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Abstract

We consider a quantum particle in a potential V(z) (x € RY) in a time-
dependent electric field E(t) (the control). Boscain, Caponigro, Chambrion
and Sigalotti proved in [2] that, under generic assumptions on V, this system
is approximately controllable on the L?(RY, C)-sphere, in sufficiently large
time 7. In the present article we show that approximate controllability does
not hold in arbitrarily small time, no matter what the initial state is. This
generalizes our previous result for Gaussian initial conditions. Moreover, we
prove that the minimal time can in fact be arbitrarily large.

Keywords: Schrodinger equation, quantum control, minimal time.

1. Introduction and main result

In this article, we consider quantum systems described by the linear
Schrodinger equation

iOpp(t,x) = (—3A + V(z) — (BE(t),2)) ¥(t,z), (t,z) € (0,T) x RV, )
(0, 2) = Yo(x), x e RV,

Here, N € N* is the space dimension, (.,.) is the euclidian scalar product on
RV, V:zeRV SR E:te(0,T) - R¥and ¢ : (t,2) € (0,T) x RY — C
are a static potential, a time-dependent electric field, and the wave function,
respectively. This equation represents a quantum particle “trapped” by the
potential V' and under the influence of the electric field E. Planck’s constant
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and the particle mass have been set to one (the dependence on the physical
constants is discussed briefly in Section [3.4).

System is a control system in which the control is the electric field E
and the state is the wave function ¢, which belongs to the unit sphere S of
L*(RY,C). The expression “bilinear control” refers to the bilinear nature of
the term (F(t), )1 with respect to (E, ).

We are interested in the minimal time required to achieve approximate
controllability of the system . Since in decoherence is neglected, in re-
alistic scenarios the model may only be applicable for small times ¢ (typically
on the order of several periods of the ground state). Since, to be practically
relevant, controllability results need to be valid for time intervals in which
equation (1)) remains a reasonable model, quantification of the minimal con-
trol time is an important issue.

We consider potentials V' that are smooth and subquadratic, i.e.
V € C*(RY) and, Ya € NV such that |a| > 2, 9°V € L¥(R"Y). (2)

For this class of potentials there is a classical well-posedness result 8], which
we quote from [6].

Proposition 1. Consider V satisfying assumption (@ and E € L2 (R, RY).
There exists a strongly continuous map (t,s) € R? — U(t, s), with values in

the set of unitary operators on L*(RY,C), such that
U=, Ut U(rs) =Ults), Ults) =Uls,)™, Virs R

and for every t,s € R, p € L*(RN,C), the function (t,x) = U(t,s)p(z)
is a weak solution in C°([0,T], L*(RN,C)) of the first equation of with
initial condition (s, x) = p(x).

For V satistying , we introduce the operator

D(Ay) = {p € L*(RN); —3Ap + V(z)p € L*(RY)},
Avp = —1Ap+V(z)p.

For appropriate potentials V', approximate controllability of inS (possi-
bly in large time) is a corollary of a general result by Boscain, Caponigro,
Chambrion, Mason and Sigalotti (the original proof of |7] is generalized in
[2]; inequality below is proved in [7, Proposition 4.6]; an analogous state-
ment for vector valued controls is given in [3, Theorem 2.6]; see also [4] for a
survey of results in this area).



Theorem 1. Let m € {1,..., N} and assume that

o there exists a Hilbert basis (¢ )ren of L*(RY,C) composed of eigenvec-
tors of Ay: Ayér = Mo and x,,0r € L*(RY), VE € N,

o [on Tmd;(2)dp(x)dr = 0 for every j.k € N such that \; = A, and
J#k,

o for every j, k € N, there exists a finite number of integers py,...,p, € N
such that

=7 D=k  fon Tmp(2)p., (x)dr £ 0V =1,..,r — 1,
AL — Al # Ay = Ay, VI <I<r —1,L, M €N

with {L, M} # {pi, prs1}-
Then, for every e > 0 and Yo, 5 € S, there exist a time T > 0 and a

piecewise constant function u : [0,T] — R such that the solution of with
E(t) = u(t)e,, satisfies

