ITOH, T. KŌDAI MATH. SEM. REP 25 (1973), 202-214

MINIMAL SURFACES IN A RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE

By Takehiro Itoh

For surfaces in a 4-dimensional Riemannian manifold of constant curvature, the author [3] proved the following

THEOREM. Let M be a 2-dimensional connected compact Riemannian manifold which is minimally immersed in a unit sphere of dimension 4. If the normal scalar curvature K_N is non-zero constant, then M may be regarded as a Veronese surface.

In this paper, he generalizes the above theorem and proves the following

THEOREM. Let M be a 2-dimensional connected compact Riemannian manifold which is minimally immersed in a $(2 + \nu)$ -dimensional unit sphere $S^{2+\nu}$. If the normal scalar curvature K_N is non-zero constant and the square of the second curvature k_2 is less then $K_N/4$, then M is a generalized Veronese surface.

By a generalized Veronese surface we mean a surface defined by Otsuki [6].

§1. Preliminaries.

Let \overline{M} be a $(2 + \nu)$ -dimensional Riemannian manifold of constant curvature \overline{c} and M be a 2-dimensional Riemannian manifold immersed isometrically in \overline{M} by the immersion $x: M \to \overline{M}$. $F(\overline{M})$ and F(M) denote the orthonormal frame bundles over \overline{M} and M respectively. Let B be the set of all elements $b = (p, e_1, e_2, e_3, \dots, e_{2+\nu})$ such that $(p, e_1, e_2) \in F(M)$ and $(p, e_1, e_2, e_3, \dots, e_{2+\nu}) \in F(\overline{M})$ identifying $p \in M$ with x(p) and e_i with $dx(e_i)$, i = 1, 2. Then B is naturally considered as a smooth submanifold of $F(\overline{M})$. Let $\overline{\omega}_A, \overline{\omega}_{AB} = -\overline{\omega}_{BA}, A, B = 1, 2, 3, \dots, 2+\nu$, be the basic and connection forms of \overline{M} on $F(\overline{M})$ which satisfy the structure equations:

(1.1)
$$d\overline{\omega}_{A} = \sum_{B} \overline{\omega}_{AB} \wedge \overline{\omega}_{B},$$
$$d\overline{\omega}_{AB} = \sum_{C} \overline{\omega}_{AC} \wedge \overline{\omega}_{CB} - \overline{c} \overline{\omega}_{A} \wedge \overline{\omega}_{B}.$$

Received May 18, 1972.

MINIMAL SURFACES IN A RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE 203 In this paper, we use the following convention on the range of indices:

$$1 \leq A, B, C, \dots \leq 2+\nu, \quad 1 \leq i, j, \dots \leq 2, \quad 3 \leq \alpha, \beta, \gamma, \dots \leq 2+\nu.$$

Deleting the bars of $\bar{\omega}_A, \bar{\omega}_{AB}$ on *B*, as is well known, we have

$$(1.2) \qquad \qquad \omega_{\alpha} = 0,$$

(1.3)
$$\omega_{i\alpha} = \sum_{j} A_{\alpha i j} \omega_{j}, \qquad A_{\alpha i j} = A_{\alpha j i},$$

$$(1.4) d\omega_i = \omega_{ij} \wedge \omega_j, i \neq j,$$

(1.5)
$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{ki} - \Omega_{ij}, \qquad \Omega_{ij} = \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l,$$

(1.6)
$$R_{ijkl} = \bar{c}(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + \sum_{\alpha} (A_{\alpha ik}A_{\alpha jl} - A_{\alpha il}A_{\alpha jk}),$$

(1.7)
$$d\omega_{\alpha\beta} = \sum_{\gamma} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta} - \Omega_{\alpha\beta}, \qquad \Omega_{\alpha\beta} = \frac{1}{2} \sum_{i,j} R_{\alpha\beta ij} \omega_i \wedge \omega_{j\gamma}$$

(1.8)
$$R_{\alpha\beta ij} = \sum_{k} (A_{\alpha ik} A_{\beta jk} - A_{\alpha jk} A_{\beta ik}).$$

M is said to be *minimal* if its mean curvature vector $(1/2) \sum_{\alpha, i} A_{\alpha i i} e_{\alpha}$ vanishes identically, i.e., if trace $A_{\alpha} = 0$ for all α , $A_{\alpha} = (A_{\alpha i j})$. We say the dimension of the linear space of all second fundamental forms corresponding to normal vectors at $p \in M$ with vanishing trace the *minimal index* at p and denote it by *m*-index_pM. We have easily

(1.9)
$$m \cdot \operatorname{index}_p M \leq 2$$
 at each point $p \in M$.

