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For a submanifold M in a Riemannian manifold A7, the minimal index
(M-index) at a point of M is defined by the dimension of the linear space of all
2nd fundamental forms with vanishing trace. The geodesic codimension of M in M
is defined by the minimum of codimensions of M in totally geodesic submanifolds
of M containing M.

It is clear in general that for M in M

M-index = geodesic codimension .

In [7], the author investigated minimal submanifolds with M-index 2 in Riemannian
manifolds of constant curvature and gave some typical examples of such submanifolds
with geodesic codimension 3 in the space forms which is quite analogous to the
case of helicoids in E* when M is Euclidean. In the present paper, he will give some
examples of such submanifolds with geodesic codimension 4 in the space forms. In
the previous case, the base surface (analogous to the helix for a helicoid) must be
locally flat, but in the present case it must be of positive constant curvature,
We will use the notations in [7].

1. Preliminaries. Let A/=1/1"*" be a Riemannian manifold of dimension 7n-+»
and of constant curvature ¢ and M=DM" be an zn-dimensional submanifold in M. Let
@4 Bap= —@z A, B=1,2,-++,n+v, be the basic and connection forms of M
on the orthonormal frame bundle F(M) which satisfy the structure equations

(1.1) de, = ;EAB/\BE: dogs = ZG:EAC/\(‘_’GB_EEA/\EB .

Let B be the subbundle of F(M) over M such that &={(x,e;,**€ps=**,€,4») € F(M)
and (x,ey,++,¢,) € F(M), where F(M) is the orthonormal frame bundle of M with
the induced Riemannian metric from M, then deleting the bars of w4, @4z on B,
we have

(1 2) »,=0, wia:ZAmjwi’ A0U=Aaj:: a=n+1,n+p; i,j:]_’z’u.,n-
J
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For any point x < M, let N, be the normal space to M,=T,M in M,=T,M.
For any b< B, let @, be a linear mapping from N, into the set of all symmetric
matrices of order n defined by

¢b(zvaea) = Z‘UaAa, Aa = (AaiJ) .

Now, we suppose that M is minimal in M and of M-index 2 at each point.
Then, N, is decomposed as

N,=N;+0,, N;10,,

where O, = ;Y 0) and dim N;=2, which does not depend on the choice of &
over x and is smooth with respect to x. Let B, be the set of & such that e,,,,
€,.20¢N,; By means of Lemma 1 in [7], on B, we have

@p11,8 = @ps26 =0 (mod @, -+, 0,) (B>n+2).
Then, for any ve N, we can define a linear mapping ¥, : M,—O, by

(1. 3) ‘\l’v(X) = Z < (P en+lwn+l.B(X) + €n+9@nsis,8 (X) > €g.

B>n+2

The mapping Y : M, XN ;—O,, ¥(X,v)=v,(X), may be called the 1lst zorsion
operator of M in M. According to Lemmas 1,2 and Theorem 1 in [7], we have

THEOREM A. Let M" be minimal and of M-index 2 everywhere in M+
of constant curvature. Then we have the following:
(i) M™ is of geodesic codimension 2 if and only if ¥=0.
(ii) If ¥+0 everywhere, then dim [, = n—2, where {, is the space of relative
nullity of M™ in M™" at z, V¥,([,)=0 for any ve N, and ¥, vx0, has a
common image ¥,(M,) whose dimension=2,

When ¥ # 0 at x< M, we decompose M, as
M, =%®_,+1, W1 1.
We can choose frames b < B; such that e,,e,c B,,e;5,-++,€,¢ [, and

@1 i1 = AN®p Dy pi1 = — ANWgy W3 pi1 = **° =@ py1 = 0,
(1- 4) @ ne9 = @9 WDg pia = U0, D3 pig = °°° = Dy pig = 0,
a)m:o,i:]-,"'rn; 8>n+2, )\:'—‘FO, l“#o
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and then (1.3) can be written as

(1 5) “l’v(X) = {% <v, €, > ("I(X) - % <V, €4 > wz(X)}F

. {% <o > 0B+ L 0> wl(X)}G,

where F = " f.e,and G= ) g.e, and

>n+2 r>n+2
(1.6) AOpyry+ipo, 0, = (f +ig,) 0 —iw,), YT>n+2.

Y2 0 implies F %0 or Gx0.
Now, supposing V0 everywhere, we denote the set of &< B, satisfying (1.4)
by B,. On B,, we have

17 @, + 1wy, = (p, +1q, )0, +iw,), 2<r=n.

The vector fields P=)_ p,e, and Q = i g.e, of M are called the principal and
r=3 r=3

subprincipal asymptotic vector fields, respectively, According to Lemmas 3, 4 and
Theorem 2 in [ 7], we have

THEOREM B. Let M" be minimal and of M-index 2 everywhere in M™’

of constant curvature T. Supposing the 1st torsion operator V¥ + 0 everywhere,
we have:

(1) The distribution 1= {l,,x ¢ M} is completely integrable and its integral
submanifolds are totally geodesic in M™*,

(2) The distribution = {W,, x € M"}is completely integrable if and only
if 0=0.

