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Summary. A novel geometric approach for three dimensional object segmenta-

tion is presented. The scheme is based on geometric deformable surfaces moving

towards the objects to be detected. We show that this model is related to the

computation of surfaces of minimal area (local minimal surfaces). The space

where these surfaces are computed is induced from the three dimensional image

in which the objects are to be detected. The general approach also shows the rela-

tion between classical deformable surfaces obtained via energy minimization and

geometric ones derived from curvature flows in the surface evolution framework.

The scheme is stable, robust, and automatically handles changes in the surface

topology during the deformation. Results related to existence, uniqueness, sta-

bility, and correctness of the solution to this geometric deformable model are

presented as well. Based on an efficient numerical algorithm for surface evolu-

tion, we present a number of examples of object detection in real and synthetic

images.

Mathematics Subject Classification (1991): 53A10

1. Introduction

One of the basic problems in image analysis is object detection. This can be

associated with the problem of boundary detection, where boundary is roughly

defined as a curve or surface separating homogeneous regions. “Snakes,” or active

contours, were proposed by Kass et al. [26] to solve this problem, and received

a great deal of attention from the image analysis community since then. The

work was later extended to 3D surfaces. The classical snakes and 3D deformable

surfaces approaches, reviewed in the following section, are based on deforming
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424 V. Caselles et al.

an initial contour or surface towards the boundary of the object to be detected.

The deformation is obtained by trying to minimize a functional designed such

that its (local) minima is obtained at the boundary of the object. These active

surfaces are examples of the general technique of matching deformable models

to image data by means of energy minimization [5, 64]. The energy is basically

composed by a term which controls the smoothness of the surface and another one

that attracts it to the boundary. This energy model is not capable of changing its

topology when direct implementations are performed. The topology of the final

surface will be in general as that of the initial one, unless special procedures are

implemented for detecting possible splitting and merging points [42, 61]. This

may be a problem when an un-known number of objects must be simultaneously

detected. This approach is also non intrinsic, i.e., the energy functional depends

on the parametrization. See for example [40, 67] for comments on advantages

and disadvantages of energy approaches for deforming surfaces, as well as an

extended literature on different approaches to deformable models.

Recently, geometric models of deformable contours/surfaces were simulta-

neously proposed by Caselles et al. [6] and by Malladi et al. [39–41], and

are also reviewed in the following section. These models are based on the

theory of surface evolution and geometric flows, which has gained a large

amount of attention from the image analysis community in the past years

[2, 3, 19, 20, 21, 29, 30, 32, 33, 35, 36, 44, 50, 51, 54, 55, 56, 57, 58, 63, 65, 66].

In these models, the curve/surface is propagating (deforming) by an implicit ve-

locity that also contains two terms, one related to the regularity of the deforming

shape and the other attracting it to the boundary. The model is given by a ge-

ometric flow (PDE), based on mean curvature motion, and not by an energy

function. This model allows automatic changes in topology when implemented

using the level-sets numerical algorithm [48]. Thereby, several objects can be

detected simultaneously, without previous knowledge of their exact number in

the scene, and without special tracking procedures.

In [7], we showed the relation between these two approaches for two dimen-

sional object detection (two dimensional curve evolution), proposing what we

called geodesic active contours. We first proved that, for a particular case, the

classical energy approach is equivalent to finding a geodesic curve in a Rieman-

nian space with a metric derived from the image. This means that the boundary

we are looking for is the path of minimal distance, measured in the Riemannian

metric, that connects two given image points. We then showed that assuming

a level set representation of the deforming contour, we can find this geodesic

curve via a geometric flow which is very similar to the one obtained in the curve

evolution approaches mentioned above. This flow, however, includes a new term

that improves those models.1 The new term allows to track, in an accurate way,

boundaries with high variation of their gradient, a task that was impossible with

previous curve evolution models. We also showed that the solution of the flow ex-

1 Although this term appears in similar forms in classical snakes, it was missing in curve evolution

models. This term is naturally incorporated by the geodesic formulation
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Minimal surfaces: a geometric three dimensional segmentation approach 425

ists in the viscosity framework, and is unique and stable. Therefore, the approach

presented in [7] has the following main properties:

1. Connects energy and curve evolution approaches of active contours.

2. Presents the snake problem as a geodesic computation one.

3. Improves existing models as a result of the geodesic formulation.

4. Allows simultaneous detection of interior and exterior boundaries in several

objects without special contour tracking procedures.

5. Holds formal existence, uniqueness, and stability results.

6. Stops automatically.

In this paper we extend the results in [7] to three dimensional object detection.

The obtained geometric flow is based on geometric deformable surfaces. We show

that the desired boundary is given by a “minimal surface” in a space defined by

the image. Therefore, segmentation is achieved via the computation of surfaces

of “minimal area,” where the area is defined in an image dependent space. The

obtained flow has the same advantages over other 3D deformable models as the

advantages of the geodesic active contours over previous 2D approaches.

Before proceeding we should point out that the deformable surfaces model

derived in this paper is related to a number of previously or simultaneously

developed results. As we pointed out before, it is closely related to the works of

Terzopoulos and colleagues on energy based deformable surfaces, and the works

by Caselles et al. and Malladi et al. [6, 39, 40, 41]. It is of course closely related

to [7], where the 2D model was derived. The basic equations in this paper, as

well as the corresponding 2D ones in [7], were simultaneously developed in

[27, 28, 60]. Similar 3D models are studied in [65, 66] as well. Extensions to

[6, 39] are presented also in [63]. The similitude and differences with those

approaches will be presented after describing the basic principles of the model.

This paper is organized as follows. In Sect. 2 we briefly review both classical

energy based and surface evolution based deformable models. In Sect. 3 we de-

scribe the main results on 2D geodesic active contours as presented in [7], which

will help us to develop the 3D minimal surface deformable models, presented

in Sect. 4. Results concerning existence and uniqueness of the proposed model

are given in Sect. 5, and those related to its correctness in Sect. 6. Experimental

results are given in Sect. 7 and concluding remarks in Sect. 8.

2. Basic approaches on snakes and deformable shapes

2.1. Energy based snakes

We start with a description of classical energy snakes, first for 2D objects and

then for 3D ones.

Let C(p) : [0, 1] → IR2 be a parametrized planar curve, and I : [0, a] ×
[0, b]→ IR+ a given image where we want to detect the objects boundaries. The

classical snakes approach [26] associates to the curve C an energy given by
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E (C) = α

� 1

0

|C�(τ )|2dτ + β

� 1

0

|C��(τ )|2dτ − λ

� 1

0

|∇I (C(τ ))|dτ,(1)

where α, β, and λ are real positive constants (α and β impose the elasticity and

rigidity of the curve). The first two terms basically control the smoothness of the

contours to be detected (internal energy),2 while the third term is responsible for

attracting the contour towards the object in the image (external energy). Solving

the problem of snakes amounts to finding, for a given set of constants α, β, and λ,

the curve C that minimizes E . As argued in Caselles et al. [6], the snake method
provides an accurate location of the edges near a given initialization of the curve

and it is capable to extract smooth shapes. They also showed that the snakes

model can retrieve angles for all values of parameters α, β ≥ 0 (α + β > 0).

This is, in some sense, related to the adaptation of the set of parameters α, β to

the problem in hand. On the other hand, it does not directly allows simultaneous

treatment of several contours. Note that when considering more than one object

in the image, and for example the initial prediction of C surrounds all of them,
it is not possible to detect all the objects. In other words, the classical (energy)

approach of the snakes can not deal with changes in topology, unless special

topology handling procedures are added [42]. The topology of the initial curve

will be the same as the one of the (possible wrong) final solution. The geometric

models in [6, 7, 39, 40, 41, 27, 63, 65] automatically overcome this problem.