We denote the square of the norm of the system of all 2nd fundamental forms by

(1.10)
$$S = \frac{1}{2} \sum_{\alpha \imath, j} A_{\alpha \imath j} A_{\alpha \imath j} = \sum_{\alpha} ||A_{\alpha}||^2,$$

where for symmetric matrices A, B we define the inner product of A and B by

$$\langle A, B \rangle = \frac{1}{2} \operatorname{trace} AB.$$

We define the normal scalar curvature K_N of M in \overline{M} as follows:

(1.11)
$$K_N = \sum_{\iota < j, \ \alpha < \beta} R_{\alpha\beta ij} R_{\alpha\beta ij} = \sum_{\iota < j, \ \alpha < \beta} \left(\sum_k \left(A_{\alpha ik} A_{\beta jk} - A_{\alpha jk} A_{\beta ik} \right) \right)^2.$$

Now, we assume that M is minimal in \overline{M} and K_N is non-zero non M. Then we have

(1.12)
$$m \operatorname{-index}_p M = 2$$
 at each point p on M .

Hence, as stated in [5], we can decompose the normal space N_p at $p \in M$ as follows:

(1.13)
$$N_{p} = N'_{p} + O_{p}, \qquad N'_{p} \perp O_{p}, \qquad O_{p} = \phi_{b}^{-1}(0),$$
$$\dim N'_{p} = 2,$$

where ϕ_b is a linear mapping from N_p into the set of all symmetric matrices of order 2 defined by $\phi_b(\sum_{\alpha} v_{\alpha} e_{\alpha}) = \sum_{\alpha} v_{\alpha} A_{\alpha}$. This decomposition does not depend on the choice of a frame *b* over *p* and is smooth. Let B_0 be the set of all $b \in B$ such that $e_{3}, e_4 \in N'_p$. Then B_0 is a smooth submanifold of *B*. On B_0 , we have

(1.14)
$$\omega_{i\beta}=0$$
, i.e., $A_{\beta}=0$ for $\beta>4$.

Therefore we have

(1.15)
$$K_N = R_{3412} = \left(\sum_k \left(A_{31k}A_{42k} - A_{32k}A_{41k}\right)\right)^2$$

As a special case of [6], we can verify the following

LEMMA 1. On B_0 , for a fixed $\beta > 4$, we have $\omega_{3\beta} \equiv \omega_{4\beta} \equiv 0 \pmod{\omega_1, \omega_2}$ and $\omega_{3\beta} = \omega_{4\beta} \equiv 0$ or else $\omega_{3\beta} \wedge \omega_{4\beta} \equiv 0$.

Now, by virture of Lemma 1, we can define two linear mappings φ_{11} and φ_{12} from M_p into O_p corresponding to the normal vector e_3 and e_4 as follows: for any $X \in M_p$,

(1.16)
$$\varphi_{11}(X) = \sum_{\beta > 4} ||A_3|| \cdot \omega_{3\beta}(X) e_{\beta}, \qquad \varphi_{12}(X) = \sum_{\beta > 4} ||A_4|| \cdot \omega_{4\beta}(X) e_{\beta}.$$

As stated in [5], these two linear mappings have the same image of the tangent unit sphere $S_p^1 = \{X \in M_p; ||X|| = 1\}$ and $\varphi_{11}(X)$ and $\varphi_{12}(X)$ are conjugate to each other with respect to the image when it is an ellipse. We define the second curvature $k_2(p)$ of M at p by

(1.17)
$$k_{2}(p) = \max_{X \in S_{p}^{1}} ||\varphi_{11}(X)|| = \max_{X \in S_{p}^{1}} ||\varphi_{12}(X)||.$$

It is clear that $k_2(p)$ is continuous on M.

§ 2. Minimal surfaces with non-zero constant K_N .

In this section we assume that M is connected, compact and minimal in M, K_N is non-zero constant and $4k_2^2 < K_N$ at each point of M.

LEMMA 2. We have identically

$$(2.1) S^2 = K_N on M.$$

Proof. From (1.10), (1.14) and (1.15), we have

$$(2.2) S2 - KN = \{(A_{311} - A_{412})2 + (A_{312} + A_{411})2\}\{(A_{311} + A_{412})2 + (A_{312} - A_{411})2\} \ge 0.$$

Hence, if it is not identically $S^2 = K_N$, the function $S^2 - K_N$ takes its positive maximum at some point $p_0 \in M$, because M is compact. Let U be a neighborhood of p_0 in which we can choose $b \in B_0$ such that

(2.3)
$$A_3 = \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix}, \quad A_4 = \begin{pmatrix} 0 & \mu \\ \mu & 0 \end{pmatrix}, \quad \lambda^2 > \mu^2 > 0,$$

where λ and μ are differentiable functions on U. Then we have

 $K_N = 4\lambda^2 \mu^2, \qquad S = \lambda^2 + \mu^2.$

From (1, 1) and (2, 3) we have

(2.4)
$$d\lambda \wedge \omega_1 + (2\lambda\omega_{12} - \mu\omega_{34}) \wedge \omega_2 = 0,$$
$$d\lambda \wedge \omega_2 - (2\lambda\omega_{12} - \mu\omega_{34}) \wedge \omega_1 = 0;$$

$$d\mu \wedge \omega_1 + (2\mu\omega_{12} - \lambda\omega_{34}) \wedge \omega_2 = 0,$$