(3) When Q=0, the integral surfaces of B are totally umbilic in M",

(4) When Px0 and Q=0, the integral curves of the vector field P are
geodesics in M™",

Under the conditions of Theorem B and Q=0, on B, we have
(1 8) {dlogh— < P,dx >— i(2a’12 —ad,)} N (o + iw2) =0,
(L.9) {da +i(l — o)} Nw, +iw,) = 0,

(1.10) dey =— {|P|*+T - A — p’lo; Noy,
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(1.11) dio, = — %}7 22t — [F|? = |G oy Aoy,

where ¢ = p/A; & =01 45 @ is the connection form of the vector bundle

N = UN’,, xe M", and<P,dx>= ) < P,e,>w, In this case, we denote the
r=3

set of frames b < B, such that P=p e;, p>0, by B;. On B; we have

(1.12) Wy3 = PO, 0, =0, pos, =Ty a=1,2; 3<t=n,
According to Lemmas 7,8,9,10 and Theorem 3 in [7 ], we have

THEOREM C. Let M"(n=3) be a maximal minimal submanifold in an
(n+v)-dimensional space form M"*(of constant curvature €) which is of M-
index 2 and whose torsion operator ¥ x 0, principal asymptotic vector field
P+0 everywhere and subprincipal asymptotic vector field Q=0, then it is a
locus of (n—2)-dimensional totally geodesic subspaces L™ *(y) in M™" through
points v of a base surface W* lying in a Riemannian hypersphere in M"™"
with center z, such that

(i) L™*(y) intersects orthogonally with W?* at y and contains the geodesic
radius from z, to y.

(ii) The (n—3)-dimensional tangent spaces to the intersection of L™ *y) and
the hypersphere at y are parallel along W* in M™,

W? in this theorem is an integral surface of the distribution 8 and the geodesic
radius from 2, to y is the integral curve of P.

Denoting the length along geodesic rays starting at z, measured from 2, by v,
we have

(1,13) w; =—dv
and
WE‘ cota/T v (e >0),
(1.14) p=:il/v (€¢=0),
A~ —C coth o/=C v (£<0).

2. The 2nd torsion oberator Y. In the following, we shall investigate
M™ in M™ as in Theorem C and use the notations in §1.

If the rank of ¥ is 1 everywhere, M" is of geodesic codimension 3 by Theorem
4in[7]
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Now, we assume that the rank of V is 2 everywhere, that is FA G+ 0. At
any point x € M", we denote the 2-dimensional normal space spanned by F and G
by N and put N =UN7, xe M", N” is a 2-dimensional normal wvector bundle
over M" as N'. We can orthogonally decompose N, as

(2.1) N, =N,+N;+0;,, O, =N;+0;,, N; LO;,

By the above assumption for v, we denote the set of frames &< B; such that e,
e,++€ N7 by B, On B,, we have

(2.2) Ji=9,=0, Y>n+4, and fois Guis—SnrsGnrs 0.
Hence, from (1.6), we have

(2.3) Opi1,y = Opray =0, Y>n+4,

from which we get

dﬁ)nu,y = Opi1,ne3 A\ Opisyt Opignis N\ @pigy =0,

Awprs,y = Opignis A\ Opisgy+ Opignss A @pisy = 0.
Using (1.6) and (2.2), we have
{fars +i9ne3)Onssy + (fuss + 10nsd)@nrs} A (01 —dwy) = 0,
and hence
(2. 4) Opisy =0, =0 (mod o,0), ¥>n+4.
By virtue of (2.4), for any ve N7, we can define a linear mapping ¥,: M,—O; by

(2 5) \P‘:J(X) = Z < U, en+3wn+3.7<X) + en+4wn+4,7(X) > e’Y .

>n+4

The mapping ¥': M, xN;—0;, ¥ (X,v)=v,(X), may be called the 2nd torsion
operator of M in M. Clearly ¥/does not depend on the choice of & over .

LeEMMA 1. v, v+ 0, has the common image.

PROOF. By means of the above argument, we can put
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(fn+3 +ign+3)wn+3,1+ (fn+4 +ign+4)wn+4,7 = (f'lr+1g'ly)(w1_im2)’ "> n+4.

Hence we have

1 , ,
@Dpi3,y = N {(Gne1@1 +Fni1@2) [y — (frra®1 — Fnes®:)g5} »

(2.6)

1 , ,
Dpygy = ”E‘ {_ (gm-awl +fn+a"’2)f'y + (fn+3w1 - gu+3("2)g7}

where A =fnis Gnta—Fnss Jnss. Putting F'=>" fre, and G =3 gse,, we have

r>n+4d y>n+4

(2.7)  ¥iX) 1(8nesXs +fs oK) = ValGnas Xy + fn s X} F

_ 1
A

1 4
+ ’K { =01 (far1Xi— GnseXs) +05(frs+3X1— G0+ X:)}G

n
where v=v,e,,;+7:¢,,, and X =" Xee, Since

i=1

(944X F S0t Xo) (frr s X1 = G 3Xs) = (G s X1 1K) (Frr 4 X1 — G4 s X)
= A(X]+ X3)

and A # 0, the image of V¥, v+ 0, is the space spanned by F'and G'. q.ed.