It is clear that the classical snake method can be generalized to 3D data

images, where the boundaries of the objects are surfaces. This extension is known

as the deformable surface model, and was introduced by Terzopoulos et al. [64]

for a 3D representation of objects and extended and used for a 3D segmentation

by many others (see for example [11, 12, 13]). In the 3D case, a parametrized

surface

v(r , s) = (x (r , s), y(r , s), z (r , s)) (r , s) ∈ [0, 1]× [0, 1]

is considered, and the energy functional is given by

E (v) =

�

Ω

�
ω10

����
∂v

∂r

����
2

+ ω01

����
∂v

∂s

����
2

+ 2ω11

����
∂2v

∂r∂s

����
2

+ω20

����
∂2v

∂r2

����
2

+ ω02

����
∂2v

∂s2

����
2

+ P (v(r , s))

�
drds,(2)

where P := − � ∇I �2, or any related decreasing function of the gradient. Like
the 2D case, the algorithm starts with an initial surface S0, generally near the
desired 3D boundary O , and tries to move S0 towards a local minimum of E .

These are the basic formulations of the 2D and 3D snakes. Other related

formulations have been proposed in the literature. Reviewing all of them is out

of the scope of this paper.

2 Other smoothing constraints can be used, being this the most common one
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2.2. Deformable models based on mean curvature motion

Recently, novel geometric models of deformable curves were simultaneously

proposed by Caselles et al. [6] and by Malladi et al. [39, 40, 41]. Assume in

the 2D case that the deforming curve C is given as a level-set of a function

u : IR2 → IR. Then, we can represent the deformation of C via the deformation
of u . In this case, the proposed 2D deformation is given by

∂u

∂t
= g(I )|∇u|div

� ∇u
|∇u|

�
+ νg(I )|∇u| (t , x ) ∈ [0,∞)× IR2(3)

u(0, x ) = u0(x ) x ∈ IR2(4)

where ν is a positive real constant, g(I ) is given by

g(I ) :=
1

1 + |∇Î |p
,(5)

Î is a regularized version of the original image I where we are looking for

the contour of an object O , and p = 1 or 2. Typically, the initial condition

u(0, x ) = u0(x ), in the case of outer snakes (curves evolving towards the boundary
of O from the exterior of O), was taken as a regularized version of 1−χC where

χC is the characteristic function of a set C containing O . Using the fact that

div

� ∇u
|∇u|

�
= κ,

where κ is the Euclidean curvature [25] of the level sets C of u , Equation (3)
can be written in the form

ut = g(I )(ν + κ)|∇u|.

Equation (3) can be interpreted as follows: Suppose that we are interested in

following a certain level set of u, which, to fix ideas, we suppose to be the zero

level set. Suppose also that this level set is a smooth curve. Then the flow

ut = (ν + κ)|∇u|,

means that the level set C of u we are considering is evolving according to

Ct = (ν + κ)N ,(6)

where N is the inward normal to the curve.3 This equation was first proposed

in [48, 62], were extensive numerical research on it was performed. It was in-

troduced in computer vision in [29, 30] for shape analysis. The motion

Ct = κN ,

3 Based on the fact that N � ∇u , and under certain smoothness constraints, it is straightforward
to prove that when the level sets C of u evolve according to Ct = βN , the function u deforms via

ut = β|∇u|
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denoted as Euclidean heat flow is very well known for its excellent geometric

smoothing properties [4, 23, 24]. (This flow was extended in [55, 56, 57] for the

affine group and in [19, 46, 57] for others.) This flow is also called the Euclidean

shortening flow, since it moves the curve in the gradient direction of the length

functional given by

L :=

�

C

ds,(7)

where ds = |Cp |dp is the Euclidean arc-length element. Therefore, this flow
decreases the length of the curve as fast as possible. This property is important

for the geometric interpretation of the geodesic and minimal surface models that

are developed in this paper.

The constant velocity νN in (6), which is related with classical mathematical

morphology [30, 54] and shape offsetting in CAD [31], acts as the balloon force

in [12]. Actually this velocity pushes the curve inwards and it is crucial in the

model in order to allow convex initial curves to become non-convex, and thereby

detect non-convex objects.4 Of course, the ν parameter must be specified a priori

in order to make the object detection algorithm automatic. This is not a trivial

issue, as pointed out in [6], where possible ways of estimating this parameter are

considered. In [6] the authors also present existence and uniqueness results (in

the viscosity framework) of the solutions of (3). Recapping, the “force” (ν + κ)

acts as the internal force in the classical energy based snakes model. The external

force is given by g(I ), which is supposed to prevent the propagating curve from
penetrating into the objects in the image. In [6, 39, 40, 41], the authors choose

g(I ) given by (5). Î was smoothed using Gaussian filtering, but more effective
geometric smoothers can be used as well. Note that other decreasing functions

of the gradient may be selected as well. For an ideal edge, ∇Î = δ, g = 0, and
the curve stops at the edge (ut = 0). The boundary is then given by the set u = 0.

The curve evolution model given by (3) automatically handles different

topologies. That is, there is no need to know a priori the topology of the solution.

This allows to detect any number of objects in the image, without knowing their

exact number. This is achieved with the help of an efficient numerical algorithm

for curve evolution, developed by Osher and Sethian [48, 62], and used by others

for different image analysis problems [10, 30, 32, 35, 36, 54, 56, 58, 63, 65],

and analyzed for example in [9, 18]. In this case, the topology changes are auto-

matically handled, without the necessity for specific monitoring the topology of

the deforming curve.

The model (3) can easily be extended to 3D object detection. Let us consider

for each t ≥ 0 a 3D function u(t , .) : IR3 → IR, and denote by S its level-sets

(3D surfaces). Then the 3D geometric deformable model is given by:

∂u

∂t
= g(I )|∇u|div

� ∇u
|∇u|

�
+ νg(I )|∇u|(8)

= g(I )(ν +H)|∇u|,
4 A convex curve remains convex when evolving according to the Euclidean heat flow [23].
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where now H is the sum of the two principal curvatures of the level sets S, that
is, twice its mean curvature. This model has the same concepts as the 2D one,

and is composed by three elements:

1. A smoothing term. In the case of (8), this smoothing term H is twice the mean

curvature, but other more efficient smoothing velocities as those proposed in

[2, 8, 47] can be used.5

2. A constant balloon-type force (ν|∇u|).
3. A stopping factor (g(I )). This is a function of the gradient or other 3D edge
detectors [68].

The goal of this paper is to extend this model, motivated by the extension of

(3) to the geodesic active contours as was done in [7] and reviewed in the next

section.

3. Geodesic active contours

We now review the main results of [7]. Let us consider a particular case of (1),

where β = 0. Two main reasons motivate this selections: First, this will allow

us to derive the relation between energy based active contours and geometric

curve evolution ones. Second, although having β /= 0 adds flexibility and other
properties, the regularization effect on the geodesic active contours comes from

curvature based curve flows, obtained only from the other terms in (1). This

allows to achieve smooth curves in the proposed approach without having the

high order derivatives given by β /= 0. The use of the curvature driven curve
motions for smoothing was proved to be very efficient in previous works [2, 6,

30, 40, 51, 56], and is also supported by our experiments in [7] and Sect. 7.