$$d\mu\wedge\omega_2-(2\mu\omega_{12}-\lambda\omega_{34})\wedge\omega_1=0.$$

Since $K_N = 4\lambda^2 \mu^2$ is constant, from (2.4) and (2.5) we have

$$4\lambda\mu\omega_{12}=(\lambda^2+\mu^2)\omega_{34}$$

and hence

 $(2.6) K_N \omega_{12} = \lambda \mu S \omega_{34}.$

Differentiating both sides of (2.6), we get

(2.7)
$$K_N d\omega_{12} = \lambda \mu dS \wedge \omega_{34} + \lambda \mu S d\omega_{34}$$
$$= \lambda \mu dS \wedge \omega_{34} - 2\lambda^2 \mu^2 S \omega_1 \wedge \omega_2 - \lambda \mu S \sum_{\beta > 4} \omega_{3\beta} \wedge \omega_{4\beta}$$

On the other hand, since $\omega_{i\beta}=0$ ($\beta>4$), i=1, 2, we have

$$d\omega_{i\beta} = \omega_{i3} \wedge \omega_{3\beta} + \omega_{i4} \wedge \omega_{4\beta} = 0,$$

which reduce to

$$\lambda \omega_{3\beta} \wedge \omega_1 + \mu \omega_{4\beta} \wedge \omega_2 = 0,$$

 $\lambda \omega_{3\beta} \wedge \omega_2 - \mu \omega_{4\beta} \wedge \omega_1 = 0.$

By Cartan's Lemma, we may put

$$\lambda \omega_{3\beta} = f_{\beta} \omega_1 + g_{\beta} \omega_2,$$
$$\mu \omega_{4\beta} = g_{\beta} \omega_1 - f_{\beta} \omega_2,$$

and define two normal vectors $F_1 = \sum_{4 < \alpha} f_a e_{\alpha}$ and $G_1 = \sum_{4 < \alpha} g_a e_{\alpha}$. Then we have

(2.8)
$$\lambda \mu \sum_{\beta > 4} \omega_{3\beta} \wedge \omega_{4\beta} = -(||F_1||^2 + ||G_1||^2) \omega_1 \wedge \omega_2.$$

By means of Cartan's Lemma, from (2.4) and (2.5) we have

$$2\lambda\omega_{12} - \mu\omega_{34} = \lambda_2\omega_1 - \lambda_1\omega_2,$$

$$2\mu\omega_{12} - \lambda\omega_{34} = \mu_2\omega_1 - \mu_1\omega_2,$$

putting $d\lambda = \lambda_1 \omega_1 + \lambda_2 \omega_2$ and $d\mu = \mu_1 \omega_1 + \mu_2 \omega_2$. Thus we get

$$(\lambda^2-\mu^2)\omega_{34}=(\lambda_2\mu-\lambda\mu_2)\omega_1-(\lambda_1\mu-\lambda\mu_1)\omega_2.$$

Since $\lambda \mu = \text{constant}$ and hence $\lambda \mu_i + \lambda_i \mu = 0$, we have

$$\omega_{34} = \frac{2\mu}{\lambda^2 - \mu^2} (\lambda_2 \omega_1 - \lambda_1 \omega_2)$$

and

$$\lambda \mu dS = 2\mu (\lambda^2 - \mu^2) d\lambda = 2\mu (\lambda^2 - \mu^2) (\lambda_1 \omega_1 + \lambda_2 \omega_2).$$

Hence we have

(2.9)
$$\lambda \mu dS \wedge \omega_{34} = -4\mu^2 ||\nabla \lambda||^2 \omega_1 \wedge \omega_2,$$

where $\Gamma \lambda$ is the gradient vector of λ . From (2.7), (2.8) and (2.9), we have

(2.10)
$$KK_N = 4\mu^2 ||\nabla\lambda||^2 + \frac{K_N S}{2} - S(||F_1||^2 + ||G_1||^2),$$

where K is the Gaussian curvature of M. Since $K_N > 4k_2^2 \ge 0$, $2k_2^2 \ge ||F_1||^2 + ||G_1||^2$, and S > 0, we have

$$KK_N \ge 4\mu^2 ||V\lambda||^2 + \frac{1}{2}K_NS - 2Sk_2^2 > 0,$$

so that we get

(2.11) K > 0 on U.

From (2.4) and (2.5), we have

$$\begin{aligned} &d(\lambda^2 - \mu^2) \wedge \omega_1 + 4(\lambda^2 - \mu^2) d\omega_1 = 0, \\ &d(\lambda^2 - \mu^2) \wedge \omega_2 + 4(\lambda^2 - \mu^2) d\omega_2 = 0, \end{aligned}$$

206

which imply that there exists a neighborhood V of p_0 where we have isothermal coordinates (u, v) such that

$$ds^{2} = E\{du^{2} + dv^{2}\}, \qquad \omega_{1} = \sqrt{E} du, \qquad \omega_{2} = \sqrt{E} dv, \qquad \sqrt{\lambda^{2} - \mu^{2}} E = 1,$$

where E = E(u, v) is a positive function on V. With respect to these isothermal coordinates, K is given by $K = -(1/2E) \Delta \log E$. Since $\sqrt{\lambda^2 - \mu^2} E = 1$ and $(\lambda^2 - \mu^2)^2 = S^2 - K_N$, we obtain

(2.12)
$$K = \frac{\sqrt{\lambda^2 - \mu^2}}{8} \varDelta \log (S^2 - K_N),$$

which, together with (2.11), implies

$$\Delta \log (S^2 - K_N) > 0$$
 on V .

