Degree-One IIR 
Lossless Matrices 

Let us consider an M X M degree-one lossless transfer 
matrix H , ( z )  with FIR entries. Using the fact that Hl(z) 
is unitary at all frequencies wo on the unit circle, we can 
express H , ( z )  as 

H , ( z )  = ( 1  - e'""z- ' )  S + R (61) 

where S is M x M ,  and R is M x M unitary. It is worth- 
while noting here that for a given FIR transfer matrix 

G ( z )  = go + z - l g , ,  whereg,  # 0,  deg G ( z )  2 1.  It 
can furthermore be proved that deg G ( z )  = 1 if and only 
if rank g ,  = 1. Thus the form (61) in general represents 

matrices with degree equal to at least unity, the condition 
for equality being that S is of unit rank. 

Applying the paraunitary condition to (61), and work- 
ing out the details (which can be found in [27]), we obtain 
the following result: 

Theorem: An M x M matrix is lossless of degree-one 

if and only if it can be expressed as 

[ I  - vu' + ~ ~ ' e ' " " u v ' ] R  (62) 

where v is an M x 1 constant unit-norm vector, R is an 
M X M constant unitary matrix, and e"'0 is a real 
number. 

Let us now consider an A4 x M lossless matrix of de- 
gree-one with rational entries. Such a matrix can be rep- 
resented by the general form 

where ho and h ,  are M X M constant matrices with com- 
plex-valued entries, and a is a complex scalar that repre- 
sents the pole of the system. Since H I (  z )  is stable, 1 a I 
< 1. 

It can easily be verified that H l ( z )  can also be repre- 
sented as 

where U and V are M x M constant matrices with com- 
plex entries. If we apply the paraunitary condition to (64), 
we obtain (after simplifications and collecting of like 
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- ~ v v '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ a ' e - ~ w ~ v u '  + ~'"ouv' - a ~ u '  = -a1  

( 6% 1 

= -a*Z. (65c)  

-a*VV:  + e-l""VU+ + a*2e'""uv: - a*UfJ' 

Note that if we take the t of both sides of (65c), we ob- 
tain (65b). Therefore, we will consider only (65a) and 
(65b) as necessary conditions. Now if we scale (65a) by 

1 / (  1 + and (65b) by - ( l / a ) ,  we obtain 

2 a e - ' " ~ ~ ~  + 2 a * e J w ' ~ v t  

I + la12 
vv' - + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuu+ = z 

( 66a 1 
vv' - ae-J"OVU' - - 1 e'"OUV'+ uu+ = 1, 

a 

( 66b 1 
Subtracting (66b) from (66a), and simplifying yield 

Since I a 1 # 1 ,  the term inside the parenthesis in (67) 
must be 0, i.e., we must have 

(68) 
vu: = f e i 2 w 0 u v : .  

a 

If we take the t of both sides of (68), and substitute the 
expression thus found for UV' back into (68), we obtain 

A 1  

V U '  = 4 VU' 
la1 

which can only be satisfied if I a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl 4  = 1 or VU'  = 0. Since 
la1 < 1 for stability reasons, (69) implies that V U '  = 

UV' = 0. Now this result can be substituted in (66a) and 
(66b) to get a simpler set of necessary conditions which 

is 

vv' + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuu' = Z M  

vu' = 0. (70) 

But (70) is exactly the set of conditions that we would 
obtain if we imposed paraunitariness on the FIR form V 
+ - I  iwo U where Vand U are constant M X M matrices. 
This result enables us to obtain a general form for degree- 

one IIR lossless matrices simply by substituting ( -a* + 
z - ' ) / (  1 - a z - I )  forz-I in the general form fordegree- 
one FIR lossless matrices given by (62). Thus an M x M 
IIR lossless matrix H , ( z )  of degree-one can always be 

e 

written as 

where U is an M X 1 unit-norm, complex-valued vector, 

R is an M X M unitary matrix, 0 I wo < 27r and I a I < 
1 .  The converse statement that (7 1 )  indeed represents a 

lossless matrix follows since it was obtained by a lossless 
transformation from the lossless FIR form (62) [ 181. 