Therefore, curve smoothing will be obtained also with β = 0, keeping only the

first regularization term. Assuming this, and replacing the edge detector |∇I | by
a general function g(|∇I |)2 of the gradient such that g(r) → 0 as r → ∞, we
obtain,

E (C) = α

� 1

0

|C�(τ )|2dτ + λ

� 1

0

g(|∇I (C(τ ))|)2dτ = Eint(C) + Eext(C).(9)

(In order to simplify the notation, we will sometimes write g(I ), g(X ), or g(x )
(X , x ∈ IR2 and later X , x ∈ IR3) instead of g(|∇I |).) The goal now is to minimize
E in (9) for C in a certain allowed space of curves. Of course, in (9), only the
ratio λ/α counts.

As argued in [7], the functional (9) is not intrinsic, i.e., it depends on the

parametrization of the curve. This could be considered as an undesirable property

since parametrizations are not related to the geometry of the curve (or object

boundary), but only to the velocity they are traveled. Motivated by the discussion

5 Although curvature flows smooth curves in 2D [23, 24, 55, 56], no curvature flow that smoothes

all possible surfaces (while preserving the topology) was yet found in 3D [47]. Frequently used flows

are mean curvature or positive part of Gaussian curvature flows [2, 8].
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on ideal edges in [7], we proposed to fix this degree of freedom by fixing the

energy level E0 = 0 at the local minima (other values are analyzed in [7] as

well). Then with the help of Maupertuis’ and Fermat Principles [17], we proved

that the solution of (9) is given by a geodesic curve in a Riemannian space. The

metric in this Riemannian space is defined by gij dxidxj with gij = g(I )2δij . This
means that the object is detected when a curve of minimal length is found. In

other words, we proved that minimizing (9) is equivalent to solving

minC

� 1

0

g(|∇I (C(τ )|)|C�(τ )|dτ.(10)

We have transformed the problem into a problem of geodesic computation in a

Riemannian space, according to a new metric (length measure) given by

LR :=

� 1

0

g(|∇I (C(τ )|)|C�(τ )|dτ.(11)

Since |C�(τ )|dτ = ds , we may write

LR :=

� L

0

g(|∇I (C(τ )|)ds.

where L denotes the Euclidean length of C(τ ). Comparing this with the classical
Euclidean length as given in the previous section by (7), we find that the new

length is obtained by weighting ds with g(|∇I (C(τ )|), which contains information
regarding the boundary of the object. Therefore, when trying to detect an object,

we are not just interested in finding the path of minimal classical length (
�
ds)

but the one which minimizes a new definition of the length which takes into

account image characteristics. Note that (10) is general, no assumptions on g
were made, besides being a decreasing function. For example, g can be derived
from edge-type maps as those in [37]. Therefore, the theory of detection based

on geodesic computations given above, and fully described in [7], is general.

In order to find this geodesic curve, we use the steepest descent method which

will give us a local minima of (11). Then, the flow minimizing LR is given by

[7]

Ct = (gκ−∇g ·N )N .(12)

To introduce the level set formulation, let us assume that a curve C is

parametrized as a level set of a function u : [0, a] × [0, b] → IR. That is, C
is such that it coincides with the set of points in u such that u = constant. (In

our case we choose the curve to be represented by the zero level set u = 0.)

In particular given an initial curve C0 we parametrize it as a zero level set of a
function u0. Then, the level set formulation of the steepest descent method says

that solving the above geodesic problem starting from C0 amounts to searching
for the steady state (∂u

∂t
= 0) of the following evolution equation:
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Fig. 1. Geometric interpretation of the new term in the proposed deformable model. The gradient

vectors are all directed towards the middle of the boundary. Those vectors direct the propagating

curve into the valley of the g function

∂u

∂t
= |∇u|div

�
g(I )

∇u
|∇u|

�
(13)

= g(I )|∇u|div
� ∇u
|∇u|

�
+∇g(I ) ·∇u,(14)

with initial datum u(0, x ) = u0(x ). This equation is then obtained by computing
the gradient descent of LR and embedding the flow as the level set of u . We have

obtained the main part of the novel active contour model we propose.

Comparing Equation (13) to (3), we see that the term ∇g ·∇u is missing in
the old model. This is due the fact that in (3), a classical length in Euclidean

space is used (given by (7)). In the new model, the length takes into account the

image structure, and is given by (11), defining a new Riemannian space. This

new term directs the curve towards the boundary of the objects (−∇g points
toward the center of the boundary). Observe the 2D case of an image I of an

object of high intensity value and low intensity background. Figure 1 shows a

smoothed version of I (left). The function g is shown on the right, together with
its gradient vectors. Observe the way the gradient vectors are all directed towards

the middle of the boundary. Those vectors direct the propagating curve into the

valley of the g function. In this 2D case, ∇g ·N is effective in case the gradient

vectors coincide with normal direction of the propagating curve. Otherwise, it

will lead the propagating curve into the boundary and eventually force it to

stay there. Recapping, this new force increases the attraction of the deforming

contour towards the boundary, being of special help when the boundary has

high variations of its gradient values. Note that in the old model, the curve

stops when g = 0. This happens only along an ideal edge. Also, if there are
different gradient values along the edge, as it often happens in real images, then

g gets different values at different locations along the object boundaries. It is
necessary to consider all those values as high enough to guarantee the stopping

of the propagating curve. This makes the geometric model (3) inappropriate for

the detection of boundaries with (un-known) high variations of the boundary

gradients. In our new model, the curve is attracted to the boundary also by the
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new term (note again that the gradient vectors point towards the middle of the

boundary, Fig. 1). Thereby, it is also possible to detect boundaries with high

differences in their gradient values. Another advantage of this new term is that

it reduces the importance of the constant velocity given by ν. This constant

velocity, that mainly allows the detection of non-convex objects, introduces an

extra parameter to the model, that in most cases is an undesirable property. In

our case, the new term allows the detection of non-convex objects as well. This

term also helps when starting from curves inside the object. In case we wish to

add this constant velocity, we can just consider the term νg(I )|∇u| as an extra
speed (which minimizes the enclosed area [12, 67]), in the geodesic problem

(10) obtaining
∂u

∂t
= |∇u|div

�
g(I )

∇u
|∇u|

�
+ νg(I )|∇u|.(15)

This equation is of course equivalent to

∂u

∂t
= g(ν + κ)|∇u| +∇u ·∇g.(16)

Equation (15), which is the solution of the geodesic problem (10) with an extra

speed, constitutes the geodesic active contour model we propose. As shown in

the examples in [7], it is possible to choose ν = 0 (no constant velocity), and the

model still converges to the correct solution (in a slower motion). The advantage

is that we have obtained a model with less parameters.

This equation, as well as its 3D extension (see next section), was recently

independently proposed by Kichenassamy et al. [27] based on a slightly different

initial approach (being the final form of (10) and (15) identical). Shah [60]

also recently presented an active contours formulation as the one in (10). In his

case, g is obtained from an elaborated segmentation procedure obtained from

the Mumford-Shah approach [43]. Although the works in [27, 60] also present

the problem of active contours as geodesic computations, they do not show the

connections between energy models and curve evolution ones. Actually, to the

best of our knowledge, non of the previous works on curve/surface evolution for

object segmentation show the mathematical relation between those models and

classical energy approaches, as done in [7] for the 2D case and partially in this

paper (next section) for the 3D one. Actually, in general the two approaches are

considered independent. In [7] and here we show that they are mathematically

connected, and one can enjoy the advantages of both of them in the same model.

