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Abstract

We present a superconformal master action for a class of supergravity models with one arbitrary

function defining the Jordan frame. It leads to a gauge-invariant action for a real vector multiplet,

which upon gauge fixing describes a massive vector multiplet, or to a dual formulation with a

linear multiplet and a massive tensor field. In both cases the models have one real scalar, the

inflaton, naturally suited for single-field inflation. Vectors and tensors required by supersymmetry

to complement a single real scalar do not acquire vev’s during inflation, so there is no need to

stabilize the extra scalars which are always present in the theories with chiral matter multiplets.

The new class of models can describe any inflaton potential which vanishes at its minimum and

grows monotonically away from the minimum. In this class of supergravity models one can fit any

desirable choice of inflationary parameters ns and r.

1On leave of absence from Department of Physics and Astronomy, University of California Los Angeles, CA 90095-1547
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1 Introduction

The recent cosmological observations by the Planck probe [1], beside supporting earlier findings of

WMAP [2], suggested that a single scalar field model of inflation might explain the data. This

particular feature, as well as the actual values of the cosmological observables ns and r led to a burst

of activity recently. One would like to try to use this information as a hint towards the fundamental

theory behind the observations. The goal of such a bottom up approach, initiated in [3] a couple of

years before the anticipated Planck results, was to end up, upon moduli stabilization, with general

potentials capable of describing any possible outcome of the future data. The philosophy was to

start with the analysis of such models in supergravity and eventually uplift this information to string

theory and its landscape. These developments, including the work of some of the present authors [4–6],

continued after the Planck data were released.

The purpose of this paper is to add a new way of thinking about supergravity in view of recent

cosmological data. We find here that the data from the sky cast in a new light some supergravity

papers from 70’s and 80’s, see [7–14] and references there. Our analysis here will be build on extension

of the results obtained in those papers.

For example, in the past a supergravity version of the Starobinsky model R + γR2 [15]2 was

developed in the old-minimal formulation in [9] and in the new-minimal version of supergravity in [11].

When one tries to implement inflation in the simplest version of the model described in [9], one finds

a tachyonic Goldstino instability at large values of the inflaton field. This problem was recently

resolved in [5, 6], where several different versions of a stable supersymmetric generalization of the

theory R + γR2 exactly reproducing the inflaton potential of [15] have been constructed. Related

approaches were proposed in [18–22]. In particular, a stimulating proposal of [19] was to embed the

Starobinsky model in the no-scale supergravity [23], which exactly reproduced the inflaton potential

of [15] prior to the moduli stabilization. However, moduli stabilization required breaking of the no-

scale structure of the theory, which slightly modified the inflationary potential of [19], see [21]. In this

respect, it is interesting that in the supergravity version of the theory R + γR2 developed in [11] the

issue of stabilization of the extra moduli does not appear at all because this theory does not contain

any other scalars except the inflaton [22].

A major step forward in constructing inflationary models in supergravity was made in [24], where

an implementation of the simplest chaotic inflation model m2φ2 [25] was proposed in the supergravity

context. This was significantly generalized in [3], where a general class of chaotic inflation models

with a nearly arbitrary form of the inflaton potential was developed using chiral supergravity matter.

To provide consistent cosmological models, certain conditions on the Kähler potentials were required

2The original model [15] was based on the Einstein theory with conformal anomaly, but later it was modified and cast

to its more familiar form R+ γR2 [16]. When we will be talking about the potential in this model, we will have in mind

its dual representation in terms of the Einstein gravity and a scalar field with the potential V ∼ (1−exp(−
√

2/3ϕ))2 [17].
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for stabilization of other moduli, which can be achieved by the methods developed in [3]. The setting

of this approach becomes now a part of the full supergravity landscape as new features are emerging.

In this paper, we will show that the landscape of supergravity models capable of explaining the

Planck data can be substantially extended. We present a novel set of supergravity models were the

physical multiplets are not chiral but vector or linear multiplets in the Higgs phase, where they are

massive. We will show a “master” superconformal gauge-invariant model with a vector or a linear

multiplet both in the old-minimal as well as in the new-minimal formulation. The model exists in a

Higgs phase with a massive vector or tensor, as well as in a de-Higgsed (ungauged) phase where the

vectors and tensors are massless but there is a second scalar.

We end up with a cosmological model for a single scalar with the potential given by one nearly

arbitrary function. There are two constraints on the potential: it should vanish at its minimum, and

it should monotonically grow away from the minimum. Both of these conditions can be relaxed by

considering theories with many scalar fields, but from the point of view of inflation these constraints

are not really restrictive: potentials of this type are quite generic and ideally suited for implementation

of a single field chaotic inflation [25]. By tuning the shape of the potential, one can fit any desirable

values of the observational parameters ns and r consistent with recent observational data.

On the other hand, in some cases one may encounter the cosmological attractor mechanism, when

a broad class of different theories make very similar predictions for ns and r. An example of such

mechanism was recently given [6] in a class of models using chiral superfields. In this paper, we will

find a similar result for a certain class of models resembling the model R + γR2 in the theories with

a vector multiplet.

Our “minimal” class of models with a single vector matter multiplet can be generalized by adding

other chiral and vector multiplets as well as any superpotential that respects R symmetry, see for

example [26]. During inflation supersymmetry is broken since at that time the auxiliary field D

does not vanish. However, after inflation, when the inflaton field is at the minimum of its potential,

D = 0 in our minimal model and supersymmetry is restored. Extension of our inflationary model to

a realistic model with supersymmetry breaking requires separate investigation of the low energy scale

susy breaking mechanisms, for example via hidden sectors and soft susy breaking terms, which should

not affect the inflationary regime.

