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Introduction

In our previous papers ([3], [5]), an integral representation formula for minimal sur-
faces in the model space Sol3 of the solvegeometry (in the sense of Thurston [9]).

In [4], an integral representation formula for minimal surfaces in the Heisenberg
group Nil3 (the model space of nilgeometry in the sense of Thurston) is obtained.
F. Mercuri, S. Montaldo and P. Piu [7] independently obtained such an integral rep-
resentation formula for minimal surfaces in Nil3.

D. A. Berdinskĭı and I. A. Tăımanov [1] obtained a representation formula for
minimal surfaces in Nil3 in terms of spinors and Dirac operators.

In this paper, we study normal Gauss maps for minimal surfaces in Nil3 and refor-
mulate the integral representation formula due to [4] and [7] in terms of the normal
Gauss map. Via the reformulation in terms of normal Gauss map, the geometric
meaning of the data for the integral representation formula is clarified. In fact, we
shall show that every minimal surface in Nil3 other than vertical plane is determined
by a harmonic map into the Poincáre disc.

1 Nilpotent Lie groups

In this paper we study minimal surfaces in the simply connected nilpotent Lie group
G(λ).

We define a 1-parameter family {G(λ)}λ∈R of 3-dimensional nilpotent Lie group
by

G(λ) = (R3(x1, x2, x3), ·)
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with multiplication:

(x1, x2, x3) · (x̃1, x̃2, x̃3) = (x1 + x̃1, x2 + x̃2, x3 + x̃3 +
λ

2
(x1x̃2 − x̃1x2) ).

The unit element of G(λ) is 0⃗ = (0, 0, 0). The inverse element of (x1, x2, x3) is
−(x1, x2, x3). Obviously, G(0) is the abelian group (R3,+).

The Lie algebra g(λ) of G(λ) is R3 with commutation relations:

(1) [E1, E2] = λ E3, [E2, E3] = [E3, E1] = 0⃗

with respect to the natural basis E1 = (1, 0, 0), E2 = (0, 1, 0), E3 = (0, 0, 1). The
formulae (1) imply that g(λ) is nilpotent. The left translated vector fields of E1, E2,
E3 are

e1 =
∂

∂x
− λy

2

∂

∂z
, e2 =

∂

∂y
+
λx

2

∂

∂z
, e3 =

∂

∂z
,

respectively.
We equip an inner product ⟨·, ·⟩ on g(λ) so that {E1, E2, E3} is orthonormal with

respect to it. Then the resulting left invariant Riemannian metric g = gλ on G(λ) is

(2) gλ = (dx1)2 + (dx2)2 + ω ⊗ ω,

where

(3) ω = dx3 +
λ

2
(x2dx1 − x1dx2).

The one-form ω satisfies dω ∧ ω = −λdx1 ∧ dx2 ∧ dx3. Thus ω is a contact form on
G(λ) if and only if λ ̸= 0.

The homogeneous Riemannian 3-manifold (G(λ), gλ) is called the 3-dimensional
Heisenberg group if λ ̸= 0. Note that (G(0), g0) is the Euclidean 3-space. The
homogeneous Riemannian 3-manifold (G(1), g1) is frequently referred as the model
space Nil3 of the nilgeometry in the sense of Thurston [9].

2 Matrix group model of G(λ)

The Lie group G(λ) is realised as a closed subgroup of the general linear group GL4R.
In fact, G(λ) is imbedded in GL4R by ι : G(λ) → GL4R;

ι(x1, x2, x3) =


ex

1

0 0 0
0 1 λx1 x3 + λ

2x
1x2

0 0 1 x2

0 0 0 1

 .

Clearly ι is an injective Lie group homomorphism. Thus G(λ) is identified with


ex
1

0 0 0
0 1 λx1 x3 + λ

2x
1x2

0 0 1 x2

0 0 0 1

 ∣∣∣∣ x1, x2, x3 ∈ R

 .
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The Lie algebra g(λ) corresponds to


u1 0 0 0
0 0 λu1 u3

0 0 1 u2

0 0 0 0

 ∣∣∣∣ u1, u2, u3 ∈ R

 .