Although, as we will see in the next section, extension from the 2D model to

the 3D one is easy, no 3D examples are presented in [27, 60]. Also, not all the

theoretical results here presented can be found in [27, 60]. Three dimensional

examples are given in [65], where similar equations as the presented in the next

section are proposed. The equations there are obtained by extending the flows

in [6, 39], again without showing that they are mathematically related to the

classical energy based snakes. In [63], the authors extend the models in [6, 39],

motivated by work reported in [29, 30]. One of the key ideas, motivated by

the shape theory of shocks developed by Kimia et al., is to perform multiple
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initializations, while using the same equations as in [6, 39]. Possible advantages

of this are reported in the mentioned manuscript. That paper ([63]) uses the same

equations as in [6, 39] and not the new ones described in this paper, also without

showing its connection with classical snakes, in contrast with the approach in [7]

and here. A normalized version of (10) was derived in [22] from a different point

of view, giving as well different flows for 2D active contours. No extension to

3D is presented in that paper.

Existence, uniqueness and stability results for the geodesic active contour

model, Equation (15), were stated in [7]. Existence results can also be found in

[28]. Analogous results will be stated below (see Sect. 5) for the corresponding

3D extension which we introduce in the next section. We also present consistency

results for our 3D model.

4. Three dimensional deformable models as minimal surfaces

In the previous section, we presented a model for 2D object detection based on

the computation of geodesics in a given Riemannian space. This means that we

are computing paths or curves of minimal (weighted) length. This extends to

3D surfaces by computing surfaces of “minimal area,” where area is defined in

an image dependent space. In the 2D case, length is given by (7), and the new

length which allows to perform object detection is given by (11). In the case of

surfaces, (7) is replaced by area

A :=

� �
da,(17)

and (11) by “weighted” area

AR :=

� �
g(I )da,(18)

where da is the (Euclidean) element of area. The weighted area AR is a natural 3D

extension to the weighted 2D arc-length LR, and is thereby the natural analog to

the non intrinsic energy minimization (2). Surfaces minimizing (17) are denoted

as minimal surfaces [49]. In the same way, we will denote by minimal surfaces

these surfaces that minimize (18). The difference between A and AR is like

the difference between L and LR. In A, the element of area is given by the

classical element da in Euclidean space, while in AR, the “area element” dar
is given by g(I )da . The basic element of our deformable model will be given
by minimizing (18) by means of an evolution equation obtained from its Euler-

Lagrange. Given the definition of AR above, the computations are straightforward

and are direct extension of the geodesic active contours computation as presented

in the previous section and in [7]. We will point out only the basic characteristics

of this flow.

The Euler-Lagrange of A is given by the mean curvature H, obtaining a

curvature flow
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∂S

∂t
= HN ,(19)

where S is the 3D surface and N its inner unit normal. In a level sets notation,

if for each t ≥ 0, the evolving surface S is the zero level set of a function

u(t , .) : IR3 → IR, which we take negative inside S and positive outside, we

obtain the equation

ut = |∇u|div
� ∇u
|∇u|

�
= |∇u|H.(20)

Therefore, the mean curvature motion provides a flow that computes (local)

minimal surfaces [10].

Computing now the Euler-Lagrange of AR, we get

St = (gH−∇g ·N )N .(21)

This is the basic weighted minimal surface flow. Taking a level set repre-

sentation, in analogy with (13), the steepest descent method to minimize (18)

gives

∂u

∂t
= |∇u|div

�
g(I )

∇u
|∇u|

�
(22)

= g(I )|∇u|div
� ∇u
|∇u|

�
+∇g(I ) ·∇u.

However, now u is a 4D function with S its 3D zero level set. We note again that
comparing with previous surface evolution approaches for 3D object detection,

the minimal surfaces model includes a new term, ∇g ·∇u .
As in the 2D case, we can add a constant force to the minimization problem

(it is easy to show that this force minimizes the enclosed weighted volume�
gdxdydz ), obtaining the general minimal surfaces model for object detection:

∂u

∂t
= |∇u|div

�
g(I )

∇u
|∇u|

�
+ νg(I )|∇u|.(23)

This is the flow we will further analyze and use for 3D object detection. It has

the same properties and geometric characteristics as the geodesic active con-

tours, leading to accurate numerical implementations and topology free object

segmentation.

4.1. Estimation of the constant velocity ν

One of the critical issues of the model presented above is to estimate ν (see next

section for the related theoretical results). We present now a possible way of

doing this. (Another technique for estimating ν can be obtained from the results

in [67].)
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In [14] it was shown that the maximum curvature magnitude along the

geodesics minimizing LR is given by

max{|κ|} = sup
τ∈[0,1]

�
|∇g(C(τ )) ·N |

g(C(τ ))

�
.

This result is obtained directly form the Euler-Lagrange equation of (11).

It leads to an upper bound over the maximum curvature magnitude along the

geodesics, given by

|κ| ≤ sup
p∈[0,a]×[0,b]

�
|∇g(I (p))|

g(I (p))

�
,

which does not require the geodesic itself for limiting the curvature values. In

[14] this bound helped in the construction of different potential functions.

A straightforward generalization of this result to our three dimensional model

yields the bound over the mean curvature H. From the equations above, it is clear

that for a steady state (i.e. St = 0) the mean curvature along the surface S is

given by

H =
∇g ·N

g
− ν.

We readily obtain the following upper bound for the mean curvature magni-

tude along the final surface

|H| ≤ sup

�
|∇g|

g

�
+ |ν|,

where the sup operation is taken over all the 3D domain. The above bound

gives an estimation of the allowed gaps in the edges of the object to be detected

as a function of ν. A pure gap is defined as a part of the object boundary at

which, for some reason, g =constant/= 0 at a large enough neighborhood. At these
locations |H| = |ν|. Therefore, pure gaps of radius larger than 1/ν will cause the
propagating surface to penetrate into the segmented object. It is also clear that

ν = 0, allows the detection of gaps of any given size, and the boundary at such

places will be detected as the minimal surface ‘gluing’ the gaps’ boundaries.

5. Existence and uniqueness results for the minimal surfaces model

As shown in the previous section, our 3D object detection model is given by

ut = g(I )|∇u|
�
div

� ∇u
|∇u|

�
+ ν

�
+∇g ·∇u (t , x ) ∈ [0,∞)× IR3,(24)

with initial condition u(0, x ) = u0(x ), and
6

g(I ) =
1

1 + |∇Gσ ∗ I |2
6 A specific g function is selected for the analysis, while as explained before, the model is general
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with ν > 0 representing a constant force in the normal direction to the level sets

of u , I is the original image where we are looking for the boundary of an object

O , Gσ ∗ I is the regularized version of it by convolution with a Gaussian Gσ of

variance σ.7 u0(x ) is the initial condition, usually taken as a regularized version

of 1−χC where χC is the characteristic function of a set C containing O , in the

case of outer deforming models (surfaces evolving towards the objects’ boundary

∂O from the exterior of O), or a regularized version of χC where C is a set

in the interior of O in the case of inner deforming models (surfaces evolving

towards ∂O , starting from the inner side of O). Although only 2D outer snakes

were considered in [6], we also consider the inner snakes since it seems natural

for some applications [7].

Model (24) should be solved in R = [0, 1]3 with Neumann boundary condi-
tions. To simplify the presentation, and as is usually done in the literature we

extend the images by reflection to IR3 and we look for solutions of (24) which

are periodic, i.e., satisfying u(t , x + 2h) = u(t , x ) for all x ∈ IR3 and h ∈ ZZ . The

initial condition u0(x ) and g(x ) are extended to IR3 with the same periodicity as
u .