This paper is organized as follows:

In Section 2, we define the “master” supergravity action with chiral compensator that reduces

to supergravity coupled to either a massive vector multiplet or to a massive linear multiplet, upon

integrating out appropriate non-dynamical superfields.

In Section 3, we present models which are dual to those in Sec. 2. Here the master superconformal

action is based on a linear compensator. In particular, we show how, as in [11], a special choice of this
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master action reproduces the supergravity generalization of the R + γR2 action in the new minimal

formulation.

In Section 4 we present the simple part of these new supergravity models relevant to inflation,

where only scalars have non-vanishing vet’s. The action thus depends on a single scalar C, the first

component of the vector superfield, which has a non-canonical kinetic term. We rewrite this action in

terms of a canonically normalized field ϕ and explain the relation between these two versions of the

model. We present as examples the simplest model of chaotic inflation m2

2 ϕ2 [25], more general chaotic

inflation models, and the T-model [6]. We also present a class of SU(1, 1)/U(1) gauged sigma models,

which contains, as particular cases, the supersymmetric version of the theory R+γR2 developed in [11],

and its deformations corresponding to exponents of the kind e−bϕ where b is arbitrary instead of being

equal to
√

2/3. Other interesting inflationary potentials related to brane supersymmetry breaking

and integrable systems have been studied in [27].

In Appendix A we summarize the result of [11], which shows the equivalence of new minimal

R+γR2 gravity with a massive vector multiplet. In Appendix B, we give an explicit component proof

of the equivalence between the (bosonic part of) a massive vector Lagrangian and a massive tensor

Lagrangian.

We are using structures and notation of (CFPS) paper [11]. Readers interested only in cosmological

applications may start with Section 4, with understanding that various embeddings of eq. (4.1) into

supergravity with massive vectors or tensors are explained in earlier sections.

2 Superconformal Master Model with Chiral Compensator

The superconformal “master” model depends on two real vector multiplets, U and V , one linear

multiplet L and a chiral conformal compensator S0,

L(S0, U, L, V ; g) = −S0S̄0Φ(U)D + L(U − gV )D +
1

2
[Wα(V )Wα(V ) + h.c.]F . (2.1)

The conformal/chiral weights of these superfields are the following: for U and V we have w = n = 0,

for L we have w = 2, n = 0. For S0 we have w = 1, n = 1 and for S̄0 we have w = 1, n = −1. There is

a single dimensionless parameter g, a coupling between the linear and vector multiplets.

Our master model depends on a real function Φ of a real vector multiplet. This function has to be

strictly positive, so that it describes gravity, rather than anti-gravity. For example, pure supergravity

is the case Φ(U) = 1 We will also need the following relations between superfields

Φ = e−
1

3
J , J ≡ −3 log Φ. (2.2)
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2.1 Physical vector multiplet (massive or massless vector field)

By varying the linear multiplet in action (2.1) we find that U = Λ + Λ̄ + gV with Λ chiral. We find

that our master action becomes

L = −S0S̄0Φ(Λ + Λ̄ + gV )D +
1

2
[Wα(V )Wα(V ) + h.c]F . (2.3)

The action has both superconformal symmetry and a gauge symmetry

Λ → Λ + gΣ, V → V − Σ− Σ̄, (2.4)

where Σ is a chiral superfield.

Note that by defining S ≡ exp(Λ) and Φ(U) ≡ f(SegV S̄), this is a particular case of the standard

supergravity Lagrangian [13]. This special form will play a most important role in the cosmological

applications of the model. Notice also that J (Λ + Λ̄) describes a Kählerian sigma model invariant

under a (gauged) shift symmetry.

We may decouple the Abelian vector multiplet V from supergravity by taking the limit g → 0.

In such case we recover a model of a free massless vector multiplet from the second term of our

superconformal action. From the first term we recover instead a model of supergravity interacting

with a chiral multiplet without a superpotential, but with a generic Kähler potential, depending on

Φ(Λ + Λ̄).

If however, g 6= 0 ,we can use the Abelian gauge symmetry (2.4) to fix the gauge symmetry by

requiring

Λ = 0. (2.5)

Then the Lagrangian becomes that of a massive vector field:

L = −S0S̄0Φ(gV )D + [Wα(V )Wα(V ) + h.c.]F . (2.6)

We can also gauge-fix the superconformal symmetry by requiring that

S0 = MP = 1 (2.7)

for the Weyl weight 1 superfield S0. For g = 1 this is the self-interacting massive vector multiplet

action [12] in the Jordan frame. One can either perform the change of variables, starting with this

action and find the action in the Einstein frame, as was done in [12] or alternatively, use the different

super-conformal superfield gauge

S0S̄0Φ(gV )D = 1 (2.8)

which will lead directly to an Einstein frame action. In this way, the bosonic part of our superfield

action in the gauge (2.8) corresponds to the bosonic action in [12] where the gauge coupling g is now
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restored 3

L = −1

2
R− 1

4
Fµν(B)Fµν(B) +

g2

2
J ′′BµB

µ +
1

2
J ′′(C)∂µC∂µC − g2

2
J ′2(C). (2.9)

Here C is the scalar in the vector multiplet, Bµ is its vector and ′ is differentiation w.r.t. C. Our

superfield action (2.1) was defined for an arbitrary function Φ = e−
1

3
J . The arbitrary function J(C)

in the component action in (2.9) is related to a superfield one as follows

J = −1

2
J + const =

3

2
log Φ + const. (2.10)

Note that the Einstein frame was obtained in [12] after conformal rescaling with the factor e
1

3
J on the

vierbein, and on other fields accordingly, starting from the Jordan frame action.