[9(T) = gll2@ny < €. (3)

Moreover, for every 6 > 0, the existence of a piecewise constant function
w: [0, 7] — (=9,08) such that the solution of (1)) with E(t) = u(t)e,, satisfies
implies that

75 L qupll @0l =16 vl € .

~ 0 pen |Zm Pk L2 ()

In Theorem (1} the time T is not known a priori and may be large. Note
that the lower bound on the control time in goes to zero when 6 — +o00.
As a result, Theorem [1] gives no information about the control time if the
controls are allowed to be arbitrarily large; in particular, it does not preclude
the possibility of approximate controllability in arbitrarily small time. In
our previous work [I], we proved that, for potentials V satisfying (2), and
for particular (Gaussian) initial conditions, approximate controllability does
not hold in arbitrarily small time — even with large controls. Specifically, we
proved the following result.



Theorem 2. Assume that V satisfies assumption (@ Letb >0, zg, 29 € RY
and Yy € S be defined by
1/2
e_yllzdy) .

Moreover, let 1y € S be a state that does not have a Gaussian profile in the
sense that

bVt 2
Yo(z) = ——e2llemlPHiloa=wo) yyneore Oy = (/
R

Cn N

det(S)'/4 2
[e(L)] # eé’ie_é”ﬁ(‘_”)l . Yy e RY S € My(R) symmetric positive.
N

Then there ezist positive numbers T** = T*([|[V"]|c, |V® |0, b,¥s) and
0 = 0(|[V"llos, b, 1bf) such that, for every E € C9,([0,T*],RYN) (piecewise
continuous functions [0, T**] — RY ), the solution ¢ of satisfies

Hiﬂ(t) - waLQ(RN) >0, Vte [O,T**] )

The goal of the present article is to generalize this result to arbitrary
initial conditions 1y, and to demonstrate that the minimal control time can
in fact become arbitrarily large. Specifically, we prove the following

Theorem 3. Assume that V satisfies assumption (@ and let vy € H'(RY)N
L*(||z||dx) N'S.
1. There exists Yy € S, T™ > 0 and 0 > 0 such that, for every E €
L=((0,T*),RYN), the solution v of (1)) satisfies
19(t) = Vil 2@y >0, VL €[0,T].
2. Moreover, if V' is of the form
V(r) = W(ex), VaecRY, (5)
then T > % for every e € (0,1), for some positive constant C =
C(¢0, wfa W)

Remark 1. If V satisfies (@ and the assumptions of Theorem (which hold
generically, this fact may be proved as in [10]), then system is approx-
imately controllable in S in large time but not in small time T < T*. A
characterization of the minimal time required for e-approximate controllabil-
ity is an open problem.



Remark 2. In part 2 of the theorem the demonstration that the minimal
control time can become infinitely large is accomplished by a particular choice
(rescaling) of the potential. In a forthcoming paper we will investigate the
conditions on V' under which this can also be accomplished by a suitable choice

of initial and/or target states. (See also Section

The remainder of this paper is devoted to the proof of Theorem [3 The
next section contains some notation and auxiliary results, whereas Section 3
contains the proof proper. There is also a brief discussion of the dependence
on Planck’s constant (Section and an appendix containing the proof of a
functional-analytic lemma needed in the argument. We refer to our previous
article [I] for bibliographical comments.

2. Notation and auxiliary results

Denote by My (R) the set of N x N matrices with coefficients in R,
GLy(R) the group of its invertible matrices and Iy its identity element;
Tr(M) the trace and M* the transposition of a matrix M € My (R); Sy(R)

the set of symmetric matrices in My(R); ||.|| the Euclidean norm on RY and
the associated operator norm on My (R); @(t) := % (t), @(t) := %(t), for a

function x of the scalar variable ¢ and ijx the Hessian matrix of a function
X:RY = C, D2x(z) = ( 0°x

iy > 1<i,j<N

The goal of this section is to prove the following result, which will be used
in the proof of Theorem [3]

Proposition 2. Let T, L, R > 0,

B:= {0 € My(R);|lo — Iy| < i}, (6)

K = {M € C° (0, T), My (R)) L-Lipschitz | M(t)|| < R, Vt € [o,T]}. (7)

For ¢g € S and M € IC, let the function X% 0, T] x RY — C be defined as
the unique solution of

{ 10, x(T,y) + %Tr [M(T)*M(T)Dix(ﬂ y)} =0, (1,y) €[0,T] x RY, s)
X<07y> = (bO(y)v Y € RN .