Existence and uniqueness results for equation (24) can be proved using the

theory of viscosity solutions [15]. First we rewrite equation (24) in the form

∂u

∂t
− g(x )aij (∇u)∂iju−νg(x )|∇u|−∇g ·∇u = 0 (t , x ) ∈ [0,∞)× IR3,(25)

where aij (p) = δij − pi pj
|p|2 if p �= 0. We use the usual notations ∂iu = ∂u

∂xi
,

∂iju =
∂2u

∂xi∂xj
and the classical Einstein summation convention in (25) and in all

what follows.

Let us recall the definition of viscosity solutions. Let u ∈ C ([0,T ] × IR3)

for some T ∈ (0,∞). We say that u is a viscosity subsolution of (24) if for any
function φ ∈ C 2(IR× IR3) and any local maximum (t0, x0) ∈ (0,T ]× IR3 of u−φ

we have: if ∇φ(t0, x0) �= 0, then
∂φ

∂t
(t0, x0)− g(x0)aij (∇φ(t0, x0))∂ijφ(t0, x0)

−νg(x )|∇φ(t0, x0)|−∇g(x0) ·∇φ(t0, x0) ≤ 0

and if ∇φ(t0, x0) = 0, then

∂φ

∂t
(t0, x0)− g(x0) lim sup

p→0

aij (p)∂ijφ(t0, x0) ≤ 0

and u(0, x ) ≤ u0(x ) for all x ∈ IR3. In the same way we define the notion of vis-

cosity supersolution changing “local maximum” by “local minimum”, “≤ 0” by

“≥ 0” and “lim sup” by “lim inf” in the expressions above. A viscosity solution

is a function which is a viscosity subsolution and a viscosity supersolution.

The existence result in [6, 7] can be easily adapted to the 3D case and we

recall them without proof.

7 Once again, the Gaussian is just an example of smoothing operator used for the analysis
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Theorem 1. Let W 1,∞ denote the space of bounded Lipschitz functions in IR3.

Assume that g ≥ 0 is such that sup{|∇g
1
2 (x )| : x ∈ IR3} < ∞ and sup{|∂ijg(x )| :

x ∈ IR3, i , j = {1, 2, 3}} < ∞ . Let u0, v0 ∈ C (IR3) ∩W 1,∞(IR3). Then

1. Equation (24) admits a unique viscosity solution u ∈ C ([0,∞) × IR3) ∩
L∞(0,T ;W 1,∞(IR3)) for all T < ∞. Moreover, it satisfies

inf
IR3
u0 ≤ u(t , x ) ≤ sup

IR3
u0.

2. Let v ∈ C ([0,∞)× IR3) be the viscosity solution of (24) with initial data v0.
Then for all T ∈ [0,∞) we have

sup
0≤t≤T

� u(t , x )− v(t , x ) �L∞(IR3)≤� u0(x )− v0(x ) �L∞(IR3),

which means that the solution is stable.

The assumptions of Theorem 1 are just technical. They imply the smoothness

of the coefficients of (25) required to prove the result using the method in [3], [6].

In particular, Lipschitz continuity in x is required. This implies a well defined

trajectory of the flow Xt = ∇g(X ), passing through any point X0 ∈ IR3, which is

a reasonable assumption in our context. The proof of this theorem follows the

same steps of the corresponding proofs for the model (3) (see [6], Theorem 3.1),

and we shall omit the details (see also [3]).

In the next Theorem, we recall a result on the independence of the generalized

evolution with respect to the embedding function u0.

Theorem 2. Let u0 ∈ W 1,∞(IR3)∩BUC (IR3). Let u(t , x ) be the solution of Equa-
tion (25) as in Theorem 1. Let Γt := {x : u(t , x ) = 0} and Dt := {x : u(t , x ) ≥ 0}.
Then (Γt ,Dt ) are uniquely determined by (Γ0,D0).

This theorem is adapted from [9], where a slightly different formulation is

given. The techniques there can be applied to the present model.

Let us present some further remarks on the proposed flows (22), (23), as well

as the previous geometric model (3). First note that these equations are invariant

under increasing re-arrangements of contrast (morphology invariance [2]). This

means that Θ(u) is a viscosity solution of the flow if u and Θ : IR → IR are

increasing functions. On the other hand, while (22) is also contrast invariant,

i.e., invariant to the transformation u ← −u , Equations (3) and (23) are not,
due to the presence of the constant velocity term νg(I )|∇u|. This has a double
effect. First, for Equation (22), it can be shown that the generalized evolution

of the level sets Γt only depends on Γ0 ([18], Theorem 2.8), while for (23), the

result in Theorem 2 is given. Second, for Equation (22) one can show that if

a smooth classical solution of the weighted minimal surface flow with ν = 0

exists and is unique, then it coincides with the generalized solution obtained via

the level-sets representation (22) during the lifetime of existence of the classical

solution ([18], Theorem 6.1). The same result can then be proved for the general
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minimal surface flow (ν /= 0) and its level set representation (23), although a
more delicate proof, on the lines of Corollary 11.2 in [59], is required.

The next general result, see also Lemma 2 below, will be needed in the

following section to study the asymptotic behavior of the minimal surfaces model

(24). Since the proof is an easy adaptation of the one in [9] (Theorem 3.2), we

shall omit it as well.

Lemma 1. Assume S = {x ∈ [0, 1]3 : g(x ) = 0} is a smooth compact surface,
g ≥ 0 and ∇g(x ) = 0 for all x ∈ S , and assume that u0(x ) ∈ W 1,∞(IR3) is

periodic with fundamental domain [0, 1]3, vanishing in an open neighborhood of
S . Let u(t , x ) be the viscosity solution of the minimal surfaces flow. Then

u(t , x ) = 0 ∀x ∈ S , ∀t ≥ 0.

6. Correctness of the geometric minimal surfaces model

By correctness we mean the consistency of the results with our initial purpose

of object detection, in an ideal case. A smooth surface in an ideal image with no

noise should be recovered by our model. In this section we deal with this point.

To study the asymptotic behavior of the equation

ut = g(x )|∇u|
�
div

�
∇u
|∇u|

�
+ ν

�
+∇g ·∇u (t , x ) ∈ [0,∞)× IR3(26)

with initial condition

u(0, x ) = u0(x ), ∀x ∈ IR3,

we assume that S = {x ∈ [0, 1]3 : g(x ) = 0} is a compact surface of class C 2.

S divides the cube [0, 1]3 into two regions: the interior region and the exterior
region of S . Denote these regions by I (S ) and E (S ), respectively. Observe that

the interior I (S ) may have several connected components and I (S ) describes all

of them together. The initial datum u0 will be always taken in C
2(IR3) periodic

with fundamental domain [0, 1]3 and vanishing in an open neighborhood of S ∪
I (S ). Moreover, we take u0(x ) such that its level sets have uniformly bounded

curvatures. Let u(t , x ) be the unique viscosity solution of (26) given by Theorem
1 above. We follow the evolution of the set G(t) = {x ∈ [0, 1]3 : u(t , x ) = 0}
whose boundary S (t) we are interested in.

Before going into the details let us recall some elementary notions of differ-

ential geometry required below. A surface of genus p is a surface obtained by

removing the interiors of 2p disjoint disks from the sphere S 2 and attaching p

disjoint cylinders to their boundaries. We define the Euler-Poincare Characteristic

of a surface S as χ(S ) = 2 − 2p where p is its genus. We say that a surface

S such that χ(S ) = 2 − 2p is unknotted if every diffeomorphism from S to a

standard p-torus can be extended to a diffeomorphism ofIR3.

