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Minimal TriangulationsofManifolds

Basudeb Datta

Abstract | Finding vertex-minimal triangulations of closed manifolds is a very difficult problem.

Except for spheres and two series of manifolds, vertex-minimal triangulations are known for

only few manifolds of dimension more than 2 (see the table given at the end of Section 5). In

this article, we present a brief survey on the works done in last 30 years on the following:

(i) Finding the minimal number of vertices required to triangulate a given pl manifold. (ii) Given

positive integers n and d, construction of n-vertex triangulations of different d-dimensional pl

manifolds. (iii) Classifications of all the triangulations of a given pl manifold with same number

of vertices.

In Section 1, we have given all the definitions which are required for the remaining part of this

article. A reader can start from Section 2 and come back to Section 1 as and when required. In

Section 2, we have presented a very brief history of triangulations of manifolds. In Section 3,

we have presented examples of several vertex-minimal triangulations. In Section 4, we have

presented some interesting results on triangulations of manifolds. In particular, we have stated

the Lower Bound Theorem and the Upper Bound Theorem. In Section 5, we have stated

several results on minimal triangulations without proofs. Proofs are available in the references

mentioned there. We have also presented some open problems/conjectures in Sections 3

and 5.

1. Preliminaries

Affine Subspaces of Rn and Linear Maps
The space {(x1, . . . ,xn) : xi is real for 1 ≤ i ≤ n} is
denoted by Rn. For us, Rn

+ = {(x1, . . . ,xn) ∈ Rn
:

xn ≥ 0}, I = [−1,1] ⊆ R and N = {0,1,2, . . .} ⊆

{0,±1,±2, . . .} = Z.
An affine subspace V ⊆ Rm (of dimension n)

is a translated vector subspace (of dimension n).
So, V ⊆ Rm is an affine subspace if a1, . . . ,ar ∈ V
and l1, . . . , lr ∈ R with

∑r
i=1 li = 1 implies∑r

i=1 liai ∈ V .
A map f :V → Rd , from an affine subspace V

of Rm, is called (affine) linear if f (
∑r

i=1 liai) =∑r
i=1 li f (ai).
Clearly, if V ⊆ Rm is an (m−1)-dimensional

affine subspace then Rm
\ V has two connected

components, say H1 and H2. The subsets V ∪H1

and V ∪ H2 are called the (closed) half-spaces
determined by V .

If the smallest affine subspace in Rm containing
n points v1, . . . , vn is (n − 1) dimensional
(equivalently, v2 − v1, . . . , vn − v1 are linearly
independent), then we say that the points v1, . . . ,vn

in Rm are affinely independent.

Joins and Cones
If A, B are subsets of Rn, then their join AB is
the subset {la+µb : a ∈ A,b ∈ B,l,µ ∈ [0,1] and
l + µ = 1}. So, AB consists of all points on line
segments (arcs) with endpoints in each of A and
B. If A = ∅ then we define AB = B. If A = {a} then
AB is also denoted by aB. A join aB is called a cone
(with vertex a and base B) if a /∈ B and b1, b2 ∈ B,
b1 6= b2 then ab1 ∩ab2 = {a}.
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Polytopes and Simplices
A subset C ⊆ Rm is called convex if for each pair of
points a,b ∈ C the arc ab ⊆ C. For a set A (possibly
empty) in Rm, the smallest convex set containing A
is called the convex hull of A and is denoted by 〈A〉.
A polytope is a convex hull of a finite set. A polytope
C is said to be an n dimensional polytope (or n-
polytope ) if the smallest affine subspace containing
C is n dimensional. By convention, the empty set is
a polytope of dimension −1.

A point v in a polytope C is called a vertex if v ∈

arc ab ⊂ C implies v is a or b.
Clearly, an n-polytope has at least n+1 vertices.

If an n-polytope has exactly n+1 vertices then it
is also called an n-simplex. So, 〈{v0,v1, . . . ,vn}〉

is an n-simplex if and only if v0, v1, . . . , vn are
affinely independent. An n-simplex with vertices
v0,v1, . . . ,vn is denoted by v0v1 ···vn.

If A = v0 ··· vk is a k-simplex then Â :=∑k
i=0

1
k+1 vi is called the barycentre of A.