1. For every ¢ € S, the set

V(go) = {f €S;3(r,0,M,a) € [0,T] x B x K x RY such that

|f(x)] = \/F XY (07 o — )| for ae. x € RN}
is a strict and closed subset of S (w.r.t. the strong L*(RN)-topology).

2. For ¢g, 01 € S then V(qh) C V(Qbo) + B2 (RN) (0 ||¢0 ¢1||L2(RN)).

Remark 3. It is clear that the unique solution x}' € C*([0,T], L*(RY)) of
(@) satisfies || x5 (7, )l 2@yy = 1 and is given by

X (rm) = Go(me 2 I MG - for g0 e RN W7 € [0,T],  (9)

where the hat denotes the Fourier transform, defined by

Fo = [ oy, v € LRY)

The proof of Proposition [2| will use the following facts, proved in the
appendix.

Lemma 1. Let (f,)nen € L*(RM)N that converges to a function f in L*(RY).
L If (an)nen € (]RN)N satisfies || o | —_ +oo, then T, fn _ 0 in

D'(]R )-
If (tp)nen converges to o in RN then 74, fr, — Tof in LE2RY).

3. If (My)nen converges toward M in GLN(R)nthen fanoM, — foM
in L2(RN). o

Proof of Proposition

Step 1: Let (f,)nen € V(¢0)Y and (7, 0, My, i )nen associated pa-
rameters in [0,7] x B x K x RY. We prove that a subsequence of
(T_a, | ful)nen converges in S (in the strong L*(RY)-topology). By Ascoli’s
theorem, there exists (7o, 0o, Moo) in [0, T] x B x K such that, up to extract-
ing a subsequence, (7, 0,,) —_ (Too, Oco) in [0, T x B and M, () — Moo (T)

uniformly with respect to 7 € [0, T]. Let

1
kn(y) i= —— " (1,,,y), forae. yeRY VneNU{co}.
(y) det(an)x%( ) y {oo}



By (9)), we have

kAn(U) = ;(&)(n)e—%ﬁ” IMa(s)lPds for a0 ne RV, Vn € NU {oo},
Vdet(o,)

and by the dominated convergence theorem, k:An — /;o\o in L?(RY). Thus,

Plancherel’s theorem shows that k, — k in Lﬁﬁﬁ), which gives |k,| —

koo in L2(RY), and finally 7o | ful = [kn] 0 01 s Jhaf 00 in LRV,

by Lemma [1]3.

Step 2: We prove that V(¢,) is a strict subset of S. Working
by contradiction, we assume that S = V(¢y) and consider the sequence

(fa)nen C S, defined by f.(x) := y/nf(nz) where 0(z) := e 5, By

Step 1, there exist a subsequence (ng)ren, a sequence (ag)reny of RY and

h € S such that 7,, f,, — hin L*(RY), and thus in D'(R"Y). However, for
n—oo

every ¢ € C2(RY), we have

| fan o fur ()p(@)d| = | [ /MRO(ny) o (y + o) dy]

< 181l @) ol o vy

thus 7,, fn, — 0 in D'(RY). Therefore h = 0, which is impossible, since
n—0o0
h €S.

Step 3: We prove that V(¢) is closed in S. Let (f,)nen € V(do)Y
and f € S be such that f,, — f in L?(RY). We use the same notation as
n—oo

in Step 1.

Step 3.1: We prove that (au,)nen is bounded in RY. Working by contra-
diction, we may assume w.l.o.g. that ||a,|| — oo. Since |f,| — |f| in
n—00 n—0o0
L*(RY), Lemma 1 implies 7_,, |fn] — 0 in D'(RY), which contradicts
n—oo
Step 1.