The orthonormal basis {E1, E2, E3} is identified with

E1 =


1 0 0 0
0 0 λ 0
0 0 0 0
0 0 0 0

 , E2 =


1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , E3 =


1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

The Levi-Civita connection ∇ if g is given by

∇E1E1 = 0, ∇E1E2 =
λ

2
E3, ∇E1E3 = −λ

2
E2,

(1) ∇E2E1 = −λ
2
E3, ∇E2E2 = 0, ∇E2E3 =

λ

2
E1,

∇E3E1 = −λ
2
E2, ∇E3E2 =

λ

2
E1, ∇E3E3 = 0.

The Riemannian curvature tensor R defined by R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] is given
by

(2) R1
212 = −3λ2

4
, R1

313 = R2
323 =

λ2

4
.

The Ricci tensor field Ric is given by

(3) R11 = R22 = −λ
2

2
, R33 =

λ2

2
.

The scalar curvature ρ of G is ρ = −λ2/2. The natural-reducibility obstruction U
defined by

2g(U(X,Y ), Z) = g(X, [Z, Y ]) + g(Y, [Z,X]), X, Y, Z ∈ g(λ)

is given by

(4) U(E1, E3) = −λ
2
E3, U(E2, E3) =

λ

2
E1.

Note that U measures the non right-invariance of the metric. In fact U = 0 if and
only if g is right invariant (and hence biinvariant). The formulae (4) implies that g is
biinvariant if and only if λ = 0.

The following formula was obtained in [4] (see also [7, (9)]).
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Proposition 2.1 ([4]-II) Let {ω1, ω2, ω3} be a solution to

∂̄ω1 =
λ

2
(ω2 ∧ ω3 − ω2 ∧ ω3);(5)

∂̄ω2 = −λ
2
(ω1 ∧ ω3 − ω1 ∧ ω3);(6)

∂̄ω3 = −λ
2
(ω1 ∧ ω2 + ω1 ∧ ω2)(7)

on a simply connected coordinate region D ⊂ C. Then

φ(z, z̄) = 2

∫ z

z0

Re

(
ω1, ω2, ω3 − λ

2
(x2 · ω1 − x1 · ω2)

)
is a harmonic map into Nil3. Moreover if in addition, {ω1, ω2, ω3} satisfies

ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3 = 0,

and
ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3 ̸= 0.

Then φ is an minimal immersion.
Conversely, any harmonic map of D into Nil3 can be represented in this form.

3 The normal Gauss map

Let φ : M → G(λ) be a conformal immersion. Take a unit normal vector field N
along φ. Then, by the left translation we obtain the following smooth map:

ψ := φ−1 ·N :M → S2 ⊂ g(λ).

The resulting map ψ takes value in the unit sphere in the Lie algebra g(λ). Here,
via the orthonormal basis {E1, E2, E3}, we identify g(λ) with Euclidean 3-space
E3(u1, u2, u3).

The smooth map ψ is called the normal Gauss map of φ ([6], [3, p. 370]).
Express the data as ωi = ϕidz. First we consider the case “ϕ3 ≡ 0”. In this case,

we have
(x1z)

2 + (x2z)
2 = 0, |x1z|2 + |x2z|2 > 0,

x3z +
λ

2
(x1zx

2 − x1zx
2) = 0.

These equation imply that the minimal surface determined by the condition ϕ3 ≡ 0
is an integral surface of the distribution ω = 0. The distribution ω = 0 is integrable
if and only if λ = 0. When λ = 0, then the surface is a vertical plane x3 = constant.

Hereafter we assume that ϕ3 ̸≡ 0 and introduce the mapping f and g by

(1) f := ϕ1 −
√
−1ϕ2, g :=

ϕ3

ϕ1 −
√
−1ϕ2

.

By definition, f and g take values in the extended complex plane C = C∪{∞}. Using
these functions f and g, we obtain the following formula.
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Theorem 3.1 Let f and g be solutions to the system:

(2) fz̄ = −
√
−1λ

2
|f |2ḡ(1− |g|2), gz̄ = −

√
−1λ

4
f̄(1− |g|2)2

over a simply connected coordinate region D ⊂ C. Then the mapping

(3) φ(z, z̄) =
(
φ1(z, z̄), φ2(z, z̄), φ3(z, z̄)

)
: D → G(λ),

defined by

φ1(z, z̄) = 2

∫ z

z0

Re

(
1

2
f(1− g2)

)
dz,

φ2(z, z̄) = 2

∫ z

z0

Re

(√
−1

2
f(1 + g2)

)
dz,(4)

φ3(z, z̄) = 2

∫ z

z0

Re

[
f

{
g +

λ

4

(√
−1φ1(1 + g2)− φ2(1− g2)

)}]
dz.

is a weakly conformal harmonic map into G(λ).
Conversely, every weakly conformal harmonic map φ : D → G(λ) (other than

vertical plane when λ = 0) is represented in this form.