By the lemma, we may say the rank of the 2nd torsion operator ¥ as the
common rank of ¥, v 0.

THEOREM 1. Let M" (n=3) be a minimal submanifold in M™" of constant
curvature which is of M-index 2 everywhere and Q=0 and the rank of ¥=2.
Then M" is of geodesic codimension 4 if and only if the rank of ¥ =0.

PROOF. The necessity is trivial.

Let us suppose that the rank of ¥'=0. This is equivalent to F'=G =0, Hence,
by (2.6), we have
Dp i3,y = wn+4,1:07 'Y>n+4_

Combining these with (2.3} and (L.4), we see that there exists an (n+ 4)-dimensional
totally geodesic submanifold in M ™** containing M" by means of the structure
equations (1.1). q. e d.
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By this theorem, if we consider the case ¥ =0, we may put » =4 from the
local point of view.

3. M* in M+ In the following, we suppose v=4. On B,, putting
1 .
(31) q)‘Y:T(f’Y-l_lg‘Y)’ Y>n+2,

(2. 2) implies that

(3.2) @prs £ 0, B0y 20, ® =D, /P,0s # real
From (1.6), we have

(3.3) Opi1,y F 100,15,y = Dyw; — 0,)

and
do, . ,+idoNoy, s, +icdw,,s ,=dP, A\ e, —ie,)
+¢7("’12/\(02+¢°13/\(03 +iw, \©—iwg /\"’s)

by (1.12). Putting
(3- 4) Opy3nis = Dy,

the above equation can be written as

Oy N\ Oprgy+ 2 0pi10 \ 05y +ida N\ @45,

s>n+2

+ 1o {— @ A\ @pp1y T+ Z @105 N\ O

>n+2

= dP, N\ (0, —iw,) + P, {iw; A (0, —10,) — pw; A (0, —i0,)}
and using (3.3) this equation becomes

(3. 5) i{da — (1 —a®)d} N\ @pioy
= {d®, + D,(i(w, + o&,) + pdv) + > Psws} N (01 —iw,).

>n+3

For simplicity, we put ®,,; = ®,, ®,.,=P,. Then (3.5) are two equations as
follows :
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ailde—i(l = )} b A pusnes
1

= {dlog®, + i(wy + ab,) + pdv — Pd,} N (@) — iw,),

E}_i{da — il =)} A Onrsnrs
2

= {dlog<1>2 + i@y + ob)) + pdv + %62 A (0, —iw,) .

LEMMA 2. The curvature do, of N” is not zero everywhere.

PROOF. From (3.3) we have easily

1
@Dpy1,n+3 — N (frrso + Jn+3®3)

Dpyonts = (Gnss0, "‘fn+3(4’2) >
AT
1

Opii,ntt = N (frsa®1 + Gnra®s) »

Dpio,n+s — ﬁ(gnuﬂh _fn+4w2) .

Hence we have the curvature form of the bundle N given by

(3. 6) do, = Opisne1 N\ Opstnat T Opisprs N\ @Ppasnes = —

Since A # 0 by (2.2), d®, # 0 everywhere. g. e d.
COROLLARY. The set of points where @, = 0 is non dense in M",

THEOREM 2. Let M" be a submanifold in M™* as in Theorem 1,
Assuming the following conditions :

(@) @70, @,#0 and o and ® are constant on W7,
(B) W? is of constant curvature c,
where W? is an integral surface of the distribution T, we have the following
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Jor W2

(i) e=1lor—1and ®={ior—i1i,

(i) <F,G>=0,

(ii) ¢>0.

PROOF, Since o is constant on W?, we get from (1.9)
(1 —a%o, A (0, +iw,) =0,

hence

1—o%o, =0 on W2,

Since &, 7 0 by (&), it must be ¢ =1 or—1.
Then, from (3.5) and ¢* =1, we have the relations

(3.7 {dlog @, + (@, + 0@} + pdv — Pwy} A (@;—ie,) =0,

{dlog @, + iy + o) + pdo + —é;w} A oy~ ieg) = 0,

from which

{dlog @+ (q>+ %)@}/\(wl —iwy) = 0.

Since @ is constant on W? by (a), we have
1 .
(‘1)4' '6)62 A (@) —iwy) = 0,

hence

1},
(<D+$)w2=0.

Since @,%#0 on W? it must be & =17 or —i, from which we obtain easily
<F, G>=0.
Next, from (8), we may put

dw12='—cw1/\a)2 OnWZ,
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hence from (1.10) we have

PHe—NMN—p=c.
Using ¢?=1, we have
(3.8) 2\ = p*+T —c on W2,

which implies that A and p are constant on W?, since by means of Theorem C and
(1.14), p is constant on W?* Hence (1.8) implies

(3. 9) &)1 = 20‘(1)12 on W2 .

Making use of this and (1.11), we have

2c =~ (24 = |FJ — |GI)
= 2= |, — |0yt = 20— [, 1),
that is
(3.10) | =A% —c.