Step 8.2: We prove that f € V(¢o). Since (ay)nen is bounded, some
subsequence converges to some a,, € RY: wlo.g. o, — . From

n—oo
Step 1, we know that, up to potentially extracting a subsequence, 7_,, | f.| =
fn| =

|kp| 0 07t — |koo| 0 0t in L2(RY). Therefore, by Lemma .2,
n—oo

7



Tan[Teanl fol]l = Tawllkool © 0] in L2(RY). By uniqueness of the limit,
n—oo
f1 = Tan [[s] 0 01, Be. f € V(o).

Step 4: We prove that V(¢1) C V(¢o) + Bre@ny (0, [0 — ¢1lr2@n))-
Let f1 € V(¢1). Then, there exists (1,0, M,a) € [0,T] x B x K x RY and a
measurable function 6 : RY — R such that

ei@(m)

\/dmeé{ (7’, ot r — oz])

i6(x)

for a.e. z € RV.

fi(x) =

Let
e

M
Jdet(0) % (r.
Then, fo € V(¢o) and, by (9) and Plancherel’s theorem,

Jew (U1 = fo) @) Pde = [ IXg1 (T, 9) = X6 (7o 9) [Py
= (2m) ™ fen IXG1 (7,m) — XG0 (7,m) [Pdn
= (2m) ™" fan [(&1 = do)(n) PPdn
= f]RN |(¢1 - ¢0)(x>|2dx7

which gives the conclusion. a

fo(fﬂ) =

'z —a]) forae zeRY.

3. Proof of Theorem [3]
In the whole section, the following quantities are kept fixed.
e V satisfying (2),
o Yo € SN HYRY) N L*(||z|dx),
e 1,1 € RY defined by

Ty 1= /RNxWO(xﬂdx, Ty = —i Voo(x)ho(z)dx

RN
e ¢y € S defined by

do(x) = o(x + zo)e 0.



Our strategy to prove Theorem [3| relies on approximate solutions, which
are centred at the classical (Newtonian) trajectories. Accordingly, these ap-
proximate solutions ¢F (defined in eq. (20) below) depend on the classical
trajectories % : R — ]RN and certain functions Q¥ ,of : R — My(C),
which satisfy the ODEs ) below. The remainder of this section is orga-
nized as follows. In Section [3.1], we prove a preliminary result for the solutions
of ODEs (10). In Section we introduce the explicit approximate solu-
tion ¢ and prove that the error || — ¥ | oo (07,22 ™)) can be bounded
uniformly with respect to £ € Lj2 (R, RY). Finally, Section [3.3| contains the
proof of Theorem

3.1. ODEs for z¥, Q¥ and oF
For E € L (R,RY), let zF € CY(R,RY), Q¥ ,0F € C*((TE,,, TE ), My(R))

loc min’ - max

and 77 € C*((TE,,, TE, ), R) be the maximal solutions of

man? max

dtQ(O()t> + VV[ ( )] = E(t>7 { dQE (t) + QE<t>2 + V//[IL‘CE(IS)} _ 07
@F(0) =0,

22 (0) = (10)

{ w5 (1) = QE()" (1), { (1) =
a”(0) = Iy, 75(0) = 0,

where VV and V" denote the gradient and Hessian matrix of V', respectively.
Note that

o 7E(t) is defined for every t € R because VV is globally Lipschitz by
assumption (2));

e zF is twice derivable almost everywhere and satisfies the first equality
of (10) for almost every ¢ € R;

e QF(t) € Sy(R) and o®(t) € GLy(R) for every t € (TE, | TE ).

man? max

A priori, the maximal interval (T, /T ) may depend on E.

man? max

Proposition 3. 1. There exists T* = T*(||V"||s) > 0 such that, for every
E € L (R, RY),

loc

TE >T*, (11)

max



Q" < 5. VieDT, (12)
lo"() ~ Inl < 5. Ve[0T, (13)
PPt < 5, vieT). (14)

2. Moreover, if V is of the form (@), then T > % for every e € (0,1), for
some positive constant C = C(W).

Proof of Proposition [3; Fix § € (0,3) and choose T* = T*(||V"[|») > 0
such that

TH(8* + [|[V"|ls) <6, 2NT*6 < -1« (15)

Y

A~ =
DO | —

(the third inequality actually follows from the second). Let £ € L2 (R, RY).