A particular example of Φ was described in detail in [11]. There it was found there that a particular

choice of the Kähler potential reproduces the pure R+ γR2 theory in new minimal supergravity. The

derivation is reviewed in Appendix A. The specific potential is

Φ = −C expC , J =
3

2

[

log(−C) + C
]

, J ′ =
3

2
(C−1 + 1) , J ′′ = −3

2
C−2. (2.11)

Notice that the Kähler potential gives a manifold SU(1, 1)/U(1), where the gauged symmetry is the

translational isometry. To canonically normalize the scalar one needs C = − exp(
√

2/3ϕ) so that the

scalar potential becomes that of the Starobinsky model [15], see also a more recent paper on this [22]

V =
9

8
g2
[

1− exp(−
√

2/3ϕ)
]2
. (2.12)

In our class of models, the Kähler potential of the SU(1, 1)/U(1) manifold leads to the D-term

potential (2.12). Our models differ from those with chiral multiplets and F-term potentials. The

presence of the vector field in our models is a condition for the existence of the D-term potential

since the D-field is an auxiliary field of the vector multiplet. Vector fields typically do not play any

role during inflation. However, at the exit from inflation during reheating and creation of matter the

presence of the vector field might be important and needs separate study.

Note that the D-term potential g2

2 J
′2(C) originates from the real auxiliary field D of the vector

multiplet, where

D(C) = J ′(C), (2.13)

and that the positivity of the moduli space metric of the scalar C requires that

J ′′(C) < 0 , (2.14)

which is satisfied by the function in equation (2.11).

3We note that eq. (2.9) has the correct normalization, since the vector and scalar square masses are both equal to

m2 = −g2J ′′ at the supersymmetric minimum J ′ = 0. The potential in (2.12) becomes the same as in [22] by sending

g → 2g and ϕ →
√
2ϕ.
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2.2 De-Higgsing, g = 0 limit

Our master model has two phases: one, the Higgs phase, with a massive vector and a real scalar

at g 6= 0 ; the other, the de-Higgsed phase, with one massless vector and one complex scalar, with

g = 0. To retrieve the component form of our action (2.3), which allows both phases, we have to

define Aµ = Bµ + 1
g∂µa, so that

g2

2
J ′′BµB

µ =
g2

2
J ′′(Aµ +

1

g
∂µa)

2. (2.15)

This explains how a massive vector “eats an axion.” In the limit g → 0 this term leaves us with a

kinetic term for the axion
g2

2
J ′′BµB

µ → 1

2
J ′′(∂µa)

2. (2.16)

It restores the de-Higgsed phase of the model, where in components we get

L = −1

2
R− 1

4
Fµν(A)Fµν(A) +

1

2
J ′′(∂µa)

2 +
1

2
J ′′(C)∂µC∂µC, (2.17)

i.e. a massless vector, 2 uncharged scalars and no potential. Thus, the Lagrangian (2.9) at g → 0

becomes a σ-model Lagrangian of a complex scalar Λ|θ=0 ≡ z = C + ia with Kähler potential

−1
2J(

z+z̄
2 ).

This is in agreement with our analysis of the superfield action when at g → 0 the Kähler potential

depends on Λ + Λ̄. This is also in agreement with [11].

2.3 Physical linear multiplet (massive or massless tensor field)

We start again with the master action (2.1), differentiate it with respect to U and solve for L to get

the dual linear multiplet action

L(S0, L, V, g) =

[

S0S̄0F
( L

S0S̄0

)

− gLV

]

D

+
1

2

[

Wα(V )Wα(V ) + h.c.
]

F
, (2.18)

with

F (U) = UΦ′(U)− Φ(U) computed at Φ′(U) =
L

S0S̄0
. (2.19)

Lagrangian (2.18) is in reality independent of V . To show this we recall that the linear multiplet

is constrained: it can be expressed via a chiral spinor superfield Lα as:

L = (DαLα + D̄α̇L̄
α̇). (2.20)

Therefore we may integrate by part the term −[gLV ]D to obtain:

− [gLV ]D = g[LαWα + L̄α̇W̄
α̇]F . (2.21)
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The action depends on the unconstrained field Lα only via L, therefore there is a gauge symmetry

Lα → Lα − i

g
Wα , if DαW

α = D̄α̇W̄
α̇. (2.22)

The action contains the following V -dependent terms

1

2
[Wα(V )Wα(V ) + gWα(V )Lα + h.c.]F . (2.23)

By introducing a chiral Lagrange multiplier Mα, this F term containing V can be rewritten as

− 1

2
[MαMα +MαWα(V ) + igMαLα + h.c.]F . (2.24)

So, by integrating out Mα and using the gauge symmetry (2.22), the action becomes V independent:

L(S0, L
α, g) = S0S̄0F

( L

S0S̄0

)

− g2

2
(LαLα + h.c.). (2.25)

After gauge fixing the conformal compensator, this action produces in components the following

massive tensor field action

L = −1

2
R− 1

2
(J ′′)−1(∂[µBρσ])

2 − 1

4
g2B2

ρσ +
1

2
J ′′(C)∂µC∂µC − g2

2
J ′2(C). (2.26)

This bosonic Lagrangian is equivalent to eq. (2.9) as it was shown e.g. in [10] and reviewed in

Appendix B.