We can assume that g ≥ 0, ∀x ∈ [0, 1]3; and ∇g = 0, ∀x ∈ S . Then, for

some function h ≥ 0 we have g(x ) = h(x )2 and the equation (26) in the form

Numerische Mathematik Electronic Edition

page 438 of Numer. Math. (1997) 77: 423–451



Minimal surfaces: a geometric three dimensional segmentation approach 439

ut = h(x )

�
h(x )|∇u|

�
div

� ∇u
|∇u|

�
+ ν

�
+ 2∇h ·∇u

�
.(27)

With this formulation, S = {x ∈ [0, 1]3 : h(x ) = 0}.
In this section we are going to prove the following:

Theorem 3. Assume S = {x ∈ [0, 1]3 : g(x ) = 0} is diffeomorphic to a sphere,
i.e. χ(S ) = 2. If the constant ν is sufficiently large, then S (t) converges to S in

the Hausdorff distance as t → ∞.

Theorem 4. Assume S = {x ∈ [0, 1]3 : g(x ) = 0} is diffeomorphic to a p-torus,
i.e., χ(S ) = 2− 2p and is unknotted. If ν is sufficiently large, then S (t) converges
to S in the Hausdorff distance as t → ∞.

Theorem 5. Assume S = {x ∈ [0, 1]3 : g(x ) = 0} is the knotted surface of Fig. 5.
If ν is sufficiently large, then S (t) converges to S in the Hausdorff distance as

t → ∞.

Proof of Theorem 3. The proof is based on Lemma 2 and Lemma 3 below.

Lemma 2. I (S ) ⊂ {x ∈ [0, 1]3 : u(t , x ) = 0} for all t > 0

Proof. In Theorem 1 we proved that u(t , x ) = 0 for all x ∈ S and all t > 0.

Consider the problem

zt = g(x )|∇z |
�
div

�
∇z
|∇z |

�
+ ν

�
+∇g ·∇u (t , x ) ∈ [0,∞)× I (S )

z (0, x ) = u0(x ) x ∈ I (S )

z (t , x ) = 0 x ∈ S t ≥ 0

(28)

We know that z (t , x ) = 0 and z (t , x ) = u(t , x ) are two viscosity solutions of (28).
Since there is uniqueness of viscosity solutions of this problem, it follows that

u(t , x ) = 0 for all (t , x ) ∈ [0,∞)× I (S ).

Remark. Lemma 2 is also true if S is as in Theorem 4.

Lemma 3. Assume S = {x ∈ [0, 1]3 : g(x ) = 0} is diffeomorphic to a sphere,
i.e., χ(S ) = 2. If the constant ν is sufficiently large, for any η > 0, there exists

some Tη > 0 such that

G(t) ⊂ {x ∈ [0, 1]3 : d (x , I (S )) < 2η}

for all t > Tη.

Proof. Essentially, the proof of this lemma consists in constructing a subsolution

of (26) which becomes strictly positive as t → ∞. If S is a convex C 2 surface

this is not a difficult task. In this case the distance function to S , d (x ) = d (x , S ),
x ∈ E (S ) is of class C 2 in E (S ). This function is the tool to construct the desired

subsolution. In the general case S needs not be convex and the proof is a bit

more technical and we need a geometric construction.
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Let S1 be a compact surface of class C
2 contained in {x ∈ [0, 1]3 : u0(x ) >

0}∩E (S ). Consider E = {x ∈ [0, 1]3 : x ∈ I (S1)∩E (S )}. E is diffeomorphic to
the closed annulus A = {x ∈ IR3 : r � ≤ |x | ≤ r”}. There is a C 2 diffeomorphism

φ between A and E . Consider the family ζr of surfaces

ζr (θ,ϕ) = (r cos θ cosϕ, r cos θ sinϕ, r sin θ)

r � ≤ r ≤ r ��, −π

2
< θ ≤ π

2
, 0 ≤ ϕ < 2π.

This family is mapped by φ into a family of surfaces S (r) in E of class C 2, i.e.

S (r) = φ ◦ ζr . Without loss of generality we may suppose that Γ (r
�) = S and

Γ (r ��) = S1. Since the surfaces ζr r
� ≤ r ≤ r” have uniformly bounded curvatures

it follows that the family of surfaces S (r), r � ≤ r ≤ r” have uniformly bounded

curvatures.

We may choose ρ > 0 such that we have ∇h ·∇d (x , S ) > 0 on E (S )∩ (S +
B (0, ρ)).

For any η > 0, we can take n = n(η) and r” = r1 > r2 > · · · > rn sufficiently

close to each other and rn near to r
� such that the family of surfaces Si = φ ◦ ζri

satisfies the following:

1. Si ∈ C 2 with interior region I (Si ) and exterior region E (Si ), i = 1, . . . , n ,
and with Si ⊂ I (Si−1), i = 2, . . . , n .

2. S1 ⊂ {x ∈ [0, 1]3 : u0(x ) > 0} and Sn ⊂ {x ∈ E (S ) : 0 < d (x , S ) < η}.
3. For each x ∈ Si , let k

j
i (x ) j = 1, 2 the principal curvatures of Si at the

point x . Let Ki = max{|k
j
i (x )| : x ∈ Si , j = 1, 2}. We suppose (to ensure

regularity) that Si ⊂ {x ∈ E (Si+1) : d (x , Si+1) <
1

2Ki+1
}

4. sup{Ki , i = 1, . . . , n} ≤ M with a constant M independent of η.

From these surfaces we construct another family S ∗
i such that, S ∗

1 = S1
and for each i = 2, . . . , n − 1, let S ∗

i be a regular surface contained in {x ∈
E (Si )∩ I (Si−1) : d (x , Si ) < 1

4Ki+1
}. Finally, let S ∗

n be a smooth surface contained

in {x ∈ E (Sn ) ∩ I (Sn−1) : d (x , S ) < 2η}. Each surface S ∗
i is in a neighborhood

of Si+1 of radius
3

4Ki+1
.

Let Ri be the region between the surfaces S
∗
i−1 and Si , i = 2, . . . , n (see

Fig. 2). Let di (x ) = d (x , Si ) for x ∈ Ri , and let Ci > 0 be a constant such that

di (x ) ≤ Cih(x ) for x ∈ Ri , i = 2, . . . , n . Notice also that we are working in
the unit cube and di (x ) ≤

√
3. We may also suppose that there exists n � < n

such that for i ≥ n � we have Ri ⊂ E (S ) ∩ (S + B (0, ρ)). Since assuming that
∇h ·∇d (x , S ) > 0, by continuity we may choose ρ small enough such that when

i ≥ n � we have ∇h ·∇di ≥ 0.

Our purpose is to construct a family of subsolutions, which becomes asymp-

totically positive as t → ∞ on each Ri . By the last of our assumptions on u0, we

may choose a constant ν in (27) sufficiently large independent of the geometric

construction such that for some δ > 0

∆di + ν ≥ δ > 0 in Ri i = 2, . . . , n(29)

and u0 is a subsolution of the (27), i.e.
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i
S

Fig. 2. Construction for Lemma 2

|∇u0|h(x )
�
div

� ∇u0
|∇u0|

�
+ ν

�
+ 2∇h ·∇u0 ≥ 0.(30)

Remark. If i ≤ n �−1 we take ν large enough such that δ > 2C
infE (S )∩(S+B (0,ρ)) h

where

C is an upper bound for |∇h ·∇di |, i = 2, · · · n � − 1. With this we obtain that
for some δ1 > 0,

h(x )(∆di + ν) + 2∇h ·∇di ≥ δ1 > 0 x ∈ Ri , i = 2, · · · n
� − 1.