Step 1: We prove and ([12]). Let
T/ :=sup {t € [0, T5,.); |Q"(s)]| < 6,Vs € [0,1]} .

Y max
Working by contradiction, we assume that TﬁE < T*. Then,

B
T

S= Q%P =| [ (Q%() +V"[E(s)])ds
<STE(#+ IV'lle) <0 by (@),
which is impossible. Therefore, T,” > T* and
1QF(t)|| <& for every t € [0,T7], (16)
which proves and .

Step 2: We prove (13)). We have

E ! FE E ! E *
lo® ()] = 1N+/0 Q" (s)0" (s)ds|| < 1+/0 Slo"(s)lds, Wt e [0,T7),

10



thus, by Gronwall Lemma, ||0?(t)|| < €% for every t € [0,7%] and

[ @] <

t
0B (1) — In]| = < / 5P < T 1, Ve 0,17,
0
which, together with implies (13)).

Step 3: We prove (14)). By Liouville’s formula, we have

1 t . )
doto PO exp (—2/0 Tr[Q (s)]ds) , Vtelo0,T7]. (17)

Moreover,
t
1
‘2/ Tr[QF(s) / N||QF(s)||ds < 2NT*5 < < (18)
0
by and . Thus, by ., and ( .,
1 11 1
—— 1| < et <=, Vit T
det[o B (1)) ‘ 1<y el
and so
|TE(t) —t| = /t ;—1 ds <E vt € [0,77]
| /o \det[oE(s)]2 =2 Y

Step 4: We prove Statement 2. For € € (0,0), the argument of Step

1 works with ¢ replaced by € and then 7™ = m for € small enough.
O

Proposition 3| implies that, for every E € L (R,RY), the function 7%

loc
is C! and increasing, i.e. a bijection from [0,7*] to [0, 75*], where 7F* :=

T#(T*) € [L-,%2]. Denoting the inverse function by ¥ : [0, 75*] — [0, 7],

we can now define the C* map
ME: 0,78 — SLy(R)
T = det[(JE o tE)(T)] ((UE o tE)(T))
Thanks to Proposition 3, M¥ has the following properties.
Proposition 4. There exists R, L > 0 such that, for every E € L,(R,RY),
e

~1x (19)

IME (I < <L, vrelor™].

11



3.2. Approzrimate solution

Let S¥ ®F : (t,x) € [0,TF,,) x RY — R be defined by
SE( = Jy GIZEG)IP = VIzE(s)] + (x8(s), E(s))) ds + (#E(2), z)
‘DE(t, fU) = St — z.(t) + 5(QF (t)[x — 2P (1)), v — 2 Z(1))

and let x” = M (see and ) Then we define an approximate
solution to by

- ei®F (t,x)

VE(t 2) = WXE (r5(), 0" () [z — 2, (1)]) (20)

for every (t,z) € [0, TE,_)xRY. Note that ¢*(¢,.) € S for every ¢ € [0, T, )

’ T max ) T mazx
because (see Remark [3)

IGE O ey = Jon XE (PP (1), 07 (@) o — 22 () |* gty
= Jax X (P @) dy =1

Remark 4. For background information on the approximate solutions iZ;E,
see the literature cited in [1]. Their derivation may roughly be described as
proceeding in two steps: one first applies a well-known transformation (see
e.g. [9]) to remove the control term; then the Schrodinger equation (arising by
Taylor expansion) with the time-dependent quadratic potential (V" [x.(t)|x, x)
is solved explicitly (up to solutions of ) The second step s related to the
(generalized) Mehler formula for time-dependent quadratic Hamiltonians; see
e.g. Section 3 of [6]].