Proof. By the assumption ϕ3 ̸≡ 0. Hence the harmonicity together with integrability
(5)–(7) for φ are

ϕ1z̄ +
λ
2 (ϕ

2ϕ3 + ϕ2ϕ3) = 0,

ϕ2z̄ − λ
2 (ϕ

1ϕ3 + ϕ1ϕ3) = 0,

ϕ3z̄ − λ
2 (ϕ

1ϕ2 − ϕ1ϕ2) = 0.

This system is equivalent to

fz̄ = −
√
−1λ

2
|f |2ḡ(1− |g|2), gz̄ =

√
−1λ

4
f̄(1− |g|2)2.

Thus we obtain the required result. 2

Remark 3.1 In [7], Mercuri, Montaldo and Piu introduced the following auxiliary
functions:

G2 =
f

2
, H = g ·G

for Nil3 = G(1). Then we have

ϕ1 = G2 −H2, ϕ2 =
√
−1(G2 +H2), ϕ3 = 2GH.

These functions are solutions to the system:

2
√
−1Gz̄ = (|G|2 − |H|2)H, 2

√
−1Hz̄ = (|G|2 − |H|2)G.
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The integral representation formula is rewritten as ([7, Theorem 4.3])

φ1(z, z̄) = 2

∫ z

z0

Re
(
G2 −H2

)
dz,

φ2(z, z̄) = 2

∫ z

z0

Re
{√

−1
(
G2 +H2

)}
dz,

φ3(z, z̄) = 2

∫ z

z0

Re

[
2GH+

1

2

{
φ2(G2 −H2)−

√
−1φ1(G2 +H2)

}]
dz. �

The normal Gauss map of (3-4) is computed as

(5) ψ(z, z̄) =
1

1 + |g|2
(
2Re (g)E1 + 2Im (g)E2 + (|g|2 − 1)E3

)
.

Under the stereographic projection π : S2 \ {∞} ⊂ g(λ) → C := RE1 + RE2,
the map ψ is identified with the C-valued function g. Based on this fundamental
observation, we may call the function g the normal Gauss map of φ.

When λ ̸= 0, from (2), we can deduce the following partial differential equation
for g:

(6) (1− |g|2)gzz̄ + 2ḡgzgz̄ = 0.

If |g| = 1, then (6) implies that g is constant. In such a case, ψ has the form

ψ = cos θE1 + sin θE2, g = cos θ +
√
−1 sin θ.

Thus the corresponding minimal surface is a vertical plane, i.e., a plane parallel to
the x3-axis ([4, II, Example 1.11], [8, p. 91]).

From (5), one can see that the third component of ψ is positive if and only if
|g|2 < 1.

The equation (6) means that if g satisfies |g|2 < 1, then g is a harmonic map into
the unit disc D in C = RE1 + RE2;

D = {w = uE1 +
√
−1vE2 |u, v ∈ R}

equipped with the Poincaré metric 4dwdw̄/(1− |w|2).

Corollary 3.1 Let D be a simply connected region in C and g : D → D be a harmonic
map into the unit disc. Let f be a function defined by f = −4

√
−1λḡz/(1 − |g|2)2.

Then the mapping φ defined by (3)-(4) is a weakly conformal harmonic map into the
Heisenberg group G(λ) (λ ̸= 0).
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Tôhoku Math. J. 49 (1997), 367–377.

[7] F. Mercuri, S. Montaldo and P. Piu, A Weierstrass representation formula for
minimal surfaces in H3 and H2×R, Acta Math. Sin. Engl. Ser. 22 (2006), no. 6,
1603–1612

[8] A. Sanini, Gauss map of a surface of the Heisenberg group, Boll. Un. Mat. Ital.
B (7), 11-B suppl. facs. 2 (1997), 79–93.

[9] W. M. Thurston, Three-dimensional Geometry and Topology I, Princeton Math.
Series. 35 (Princeton University Press, Princeton N. J., 1997).

Author’s address:

Jun-ichi Inoguchi
Department of Mathematics Education,
Faculty of Education, Utsunomiya University,
Utsunomiya, 321-8505, Japan.
E-mail: inoguchi@cc.ustunomiya-u.ac.jp