3 Superconformal Master Model with Linear Compensator

In principle, all the Lagrangians given in the previous section can be converted into a “new minimal”

auxiliary field form since, in the physical linear multiplet language, the mass term gLV does not

depend on the compensator. In particular, the “master action” can be written in the new minimal

formulation simply as

L(L0, L, U, V, g) =
[

L0 log(L0/S0S̄0) +
1

3
L0J (U) + L(U − gV )

]

D
+

1

2

[

Wα(V )Wα(V ) + h.c.
]

F
. (3.1)

By variation of L we recover both the Kählerian gauged sigma model in the new minimal formu-

lation, as found in [11] eq. (1.7), and the massive vector model –which is the former in the unitary

gauge. By varying with respect to U we recover the new minimal form of the massive linear multiplet

Lagrangian:

L(L0, L
α, g) = [L0 log(L0/S0S̄0) + L0M(L/L0)]D − 1

2
[g2LαLα + h.c.]F , (3.2)

where

M(L/L0) =
1

3

[

J (U)− U
∂J
∂U

]

computed at
1

3

∂J
∂U

= −L/L0. (3.3)
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In the tensor multiplet formulation, the scalar potential term comes from the mass term of the

linear multiplet scalar, σ, which is the first component of the supermultiplet L/L0. From eq. (3.3) we

notice that σ = (2/3)J ′(C). This explains why the potential is proportional to g2J ′2.

For the choice of function J /3 = −α logU −βU –which reduces to the Starobinsky model given in

eq. (2.11) for α = β = 1– the Lagrangian (3.2) acquire a particularly simple form. Written in terms

of V and L it reads:

L = [(1− α)L0 logL0 + αL0 log[(L− βL0)/SS̄0]− gLV ]D +
1

2
[Wα(V )Wα(V ) + h.c.]F . (3.4)

It is now immediate to show that the R + γR2 new minimal supergravity can be recovered from

eq. (3.4) for α = 1 and β 6= 0 arbitrary. By varying w.r.t. X ≡ L0 + L/β one can solve for the vector

superfield as gβVL = log(L0 − L/β) + chiral + antichiral. By substituting into (3.4) one obtains the

Lagrangian [11]

L(L0 − L/β) = [S0S̄0VLe
VL ]D +

1

2g2β2
[Wα(VL)W

α(VL) + h.c.]F , (3.5)

VL ≡ log[(L0 − L/β)/S0S̄0], Wα = ΣDαVL. (3.6)

Here Σ is the chiral projector defined in [8] and the Lagrangian we obtained is identical with that

of [11] (cfr. Appendix A) upon redefining L0 − L/β → L0, 1/g
2β2 → γ.

4 From Supergravity with Massive Vector/Tensor to Inflation

During inflation in the FLRW universe there is no vev of the vector or tensor fields, so we need only

the scalar-gravity part of the action (2.7) or (2.26).

e−1L = −1

2
R+

1

2
J ′′(∂µC)2 − g2

2
(J ′)2 , J ′′(C) < 0 , (4.1)

where ′ denotes as before differentiation over the single real scalar C. The scalar potential has an

extremum at

V ′ = g2J ′′J ′ = 0 . (4.2)

Since J ′′ must be non-vanishing and negative we find that

V ′ = g2J ′′J ′ = 0 , ⇒ J ′ = D = 0 V ′′ = g2[(J ′′)2 + J ′′′J ′]|J ′=0 = g2(J ′′)2 > 0 , (4.3)

and supersymmetry is restored at the minimum of the potential. It is interesting that the potential

in this theory vanishes at its minimum and it must grow monotonically away from this minimum in

the domain of stability of the theory. Indeed, if the potential grows and then starts decreasing, this

involves the change of sign of D′ = J ′′, which would imply a wrong sign of the kinetic term of the

field C, and, consequently, vacuum instability.
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We can rewrite the action using a canonical field ϕ instead of a non-canonical C and change

variables from C to ϕ. Let us introduce some definitions

D(C) ≡ J ′(C) , D′(C) ≡ J ′′(C) . (4.4)

After a change of variables the action is

e−1L = −1

2
R− 1

2
(∂µϕ)

2 − g2

2
(D(ϕ))2 , (4.5)

where

D(C(ϕ)) ≡ D(ϕ) . (4.6)

and
(

dϕ

dC

)2

= −D′(C) . (4.7)

From the relation

D′(C) =
dD

dϕ

dϕ

dC
(4.8)

one finds
∣

∣

∣

dD

dϕ

∣

∣

∣
=

√

−D′(C) . (4.9)

Thus
dD

dϕ
= − dϕ

dC
. (4.10)

Note also that the vector mass is always equal to |g dD
dϕ |, see (2.9). At the supersymmetric minimum

D = 0, it equals the inflaton mass, as it should.

The rest of the fully supersymmetric action action requires various C-dependent terms like J ′, J ′′,

J ′′′, J ′′′′, which become ϕ dependent terms. We may define the model completely either by giving

J ′(C) and computing higher derivatives to specify the full eq. (3.9) in [12], or we may codify each

model by the choice of D(ϕ). In such case we may find the complete action first by defining the

relation between these variables

C(ϕ) = −
∫

dϕ
(dD(ϕ)

dϕ

)−1
, (4.11)

and looking for the inverse one, ϕ(C), which should allow us to find J ′(C) = D(ϕ(C)) for any given

D(ϕ).

The generic case of (4.5) has a positive potential which is the square of an arbitrary function

D(ϕ), and therefore offers a possibility to fit any value of the cosmological observables as long as

that potential has a slow-roll regime. In all previous models of inflation in supergravity the issue of

stabilization of remaining moduli required a significant effort, see for example [3], as well as many

other papers on this.

This situation would be perfect sometime ago, but now that we have to fit the data from Planck.

There is one obvious perfect feature of this model: it has exactly one scalar inflaton, and there is
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nothing to stabilize despite having a complete supergravity model. Plank data agree with a single

scalar inflaton model, so let us take it as a starting point for embedding inflation in supergravity.

4.1 The simplest chaotic inflation model g2

2
ϕ2.