B. A General Form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor M X M IIR Lossless Matrices 
with Arbitraly Degree 

Consider the product 

VI(Z) V2(Z) . * * VK- l ( Z )  ( 72a 1 
where 

1 5 i 1 K - 1 .  ( 72b 1 
(Note that (72b) is simply (7 1 )  with R = Z and wo = 0. ) 
Clearly, such a matrix is lossless. Furthermore, its deter- 
minant has the form c 11:=-1' ( -a: + z - ' ) / (  1 - a, z - ' ) ,  
(with I c I = 1 ) showing that its degree is K - 1 .  In this 
way, nontrivial examples of lossless IIR systems of de- 
gree K - l can be obtained. However. it is not clear if 

such a representation is sufficiently general. In this sec- 
tion, we will show that any IIR lossless matrix of degree 
K - 1 can be expressed as a product of the form (72a) 
and a unitary matrix. 

Let us first formally define the problem: Given an M X 

M ,  degree K - 1 IIR lossless matrix H K -  l ( z )  with poles 
z,,  1 I i I K - 1, we wish to write 

HK- I ( Z >  = VI(Z> HK-dZ)  (73) 

where V , ( z )  is as in (72b) and H K - 2 ( z )  is an M x M IIR 
lossless matrix of degree K - 2. We also require the set 
of poles of H K P 2 ( z )  to be contained in that of H K -  ' ( z ) .  
Once accomplished, this will constitute the basic step of 
the synthesis procedure which can be repeated a sufficient 
number of times until a factorization of H K -  ' ( z )  in terms 
of degree-one IIR sections is obtained. 

Our task now is to give an assignment rule for uI and 
a l  such that H K P 2 ( z )  is indeed lossless and of degree K 
- 2.  Before we do so, recall that det H K -  l ( z )  has the 
form 

Note that l / z T ,  1 I i I K - 1 are the determinantal 
zeros of H K -  l ( z )  [27]. Therefore there exist unit-norm 
vectors U; such that 

This observation will be of use later in the synthesis pro- 
cedure. 
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We now propose the following assignment: Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzI 
and choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv ,  such that 

(76) 

( 7 7 )  

Observe that since both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH K -  I (  z )  and V l ( z )  are parauni- 
tary, H , - ] ( z )  is guaranteed to be paraunitary by con- 
struction. 

We will address the stability issue next. H , - ? ( z ) ,  given 

by (77) seems to have a pole at 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ z F .  Since I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 / z ?  I > 
1 ,  such a pole would cause H K P 2 ( z )  to be unstable. We 
claim that this apparent pole is automatically cancelled by 
the above choice of v l .  To see this, observe that since 
H, -  l ( z )  is analytic outside the unit circle, it can be ex- 

panded into a Taylor series around z = 1 / z r ,  i.e., it can 
be written as 

where 

and 

If we substitute (78) in (77), we obtain 

* [p + (2 - A) 

or, after some arrangement 

H , - z ( z )  = H K - I ( Z )  + a ( z ,  Z l >  

where a ( z ,  z l )  = ( l / z r )  ( ( I  + z l )  - z ( l  + i f > ) /  

( z  - ( 1 / z T ) ) .  It is clear from (80) that the only problem 

causing term is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ( z ,  z I  ) v I  v ;  P.  Recall, however that P 
= HK- I( 1 /zT) and that v i  was chosen to satisfy (76). 
With these, (80) simplifies to 

(81  ) 

which is analytic at z = l / zT .  

Having thus established stability of H K - > ( z ) ,  we next 

address the issue of degree reduction. If we take the de- 
terminant of both sides of (73), we obtain 

- I  
-2; + 2 

I - ZIZ 
det H,-,(z) = det H , - ? ( z ) .  (82) 

Since there are no cancellations on the right-hand side of 
(82), we can write 

deg det H K _ , ( z )  = 1 + deg det H K P z ( z ) .  (83) 

H, -  I (  z )  and HK-2( z )  are both lossless, therefore invok- 
ing Property 3 of Section 11-B, we can rewrite (83) as 

deg H K P I ( z )  = 1 + deg H K - , ( z ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(84) 

It follows then that, since H K -  l ( z )  has degree K - 1 ,  
H K - ? ( z )  must have degree K - 2 as claimed. 