If i ≥ n � we have Ri ⊂ E (S ) ∩ (S + B (0, ρ)), and Dh ·Ddi > 0. In this case, we

also obtain that, for some δ2 > 0,

h(x )(∆di + ν) + 2∇h ·∇di ≥ δ2 > 0 i ≥ n �

On each region Ri we consider the problem:

zt = g(x )|∇z |
�
div

�
∇z
|∇z |

�
+ ν

�
+∇g ·∇z (t , x ) ∈ [Ti−1,∞)× Ri

z (t , x ) = 0 x ∈ Si t ∈ [Ti−1,∞)
z (t , x ) = u(t , x ) x ∈ S ∗

i−1 t ∈ [Ti−1,∞)
z (Ti−1, x ) = 0 x ∈ Ri

(31)

where Ti will be specified later. We want to construct a family of subsolutions of

(31) which becomes positive as t → ∞. Obviously u(t , x ), the viscosity solution
of (26) given by Theorem 1, is a supersolution of the problem (31), and by (30)

u0 is a subsolution of (26). We shall use the following comparison principle [15].

Theorem 6. Let w, v ∈ C ([0,∞),C (Ri )) be respectively a bounded sub and

supersolution of (31). Then w(t , x ) ≤ v(t , x ) for all (t , x ) ∈ [0,∞) × Ri . The

same comparison holds for (26).

The previous result implies u(t , x ) ≥ u0(x ) for all (t , x ) ∈ [0,∞) × IR3. In

particular we have

inf{u(t , x ) : t ∈ [0,∞), x ∈ E (S ∗
1 )} ≥ inf{u0(x ), x ∈ E (S ∗

1 )} > 0.(32)

Assume we have shown that for all j < i there exists some Tj such that
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inf{u(t , x ) : t ∈ [Tj ,∞), x ∈ E (S ∗
j )} ≥ βj > 0.(33)

By (32) this is true when i = 2 with T1 = 0.

For constructing the subsolution of (31) in [Ti−1,∞) × Ri , i = 2, . . . , n we
change variables and take Ti−1 = 0. Let

wm (t , x ) = fm (t)di (x ) + gm (t),(34)

where (t , x ) ∈ [0,∞)× Ri , m > 0

fm (t) = λ(1− 1

(1 + t)m
) λ > 0(35)

gm (t) = gm t t ∈ [0, tm ] gm (t) = gm tm t > tm ,(36)

where gm = −2mλ and tm = (1 +
mCi
δ0
)
1
m − 1 where δ0 = min(δ1, δ2). With these

functions we have

Lemma 4. For λ > 0 small enough and for all m > 0, wm is a subsolution of

(31).

Proof. It is clear by construction that wm (t , x ) ≤ 0 for (t , x ) ∈ [Ti−1,∞) × Si
and wm (Ti−1, x ) ≤ 0 for x ∈ Ri .

Using (33), taking λ > 0 sufficiently small, we have wm (t , x ) ≤ u(t , x ) for
(t , x ) ∈ [Ti−1,∞)× S ∗

i−1.

The function wm has been chosen such that

∂wm

∂t
−h(x )

�
h(x )|∇wm |

�
div

� ∇wm

|∇wm |

�
+ ν

�
+ 2Dh ·∇wm

�
≤ 0 in [0,∞)×Ri .

(37)

Indeed, if t < tm we have

f �m (t)di (x ) + g
�
m (t)− h(x )fm (t)(h(x )(∆di + ν) + 2∇h ·∇di

≤ f �m (t)di (x ) + gm ≤ f �m (0)di (x ) + gm ≤
√
3λm + gm ≤ q0.

If t > tm we have

f �m (t)di (x )− h(x )fm (t)(h(x )(∆di + ν) + 2∇h ·∇di

≤ f �m (t)Cih(x )− h(x )f �m (t)δ0 ≤ f �m (tm )Cih(x )− h(x )fm (tm )δ0.

Using the expressions for tm we immediately see that the last expression is

≤ 0. This completes the proof of the lemma.

Lemma 5. u(t , x ) ≥ wm (t , x ) for all (t , x ) ∈ [Ti−1,∞) × Ri . Hence, there exist

m0 > 0 and Ti > 0 such that

u(t , x ) ≥ inf{wm (t , x ) : t ∈ [Ti−1,∞), x ∈ Ri ∩ E (S ∗
i )} > 0

for all t ∈ [Ti−1,∞), x ∈ Ri ∩ E (S ∗
i ) and all m < m0.
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Proof. The first inequality follows from Lemma 4 and Theorem 6. On the other

hand we observe that

wm (t , x )→ λdi (x ) + gm tm as t → ∞.(38)

Since tm is bounded and gm → 0 as m → 0, there exists some m0 > 0 such that

inf{λdi (x ) + gm tm : x ∈ Ri ∩ E (S ∗
i )} > 0(39)

for all 0 < m < m0. The lemma follows from (38) and (39).

Lemma 5 is a consequence of the last two lemmas.

Extension for ν = 0: If we consider the model (27) with ν = 0, i.e.,

ut = g(x )|∇u|div
� ∇u
|∇u|

�
+∇g(x ) ·∇u(40)

with g(x ) = h2(x ) as above, a theorem similar to Theorem 3 above holds if

we take our initial surface sufficiently close to S . For that, we consider (40)

on [0,+∞) × V where V is a neighborhood of I (S ) together with initial and

boundary conditions

u(0, x ) = u0(x ) x ∈ V

u(t , x ) = u0(x ) t > 0 x ∈ ∂V

Moreover, V should be taken sufficiently near to S , i.e., V ⊂ I (S ) + B (0, ρ) for
ρ small enough, so that

h(x )∆d (x ) + 2∇h(x ) ·∇d (x ) ≥ 0 x ∈ V − I (S ),

where d (x ) = d (x , S ). In that case, we can adapt the ideas above to prove that
S (t) = ∂{x : u(t , x ) = 0} → S as t → ∞.
Proof of Theorem 4.

Lemma 6. Suppose that S = {x ∈ [0, 1]3 : g(x ) = 0} is diffeomorphic to a p-
torus, i.e., χ(S ) = 2− 2p and is unknotted. If ν is sufficiently large, for any η > 0

there exist some Tη > 0 such that

G(t) ⊂ {x ∈ [0, 1]3 : d (x , I (S )) < η} t > Tη.

Proof. The idea of the proof is to construct two surfaces Γ1 and Γ2 of class C
2

and diffeomorphic to a sphere, i.e. χ(Γi ) = 2, i = 1, 2, such that the boundary of
I (Γ1)∩ I (Γ2) is diffeomorphic to a p-torus and near S . We prove that for a large
t , S (t) is near the boundary of I (Γ1) ∩ I (Γ2), therefore S (t) will be near S . Let

us, first of all, construct the surfaces Γ1 and Γ2.

Given η > 0 we choose Γ1 and Γ2 satisfying:

1. Γi is a compact surface of class C
2, χ(Γi ) = 2 and I (S ) ⊂ I (Γi ) i = 1, 2.

2. Uη := [I (Γ1) + B (0,
η
2
)] ∩ [I (Γ2) + B (0, η

2
)] is an open set whose boundary is

a regular surface diffeomorphic to a p-torus.
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3. Uη ⊂ I (S ) + B (0, η)

Recall that the sum of two sets A,B is defined by A+B = {a +b : a ∈ A, b ∈
B}

If S is a standard p-torus, which we denote by Tp , it is easy to construct

surfaces Γ1 and Γ2 satisfying the conditions above. Since this is technically

delicate, but easy to see graphically, we illustrate it in Fig. 3.