Now we are going to investigate the possibility to embed some well known inflationary models in the

theory discussed above. The main problem is to make sure that these inflationary potentials can be

cast in the form D2(C)/2 with D′ < 0 as required in this theory. As we will see, this can be done for

a very broad class of inflationary potentials, but some non-trivial restrictions do appear.

We will begin with the simplest chaotic inflation model of a canonically normalized scalar field ϕ

with the quadratic potential

V (ϕ) =
g2

2
ϕ2 . (4.12)

This potential can be represented as g2D2(ϕ)/2, where

D(ϕ) = −ϕ (4.13)

Then dD
dϕ = −1, and therefore

C =

∫

dϕ = ϕ . (4.14)

Therefore D(ϕ) = −C so that the condition J ′′ = D′ < 0 is satisfied, and the potential is given by

(4.12).

This potential corresponds to the simplest version of chaotic inflation [25], with the inflaton mass

m identified with g. It played a very important role in the history of the development of inflationary

cosmology, so the possibility to obtain this potential in such a simple way in supergravity is noteworthy.

Interestingly, a supergravity model of this type, with a quadratic potential, was proposed back in

1979 [14], but apparently its usefulness for cosmology was not appreciated by the very few people who

were aware of its existence. As we will see now, the theory which we are discussing in this paper can

easily incorporate a much more general variety of inflationary potentials.

4.2 Generic models of chaotic inflation

The model g2

2 ϕ
2 described above represents the simplest version of chaotic inflation, but it is only

marginally compatible with the Planck probe data, so we will try to generalize it now. Consider the

following polynomial potential which can be represented as g2D2(ϕ)/2:

V (ϕ) =
g2ϕ2

2
(1− aϕ+ bϕ2)2 . (4.15)

This potential is polynomial and positive definite. It allows chaotic inflation for any values of its

parameters [25]. Observational data provide 3 main data points: The amplitude of the perturbations

11



∆R, the slope of the spectrum ns and the ratio of tensor to scalar perturbations r. Tensor perturbations

have not been found yet, so we are talking about the upper bound r . 0.1.

The potential contains exactly 3 parameters which are required to fit these data, so we are not

talking about fine-tuning where a special combination of many parameters is required to account for

explaining a small number of data points; we are trying to fit 3 data points by a proper choice of 3

parameters, g, a and b. The values of ns and r do not depend on the overall scale of V ; they are fully

controlled by the parameters a and b. One can show that by fixing a proper combination of a and

b with a few percent accuracy, one can cover the main part of the area in the ns − r plane allowed

by observations. After fixing these two parameters, one can find the proper value of g ∼ 10−5 to fit

the observed value of ∆R ∼ 10−5. We will return to a detailed discussion of this issue in a separate

publication; for a discussion of ns and r for very similar potentials in non-supersymmetric models

see [28]. At present, for illustrative purposes, we will consider a particular set of parameters a = 0.1,

b = 0.0035. This will help us to describe our general strategy by presenting some explicit potentials.

5 10 15
j

2

4

6

8

10

12

V

Figure 1: Inflationary potential g2ϕ2

2 (1− aϕ+ bϕ2)2 (4.15), for a = 0.1, b = 0.0035. The field is shown

in Planck units, the potential V is shown in units g2. In realistic models of that type, g ∼ 10−5−10−6

in Planck units, depending on details of the theory, so the height of the potential in this figure is about

10−10 in Planck units.

Our goal is to show that potentials of this type can be a part of our supergravity model. The

potential (4.15) can be represented as D2(ϕ)/2, with (note the signs!)

D(ϕ) = −ϕ(1− aϕ+ bϕ2) ,
dD

dϕ
= −(1− 2aϕ+ 3bϕ2) , (4.16)

but we want to check that one can consistently express it as a functionD(C(ϕ)) satisfying the condition

D′ < 0, where the derivative is taken with respect to C. For some inflationary potentials this can be

done explicitly, using (4.11) and finding an inverse function, whereas for some other models one should

use numerical tools. This is a legitimate approach since one can study of inflationary consequences

directly in terms of the canonical variable ϕ, as long as we know that the corresponding functions

12



have properties consistent with our general requirements. The basic idea is that instead of performing

integration in (4.11) and finding an inverse function, which may be complicated, one can numerically

solve the differential equation for the function ϕ(C) thus finding the inverse function numerically. The

corresponding equation is
dϕ

dC
=

dD

dϕ
, (4.17)

where dD
dϕ should be calculated at the as yet undetermined ϕ(C). For example, in our case

dϕ

dC
= −(1− 2aϕ(C) + 3bϕ2(C)) . (4.18)

The results of our investigation are presented in Figs. 2, 3, 4, which show the functions ϕ(C), D(C),

and V (C) = D2(C)/2. The relation between ϕ and C is determined up to a constant. We have chosen

it in such a way as to have the minimum of the potential at C = 0, similar to what we had in terms

of ϕ. As we see from the figures, the required condition D′(C) < 0 is satisfied.
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Figure 2: Relation between the canonical variable ϕ and the original variable C in the theory (4.15).
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Figure 3: Inflationary potential g2ϕ2

2 (1− aϕ+ bϕ2)2 (4.15) as a function of the field C.

The procedure employed above is applicable for a broad class of theories where the potential has a

minimum with V = D2/2 = 0, and which grows monotonically away from the minimum. Indeed, the

only real constraint of the class of admissible functions is that D′ < 0 in the domain of stability of
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Figure 4: The function D(C). As we see, D′ < 0, so the condition D′(C) < 0 is satisfied.

the inflationary model. In the models where D(C) continuously decreases and passes through its zero,

where the potential vanishes, this requirement is easily satisfied. In these models the potential, which

is proportional to D2, decreases towards the minimum, and then grows again, i.e. it grows when one

moves away from the minimum in either direction.