Summarizing, given any M X M IIR lossless matrix 
H K -  I (z )  of degree K - 1 with poles I,, 1 I i I K - 1 ,  

we can factorize HK- l ( z )  as in (73), where H K P 2 ( z )  is 
another M X M IIR lossless matrix of degree K - 2, by 

choosing a unit-norm vector v l  that satisfies (76). Re- 
peated application of this result gives us a way of express- 
ing a general lossless matrix of degree K - 1 as a product 
of degree-one lossless matrices, i .e. ,  enables us to write 

H K - I ( Z )  = VI(Z) V d z )  . . . VK-I(Z)HO ( 8 5 )  

where Ho is a unitary matrix and V, ( z )  are given by (72b). 
In (72b), v ,  are unit-norm vectors chosen such that 

v,'H,- , -,( 1 / z F )  = 0. The corresponding structural im- 

plementation is shown in Fig. 6. 

C. A Second Synthesis Procedure fo r  Power 
Complementary IIR Vectors 

Clearly a product of matrices of the form (72a) post- 
multiplied by a constant unit-norm vector represents a PC 
IIR vector. To demonstrate that this is a general form for 
such vectors, we need to show that any (stable) PC IIR 
vector can be synthesized as such a cascade. The synthe- 
sis procedure described in Section IV-B can easily be 
modified for PC IIR vectors. Consider an M x 1 PC IIR 

vector H K -  l ( z )  of degree K - 1 given by (50). Assume 
as before the polynomials P ; l l ( z ) ,  0 5 j 5 M - 1 and 
d K -  I ( z )  do not have any common factors. 
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I '  ' I  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, (z) * 

(b )  

Fig. 6. (a) The structural implementation of Section IV-B. (b )  Internal de- 
tails of V, (:). 

Now suppose that we want to synthesize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHt i -  l ( z )  as a 
cascade of matrices of the form (72b) terminated by a unit- 
norm constant vector. An an initial step, we want to write 

and V l ( z )  is as in (72b). For this, we define the FIR vec- 
tor Nt i -  l ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdti- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  Ht i -  l ( z ) ,  and propose to let a l  

= z I  and to choose ul  such that 

Recall that we made a similar choice for ul in the lossless 
matrix case. In this case, however, we can be more spe- 
cific and give a closed-form expression for u l .  Further- 
more, it can be shown that this choise is unique. We see 
from (86a) that, H t i - 2 ( z )  can be written as 

Ht i -dz )  = V l ( 4  H t i - I ( Z )  ( m a  1 

= [ I  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVIV:] H , - , ( z )  

Let us consider the second term on the&right-hand side of 
(88b) first. It follows from (87) that V ;  NK- l ( z )  = ( 1  - 
z 7 z )  h ( z )  where the order of X ( z >  is strictly less than 
that of the higher order polynomial in Nt i -  I( z ) .  With this, 
the second term of (88b) can be written as 

2069 

which is analytic at z = 1 / z T .  Note that in (89), the order 
of the denominator polynomial and the maximum order of 
the numerator polynomials are both reduced. 

Let us now consider the first term of (88b). In order to 

cancel the pole at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzI, we must have 

[ I  - VIV:] N,-,(Zl) = 0. (90) 

Note that [ I - u 1  U : ]  has rank M - 1 .  Therefore there is 
a unique vector U (except for a scale factor) such that [ I  
- zll V : ] U  = 0. By inspection, U = zll works. In view of 
this, (90) implies that the unique choice for u 1  is 

Note that (91) agrees with (87) since 

(92) 
1 

N L ( z 1 )  Nti-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i.) = 0 

due to the paraunitary property of Ht i -  l(z). With this 
choice of u l ,  the first term on the right-hand side of (88b) 

becomes 

Nti-I(Z) = ( 1  - z1z-l) 4 z )  [ I  - v l V ; ]  ~ 

dti- l ( Z >  dti- l ( Z >  

where again the order of the denominator polynomial and 
the maximum order of the numerator polynomials are both 
reduced. 

Putting these results together, we conclude that 

Ht i -  l (z)  = Nt i -  l ( z ) / d t i -  l (z)  can indeed be factorized 
as in (86) into a lossless matrix V l ( z )  and a reduced de- 
gree PC IIR vector H , - , ( z )  by appropriately choosing 

u I .  The vector HK-* (z )  can in turn be expressed as 

H t i - 2 ( z )  = N K - 2 ( z ) / d t i - 2 ( z ) .  Repeatedly applying the 
described step, we can synthesize Ht i -  l ( z )  as the cascade 

H t i - l ( z )  = Vl(z)  V2(z) * v t i - , ( z ) H 0  (94a) 

where H0 is a unit-norm vector, VI ( z )  are as described 
by (72b) with 

, 1 5 i 5 K - 1 (94b) 
Nti- I - , (z ,>  

V I  = 1 N K -  I - I ( ~ I )  1 
and z ,  is the ith pole of Ht i -  l ( z ) .  