This relation shows that ®, is constant on W2 On the other hand, from (3.7),
(3.9) we have

(3w, + dO, + i®Pb,) A (0, —i,) = 0,
where 6, is the argument of the function @, Hence we have
(3.11) @y = —iD(3w,,+d0;) on W2

From (3.6) and (3.11), we have

dé, = — 3i®de,, = 3ic D @, A o =—--7%2~Aw1 A o,
hence

. 2
3icd =— N (fa+sGnra—Sne4Gnss) »
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that is
(3.12) 3c =2|®, |2 on W2,
This relation shows that ¢>0,

By (3.10) and (3.12) we have

(3.13) 2\ = 5c, |<1>,|2=% on W?.

4, Frenet formula of W? under (@) and (8). In this section,
determine the Frenet formula of W? in terms of an isothermal coordinate,

the conditions () and (8) in Theorem 2 are satisfied.

381

we shall

when

By means of (ii) in Theorem 2, we denote the set of frames & over W? such

that
(4.1) F=fe,;, G=gens f>0,9>0

by Bs.
Without loss of generality, we may put

c=1 and o=1.
Since @, =f/a and P, =ig/n on B;, we have

(4.2) rep=L0,  feg="2 aw

by (3.13). Furthermore, from (3.9) and (3.11) we have

(4- 3) @y = 2wy, sz = 3wy,
and from (3.3)
3 __
@p+1,n+3 = )\/Ta’n @Dpi1,n+d4 — A/zﬁﬁ’z;
(4.4) B
/6

Onig,n+3 = — 2 @3, @Dpionts — 2 @,
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(3. 8) becomes
(4.5) p*+c=6.

Now, we figure the Frenet formula of W? First of all we have
(4.6) dx = e\, + €0,

By means of (1.4), (112) and (4.2), we have easily

(4.7) De,+ie;) =—ie, + ies)o,, + pes(o, +ioy)+ 10 (€n+1 + 1 €pis) (@) — i)

2

(4.8) De; = — ple,o, + e,0)

where D denotes the covariant differential operator in #™*¢, Analogously, we have

— . 10 ) . . .
(4.9) Dfeysr +i€nis) = — /\/2 0 (e1 + iey)(o; + dwy) — 2%(€n sy + i€nrz) @1y
6 ) .
+ '\; (en+3 + ze,,H)(a)l - ng)

by means of (1.4), (4.2), (4.3) and (4.4). Lastly we have

— . 6 . .
(4 10) D(en+3 + zeﬂ"*‘) = A/_Z—(e?’+l+len+2)(w1 +1iw,)
— 3i(€nss + 7€n14)05.

These equations (4.6)~(4.10) constitute the Frenet formula of W2 In order to
solve these equations, we shall write these equations in terms of an isothermal
coordinate of W2,

On the other hand, for the unit sphere S? we have the following formula,
considering it as the Gaussian complex number sphere, as is well known,

4d=zdz

Tteazp = (@ + (@),

(4,11) dst =

and
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, . 2dz . 2dz—zdZ

¥* ¥ — * — 5= .
(4.12) 0. * + iew,* = Ttzz’ @0 =% 1312
where ,} is the connection form of S2.

Since W? is of constant curvature 1, we may consider it locally as the unit
sphere S?, Then, we may put

(4.13) o, +io, = e 0,* + iw,¥).
Substituting this into

d(“’x + iﬁ’z) =—iw; A\ (‘01 + i"’z) ’

we have

(013 — @1.* — dO) A\ (0 +iw*) =0,
hence
(4.14) = 0%+ db.

Substituting (1.13) and (4.14) into (4.6)~(4.10) and putting

(4 15) {el* 4 iez* — eiﬂ(el + iez), enﬂ* + ien+2* = ezw(enﬂ + z'e,,”),
. enss®+ie, ¥ =eYe, s tiey),
we have
(4 6*) dx = e/*o,* + e,¥0,¥,
(4.7%) D(el* + ie2*) =—i(e,* + iez*)ﬁ)lz* + Pes((l)l* + iﬁ)z*)
+ '\/210 (en+1* + ier‘;+ 2*)((01* - 2-(02*) y
(4.8%) De, = — ple*o* + e,*,*)
= : v, , . _ , .
(4' 9*) D(e”H* + ze,,+2*) =T '\/2 (e‘*+ze2*)(wl*+u°2*)_21(en+1*+leﬂ+2*)a)m*‘
A6 : .
+ '\g (en+3*+le,,+4*)(a)l* —_ “"2*) )
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_ A8

2 (en+1® + i€, s%) (@ * + iw,*)

(4- 10*) B(E,H,s* + Z.e,,+4*) =
— Bilenss® +in Flo*.
Therefore using (412) and putting

(4.16) E=e*+ie*, n=e,.*+ie,, § =€, +ie. 5

we have the Frenet formula of W? in the isothermal coordinate z as follows:

| dz=——(8dz + £d7),
Dey=— L (Bdz+ £d %),
(4.17) Dt =1 £(zdz — zd2) + Loz + Y pa,
Dn=-YY¢ g + 2 n(edz — 2d7) + M raz,
D¢ =- 8ty + 3tz — 2az),

where h=1+22.