Proposition 5. If ¢y € S(RY), then there exists a constant C(¢g, T*) > 0
such that, for every E € L. (R, RY), the solution YF of and the function

loc

UE defined by (@) satisfy

1@ = %) (Dl 2@n) < Cloo, TV |t Vit € [0,T7],
where T* is defined in Proposition 3

Proof of Proposition : For simplicity, we write Q, o, M, 7, x, S, ¥, J
for QF, o, ME, 7%, Xgo’ SE P and P,

12



Step 1: Equation satisfied by ¢. For a function g(z) = f(Az) we

have V,g(x) = A*V, f(Az) and A,g(z) = Tr[AA*D] f(Az)]. Thus, for every
(t,z) € [0,TE ) x RN,

max

ﬂﬁx%—1<()+QUx—$t>w |
+o ()X (7(1), o (1) Mo - x@bam“

and

Ab(tx) = (iTr(Q) = ae(t) + QO)lx — (D] ) (¢, )

+2i (2(t) + Q(t)[x — z ()], o ()T Vyx (7(t), 0 (t) ' — z.(1)])) Zet[a(t)]

1®(t,z)

i®(t,x)

Ty [o’(t)fla(t)il*Dix (T(t), U(t)fl[x — lec(t)D ] det[a(t)] .

Developing the square in the first line and using gives, for every (t,z) €
0, TF ) x RN,

(;wxn—4uuW—§@@w—%@m%wme@u—x@M&@m
<I>(t z)
+i o () (#e(t) + Q1) [x — e(t)]) , Vyx (7(), 0(t) ®1))

Ve
+§nPWh@W%ﬂﬂwﬂﬁxﬁ@%O@YWf—fJ”D}&i_FWﬁ

1D(t

(21)
Moreover, using the relations 7(t) = W and

| det[o(8)]] = det[o(6)] T (1) (1)] = detlo(1)] THQ(1)]

==




that hold for every ¢t € [0,TF, ), we obtain, for every z € RY and almost
every t € (0,TF, ),

@'at{u”(lt, x) =
(= eI+ Viret)] = o), BO) = {ie0) 2 = 2e(0) + o) P
—5 QW) = 0] 7 = lt)) + (@O — 2.(0), 4(0)

+W@X (r(t), o (t) V& — we(t))]) €20 B

=i (Vyx (r(t), o (1) [z = 2e()]) , ()" (Q(O)] — we(t)] + (1)) det[o(t)]

And finally, by (L0), for every x € RN and almost every t € (0,TZ, ),
iOb(t, x) =
(%Ilfc(t)|!2+v[xc( )] — (wc(t), E(t)) — <VV[:UC< )], & — (1))
—(E(t), — z.(t)) + = IIQ( Mo — (O]l + 5 <V”[arc( Nz — ze(t)], # — z(t))
Q) — we(t)] i —;n@a)

i

+id,x (7(t),0(t) " [z — zc(1)]) te[g(t)]5/2

. . . . oi®(t,)
— (Y (7(8), () = (8] () (QU0) e = uft)] + (1) ol
Comblnlng , and (8)) gives for every x € RY and almost every

(O Tmaz)
io(t,7)+ 5&5(757 ) = V(@)b(t, 2) + (E(t), 2)i(t, x) = R(t, x)(t,x) (23)
where

R(t,z) == —=V(x) 4+ Viz.(t)] + (VV]z(t)], x — x.(t)) (24)
—}-%(V”[:Ec(t)][:(} — z(t)], 7 — w(1)) .

Step 2: Conclusion. Using Taylor’s formula, we get

IV e o — a0, ¥t.0) € 0.TE,,) x Y

max

|R(t, )] <

14



Thus, for every t € (0,7%),

1R(t)¢ (t)IILz ®Y)

< (=Y’ f o= O Iy (70 0(0) e — ) gy
_ (V(3)I|oo>2fRN lo(@)yll® [x (r(t), y)|* dy

< (W0=)" (9)° o Il Iy (0, )P dy by @3

< VO, fo [ DEX ((8),m)[

< CIVOI, fow | D3 [ol —r )iy by @

for some positive constant C' that does not depend on E, V and ¢o. We
deduce from Leibniz formula, and Proposition [4f that