D. A Synthesis Procedure for  M x M IIR LBR Matrices 

If the matrix Ht i -  l (z)  is LBR, then the poles are either 
real, or occur in complex conjugate pairs, which can be 

characterized by two real numbers. This suggests the pos- 
siblity of obtaining a synthesis procedure (hence, a rep- 
resentation) for IIR LBR matrices in terms of degree-one 
and degree-two lossless matrices with real coefficients 
corresponding to real and complex conjugate pole pairs, 
respectively. Such a synthesis procedure will be outlined 
in this section for IIR LBR matrices. The procedure can 
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be straightforwardly extended to the synthesis of IIR LBR 
vectors. 

Let us first consider the real pole case. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHK- l ( z )  be 

an IIR LBR matrix with a real pole zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. It follows from 
Section IV-B that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv must be chosen such that 

v t H K -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl / a )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 .  Since HK- I (  l / a )  is a real matrix, 
v turns out to be real and therefore the extracted degree- 
one factor 

GI (  1 / z , ) ,  using the unit-norm nature of U ,  and simpli- 
fying, we find that U ,  can be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v f  - v*v, 
U ,  = (102a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J1-I,Iz 
where is given by 

I - 17 l 2  
vTv,. (102b) 

1 6 1 1  
-a  + z - '  

G ( z )  = Z - v u T  + v u T  (95) ( 1  - l z , ~ ' )  - i 2  Im [ z , ]  
1 - a z - '  

The degree-one matrix associated with zf is now fully 
'IJecified as 

is also real for real z .  
Let us now consider the complex conjugate poles case. 

For this case, for our later convenience, we will adopt a + 1 + z f  -z ,  + z- I  
1 + z ,  1 - z f z - l  

G , ( z )  = Z - U , U ,  - ~ u,u, ' .  (103) 

We now consider the product G l ( z ) G 2 ( z ) .  After equating 
denominators, multiplying out and suitably combining 

slightly more general building block which is 

G , ( z )  = Z - V , V ,  - ~ 1 + a, -a,* + z-I v,v, t .  (96) 
1 + a,* 1 - a , z - '  

The added factor - (1  + a , ) / (  1 + 0:) will be used to 
make the overall degree-two matrix real for real z .  Note 
that (96) fits the most general form described by (7 1 )  with 

e'"" = - ( 1  + a , ) / (  1 + a : ) .  It can easily be verified that 
this does not change the choice of U ,  and a,  used in the 
synthesis procedure described in Section IV-B. 

Consider an IIR LBR matrix HK - I (  z )  with the complex 

conjugate pole pair ( z , ,  z f ) .  (The following development 
is analogous to the one repoted in [ 15, ch. 111 for the case 

of continuous-time real-coefficient systems.) As before, 
let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, = z, and choose the corresponding unit-norm vector 
v ,  such that 

= z +  2 ( 1  - Z i )  ( 1  - z * )  
7 7 

Re [ b , ]  + z - '  Re [ -z:b,] 

' 1 - z-I 2 Re [ z , ]  + 2 - l  Iz,I2 
(104a) 

where 

v : H K - I  (i) = 0. (97) b, = ( 1  + z , )  v f u ' .  (104b) 

The term in brackets in the denominator of (104a) cannot 
be zero since it can easily be shown that it would lead to 

I ) u , \ ~ ~  = 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 7  1 '  = 0 which is a contradiction. Hence 
(104) is well defined, and all the coefficients are real as 
claimed. Details in the derivation of (104) are omitted, as 
they 

E, The Link to Another General Representation 

The first degree-one matrix, then, is 

G , ( z )  = Z - V , V ,  + ~ 

1 + I f  

and the reduced degree matrix that results is given by 

t 1 + z ,  + -z,* + z - I  A 

v,v, '  (98) 
1 - z,z- l  

be carried Out.  