5. Solutions in Case M"**= E***. In this section, we shall find M" in
Euclidean space E™** as in Theorem 2, by solving the Frenet formula (4, 17) of W2,
In this case, by (4.5) we have

(5.1) P=4/6.
From the last equation of (417), we have

% _ 32
=R

Hence we can put

(5.2) &= %F(z) ,

where F(z) is a complex holomorphic vector field. Substituting (5.2) into the 5th
of (4.17), we have
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ot 1 A6 32
B = h‘-F( )+ 55 Flz) =— "=+~
- «/6 4 32
= + 50 F(z)
hence
= Z 1 ,
(5. 3) n = ,\/6'h—3F(z)—:/=67lz—F (z).
From (5.3) and (5.2), we have
on —f 1 3%
—é§=¢\/6 (“h—, h‘) () + ,\/6 B F(z)
and
20— 2= MO Pl) — B E )+ P
=¢6‘(,§—, 3;3?)F< )+ F &)
hence
_A/ﬁ 2z,
F=5t-4

From the 4th of (417), we have

o1 __3/6% Flo)+ 28 2 p (4 22 _plo—

R X & Jo I T
- “/10§+—n= «/10§+ ZﬁE’F(z) J6h’
hence
(5.4 £= 2T - Y EF )+ 5 i PR,

385
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From (5. 4) and (5.3), we have

Of (22 322 15 (1 222\ ., z ”
g—/\/]-S(hs T )F(z)_ (hz - Zs )F(z)— 2}\/-1§th (2)

and
+ /B s F e
= Jl?‘z‘( S )F(z) - 3/31_5(72__ %;)F(z) ~ s F e
hence

From the 3rd of (417), (5.3) and (5.4), we have

ot 3J/15 % 5./15 o
oz p P+ g Fle) = 5o

_ /15 %

-~ 2 ‘1_5‘—-2 >
~ e = LT e

TF(Z) +

F(z)—

Hence we have

/10 2
2h?

/10 2
3

(5 5) €; = — A

F(z) +

from which we have
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oe —~ (32 32 10 222"
%= (- 5 e 0 (5 - 5T e

_Jgg_g%%b_wmy()v F )

~J10\ A ht
1 , A6 p
JiomF =T f=—pt

If e, is real, then we have also

bz
- =—-E.

%e, _ A6 z
oz h

Hence, if we choose F(z) so that e; is real, then e, £ 7, ¢ given by (5.5),
(5.4), (5.3), (5.2), satisfy the equations (4.17) respectively except the first one.

From now we search for F(z) such that e; is real. Since h=1+22 is real,
it is equivalent to determine so that

(5.6)  —12,/10 hle, = 120 2°F(z) — 60hZ°F (z) + 12h°2F " (z) — h*F"'(2)
=6G(z,?)

is real. G{2,%2) is a polynomial in Z of order at most 3, hence it is also so in 2
by means of G(z,z)= G(z, ).

Now, we have easily from (5.6)
6G(z,2) = {120F(z) — 60zF (2) + 122°F"(2) — 2°F "(2)} 2
—3{20F (2) — 82F"(2) + 2*F " (2)}2*
+3{4F ' (z) — 2F " (2)}2— F"'(2).

Since G(z,%) is a vector valued polynomial in z and %, we see from the above
relation that F*”(z) is a polynomial in 2z, Therefore, we may put

(5.7) Flz) = Ayt Az + -+ A2™,

where 4, A,,+++, A, are constant vectors in C%. Then, by simple calculation,
we have
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120F(2) — 602F (2) + 122°F"(2) — 2°F "' (2) = 1204, + 604,z + 24A,2*
+ 6428+ oo +(4—m)(5—m)(6 —m)A,z",
20F"(2) —82F"(2) + 2°F"(z) = 20A, + 244,z + 18A2*
+ oo+ m(5b —m)(6 —m)A, 2™,

AF'(z) — 2F"(2) = 8A; + 18Az+ « o« +m(m — 1){6 — m)A 2™ %,
hence we have

6G(2,2) = {120A4,+60A,2+244,2?+6A,2%+ -+ + (4—m)(5—m)(6—m)A,2"} T
— 3{204, + 24A,2 + 18A2* + +++ + m(5 — m)(6 — m)A,z" '} 2
+3{84;+18A,2 + -+ + m{m ~ 1)(6 — m)A,z™ )2
—{6A; + 244,z + + o« + m(m — L)(m — 2)A,,2™"%].

Noticing that the polynomial inside of the first brace lacks the terms of order 4,5
and 6 in 2z, we may suppose that 7z =6, Then, we have

(5.8) G(z, %) = (204, + 104,z + 44,2 + A2z
— (104, + 124,z + 9 A;2* + 44,27
+ (44, + 9A;z + 12A,2* + 104;2%)Z
— (A; + 4A,z + 104;2% + 20A.2°) .

Hence, it must be
Gz, 2) = (— 204, + 1042 — 4A 2 + A2
— (104, — 124,z + 94,22 — 44,2%)3*
+ (— 44, + 9Az — 124,2% + 104,2°)Z
— (A3 - 4A22 + 10A122 - 2014023) .