Thus $\log (S^2 - K_N)$ is a subharmonic function on V and takes its maximum at p_0 by our assumption, so that $\log (S^2 - K_N)$ must be constant. Then, (2.12) implies K=0, which contradicts K>0. Q. E. D.

By Lemma 2, for a frame $b \in B_0$ we have $||A_3|| = ||A_4||$ and $\langle A_3, A_4 \rangle = 0$. Therefore, on a neighborhood U(p) of p of M we can choose a frame field $b \in B_0$ such that

(2.13)
$$A_3 = \begin{pmatrix} k_1 & 0 \\ 0 & -k_1 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 0 & k_1 \\ k_1 & 0 \end{pmatrix},$$

where k_1 is non-zero constant on *M*. It follows from (2.13) that

(2.14)
$$\omega_{34} = 2\omega_{12}$$

and we may put

$$\begin{aligned} &k_1\omega_{3\beta} = f_{\beta}\omega_1 + g_{\beta}\omega_2, \\ &k_1\omega_{4\beta} = g_{\beta}\omega_1 - f_{\beta}\omega_2, \qquad 4 < \beta, \end{aligned}$$

as in the proof of Lemma 2. Then, (2.14) implies

$$||F_1||^2 + ||G_1||^2 = 2k_1^2(k_1^2 - K),$$

where $F_1 = \sum_{4 < \beta} f_{\beta} e_{\beta}$ and $G_1 = \sum_{4 < \beta} g_{\beta} e_{\beta}$. Since $||F_1||^2 + ||G_1||^2 \le 2k_2^2 < K_N/2 = 2k_1^4$ and $K = \bar{c} - S = \bar{c} - 2k_1^2$, we see

$$(2.15) K = positive constant on M.$$

Then, we have the following

LEMMA 3. The image of S_p^1 under φ_{11} (or φ_{12}) is a circle with constant radius $k_2 = k_1 \sqrt{k_1^2 - K}$, where the circle is a point if $k_2 = 0$ on M.

Proof. Putting

$$l_{2} = \underset{x \in S_{p}^{1}}{\min} ||\varphi_{11}(X)|| = \underset{x \in S_{p}^{1}}{\min} ||\varphi_{12}(X)||,$$

we can see

$$(k_2^2 - l_2^2)^2 = (||F_1||^2 - ||G_1||^2)^2 + 4 \langle F_1, G_1 \rangle^2 \ge 0,$$

so $(k_2^2 - l_2^2)^2$ is a differentiable function on M, because $\{p, F_1, G_1\}$ obey an analogous rule to the rotation of the 2-frame $\{p, e_3, e_4\}$. Hence, if $k_2 = l_2$ does not hold identically on M, then $(k_2^2 - l_2^2)^2$ takes its positive maximum at some point p_1 on M. Let U_1 be a neighborhood of p_1 on which $k_2 > l_2$ and we can choose isothermal coordinate (u, v) and a frame $b \in B_0$ satisfying (2.13) and

(2.16)
$$ds^2 = E \{ du^2 + dv^2 \}, \qquad \omega_1 = \sqrt{E} du, \qquad \omega_2 = \sqrt{E} dv,$$

where E = E(u, v) is a positive function on U_1 . Since $||F_1||^2 + ||G_1||^2 > 0$ on U_1 , we may assume $F_1 \neq 0$ on a small neighborhood V_1 of p_1 in U_1 . Then we can choose a frame field $b \in B_0$ satisfying (2.13), (2.16) and

$$F_1 = fe_5, \qquad G_1 = \sum_{4 \leq a} g_a e_a,$$

where f is a non-zero differentiable function and g_{α} are differentiable functions on V_{1} . Then we have

$$\begin{aligned} &k_1\omega_{35} = f\omega_1 + g_5\omega_2, \qquad k_1\omega_{3\beta} = g_\beta\omega_2, \\ &k_1\omega_{45} = g_5\omega_1 - f\omega_2, \qquad k_1\omega_{4\beta} = g_\beta\omega_1, \qquad 5 < \beta. \end{aligned}$$