HK-2(z) = c l ( z >  H K -  l (z).  (99) 

Now, to extract the pole at z = z:,  we have to choose 
another unit-norm vector ui such that 

Using (97), (99), (100) in conjunction with the LBR na- 

ture of H K -  I ( z ) ,  it can be shown that the choice 

U ;  = /c: (t) 
works. Note that U ,  # 0 since that would imply that U ,  = 

0. Let us now consider G : (  l / z , ) v , * .  Substituting for 

In [9], some parametrizations of FIR LBR matrices in  
terms of planar rotations were derived. These paramet- 
rizations were shown to lead to general lattice structures 
for FIR LBR matrices. The approach used in [9] to par- 
ametrize FIR LBR matrices can be generalized for IIR 

lossless matrices. If the details are carried out, it can be 
shown that an M X M IIR lossless matrix HK- l ( z )  of 
degree K - 1 can be implemented by the structure shown 
in Fig. 7.  Each crisscross in Fig. 7(b) has the internal 
details shown in Fig. 4(c). The characteristics of lossless 
matrices by these structures is in terms of planar rotations 
which involve angles, as opposed to the characterization 
of the structure of Section IV-B which is basically in terms 
of unit-norm vectors. The presence of angles makes i t  
necessary to compute several cosines and sines especially 
in applications which require optimization of parameters. 
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. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 2  . 
(C)  

Fig. 7. (a) Another general lossless 11R structure. (b) Internal details of 

T I .  (c) Internal details of T2. 

On most general-purpose computers, the computation of 
a cosine (sine) is about 20 times slower than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa multipli- 
cation operation. This makes the structure of Section IV-B 
more desirable in applications that involve optimization 

of the parameters. Still, it is of interest to know how the 
general structure of Fig. 7 is related to the one described 
in Section IV-B. This will be considered next. 

Let us consider the building block zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  described by 
(72b). Given U ; ,  we can use Gram-Schmidt orthogonali- 
zation procedure [ 171 to generate the set of vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  , 
u2,  . . . , u M -  I satisfying 

1 k = j  

0 otherwise 

U , U ,  0, 1 I k , j  I M - 1. 

Note that 

- I  -a,* + z 
1 - a iz - I  v , ( Z ) U ;  = U !  

and 

V,(Z)U, = UJ 1 Ij I M -  1 .  

Hence V j ( z )  can be expressed as 

V , ( z )  = U , A , ( z ) U , '  

(105) 

(106a) 

(106b) 

(107a) 

where U, = ( U ,  U ,  * 

A, ( z )  is given by 

* u M -  I ) is a unitary matrix and 

If we substitute (107a) i n  (85) for 1 5 i I K - 1 and 
simplify, we obtain 

HK-I(z)  = L i A i ( z ) L ,  * LK-IAK-I(z)LK (108) 

where L, are unitary matrices. It is possible to represent 
an M x M general unitary matrix in terms of ( y )  complex 
planar rotations and M complex multipliers [ 181 as shown 
in Fig. 7(c) (each crisscross in Fig. 7(c) represents a com- 
plex planar rotation). Hence, (108) can be depicted as in 
Fig. 7(a) with each stage having the internal details of 
Fig. 7(c). Note that the M complex multipliers of L ,  can 

be moved to the right of A , (  z )  without altering the input- 
output relationship. Also, since the all-pass block A , ( z )  
affects only the topmost line, the ( M T 1 )  complex criss- 

crosses of L ,  that do not touch this line can be moved to 
the right and coalesced with L ,  to form a new unitary 
matrix. Having done so, we are left with M - 1 complex 
planar rotations (crosscrosses) in the first stage. The newly 
formed unitary matrix of the second stage can be rede- 
composed as shown in Fig. 7(c). We can then once again 

move the M multipliers and ( M T 1 )  crisscrosses to the right 
and merge them with L , .  If this process is repeated, then 
the first K - 1 stages have M - 1 complex planar rota- 
tions and the last stage remains a general unitary matrix 
with ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  complex planar rotations and M complex multi- 
pliers. With these, the representation for M x M IIR loss- 

less matrices described in Section IV-B becomes equiva- 
lent to the one depicted in  Fig. 7. 

V. SOME PROPERTIES OF THE REPRESENTATION OF 

SECTION IV 

The representation introduced in Section IV-A for IIR 
lossless matrices has some interesting properties. One of 

these is that the resulting structural implementations are 
minimal, i.e., they use the least number of scalar delays 
possible to implement a given IIR lossless matrix. A sec- 
ond one which is less obvious is that these structures are 
orthogonal implementations, i.e., the state-space descrip- 
tions (A ,  B,  C ,  D )  of the structures are such that the ma- 
trix R = (",) is unitary. The structures proposed in Sec- 
tion IV therefore have all the advantages of orthogonal 
implementations, elaborated in [ 2  I ]  and [ 2 2 ] .  Finally, the 
representation of Section IV-A is also minimal in the 
number of parameters used. In this section, we will look 
at these properties closely. 