Comparing this with (5. 8), G(z, 2) = G(=z, %) is satisfied if and only if

(5. 9) As = Aa; A4 = - Az:

b

5=A1’ Ae=_Ao-

Making use of (5.9), G(z,%) can be written as
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Glz, 2) = (204, + 104,z + 44,2% + A;2%)2°
— (104, + 124,z + 9A,2* — 4A,2°)2
+ (44, + 94,2 — 124,2* + 104,2%)F
—(A; — 44,2 + 104,2* — 204,2°)
=— A, + 4 A,z + As2) + 94,22 — 10(A,2* + A7)
— 12(A,2 + AZ)22 + 20(Ae2® + AP
+ 10(A,2? + A,7%)22 — 94;(27)?
+ 4(Ayz + AjZ)(23) + A7)
=— A, {1 — 922 + 9(27)? — (27)%}
+ 4 Az + AZ) {1 — 322 + (23)1)

—10(A,2* + A, {1 — 23}

+ 20(A2* + AZ).

Substituting this into (5.6), we have

L (41— 922+ 9278 — 2"

5.10) “ =20k

— 4 Az + AZ)(1 — 328 + 223%)
+ 10(A122 + Algz)(l - ZE) - ZO(Aozs + A0§3)} .

Analogously from (5.2), we have

B11) = A+ A — 2 A) + G+ ) + A= 2A)
On the other hand, (5.3) and {5.4) can be written as
1= g 6 — (L+ F(2)

and
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£ 7%5}1— {158'F () — 5(1 + 22)2F (z) + %(1 +22)'F ()} .

Since we have
62F(2)— (L +22)F'(2) = 62(2*A;+ 224, — 2t A, + 2A, +2° A, + A, — 28 A,)
—(1+23)(3224,+22A,— 423 A, + A, +52* A, — 62°A,)
= —3(1—22)22 A+ 2(—1+222)2A, + 2(2—22)2* 4,
+(—1+522)A, +(—5+22)2' A, +6234,+62°4,,

152%F(z) — 5(1 + 23)zF’ () + —é— (14 22)*F" (=)

= 158%(2%A; + 224, — 244, + 2A, + %A, + A, — 2°4,)
— 5(1 + 22)3(322A, + 224, — 42 A, + A, + 52*A, — 62°4,)
+ (L + 222 + 2%3%) (324, + A, — 6224, + 102°4, — 152*A,)
= 3(1 — 322 + 2?2?24, + (L — 82% + 62%7%) A,
— (6 — 822 + 222Y)22 A, + 5(— 1 + 223)24, + 5(2 — 2£)2° 4,
+ 15224, — 15244,

n and £ can be written as:

(5.12) (1 — 28)22A, + 2(—1 + 228)24, + 2(2 — 28)2° 4,

1
"=k 73
+ (=1 +528)A, + (— 5+ 28)2* A, + 684, + 62°4,}

and

(5.13) &= :/%h— (3(1 — 32% + 22824, + (1 — 82% + 628 A,

— (6 — 828 + 22922 A, + 5(— 1 + 222)zA, + 5(2 — 28)2°4A,
+ 1522 A, — 1524 4,} .

Now, we must find the conditions such that &, %, ¢, €; make an orthonormal
frame, In the case of this section, (4.17) are



MINIMAL SUBMANIFOLDS WITH M-INDEX 2 391

de, = — ﬁ (Edz + £d3),

E(2dz — 2d3) + 28 e dz + 55— '\/10 ndz,

'dg: ’

1
h
dE = —%E(Edz— d3) + ;{6 2+ “/hlo ddz,

dn=-YW¢ar 1+ 2 yadz—waz) + ¥ taz,

dij = */10 Bdz ——2-7(2dz — 2d3) +%gdz,

dg =— 6 7dz — %E(zdz—zdz) .

In the following calculation, “=" denotes the equality modulus the quantities :
e+ e;°1, e;+¢, 63;‘3, e+, e;-F,
E-E Eon -8, 87, E-E,
E'g’ g"’?) g ?'Fi’ E'E,
nen, -8 n-& 57, 7-8 7.8 8¢ €L

Then, making use of the above ralations, we have easily the relations :

dle,-e;,) =0,

dley8) =212 (2, ¢, ~ £+ E)dz,

dles+n) = dles+£) =0,

d(g-B)=d(E-5) =d(g-n) = d(E-1) = d(E-£) =0,

dgm) =40 (y-5— E-Bldz,



392 T. OTSUKI

from which we see that if we can choose A,, A;, A4,, A; so that all the above
quantities 10 lines before and

e.-e,—1, E"E—z» nef—2,8-E—2

are zero at z = 0, then these are identically zero,
By means of (5.10), (5.11), (5.12), (5.13), when z =0, we have

1 1 L
e3=2\/1—0A3, EZN/TS‘Ag’ == /\/‘EAI’ ¢

Thus, the conditions for A, A,, A, A, are

(A, = A,

A A=A A =A,-4,=0,

A Ay =40, Ay A, =30, A, - A, =12, A- A, = 2,
A A=A A=A-A, = 0,

A A =A,-A =A,-A =A,-A,=0,

‘-AI'AO = AI'AO = 0.