IR (1)]1F2mx) < Cleo, TV IV, VE€[0,T7]

for some positive constant C(¢g, T*) > 0 that is finite because ¢y € S(RY).
Note that C'(¢g,T*)? is a polynomial function of degree 6 of 7%, which will
become relevant in Section Let U(t,s) be the evolution operator for
equation () (see Proposition [I)). Then,

(= P)(1) = /0 U(t, 5)[R(s)v(s)]ds in L*RY), ¥t € (0,T7),

and U(t, s) is an isometry of L?(R") for every ¢t > s > 0, thus

=D Ol < [ NREF sanids < Clon TV Ot Vi€ 0,77,
O

3.3. Conclusion

Let 7% be as in Proposition [3| R, L > 0 be as in Proposition [d and 7" :=
3" By Proposition , there exists 1)y € S\V(¢) and dg := dist 2y (Y5, V(o))

is positive.

Step 1: We prove the existence of ¥, € SN S(RY) such that

0, -
vl < o [ el =, i [ Vo =

4 RN

15



There exists a sequence (£ )ec(o,1) iIn SN S(RY) such that
[0 = &Eell @y + 1o = Eell 2y —2 0

Then

Te ::/ x| (x)|dx, &= —i Vike(z)ée(x)dx
RN

RN
converge, respectively, to xo and &,. Thus, the sequence of functions

x s & — 3o + ) T deD)
converges to 1y in L*(RY) and gives the conclusion.

Step 2: Distance between the approximate solutions associated
to Yy and ;. Step 1 implies that

o for every E € L° (R, RY), the quantities T*, 2%, QF, of 7E tF SF

loc
associated with 1y and ¢/, are the same;

e the map ¢, defined by the formula
P1(x) = V(x4 z0)e ") for ae. x € RV,
satisfies

0o

||¢1 - ¢U||L2(RN) = H¢1 — ¢OHL2(RN) < Z;

e for every M € C°([0,T], My(R)), the functions x}' and x} (see (8))
satisfy

0,
151 (7) = Xgo (Dl 2@y = [lé1 = ol 2y < ZO, vr € [0, T7;

o for every £ € L (R,RY), the approximate solution @ZE (resp. @ij)

loc

defined by (resp. defined by with ¢ replaced by ¢;) satisfy

s - E E 6
197 (O =" Ol 2@my = Ixg, (1) =XG, (T2 < ZO, vt € [0,77].
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Step 3: Conclusion of Statement 1. By Proposition [2| (part 2) we
have that

~ 30
[y — 9 ()| remey = vt € [0,T7]. (25)

270
4 )
Let C(¢1,T*) be as in Proposition |5 and

. do }
T :=min< T7; . 26
{ 10 TV (26)

Proposition 5| and imply that, for every ¢ € [0, T**],
||¢f - ¢E(t)||L2(RN)

‘”¢f — PP 2y — 9P = 9P Ol 2wy — [0 (1) = 2O 2

P
> 20— o1, TV |t — [t — ol 2@y
> %>0.

Step 4: Proof of Statement 2. If V(x) = W(ex), we obtain

T** := min cw). %
T € 40(¢, THSWO)| | '

which behaves like % as € — 0. O

3.4. Dependence on Planck’s constant

The Schrédinger equation for a quantum particle in a (static) potential Vj,
which is subjected to a time-dependent (and spatially homogeneous) electric
field Ey, may, after appropriate rescaling, be written in dimension—less form:

2
0, 0(r,y) = (= S8, +Valy) — (Eo(r),0)) W(r,y), (1) € (0,0) x RY,
P(0,y) = Po(y) y € RY.

(27)

Here the parameter ¢ is proportional to the Planck constant h; so it is natural

to assume that ¢ < 1. Obviously, equation (1)) arises from equation by

the change of variables

t=2, z=% te[0,T]eTe(0,eT), zyeRY

Y(t,x) =NV (et,ex), V(r)=Vy(ex), FE(t)=cEy(ct)

17



(the factor /2 could be omitted; it ensures that |||z = ||¢]z2 = 1).
Therefore, the lower bound 7™* of the minimal time for approximate control-
lability of system provides a lower bound ©**(g) of the minimal time for
system (27). By the change of variables, we have ©**(e) = eT™**, where T**,
in general, depends on ¢ (when fixing V; first).