However, at the maximum of the potential V = g2D2/2, the function J ′′ = D′ vanishes, which

leads to vanishing of the kinetic term of the field C, and then, with the change of sign of D′, the

kinetic term changes its sign, which leads to ghosts and vacuum instability in the part of the moduli

space beyond the maximum of the potential. This makes description of inflation at or beyond the

maximum of the potential problematic. This affects models with metastable minima of the inflaton

field such as old inflation, and also new, natural and hilltop inflation directly at the top or beyond the

top of the potential. However, the admissible class of functions D(C) is ideally suited for description

of chaotic inflation with potentials monotonically growing in both directions away from the minimum

with V = 0. All models considered in this section satisfy this condition since the potential in each

of them has only one extremum, the supersymmetric minimum at D = 0. When the field C (or ϕ)

reaches the minimum, the function D continues changing monotonically, so one can have D′ < 0 all

the way.

To summarize, our class of models is suitable for description of any inflationary potential which

can be written as a square of a monotonically changing function D(C) (or D(ϕ)), which vanishes at

some point, which correspond to the minimum of V = D2/2. (Functions D(C) which never vanish

are also possible, but in such models the potential does not have any minimum; such potentials are

not necessarily useful for inflation, but they may describe dark energy.) This class of functions is very

general. It is just slightly more narrow than the class of functions which is allowed in the inflationary

theories based on supergravity with chiral matter superfields [3]. For example, according to [3], the

inflaton potential can be given by |f2(ϕ)|, where ϕ is a real part of the scalar field. Here f(ϕ) is an

arbitrary real holomorphic function of the field ϕ. The corresponding potential can have any number

of minima and maxima, unlike the potential discussed in this paper. However, the existence of many

14



maxima and minima is not very helpful for describing observational data unless we study effects of

tunneling at N ∼ 60. In this sense the models discussed in the present paper are minimal, not requiring

the existence of many scalars, while allowing us full functional freedom in tuning ns and r.

4.3 Universality class of conformal inflation models, including the T-model, the

Starobinsky model, and their deformations

In [6] a new broad class of inflationary theories with spontaneously broken superconformal symmetry

was found. These theories include various potentials which asymptotically look like

V (ϕ) = V∗

[

1−
∑

ane
−
√

2/3nϕ
]

(4.19)

for ϕ > 0 and lead to inflation at ϕ ≫ 1, or similar potentials V∗

[

1−
∑

ane
+
√

2/3nϕ
]

for ϕ < 0. The

attractor property of these models discovered in [6] is the following: the observational predictions of

all these models with arbitrary choice of V∗ and an is the same, namely all these models predict that

in the first approximation in 1/N :

ns = 1− 2/N ≈ 0.967, r = 12/N2 ≈ 3.2 · 10−3 . (4.20)

One should note that these numerical estimates depend on the exact value of N , which in turn depends

e.g. on the details of the post-inflationary dynamics, including physics of reheating. As a result, the

exact results for ns and r may slightly differ from the estimates given above for N = 60.

A particularly interesting model of this type, which was called the T-Model, has a potential

V = V∗ tanh
2(ϕ/

√
6) , (4.21)

which, asymptotically, behaves as V∗(1− 4e−
√

2/3 |ϕ|) for |ϕ| ≫ 1. The potential of the T-Model as a

function of C is shown in Figure 5. It looks similar to the potential in terms of ϕ [6].

The model R+ γR2 also can be represented as a member of this class of models, with the inflaton

potential V = V∗(1− e−
√

2/3ϕ)2 ≈ V∗(1− 2e−
√

2/3ϕ) for ϕ ≫ 1 [5, 6].

To analyze this class of models, we will limit ourselves to investigation of the theories (4.19), (4.21)

at ϕ ≫ 1. As long as the coefficient a1 in (4.19) is not anomalously small, only first two terms matter

in our analysis,

V (ϕ) = V∗

[

1− a1e
−
√

2/3ϕ
]

. (4.22)

Other terms are exponentially suppressed at large ϕ; they give a subdominant contribution suppressed

by higher powers of 1/N , where N = O(60) is the number of e-foldings [6]. The value of V∗ changes

the amplitude of perturbations; it is easy to adjust it, so we will concentrate on ns and r. According
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Figure 5: The potential of the T-Model as a function of the field C. The height of the potential is

given in units of V∗.

to [6], the inflationary parameters ns and r do not depend on V∗ and a1.
4 Thus, any potential which

approaches any positive constant from below as V∗(1−a1e
−
√

2/3ϕ) will belong to the universality class

leading to the same predictions for ns and r, in the first approximation in 1/N as given in (4.20).

One should note that these numerical estimates depend on the exact value of N , which in turn

depends e.g. on the details of the post-inflationary dynamics, including physics of reheating. As a

result, the exact results for ns and r may slightly differ from the estimates given above for N = 60.

In our new single scalar supergravity with massive vectors/tensors such models with arbitrary a1

are easy to find, as we will show below. However, such models are not exclusive, it is also relatively

easy to find supergravity models which depend on different exponents e−bϕ. Models of this type have

a long history, starting with [29]. These models with b 6= −
√

2/3 also lead to ns = 1− 2/N , but the

expression for r changes, r = 8/b2N2, see e.g. [21]. The exponent with −
√

2/3 naturally emerges in

the universality class found in [6]. Let us see that this is not the case here, and that more general

exponents can be easily introduced.

We start with the expected potential using the canonical field ϕ and identify C(ϕ) according to

(4.11). We start with 3 independent constants, a, b, c, which will be helpful to compare this model

with the geometric version in C variables which we will show below.