(5.14)

Now, we give the equation of W? by means of the above result. First of all,
we choose four constant vectors Ay, A;, A, A; in C* which satisfy the condition
(514) and determine e; given by (5.10) which is real and a unit vector field in
Ef=~C* On the other hand, we may consider as

1
x+—P—es =0

by (4.17). Hence we have a general solution of W? as follows :

1 1
~ BT /BTy U

(5.15) z= 1— 927 + 9228 — 2'9) A,

+ 4(1— 327 + 2%3) (24, + 24,) — 10(1 — 23) (324, + 22A,)
+ 20(z24, + 2*A,)}.

If we put
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A; = 24/10 9/2x,,

A, = /15 (3/2z, +id/ox) ,
A, = — A/6 (9/ox; +i0/2x,) ,
A, = 3/3, +iD/3%s »

then we can write (5.15) in the canonical coordinates &, &xy,+++,x; as follows:

( 1—322+2%2°

X, = d+23)° (z+%),
_ . 1-32%+2°% .
x, = 14*(1_’_22) 2—32),

/5 (1—27)
= V2 (L) &)
— '\/5 (1— zz) 2 __ 52
(5. 16) Xy = ,\/7(1+—zz) ( -z ) ’
'\/5 3 =3
= V3 (1+23)° (2 + %),

_ _’\/i__ 3 53
Lo =71 J3(1+22)° (' — %),
__ 1—922+92%2"—2'%°

1= 6 (L+22)°

.

Finally, we show how ts construct M™ in E*** as in Theorem 2. First of all, we
consider as

Ertt = Rt x R%, Ré =~ C*

and construct a surface W? given by (515) in C*! This surface is clearly of
geodesic codimension 5 in R®, Hence, we may consider as

W?2c R’ and C*=RXR",

For any point y € W?, we denote a linear subspace L*%(y) through y such that

L (y)|R** xR and L"*(y)les(z), y = y(=).
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Then, the locus of points on the moving L™ *(y) makes an #-dimensjonal submanifold
M in E*** which is minimal and of M-index 2 everywhere and satisfies the
conditions in Theorem 2.

Remark, As is well known, the Veronese surface is given by

x, = '\/§ Uslhy, Tp = /\/g Uy, T3 = '\/§ U Uy

1
Z, = (pey — usuty), x5 = - (Buyuty + Busrt, — 2)

2
where wu,u, + wuu, + usu; = 1. Through the stereographic projection, we put

2+%2 v = — 2—% ’ = zz—1
14227 7 “l4z22’ T 142z

U =

and substituting these into the above equations we have

xl—z«/3—————(l zz)2 (z—2),
1l—22
-3 ez (z+%),
(5.17) 4 =—zx/3_—(l—+lz?(zﬁ —m),
=3 Arar ) (2 +72%,
_ 1—4E+27
Ts = (1+2%)*

Comparing (5. 16) multiplied by /6 with (5.17), we see that W? may be considered
as a generalization of the Veronese surface. It is minimal in a 6-dimensional sphere
as the Veronese surface is minimal in the 4-dimensional unit sphere, Both of them
are isometric imbeddings of the projective plane with a canonical metric of constant
curvature,

6. Solutions in Case M***= S"**(R). In this section, we shall find M"* in
(n+4)-dimensional sphere as in Theorem 2.

In this case, we regard as M"+*= S"**(R)C E"*5, Where% = ¢, Putting
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X
(6- 1) R = €45

we have
dx = Rde, . = ¢,*o,* + €,%0,*

Hence, denoting the ordinary differential operator in E™** by d, we have easily

(6.2) de, = De, = — L~ (Bdz + £d3),
and
df = D = (0% + o Henss
1, €,
(6.3) dt = %f(“dz —od7) + %esdz + A/hL‘T ndz — Rihemdz

by (417) and (4.12).

On the other hand, we have

(6.4) p=NE ot NEiv= ooty
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Since the point

1
X + 763 = R (e"+5 -+ e3 tan%—)

is a fixed point, the unit vector

v ..U
€y = €p.15 (,OST+ €; Sm—R~

is fixed on W2, Hence W?* lies on the linear space E}** which is orthogonal to e,

and passes through the point O, = eoRcos%.
Now, we have
0.2 = —e,* R sin-%
T o= — ey sin—p-,
where
(6.5) e* = e cos—}%——e,,” sin—%.
Since we have
1 1 1 1
bes _'“R—ems = Tes cot 'Ivz R €n+s e*
R sin—R¢
and
s L - 1 v\, 1 1
PHe=\gotg) * R = o= ©
(R sm?)

by (4.5), (6.3) can be written as

(6. 6) dE = %E(Edz—zd%) + 2;{ 6 % dot .«1}110_,7 dz.
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Next, we compute de;* on W2, By means of (6.1), (6.2) and (6.5), we have

dey* = cos—-de, — sin—p- dey.s

=— (—i—cos-— + —I%E-sm—-)(fdz + £dz)
and
A v .U 1 /6
RS RTRESMR T o kR’
RA sin—-
R
hence
(6.7) de =— %‘i (Bdz + £d3),