Faces of a Polytope
Let C be an n-polytope in Rm. If V is an (m−1)-
dimensional affine subspace such that C is in one of
the half-space determined by V then C ∩V is called
a face of C and is denoted by C ∩V < C. Clearly, a
face of a polytope is a polytope. If ∅ 6= D < C and
D 6= C then D is called a proper face of C. The union
of all the proper faces of an n-polytope C (n ≥ 1) is

called the frontier of C and is denoted by C
•

. The

subset C
◦

:= C \C
•

is called the interior of C. For a
0-polytope (i.e., for a vertex) v we define v

◦

= v and

v
•

= ∅. So, for a polytope C, C = C
◦

tC
•

.

Simplicial and Stacked Polytopes
A polytope is called simplicial if its proper faces are
simplices.

A simplicial d-polytope P is called stacked
if there is a sequence P1, . . . ,Pk of simplicial d-
polytopes such that P1 is a simplex, Pk = P and Pj+1

can be constructed from Pj by attaching a d-simplex
along a (d −1)-face of Pj for 1 ≤ j ≤ k−1.

Polyhedra and Subpolyhedra
A subset P ⊆ Rn is called a polyhedron if each point
a in P has a cone neighbourhood (in P) N = aL,
where L is compact; N and L are called the star and
the link of a in P respectively. We write N = Na(P)

and L = La(P). If P and Q are polyhedra and Q ⊆ P
then Q is called a subpolyhedron of P.

Piecewise-Linear (PL) Maps
A map f :P → Q, where P and Q are polyhedra,
is called piecewise-linear (in short pl ) if each
a ∈ P has a star N = aL such that f (la + µx) =

lf (a)+µf (x), for all x ∈ L and l,µ ≥ 0, l+µ = 1.

Moreover, if f is a homeomorphism then f is
called a pl homeomorphism. A pl map f :P → Q
is called a pl embedding if f is injective and f (P) is a
subpolyhedron of Q.
[Check that f :P → Q a pl homeomorphism implies
f −1:Q → P is pl.]

PL Manifolds
A polyhedron M is called an n-dimensional pl
manifold (or a pl n-manifold) if each x ∈ M has
a neighbourhood in M which is pl homeomorphic
to an open set in Rn

+. The set ∂M consisting of
points corresponding to Rn−1

×{0} ⊆ Rn
+ is called

the boundary of M . If ∂M = ∅ then M is called a pl
manifold without boundary. A compact pl manifold
without boundary is also called a closed pl manifold.

[Well-defineness of ∂M follows from the
following: Let U and V be open in Rn

+ and f :U → V
be a pl homeomorphism. If x ∈ Rn−1

×{0}∩U then
f (x) ∈ Rn−1

×{0}.]
Clearly, if M and N are pl manifolds of

dimensions m and n respectively then M ×N is a pl
(m + n)-manifold and ∂(M × N ) = (M × ∂N )∪

(∂M ×N ).
Let T = ([−2, 2] × [−2, 2] \ (−1, 1) ×

(−1,1))×[−1,1] ⊆ R3. Clearly, T
◦

(the interior
of T) = ((−2,2)× (−2,2) \ [−1,1]×[−1,1])×

(−1,1). Then T and T \ T
◦

are pl manifolds and

∂T = T \T
◦

. Observe that ∂T is homeomorphic to
the torus S 1

×S 1.

PL Balls and PL Spheres
A polyhedron M is called a pl n-ball if it is pl
homeomorphic to I n. A polyhedron M is called a
pl n-sphere if it is pl homeomorphic to ∂I n+1. So, a
pl (n+1)-ball is a pl (n+1)-manifold having a pl
n-sphere as boundary. If C is an n-polytope then C

is a pl n-ball with boundary C
•

.

Simplicial Complex
A finite collection K of simplices in some Rn is
called a simplicial complex if (i) α ∈ K , β < α imply
β ∈ K and (ii) σ, γ ∈ K imply σ∩γ < σ,γ .

For i = 0,1, the i-simplices in a simplicial
complex K are also called the vertices and edges of K ,
respectively. The set of vertices is called the vertex
set of K and is denoted by V (K ). For a simplicial
complex K , the maximum of k such that K has a
k-simplex is called the dimension of K .

A simplex σ in a simplicial complex K is called
maximal if σ < γ ∈ K implies γ = σ. Clearly, a
simplicial complex is uniquely determined by its
maximal simplices.

A simplicial complex is called pure if all the
maximal simplices are of same dimension. A
maximal simplex in a pure simplicial complex is
also called a facet.