D = c(1− a e−bϕ) , → dD

dϕ
= c a be−bϕ , (4.23)

C(ϕ) = −
∫

dϕebϕ/cab = −ebϕ/cab2 . (4.24)

4One can absorb the parameter a1 in (4.22) into a redefinition of the field ϕ by making a shift under which the kinetic

term is invariant. However, the potential of the T-Model is not shift-symmetric, and yet ns and r do not depend on a1

in the first approximation in 1/N .
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Thus,

D(C) = c+
1

Cb2
, D′(C) = − 1

C2b2
< 0 . (4.25)

Since this corresponds to J ′′ < 0, the model is a consistent supergravity model for any value of b. It

will be convenient to set

cab2 = 1 , C(ϕ) = −ebϕ , D(C) = c+
1

Cb2
(4.26)

Thus we find a potential

V =
g2

2

(

c− 1

b2
e−bϕ

)2
(4.27)

Note, that the potentials in the family of cosmological attractors found in [6] included a broad family

of potentials containing higher terms in e−
√

2/3nϕ, which did not affect the cosmological predictions in

the leading approximation in 1/N , as long as a1 was not anomalously small: ns = 1−2/N , r = 12/N2.

By using the same methods as in [6], one can show that a similar conclusion should be valid in the

case considered above for all sufficiently large values of b. Namely, the predictions of the theory with

D = c
[

1−
∑

ane
−b nϕ

]

do not depend on an for a broad range of values of these coefficients:

ns = 1− 2/N , r = 8/b2N2. (4.28)

Indeed, one can show that for ϕ corresponding to N e-foldings before the end of inflation, in the

leading order in 1/N ,

e−b ϕ = (a1b
2N)−1. (4.29)

As a result, the n-th term in the expansion above is an(a1b
2N)−n, so the higher order terms are

suppressed by higher orders in 1/N . Unless the coefficients an are anomalously large for n > 1, these

terms are subdominant for a1b
2N ≫ 1, which is an easy condition to satisfy for N ∼ 60, b ≥ O(1), or

a1 is anomalously small.

In terms of the function D(C), this implies that theories with D(C) = c + 1
Cb2

+ O(C−2) are

expected to have the same observational predictions, independently of the terms O(C−2).

The massive vector/tensor supergravity models which we studied in this paper are codified by an

arbitrary function, and we have not used any symmetries criteria so far, to pick up only some of the

potentials, or classify them. We leave this for future work, we just gave some examples here. It is

important that many bosonic models of inflation have found a simple supergravity extension in the

new framework here.

4.4 Models with SU(1, 1) symmetry

In (2.11) we described the models defined in [11] where the Kähler potential gives a manifold SU(1, 1)/U(1),

and where the gauged symmetry is the translational isometry. It might be useful here to investigate our
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new models using some symmetry principles. Consider more general models with SU(1, 1) symmetry:

Φ(C) = (−C)αeβC , C < 0. (4.30)

In the language of the de-Higgsed model with g = 0 and one complex scalar, these models have a

Kähler potential 5

K = −3α ln

(

z + z̄

2

)

− 3

2
β(z + z̄), (4.31)

and a vanishing superpotential W = 0. This leads to

Kzz̄∂z∂z̄ = 3α
∂z∂z̄

(z + z̄)2
. (4.32)

This metric corresponds to an SU(1, 1)/U(1) symmetric space with constant curvature R = −2/3α.

In (2.11) we had the case α = β = 1. Now we have from J = 3/2 log Φ that

J = 3/2[α log(−C) + βC] , J ′ = 3/2(αC−1 + β) , J ′′ = −(3/2)αC−2, (4.33)

and comparing with (4.26) we find that

3

2
α =

1

b2
,

3

2
β = c ,

α

β
= a. (4.34)

So, by setting C = − exp(
√

2/3αϕ) we find that the potential is

V =
g2

2
(J ′(C))2 =

9

8
g2(α/C + β)2, (4.35)

and

V =
9

8
g2[β − α exp(

√

2/3αϕ)]2, (4.36)

in complete agreement with earlier derivation starting from the ϕ side of the model. Note that for

α = β = 1 we recover the model in [11], [15], which is one of the attractor models in [6]. However, the

deviation of α from 1, i. e. a deviation of b2 from 2/3 leads to a more general models with different

slow roll parameters, away from the attractor point. Notice that α > 0 to have a positive kinetic term

for the scalar z, while β > 0 for the equation J ′ = 0 to have a solution.

In this setting we find a geometric meaning of the new parameters α and β, which is difficult to

see in the approach which leads to the same final potentials, as given in (4.27). For instance the

parameter β does not enter in the vector mass g
√
−J ′′, because it is a Kähler transformation as seen

in eq. (4.31).

Meanwhile, the α-parameter defines the curvature of the Kähler manifold, an SU(1, 1)/U(1) sym-

metric space with constant curvature. If primordial gravity waves from inflation will be discovered in

5Here the Kähler potential of the Starobinsky model with α = β = 1 has the first term as in no-scale models [23],

however the term 3

2
β(z + z̄) affects the D-term potential and breaks the no-scale structure.
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the future at the level ∼ 3 · 10−3 in the context of this class of models one would be able to say that

the Kähler manifold curvature RK is given by

RK = −K−1
zz̄ ∂z∂z̄ logKzz̄ = −2/3 , α = 1 . (4.37)

But if they are below or above this value, one would be able to say that the discovery of a particular

value of r may be viewed as a measurement of a Kähler manifold curvature

RK = −K−1
zz̄ ∂z∂z̄ logKzz̄ = −2/3α . (4.38)

This shows that our general model with various predictions may be eventually classified using some

geometric symmetry criteria.

5 Discussion

For many years there was a certain disconnect between the development of supergravity and cosmology.