Therefore, the Frenet formula (4,17) of W? in S™**(R) becomes the follow-
ing one in Er+*:

dz = %(gdz + £d3),
de* = “/6 (Edz + £dZ),
(6.8) dE = ——H(zdz— =) + %gea*dﬁ “/Tﬁ ndz,

dn = ~/ A0 e 2 n(ads — zd7) + ihs—gdz,

dt = '\/6 X =ndz + T{(zdz —=2d3),

.

which is completely identical with the system of equations in Case A"+t = E"*+!,
We can construct a minimal submanifold M™ with M-index 2 of geodesic
codimension 4 in the sphere S"**(R) by means of the results of the previous sections,

7. Solutions in Case M+ =H"*(¢). In this section, we shall find M" in
{(n+4)-dimensional hyperbolic space H™**(¢) of curvature ¢ as in Theorem 2.
In this case, (4.5) and (1.14) imply
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T=6—p=6+C coth? /—C v,

i e

(7.1) — T =6 sinh’/=¢ 7.

We use the Poincare representation of H***(c) in the unit disk in E"** with
the canonical coordinates x;, &y *++, Z,.4. Its line element, as is well known, is
given by

4 R? dx-dx 1
2 —
(7.2) ds? = l—z-z) ’ R \/ -

Since the components of the Riemannian metric are

2

4R L?
gy = ?Sm gy = Wsw

where
L=1-z-x,
we have its components of the connection :
(7.3) i = 2(8/x; + 8z, — 8yxi) /L .

For any two tangent vectors X and Y, we have

AR vy

<X,Y>=‘L—2 >

where < X,Y >and X-Y denote the inner products of X and Y in H***(¢) and E"+4,

respectively. Hence, if (x,e,,++¢,¢€,,,) is an orthonormal frame in H"*%(¢), then

(x,_ZLiel,.--,—zgenH) is the one in E***,

n+4

Now, for any tangent vector field X = > X’/0/0x’, by means of (7.3) we

=1
have easily

o e de ) e fe-of )



MINIMAL SUBMANIFOLDS WITH M-INDEX 2 399

Putting

2R 2R R 2R
(75) 83*=T€3, E*=TE; 77*=£L_77’ é‘*: L C,

we rewrite the formula (4.17) in these terms. First of all, we have

(7.6) dr = 2%1 (B*dz + E*d3) .

From the 2nd of (4.17) and (7. 4),

de* + 2~ ((z-e¥)dz — ales*-da)) = — L (Brdz + £rdz)

By (7.6) and (e;*-dx) =0, the above equation becomes

des* = — {p + —}{— (x-e5*) }% (B*dz + £*dz) .

Now, from the third of (4.17), we have analogously

+ —zilgea*dz + —'\/—I;lg n*dz .

Since we have

L
2Rh

£* . (B*dz + E*d7) = -2 _dz,

E.dx = =h

the above equation becomes

— i (2 E)(Erdz + ).
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Next, from the fourth of (4.17), we have

IS

dy* + 5 {{x-n*)dx — x(n*-dx)}

10
h

2. ™

= - E*¥dz+ —Z—n*(%dz —=2dz) + %{;*d?.

Since %*-dx =0, the above relation becomes

2
h

(7.8) dn* = — “/hlo Erdy + 2yt (3dz — 2d7) + —%;‘*d%

— P (@) (Brde+ £4d3)

Last of all, we have from the fifth of (4.17) and (7. 4)

de* + 2 {(-g¥)dz — 2lg*-da)) =~ L yide + - gHEdz ~ 2d3)

that is

(7.9) dir = — NCo¥de+ - p¥(Ede — 2dE) — - (x-£¥)(BFdz+ £¥d).

On the other hand, any geodesic starting from the origin O=(0,+++,0) in
H"*(c) is a Euclidean straight line segment in the unit disk. The arc lengths v
and » in H***(¢) and E*** have the relations as follows:

v=Rlog1, 7= tanh- .

Since any W? is congruent to others under the hyperbolic motions, we may suppose
the forcal point 2z, in Theorem C is the origin O. Then, we have

(4
xr =—e¥ r=—eatanh-§R—,

and hence
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28 =zt = 2t =

L=1—zx=1—7"=1— tanh*—2 1 s
2R cosh? -2
2R

and

r 1 v
P g lwned) = pop=geoth g~ ptwhpp

by (1.14) and (7.1).
Making use of these relations, (7.6)~(7.9) can be written as

dx = L T (B*dz + £*d7) ,
(cosh% +1)R

deg* =— if— (B*dz -+ £¥dZ) ,

(7.10) .
dg* = s*(zdz — 2d5) + 3“—6e3*dz + ~“—/hl—01;*d2 ,

A = — Vhw Eide + -2tz — 2d2) + “26 ¢rdz,

de* =— A/ﬁn*dz -2t adz —2d3)

which is completely identical with the system of equations for W? in Case M™+
=E"** except the first one,
Therefore, we can construct W? in H"**(¢) by the formula (5.10) and

1

e.x,
& R(cosh% +1)

(7.11) z=—

Then, we can construct a minimal submanifold M" with M-index 2 of geodesic
condimension 4, taking W? as the base surface, according to Theorem C.
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