A .  Orthogonality of the Implementation 
We will show that the matrix R = ( t t )  corresponding 

to the state-space description ( A ,  B ,  C ,  D )  of the struc- 
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ture described in Section IV-B is unitary, using an energy 
balance argument. 

Let us first consider the building block zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  shown in 
Fig. 8(b), where the state variable is denoted by x, ( n ) .  If 
we denote the input and output matrices corresponding to 
this block by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, ( n )  andy, ( n ) ,  respectively, and the state- 
space matrix by RI ,  we can write 

-U' 

RI = ( a '  

- U ,  [ I  - (1  + a f )  U , U : ]  

(111)  

and can easily be verified to be unitary using the fact that 
U ,  is unit norm. It follows from the unitariness of RI and 
(109) that 

Ix,(n + 1)12 + l lYl (n)112 = I.!(.)12 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ( . f ( . ) 1 1 2  
(112)  

for VI (2 ) .  

ternal details as in  Fig. 8(b). Using (1  12), we can write 
Let us now consider the structure of Fig. 8(a), with in- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ixdn + 1)12 + I IYd.  1 1 2  = ( x , ( n ) I 2  

( x d n  + + IIYz(n = I xdn) ( *  

+ l l H o U ( ~ ) I l 2  

+ IIYl(n)ll* 

+ 11 YK-dn) I 1 2 .  
( 1  13) 

If we add both sides of the equalities in  (1 13) and make 
the necessary cancellations, we obtain 

K -  I 

I =  c I ( x ' ( n  + 1)12  + IIY, (n ) I / ?  

K -  I 

= ) x ; ( n ) ( '  + (lu(n)l12 (114) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i =  1 

where we have made use of the facts that 11 y K -  I ( n )  \ I 2  = 
\ I y ( n ) 1 \ * ,  and I \Hou(n) (12  = \ ( u ( n ) l l ' .  Therefore, i fwe 

I '  ' I  

(b)  

Fig. 8 .  (a) The I IR lossless structure. (b) Internal detai ls of V, (:) 

let a = ( x ( n )  ~ ( n ) ) ~ ,  we can rewrite (114) as 

a'R'Ra = a'a V a .  ( 1  15) 

It can easily be shown that ( 1  15) implies that R = I ,  thus 
proving that the general IIR lossless structure of Section 
IV-B (also shown in Fig. 8) is an orthogonal implemen- 

tation. 
Note that the same proof holds for the case when Ho is 

a unit-norm vector instead of a unitary matrix. Hence the 
structure of Section IV-C for IIR lossless vectors is also 
orthogonal. A similar energy balance argument can be 
used to show that the structures of Section I11 are also 
orthogonal implementations. 

B. M i n i m a l i t y  of the Number of P a r a m e t e r s  

In this section, we will calculate the number of degrees 
of freedom involved in the representation of Section IV, 
and show this number to be minimum. 

Let us first consider the number of degrees of freedom 
that a matrix has of the form (72b). The unit-norm vector 
U ,  has 2 M  - 1 degrees of freedom. Suppose that we fac- 

tor out a common phase term from U ,  such that one of its 
entries becomes real. Clearly, this phase term will not ap- 
pear in the product U ,  U :,-hence it cannot be counted as a 

freedom. Therefore, U ,  U , '  has 2 ( M  - 1 ) degrees of free- 
dom. Also, the complex pole a, (which is subject only to 
the inequality constraint I a, 1 < 1 ), contributes 2 degrees 
of freedom. Thus (72b) has a total of 2 M degrees of free- 
dom. On the other hand, the M X M unitary matrix R can 
be shown [20] to have M' degrees of freedom. Combin- 

ing these, we conclude that any M X M lossless matrix 
H ( z )  of degree K - 1 can be represented as in (72b) by 

N,,, = 2M(K - 1 )  + M' ( 1  16) 

parameters. 
Let N ,  denote the smallest possible number of parame- 

ters required to represent such a matrix. Clearly, N ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