Using these equations and $\omega_{34}=2\omega_{12}$, from the structure equations we obtain

$$df \wedge \omega_{1} + dg_{5} \wedge \omega_{2} + 3fd\omega_{1} + 3g_{5}d\omega_{2} = \omega_{2} \wedge (\sum_{\delta < \beta} g_{\beta}\omega_{\beta 5}),$$

$$dg_{5} \wedge \omega_{1} - df \wedge \omega_{2} + 3g_{5}d\omega_{1} - 3fd\omega_{2} = \omega_{1} \wedge (\sum_{\delta < \beta} g_{\beta}\omega_{\beta 5}),$$

$$dg_{\beta} \wedge \omega_{2} + 3g_{\beta}d\omega_{2} = -f\omega_{1} \wedge \omega_{\beta 5} - g_{5}\omega_{2} \wedge \omega_{\beta 5} + \omega_{2} \wedge (\sum_{\gamma} g_{\gamma}\omega_{\gamma \beta}),$$

$$dg_{\beta} \wedge \omega_{1} + 3g_{\beta}d\omega_{1} = -g_{5}\omega_{1} \wedge \omega_{\beta 5} + f\omega_{2} \wedge \omega_{\beta 5} + \omega_{1} \wedge (\sum_{\gamma} g_{\gamma}\omega_{\gamma \beta}),$$

which imply that the complex valued function $E^3(||G_1||^2 - ||F_1||^2) + 2iE^3 \langle F_1, G_1 \rangle$ is holomorphic in z = u + iv, so that

(2.17)
$$-6\varDelta \log E = \varDelta \log \{ (||F_1||^2 - ||G_1||^2)^2 + 4 \langle F_1, G_1 \rangle^2 \}$$
$$= \varDelta \log (k_2^2 - l_2^2)^2 \quad \text{on} \quad V_1.$$

Since K is given by $K = -(1/2E) \Delta \log E$ and is positive from (2.15), (2.17) implies that $\log(k_2^2 - l_2^2)^2$ is a subharmonic function on V_1 . Since $(k_2^2 - l_2^2)^2$ takes its positive

208

maximum at p_1 in V_1 , $\log(k_2^2 - l_2^2)^2$ must be constant so that (2.7) implies K=0, which contradicts K>0. Thus, $k_2=l_2$ holds at every point on M. Furthermore, we have $||F_1|| = ||G_1||$ and $\langle F_1, G_1 \rangle = 0$ for any frame $b \in B_0$ satisfying (2.13). Since $2k_2^2 = ||F_1||^2 + ||G_1||^2 = 2k_1^2(k_1^2 - K)$ is constant on M, $k_2 = l_2 = k_1\sqrt{k_1^2 - K}$ is constant on M. Q. E. D.

By Lemma 3, if $k_2=0$ on M, then the geodesic codimension of M in \overline{M} is 2, so that M is a Veronese surface (see [3]). If $k_2 \neq 0$ on M, then by Lemma 2 and 3, on a neighborhood U(p) of a p of M we can choose a frame field $b \in B_0$ satisfying (2.13) and

(2.18)
$$k_1\omega_{35} = k_2\omega_1 = k_1\omega_{46}$$
$$k_1\omega_{36} = k_2\omega_2 = -k_1\omega_{45}, \qquad \omega_{3\beta} = \omega_{4\beta} = 0, \qquad 6 < \beta,$$

where k_2 is non-zero constant on *M*. Then, from (2.14) and (2.18) we obtain

(2.19)
$$\omega_{56} = 3\omega_{15}$$

and we may put

$$\begin{aligned} &k_2\omega_{5\beta} = f_{\beta}\omega_1 + g_{\beta}\omega_2 \\ &k_2\omega_{6\beta} = g_{\beta}\omega_1 - f_{\beta}\omega_2, \qquad 6 < \beta \end{aligned}$$

where f_{β} and g_{β} are differentiable functions on U(p). We consider two linear mappings φ_{21} and φ_{22} from M_p into N_p as follows

$$\begin{split} \varphi_{21}(X) &= \sum_{\beta} k_2 \omega_{5\beta}(X) e_{\beta} = \omega_1(X) F_2 + \omega_2(X) G_2, \\ \varphi_{22}(X) &= \sum_{\beta} k_2 \omega_{6\beta}(X) e_{\beta} = \omega_1(X) G_2 - \omega_2(X) F_2, \end{split}$$

where X is a tangent vector to M and $F_2 = \sum_{6 < \beta} f_{\beta} e_{\beta}$ and $G_2 = \sum_{6 < \beta} g_{\beta} e_{\beta}$ are normal vector fields on U(p). Using (2.19) and the structure equations, we obtain

$$||F_2||^2 + ||G_2||^2 = k_2^2 \left(\frac{2k_2^2}{k_1^2} - 3K\right) = \text{constant on } M.$$

In the same manner as the proof of Lemma 3, we can prove the following

LEMMA 4. If $k_2 = constant \pm 0$ on M, the image of S_p^1 under φ_{21} (or φ_{22}) is a circle with constant radius $k_2 \sqrt{k_2^2/k_1^2 - 3K/2}$, where the circle is a point if $2k_2^2 = 3k_1^2K$ on M.

If $2k_2^2 = 3k_1^2 K$ on M, then the geodesic codimension of M is 4, because $\omega_{ij} = 0$ $(4 < \beta)$, $\omega_{3\gamma_1} = \omega_{4\gamma_1} = 0$ $(6 < \gamma_1)$ and $\omega_{5\gamma_2} = \omega_{6\gamma_2} = 0$ $(8 < \gamma_2)$. Henceforth, we may consider the case $2k_2^2 \neq 3k_1^2 K$ on M. Then, by Lemmas 2, 3 and 4, on a neighborhood of a point p on M we can choose a frame field $b \in B_0$ satisfying (2.13), (2.18) and the following conditions:

$$k_2\omega_{57} = k_3\omega_1 = k_2\omega_{68},$$

 $k_2\omega_{58} = k_3\omega_2 = -k_2\omega_{67}, \qquad \omega_{5\gamma} = \omega_{6\gamma} = 0, \qquad 8 < \gamma,$

where k_3 is a non-zero constant on *M*. From the above equations we get

(2.20)
$$\omega_{78} = 4\omega_{12}$$
.