Letting 6 = ¢ in shows that T* may be chosen as T* = C(||Vy/||oo)e ™"
(note that [|V"]| = €*[[V{[l)- So, by (26),

T {cxnvouoo); b___ } (28)
e 400L TV

This seems to imply 7** ~ e~! (and hence ©**(¢) ~ const.), but this is not
correct, since C'(¢1, T*) also depends on €. Indeed, C(¢;,T*)? is a degree-six
polynomial in 7% with certain ¢;—dependent coefficients C;(¢1); i.e.,

6 1/2 6 1/2
0% (¢, T") = €° (Z Cj(¢1)(T*)j> ~ (Z Cyl'(ﬁﬁl)efﬁ_j) ~ Cs(¢1)

as € — 0. So for small £ > 0, T** is independent of £, which implies that
O**(e) e < 1.

One may wonder whether the reasoning of the present paper could be re-
fined to obtain stronger estimates on the control time, including, potentially,
bounds satisfying ©**(¢) — oo as € — 0. Two observations suggest that this
may be possible in certain cases:

(a) the length of time interval [0, 7%*] on which the construction of the
approximate solutions zZE is valid behaves like e~ and is independent of
e for eq. . It may therefore be possible to iterate the construction
to enlarge the relevant time intervals; (b) the appearance of the quantity

C(é1,T%) g C(¢o, T*) in the denominator of the second term of
suggests that for certain initial conditions vy the second term, and hence
O**, may become large.

This circle of ideas will be the subject of a forthcoming paper.

4. Appendix: proof of Lemma

1. We have 7, fr. = Ta,, f+Ta, (f— fn) where 7, (f — f.) converges strongly
to 0 in L*(RY) and thus in D'(RY). Therefore, it suffices to prove that
Ta,f — 0in D'(RY).

n—oo
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Let ¢ € C°(RM) \ {0} and € > 0. There exists A > 0 such that
€
[ iy <
llyl|>A el 22y
Let R > 0 be such that Supp(¢) C B(0, R). We deduce from ||| —
n—oo

+00 the existence of ny € N such that B(—a,, R)NB(0,A) =0,Vn >
ng. Then, for every n > ny,

J Tanf(w)so(ﬂf)dﬂf‘ - ‘ N

B(—an,R
< flle2B—anmpll@ll L2@yy < €.0

| fW)e(y + an)dy

. See e.g. [5], Lemma 4.3.

. We may assume that M = Iy. We have f,, oM, = (f,—f)oM,+ foM,
where (f,, — f)o M, converges to 0 in L?(R"). Thus, it suffices to prove
that fo M, — fin L*(RY). Let € > 0.

Case 1: f € C°(RY). There exists R > 0 such that Supp(f) € B(0, R)
and Supp(foM,) = M 'Supp(f) C B(0, R) for every n € N. By Heine
theorem, there exists 7 > 0 such that

|f(y)—f(2)

Yy, z € RY such that ||y—z| < 7.

< —,
v/ RNvol[B(0, 1)]
We chose ng large enough so that [|M, — Iy| < % for every n > ny.
Then,
M,z — z|| < ||M, — Iy||||lz|]| <n, Vxe B(0,R),n>ng.

Thus, for n > ny,

1/2
1 o My — Fllpaam, = ( / L o) - f<x>\2dx) <e

Case 2: f € L*RY). There exists f € CO(RY) such that [|f —

f||L2(RN) < . By Case 1, there exists no € N such that [[f o M, —

fNHLQ(RN) < £ for every n > ny. One may assume that /det(M,) > 1
for every n > ng. Then, for n > ny,

|f o M, — fHLQ(RN) < |If ?VMn - f ‘iMnHLQ(RN) _
+[[f o My — fllzwyy + ILf = fllz@y)

1 r €
S \Tmos T I = flleem + 1 <e.
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