A simplicial complex of dimension ≤ 1 is called
a graph.
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Geometric Carrier
If K is a simplicial complex then |K | :=

⋃
σ∈K σ

is a compact polyhedron and is called the
geometric carrier of K or the underlying polyhedron
corresponding to K .

Subcomplex
If K and L are simplicial complexes and L ⊆ K then
L is called a subcomplex of K . We consider ∅ to be a
subcomplex of every simplicial complex.

For a simplicial complex K , if U ⊆ V (K ) then
K[U] denotes induced subcomplex of K on the
vertex-set U (i.e., K[U] = {σ ∈ K : vertices of σ

are in U}).

Simplicial Maps
Let K and L be two simplicial complexes. A map
f :|K | → |L| is called simplicial if f |σ is linear and
f (σ) is a simplex of L for each σ ∈ K .

Abstract Simplicial Maps
Let K and L be two simplicial complexes. A map
ϕ:V (K )→ V (L) is called an abstract simplicial map
if 〈A〉 is a simplex in K implies 〈ϕ(A)〉 is a simplex
in L, for every A ⊆ V (K ).

Let ϕ:K → L be an abstract simplicial map.
If x ∈ |K | then there exists a unique simplex
σ ∈ K such that x ∈ σ

◦

. Let σ = v0v1 ···vk and
x = t0v0 +···+ tkvk where ti ∈ [0,1] for 0 ≤ i ≤ k
and t0 + ··· + tk = 1. Define |ϕ|(x) = t0ϕ(v0) +

··· + tkϕ(vk). This defines a simplicial map
|ϕ|:|K | → |L|.

Isomorphisms
A bijection ϕ: V (K ) → V (L) is called an
isomorphism if both ϕ and ϕ−1 are abstract
simplicial maps. Two simplicial complexes K and L
are called isomorphic (denoted by K ∼= L) if such
an isomorphism exists. We identify two simplicial
complexes if they are isomorphic. Clearly, if ϕ is an
isomorphism then |ϕ| is a pl homeomorphism.

An isomorphism from a simplicial complex
K to itself is called an automorphism of K . All
the automorphisms of K form a group under
composition, which is denoted by Aut(K ).

If ϕ: V (K ) → V (L) is an isomorphism
then define 8: K → L as 8(v0v1 ··· vk) =

〈ϕ({v0,v1, . . . ,vk})〉. Clearly, 8 is a bijection and
α < β if and only if 8(α) < 8(β). Conversely, any
such bijection 8:K → L defines an isomorphism
8|V (K ).

f -vector and Euler characteristic
If fi(K ) denote the number of i-simplices (0≤ i ≤ d)
in a d-dimensional simplicial complex K then
(f0(K ), f1(K ), . . ., fd(K )) is called the f -vector of

K and the number χ(K ) :=
∑d

i=0(−1)i fi(K ) is
called the Euler characteristic of K . (Formally we
take f−1 := 1.)

A simplicial complex K is called k-neighbourly if
the convex hull of any set of k vertices is a (k−1)-

simplex of K (i.e., fk−1(X) =
(f0(K )

k

)
.

Face polynomial and h-vector
The face polynomial of a d-dimensional simplicial
complex K is

fK (x) :=

d∑
i=−1

fi(K )xd−i .

The polynomial hK (x) := fK (x − 1) is
called the h-polynomial of K . The h-vector of
K is (h0(K ), . . . , hd+1(K )), where hK (x) =∑d+1

j=0 hjxd+1−j . Equivalently,

hj(K ) =

j−1∑
i=−1

(−1)j−i−1

(
d − i

j − i−1

)
fi(K )

for 0 ≤ j ≤ d + 1. Observe that hd+1(K ) =

(−1)d+1(1−χ(K )) and, for 0 ≤ i ≤ d,

fi−1(K ) =

i∑
j=0

(
d +1− j

i− j

)
hj(K ).

Join of Complexes
Two simplicial complexes K and L (in RN ) are
called independent if αβ is an (m+n+1)-simplex
for each m-simplex α in K and each n-simplex β

in L for m,n ≥ 0. If K and L are independent then
we define K ∗L = K ∪L∪{αβ : α ∈ K ,β ∈ L}. The
simplicial complex K ∗L is called the (simplicial)
join of K and L.