We use the following convention about indices:

$$I_0 = \{1, 2\}, \qquad I_t = \{2t+1, 2t+2\}, \qquad t = 1, 2, \dots, m,$$

and if we write $\alpha_1, \alpha_2 \in I_t$, then $\alpha_1 < \alpha_2$.

Now we shall prove the following

THEOREM 1. Let M be a 2-dimensional connected compact Riemannian manifold which is isometrically and minimally immersed in a Riemannian manifold \overline{M} of constant curvature \overline{c} . If the normal scalar curvature K_N is non-zero constant on M and the square of the second curvature k_2 is less than $K_N/4$, then the geodesic codimension of M in \overline{M} is even 2m (m is a positive integer), and we can choose a frame $b \in B_0$ such that

(2. 21)
$$k_{t-1}\omega_{\alpha_{1}\beta_{1}}=k_{t}\omega_{1}=k_{t-1}\omega_{\alpha_{2}\beta_{2}}, \qquad \omega_{\alpha_{1}\gamma}=0,$$
$$k_{t-1}\omega_{\alpha_{1}\beta_{2}}=k_{t}\omega_{2}=-k_{t-1}\omega_{\alpha_{2}\beta_{1}}, \qquad \omega_{\alpha_{2}\gamma}=0,$$
$$\alpha_{1}, \alpha_{2} \in I_{t-1}, \qquad \beta_{1}, \beta_{2} \in I_{t}, \qquad 2t+2<\gamma,$$
$$t=1, 2, \cdots, m,$$

where $k_0=1$ and k_t ($2 \le t \le m$) are non-zero constant on M. Furthermore, we obtain

(2.22)
$$\omega_{\alpha_1\alpha_2} = (t+1)\omega_{12}, \quad \alpha_1, \alpha_2 \in I_t \quad (t=1, 2, \cdots, m),$$

$$(2.23) (t+1)K = \frac{2k_t^2}{k_{t-1}^2} - \frac{2k_{t+1}^2}{k_t^2} (t=1,\cdots,m-1),$$

(2.24)
$$(m+1)K = \frac{2k_m^2}{k_{m-1}^2}.$$

Proof. By induction with respect to t, we shall prove the theorem. For t=1, 2 and 3, we proved our assertions by Lemmas 2, 3 and 4 respectively. Hence, we suppose that our (2.21), (2.22) and (2.23) hold for all $t \leq t_0$. In this case, we shall prove that our assertion holds for t_0+1 . Then, since $\omega_{\alpha_1\gamma} = \omega_{\alpha_2\gamma} = 0$, $\alpha_1, \alpha_2 \in I_{t_0-1}$, $2t_0+2 < \gamma$, we have

$$\begin{aligned} &k_{t_0}\omega_{\beta_17}\wedge\omega_1+k_{t_0}\omega_{\beta_27}\wedge\omega_2=0,\\ &k_{t_0}\omega_{\beta_17}\wedge\omega_2-k_{t_0}\omega_{\beta_27}\wedge\omega_1=0,\qquad \beta_1,\,\beta_2\in I_{t_0}, \end{aligned}$$

which, together with Cartan's lemma, imply that we may put

210

$$\begin{aligned} k_{t_0}\omega_{\beta_1\tau} = f_\tau\omega_1 + g_\tau\omega_2, \\ k_{t_0}\omega_{\beta_2\tau} = g_\tau\omega_1 - f_\tau\omega_2, \qquad 2t_0 + 2 < \gamma \end{aligned}$$

and define two normal vector fields $F_{t_0} = \sum_{\tau} f_{\tau} e_{\tau}$ and $G_{t_0} = \sum_{\tau} g_{\tau} e_{\tau}$. We consider two linear mappings φ_{t_0} and φ_{t_0} from M_p into N_p as follows:

$$\begin{split} \varphi_{t_01}(X) &= \sum_{r} k_{t_0} \omega_{\beta_1 r}(X) e_r = \omega_1(X) F_{t_0} + \omega_2(X) G_{t_0}, \\ \varphi_{t_02}(X) &= \sum_{r} k_{t_0} \omega_{\beta_2 r}(X) e_r = \omega_1(X) G_{t_0} - \omega_2(X) F_{t_0}, \end{split}$$

where X is a tangent vector to M. Putting

$$k_{t_0+1} = \underset{x \in S_p^1}{\operatorname{Max}} ||\varphi_{t_01}(X)|| = \underset{x \in S_p^1}{\operatorname{Max}} ||\varphi_{t_02}(X)|| \quad \text{and} \quad l_{t_0+1} = \underset{x \in S_p^1}{\operatorname{Min}} ||\varphi_{t_01}(X)|| = \underset{x \in S_p^1}{\operatorname{Min}} ||\varphi_{t_02}(X)||,$$