The possibility to have inflation in the theories with potentials as simple as ϕ2n [25] without resorting

to the cosmological phase transitions required in old and new inflation was a turning point in the

development of inflationary theory. It took 17 years until a natural realization of chaotic inflation

with a quadratic potential in supergravity was proposed [24], and another 10 years to develop a

broad class of supergravity models which allowed to have nearly arbitrary inflationary potentials [3].

However, in addition to the inflaton field, these models also required a Goldstino. Some effort was

required to make sure that this field vanishes during inflation. In each particular case this problem

was solved by an appropriate choice of the Kähler potential. Also, the presence of extra scalar fields

in supergravity inflation could be used, if needed, for generation of non-Gaussian perturbations [30].

However, in the absence of indication for non-Gaussianity in the Planck data, it would be nice to have

as broad class of inflationary potentials as the one developed in [3], but without extra moduli fields

requiring stabilization. This was one of the goals of the present paper.

In this paper we described a new valley in the supergravity landscape designed to fit all cosmological

observations. It is based on a master superconformal gauge-invariant model where the Higgs effect, as

well as a de-Higgsing, play an important role. The single matter multiplet that is relevant for inflation

has to be either vector or linear, but not chiral. The conformal compensators can be either chiral or

linear, thus we have a total of 4 dual models of a new type. Since these are dual models, they are

all defined by a single function of one real variable. In the Higgs phase, where we see the relevant

cosmological evolution, these superconformal master models lead to a cosmological model with a single

scalar with an almost arbitrary potential and a massive vector or dual to it massive tensor.

The final cosmological model of a single scalar is given by following expression

e−1L = −1

2
R− 1

2
(∂µϕ)

2 − g2

2
(D(ϕ))2 , (5.1)
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where D(ϕ(C)) = dJ(C)
dC and the function J(C) = 3

2 log Φ(C) + const is related in superfield language

to the underlying superconformal version of supergravity by

− [S0S̄0Φ(V )]D. (5.2)

In components J is related to Jordan frame supergravity as follows

− 1

2
Φ(C)R , (5.3)

where C is the first component of the real vector multiplet and R is the scalar curvature. This function

J(C) has to have a negative second derivative

d2J(C)

d2C
< 0 , (5.4)

corresponding to the Kähler cone restriction.

This restriction implies that the inflaton potential should vanish at its minimum and should grow

monotonically away from the minimum in the domain of stability of the theory. Apart from that, the

class of models developed in our paper is quite general, and many choices can fit easily the area in

the ns-r plane favored by Planck data. We gave several examples above. An important advantage of

this approach is that in this class of models the stabilization of moduli is not required, because these

models have only one scalar, the inflaton field with the action (5.1). When observations will provide

us with more precise values of ns and r, these new models should be capable of fitting them without

additional effort. Thus the new approach developed in this paper is an efficient and economical way

to relate the early universe cosmology to supersymmetry.
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A CFPS Redux

The SUGRA Lagrangian of the R+ γR2 theory in the new minimal formulation is given in CFPS [11]

as

L = −[S0S̄0Φ(VL)]D +
1

2
γ[Wα(VL)W

α(VL) + h.c.]F , (A.1)

VL ≡ log(L/S0S̄0), Φ(VL) = −VLe
VL , Wα = ΣDαVL, (A.2)

where Σ is the chiral projector.

One can re-write the Lagrangian introducing two real vector Lagrange multiplier U, V

L = −[S0S̄0Φ(V )]D +
1

2
γ[Wα(V )Wα(V ) + h.c.]F + U(L− S0S̄0e

V ). (A.3)

Now, integrating in U we get VL = V , while integrating in L we get U = Φ + Φ̄, with Φ chiral.

Since Φ(V ) = −V eV , and only for this special potential we can redefine S0 → S′
0 = S0e

Φ, V → V ′ =

V − Φ− Φ̄. Then the Lagrangian becomes that of a massive vector field:

L = −[S0S̄0Φ(V )]D +
1

2
γ[Wα(V )Wα(V ) + h.c.]F . (A.4)

B From Massive Vector to Massive Tensor in Components

We derive the component form of the bosonic part of the massive vector supermultiplet theory and

its dual massive linear multiplet theory.

The bosonic part of the massive vector multiplet action, following the conventions of [12] is

L(A− µ, a,Hµ, C, g) = −1

4
F 2
µν −

1

2
J ′′−1H2

µ +Hµ∂
µa+

1

2
J ′′−1(∂µC)2 + gHµAµ − g2

2
J ′2. (B.1)

Here Hµ is a Lagrange multiplier. varying with respect to Hµ we get Hµ = J ′′(∂µa + gAµ), which,

inserted back into eq. (B.1) gives Lagrangian (2.9). The linear multiplet Lagrangian is instead obtained

by varying eq. (B.1) with respect to a. This gives the constraint ∂µH
µ = 0, whose solution is

Hµ = ǫµνρσ∂
νBρσ. Inserted back into the Lagrangian and after an integrating by part the term

gAµH
µ we obtain

L(Aµ, Bµν , C, g) = −1

4
F 2
µν −

1

2
J ′′−1(∂[µBρσ])

2 +
1

2
J ′′(∂µC)2 − gF̃µνB

µν − 1

2
g2J ′2. (B.2)

This is the bosonic part of Lagrangian (2.18). It can be shown to be independent of Aµ by replacing

Fµν(A) with an unconstrained Fµν and re-writing the two Aµ dependent terms as follows

− 1

4
F 2
µν − gF̃µνB

µν + V µ∂νF̃µν . (B.3)

By integrating out Fµν and using the gauge symmetry Bµν → Bµν − 1
gFµν(V ), eq. (B.3) gives the

mass term of the tensor Bµν and so we reproduce Lagrangian (2.26).
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