N, , , .  To show the equality, all we need to do is to construct 
an example of an M x M IIR lossless matrix of degree K 
- 1 which does have N,, degrees of freedom. The con- 
struction we will give is an IIR and complex generaliza- 

tion of the one in Section IV of [9]. 
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Recall from Section 111-C that an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1 PC IIR vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h&) of degree K - 1 has 2 M K  - 1 degrees of freedom. 
Such a vector can be implemented by the lattice structure 
of Section 111-B. Therefore we can write 

h,(z) = S(Z)% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  17) 

where S ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW l ( z )  W 2 ( z )  . * * W,- I ( z )  is an M X M 
IIR lossless matrix and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvo is a unit-norm vector. Now 
consider an M X M unitary matrix V given by 

v = ( U ,  VI - * U M P I ) .  ( 1 1 8 )  

H ( z )  = S ( z ) V  ( 1  19) 

If we define 

then clearly H (  z )  has h,(z) as its first column. Also H ( z )  
is lossless by construction and has degree K - 1 by Prop- 

erty 3 of Section 11-B. Let us now count the degrees of 
freedom that we could exercise in the construction of such 
a matrix. Since an arbitrary M x M unitary matrix has M' 

degrees of freedom and V has its first column vo already 
fixed, it has M 2  - ( 2  M - 1 ) degrees of freedom left. 
The total number of degrees of freedom that we could 
exercise in the construction of H ( z )  is therefore the sum 
of the number of degrees of freedom of h o ( z )  and v I ,  v2, 
. . .  , U , , , - , .  This number is ( 2 M K  - 1 )  + ( M 2  - 2 M  

+ 1 ) which can easily be simplified to NI,, in ( 116). This 
concludes the proof. 

Since we have established the existence of an M X M 
IIR lossless matrix of degree K - 1 with N,,, degrees of 
freedom, we can write N ,  = N,,,, which shows the mini- 
mality of the structure of Section IV-B in terms of the 

number of parameters used. 
Note also that the structure of Section IV-C for IIR 

lossless vectors uses 2 M (  K - 1 ) + 2 M - 1 parameters 
to implement a general PC IIR vector of degree K - I .  
This number simplifies to 2 M K  - 1 which is the number 
of degrees of freedom such a vector has. Therefore, the 
structure of Section IV-C is also minimal. 

VI. CONCLUDING REMARKS 

The main purpose of this paper has been to obtain gen- 
eral structural representations for IIR PC vectors and loss- 
less square matrices. The generality of these matrices can 
make them desirable in applications that involve optimi- 

zation of some parameters. Since the structures cover 
every PC vector or lossless square matrix, they enable the 
search for an optimum to be automatically conducted over 
the set of all such vectors or matrices. It should be 
stressed, however, that there are computationally more ef- 
ficient implementation methods (as far as the number of 
operations are concerned) if the generality of the imple- 
mentation is not the main concern. Examples of such less 
general and more efficient implementations can be found 
in [ l l ]  and [12]. 

APPENDIX 

While investigating the Smith-McMillan form of a 
lossless matrix H (  z )  in Section 11-C, we saw that the ma- 

trices A l ( z )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl l ,& (~)  must coincide except for a pos- 
sible relabeling of entries. We will now show exactly how 
this relabeling takes place. From (32), we can write 

If we define a g ( z ) g  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyo(z) yn, - 2 -lo( z 1 7  to( z 1 

E " ( Z )  = a / , l z h ' " 4 M -  1(z) C y " ( Z ) .  (A31 

E I ( Z )  = a,,zh'%- I ( z )  a1 ( z )  (A4) 

becomes 

By the same reasoning, we can write 

where aI(z)= yo(z)  y ,+- / , (z ) .  On the other hand, 

by ( 16c) 

E I ( Z )  = P ( Z )  E o ( Z ) .  (A51 

If we substitute (A3) and (A4) in (A5), cancel common 
terms from both sides and rewrite, we obtain 

where d is an integer and c is a complex constant. Since 
p ( z )  is a polynomial, the nontrivial polynomial cyo( I) 
must divide a I ( z ) ,  i .e.,  we must have lo 2 1,.  This ar- 

gument can be used repeatedly in conjunction with the 
polynomials t, ( z )  and E ,  + ( z )  to show that I ,  I 1, + I. As 

/,,,- I. Since Io . , l M -  I represents a permutation of the 

integers 0, , M - 1 ,  the only possibility is to have lJ 

a result, we find that I, are related by I, 2 1, 2 * . 2 

= M - 1 - j .  

I IJ 

121 

I31 

141 

(51 

I61 

171 

I81 

191 
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