we can see

$$(k_{t_0+1} - l_{t_0+1})^2 = (||F_{t_0}||^2 - ||G_{t_0}||^2)^2 + 4 \langle F_{t_0}, G_{t_0} \rangle^2,$$

so $(k_{t_0+1}^2 - l_{t_0+1}^2)^2$ is a differentiable function on M, because $\{p, F_{t_0}, G_{t_0}\}$ obey an analogous rule to the rotation of the 2-frame $\{p, e_{\beta_1}, e_{\beta_2}\}$. Hence, similarly to the proof of Lemma 3, we can see that $k_{t_0+1} = l_{t_0+1}$ holds everywhere on M. On the other hand, since $\omega_{\beta_1\beta_2} = (t_0+1)\omega_{12}$, we get

$$2k_{t_0+1}^2 = ||F_{t_0}||^2 + ||G_{t_0}||^2 = k_{t_0}^2 \left(\frac{2k_{t_0}^2}{k_{t_0-1}^2} - (t_0+1)K\right) = \text{constant on } M.$$

If $2k_{t_0}^2 = (t+1)k_{t_0-1}K$ on M, we can see that the geodesic codimension of M is $2t_0$ and (2.24) holds. Therefore, we consider the case $2k_{t_0}^2 \neq (t_0+1)k_{t_0-1}K$ on M. Then, by the above argument, we can choose a frame field $b \in B_0$ satisfying (2.21) for all $t \leq t_0$ and

$$\begin{aligned} &k_{t_0}\omega_{\beta_1r_1} = k_{t_0+1}\omega_1 = k_{t_0}\omega_{\beta_2r_2}, & \omega_{\beta_1r} = 0, \\ &k_{t_0}\omega_{\beta_1r_2} = k_{t_0+1}\omega_2 = -k_{t_0}\omega_{\beta_2r_1}, & \omega_{\beta_2r} = 0, \\ &\gamma_1, \gamma_2 \in I_{t_0+1}, & 2t_0 + 4 < \gamma, \end{aligned}$$

where k_{t_0+1} is non-zero constant on M, which imply that (2.21), (2.22) and (2.23) hold for t_0+1 . Thus, it is clear that the geodesic codimension of M in \overline{M} is even 2*m*. Then, since we have $\omega_{2m+1} _{2m+2} = (m+1)\omega_{12}$ and $\omega_{2m+1} _{\gamma} = \omega_{2m} _{\gamma} = 0$ (2 $m+2 < \gamma$), we obtain (2.24). Q. E. D.

§ 3. The proof of the main theorem.

By an analogous computation to the one in in [7], from Theorem 1 we obtain the following

THEOREM 2. Let M be a 2-dimensional connected compact Riemannian manifold which is isometrically and minimally immersed in a Riemannian manifold \overline{M} of constant curvature \overline{c} . If the normal scalar curvature K_N is non-zero constant on M and if the square of the second curvature k_2 is less than $K_N/4$, then the geodesic codimension is even 2m and the Gaussian curvature K is positive constant, and supposing K=1, there exist m constants $b_t=(m-t+1)(m+t+2)/4$ $1\leq t\leq m$, and m complex normal vector fields ξ_1, \dots, ξ_m such that

(I)
$$\begin{aligned} \xi_{t} \cdot \xi_{s} = \xi_{t} \cdot \bar{\xi}_{s} = 0, \quad t \neq s, \\ \xi_{t} \cdot \xi_{t} = 0, \quad \xi_{t} \cdot \bar{\xi}_{t} = 2, \quad t = 2, 3, \cdots, m \end{aligned}$$

and

(Ⅱ)

$$\begin{split} dx &= \frac{1}{h} (\bar{\xi}_0 dz + \xi_0 d\bar{z}), \qquad \xi_0 = e_1 + ie_2, \\ \bar{D}\xi_0 &= \frac{1}{h} \xi_0 (\bar{z}dz - zd\bar{z}) + \frac{2\sqrt{b_1}}{h} \xi_1 d\bar{z}, \qquad h = 1 + z\bar{z}, \\ \bar{D}\xi_1 &= -\frac{2\sqrt{b_1}}{h} \xi_0 dz + \frac{2}{h} \xi_1 (\bar{z}dz - zd\bar{z}) + \frac{2\sqrt{b_2}}{h} \xi_2 d\bar{z}, \\ & \dots, \\ \bar{D}\xi_t &= -\frac{2\sqrt{b_t}}{h} \xi_{t-1} dz + \frac{t+1}{h} \xi_t (\bar{z}dz - zd\bar{z}) + \frac{2\sqrt{b_{t+1}}}{h} \xi_{t+1} d\bar{z}, \\ & \dots, \\ \bar{D}\xi_m &= -\frac{2\sqrt{b_m}}{h} \xi_{m-1} dz + \frac{m+1}{h} \xi_m (\bar{z}dz - zd\bar{z}), \end{split}$$

where z is an isothermal complex coordinate of M and \overline{D} denotes the covariant differentiation of \overline{M} .