Fig. 3. Construction of Γ1 and Γ2 for Lemma 5

If S is not a standard p-torus, then (see [16], Chap. 4) it is diffeomorphic to a

standard p-torus and there exists a diffeomorphism f : S → Tp . As S is unknotted

this diffeomorphism can be extended to all IR3 F : IR3 → IR3 such that F |S = f .

In this case we construct the surfaces�Γ1 and�Γ2 as �Γi = F−1(Γi ), i = 1, 2. They
also satisfy the above conditions.

By Theorem 3, we know that for ν sufficiently large there exists T i
η > 0 such

that G(t) ⊂ {x ∈ [0, 1]3 : d (x , I (Γi )) <
η
2
} for all t > T i

η, i = 1, 2. Then, we
choose Tη = max(T

1
η ,T

2
η ) and we have

G(t) ⊂ [I (Γ1) + B (0,
η

2
)] ∩ [I (Γ2) + B (0,

η

2
)], t > Tη.

Hence G(t) ⊂ Uη ⊂ I (S ) + B (0, η) for all t > Tη.
Remark. From the proof above, it is easy to see that if S1, S2 are two surfaces
for which the condition: “for any η > 0 there exist some Tη > 0 such that

G(t) ⊂ {x ∈ [0, 1]3 : d (x , I (Si )) < η} i = 1, 2 for t > Tη,” is true, then it is also

true for S1 ∩ S2.

Using this remark, one can prove that if S = {x ∈ [0, 1]3 : g(x ) = 0} is the
knotted surface of Fig. 5, then for any η > 0 there exist some Tη > 0 such that

G(t) ⊂ {x ∈ [0, 1]3 : d (x , I (S )) < η} t > Tη.

For the proof, we consider two unknotted surfaces diffeomorphic to a p-torus

such that their intersection is the knotted surface and use the remark above to

conclude the proof. How do we construct such surfaces? First of all, observe

that by attaching a finite number of thin cylinders (which can be done in a

smooth way) we can get a smooth surface diffeomorphic to a p-torus for some

p ∈ IN . This can be done in two different ways Γ1, Γ2 such that the boundary

of I (Γ1) ∩ I (Γ2) is diffeomorphic to the knotted surface of Fig. 5 and near to it.

Of course such result can be proven for all knotted surfaces where the above

strategy can be used.
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Fig. 4. Example of the geodesic active contours. From the two small circles, both interior and exterior

boundaries are detected without any special tracking procedure

Remarks.

1. Expanding motions. If u0(x ) is taken as

u0(x ) =

�
> 0 if x ∈ B (y , r) ⊂ I (S )

0 if x in a neigborhood of S ∪ E (S ) ,

i.e., a function vanishing in a neighborhood of S ∪ E (S ), and such that its

levels sets have uniformly bounded curvatures, then we may recover a surface

S starting from its inner region. The proof of this result is similar to the proof

of Theorem 3. Lemma 2 and Lemma 3 are essentially the same except of

replacing I (S ) by E (S ). Hence, we shall omit the details.

2. Non-ideal edges. We have shown that the proposed model is consistent for

smooth compact surfaces, i.e., when objects hold the basic definition of

boundaries (g ≡ 0), they are detected by the minimal surfaces approach.

As pointed out before, for non ideal edges, previous algorithms [6, 39, 63]

will fail, since g /= 0, and the surface will not stop. The new term ∇g creates
a potential valley which attracts the surface, forcing the surface to stay there

even if g /= 0.
3. Zero constant velocity. Similar results can be proved when the constant ve-

locity is equal to zero. In this case, the initial surface should be closer to

the final one, to avoid local minima. Again, the existence of the new term

∇g allows also the detection of non convex objects, task which can not be
achieved without constant velocity in previous models.

7. Experimental results

We now present some examples of our minimal surfaces deformable model (15).

The numerical implementation is based on the algorithm for surface evolution via

level sets developed by Osher and Sethian [48, 62] and recently used by many
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Fig. 5. Detection of two linked tori

authors for different problems in computer vision and image processing. The

algorithm allows the evolving surface to change topology without monitoring

the deformation. This means that several objects can be detected simultaneously,

although it is not required to know that there are more than one in the image.

Note that when implementing our model with this algorithm, the extension of

the image-based speed performed in [39, 40, 41] is not necessary. Furthermore,

using the implementation method introduced in [1], the algorithm can be very

efficient (low computational complexity). In the numerical implementation of

equation (15) we have chosen central difference approximation in space and

forwards difference approximation in time. This simple selection is possible due

to the stable nature of the equation, however, when the coefficient ν is taken
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Fig. 6. Detection of a tumor in MRI

to be of high value or when the gradient term is dominant, more sophisticated

approximations are required [48].

In our examples, the initialization is in general given by a surface (curve)

surrounding all the possible objects in the scene. In the case of outward flows

[7], a surface (curve) is initialized inside each object. Multiple initializations are

performed in [39, 40, 41, 63]. Although multiple initializations help in many

cases, they may lead to false contours in noisy images. Therefore, multiple ini-

tializations should in general be controlled (by rough detections of points inside

the objects for example) or they should be followed by a validation step.

Figure 4 presents an example of the geodesic active contours taken from [7].

The figure on the left is the original image, and the one on the right present the

evolving curves (gray) and the detected boundaries (white). The initial curves

are the two small circles in the tools. Both interior and exterior boundaries are

detected without any special tracking procedure.

The first example of the minimal surfaces deformable model is presented in

Fig. 5. This object is composed of two tori, one inside the other (knotted surface).

The initial surface is an ellipsoid surrounding the two tori (top left). Note how

the model manages to split and detect this very different topology (bottom right).
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Fig. 7. Slices of the 3D detection in Fig. 6

A medical example is given in Figs. 6 and 7. Figure 6 presents the 3D

detection of a tumor in an MRI image. The initial 3D shape is presented in the

first row. The second row presents 3 evolution steps, while the final shape, the

weighted minimal surface, is presented in the bottom. Figure 7 shows slices of

this 3D detection, together with the corresponding MRI data.

8. Concluding remarks

In this paper we presented a novel formulation of deformable surfaces for three

dimensional object detection, extending our previously reported two dimensional

work [7]. We showed that the solution to the deformable surfaces approach for

boundary detection is given by a “minimal surface” in a space derived from

the given 3D image. This means that detecting the object is analogue to finding

a surface of minimal weighted area. This formulation introduced a new term

in previous mean curvature models, improving the attraction of the deforming

surface into the boundary. This improves the detection of boundaries with large

differences in their gradient. We also presented results regarding the existence,

uniqueness, stability, and correctness of the solutions obtained by our model.

We presented experiments for different kind of images. These experiments

showed the possibility to detect several objects, as well as the possibility to

detect interior and exterior boundaries at the same time. The sub-pixel accuracy

intrinsic to the algorithm allows to perform accurate measurements after the

object is detected [38, 53].

The model presented is general, as well as the approach for solving image

analysis problems via geodesic or minimal surfaces computation. Other image

processing and computer vision problems, like the shape from shading [33, 34,

45, 52], can be reformulated as the computation of geodesics or minimal distances
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as well. The metric is specified by the image and the application. We are currently

investigating this geodesic/minimal-surface-type approach for other problems in

image analysis.
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