In Theorem 2 we may consider $\overline{M}^{2+2m} = \overline{M} = S^{2-2m}(R)$, where $S^{2+2m}(R)$ denotes the (2+2m)-sphere of radius R:

$$\frac{1}{R^2} = \bar{c} = \frac{(m+1)(m+2)}{2} \; .$$

We regard as $S^{2+2m}(R) \subset E^{3+2m}$ and put

$$\frac{x}{R} = e_{3+2m}$$

By (3.1) we have

(3.2)
$$dx = Re_{3-2m} = \frac{1}{h} (\bar{\xi}_0 dz + \bar{\xi}_0 d\bar{z})$$

From (II) in Theorem 2 and the above relation, we have easily

MINIMAL SURFACES IN A RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE 213

$$d\xi_{0} = \frac{1}{h}\xi_{0}(\bar{z}dz - zd\bar{z}) + \frac{2\sqrt{b_{1}}}{h}\xi_{1}dz - \frac{2}{Rh}e_{3+2m}dz,$$
$$d\xi_{1} = \frac{2\sqrt{b_{1}}}{h}\xi_{0}dz + \frac{2}{h}\xi_{1}(\bar{z}dz - zd\bar{z}) + \frac{2\sqrt{b_{2}}}{h}\xi_{2}d\bar{z},$$

·····,

(3.3)

$$\begin{split} d\xi_t &= -\frac{2\sqrt{b_t}}{h}\xi_{t-1}dz + \frac{t+1}{h}\xi_t(\bar{z}dz - zd\bar{z}) + \frac{2\sqrt{b_{t+1}}}{h}\xi_{t+1}d\bar{z},\\ &\dots\\ d\xi_m &= -\frac{2\sqrt{b_m}}{h}\xi_{m-1}dz + \frac{m+1}{h}\xi_m(\bar{z}dz - zd\bar{z}), \end{split}$$

where d denotes the ordinary differential operator in E^{3+2m} . Since equations (3.3) are the same ones as (II) in Theorem 2 in Ōtsuki [7] when we put formally $P = -(1/R)e_{3+2m}$ in the case $\overline{M}^{n+2m} = E^{n+2m}$, M is congruent to the surface given by

(3.4)
$$x = \frac{\sqrt{m!}}{(m+2)\sqrt{(2m+2)(2m+1)\cdots(m+3)(1+z\bar{z})^{m+1}}} \\ \times \left[\sum_{j=0}^{m} (-1)^{j+1} \left\{\sum_{s=0}^{j} (-1)^{s} \binom{2m+2-j}{m+1-s} \binom{j}{s} (z\bar{z})^{s}\right\} (\bar{z}^{m+1-j}A_{j} + z^{m+1-j}\bar{A}_{j}) \\ + (-1)^{m} \sum_{s=0}^{m+1} (-1)^{s} \binom{m+1}{s}^{2} (z\bar{z})^{s} A_{m+1}\right],$$

where A_0, A_1, \dots, A_{m+1} are constant complex vectors in C^{m+2} such that

(3.5)
$$A_{t} \cdot A_{t} = 0, \quad t = 0, 1, \dots, m, \quad A_{m+1} = \bar{A}_{m+1},$$
$$A_{t} \cdot A_{s} = A_{t} \cdot \bar{A}_{s} = 0, \quad t \neq s, \quad t, s = 0, 1, \dots, m+1,$$
$$A_{0} \cdot \bar{A}_{0} = 2, \quad A_{t} \cdot \bar{A}_{t} = 2 \binom{2m+2}{t}, \quad t = 1, 2, \dots, m+1.$$

Thus we have proved that M may be regarded as a generalized Veronese surface of index m defined by Ōtsuki [7].

References

- [1] CHERN, S. S., M. DO CARMO, AND S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length. Functional analysis and related fields, Proc. Conf. in Honor of Marshall Stone, Springer, Berlin (1970).
- [2] Ітон, Т., Minimal surfaces with *M*-index 2, *T*₁-index 2 and *T*₂-index 2. Kōdai Math. Sem. Rep. **24** (1972), 1–16.
- [3] _____, Minimal surfaces in 4-dimensional Riemannian manifolds of constant curvature. Ködai Math. Sem. Rep. 24 (1972), 451–458.

- [4] LITTLE, J. A., On singularities of submanifolds of higher dimensional Euclidean spaces. Ann. Mat. Pura Appl. 83 (1969), 261-336.
- [5] Ōтsuкı, T., A Theory of Riemannıan submanıfolds. Kōdaı Math. Sem. Rep. 20 (1968), 282-295.
- [6] _____, Minimal submanifolds with *M*-index 2. J. Diff. Geometry 6 (1971), 193-211.
- [7] _____, Minimal submanifolds with *M*-index 2 and generalized Veronese surfaces. J. Math. Soc. Japan 24 (1972), 89–122.

Department of the Foundations of Mathematical Sciences, Tokyo University of Education.