If K and L are two simplicial complexes in
Rn and Rm respectively, then we can define
their join in a bigger space. More explicitly, let
i1:Rn

→ Rn+m+1, i2:Rm
→ Rn+m+1 be the maps

given by i1(x1, . . . , xn) = (x1, . . . , xn, 0, . . . ,0)

and i2(x1, . . . ,xm) = (0, . . . ,0,x1, . . . ,xm,1). Let
K1 :={i1(α) :α∈K} and L1 :={i2(β) :β∈L}. Then
K1

∼= K , L1
∼= L and K1 and L1 are independent

simplicial complexes in Rn+m+1. We define K ∗L =

K1 ∗L1.

Stars, Links and Degrees
Let K be a simplicial complex and γ ∈ K . Let stK (γ)

be the subcomplex of K whose maximal simplices
are those maximal simplices of K which contain
γ as a face. This subcomplex is called the star of γ

in K .
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Let K be a simplicial complex and γ ∈ K . Let
lkK (γ) := {β : β∩γ = ∅,βγ ∈ K}. Then, lkK (γ) is
a subcomplex of K and is called the link of γ in K .
The number of vertices in the link of γ in K is called
the degree of γ and is denoted by degK (γ).

If σ is a simplex in Rn then Cl(σ) := {β : β < σ}

and Bd(σ) := {β : β < σ,β 6= σ} are simplicial
complexes. Clearly, |Cl(σ)| = σ and |Bd(σ)| = σ

•

.
If α is a simplex in a simplicial complex K then

Cl(σ) and lkK (α) are independent and stK (α) is
the join of Cl(α) and lkK (α).

Subdivisions and Combinatorially Equivalent
Complexes
A simplicial complex L is called a subdivision of a
simplicial complex K (denoted by L C K) if each
simplex in L is contained in a simplex in K and
|L| = |K |. Two simplicial complexes K and L are
called combinatorially equivalent (denoted by K ≈ L)
if there exist subdivisions K ′ C K and L′ C L such
that K ′ ∼= L′. So (by Proposition 1.5), K ≈ L if and
only if |K | and |L| are pl homeomorphic. Clearly,
‘≈’ is an equivalence relations.

For γ ∈ K and a ∈ γ
◦

, consider the simplicial
complex (on the vertex-set V (K )∪{a}) K ′

={δ ∈

K : γ 6< δ} ∪ {a,aα : α < δ where γ < δ ∈ K and
σ 6= α 6= γ ,}. Then K ′ is a subdivision of K and is
called the subdivision obtained from K by starring
at a (or starring the vertex a in γ). We also say that
K is obtained from K ′ by collapsing the vertex a.

Stellar Subdivisions
A simplicial complex K1 is called a stellar subdivision
of K if K1 is obtained from K by starring
(successively) at finitely many points. Two complexes
K and L are called stellar equivalent if they have
isomorphic stellar subdivisions.

Let A1, . . . , An be all the simplices of a
simplicial complex K of dimension ≥ 1 such
that dim(A1) ≥ dim(A2) ≥ ···≥ dim(An). Choose

ai ∈ A
◦

i for 1 ≤ i ≤ n. Let K (1) be the stellar
subdivision of K obtained by starring at a1, . . . ,an

successively. Then K (1) is called a first derived
subdivision of K . For r ≥ 2, a r-th derived subdivision
of K is defined inductively by K (r)

= (K (r−1))(1).
If ai = Âi (the barycentre of Ai) for each Ai ∈ K
then the first derived subdivision is called the first

barycentric subdivision of K . Similarly, we can define
the r-th barycentric subdivision.

Observe that S2 has two vertices of degree 5 but
S1 has no degree 5 vertex. So, S1 6∼= S2. Now, S3 is
obtained from S1 by starring at 7 (in the edge 36)
and is obtained from S2 by starring at 7 (in the edge
12). Thus, S1 ≈ S2 (≈ S3).

Bistellar Moves
Let K be a d-dimensional (d ≥ 2) pure simplicial
complex in RN . Let A be an (d − k)-simplex
in K such that lkK (A) = Bd(B) for some k-
simplex B which is not in K . Let C = 〈A ∪ B〉. If

C ∩|K | = AB
•

then consider the simplicial complex
L= (K \{D :A < D∈K})∪{FB :F < A,F 6=A} (i.e.,
L = (K \Cl(A)∗Bd(B))∪ (Bd(A)∗Cl(B)). We say
that L is obtained from K by the bistellar k-move
κ(A,B).

[For 0 < k < d, C is a polytope of dimension
d or d + 1 with d + 2 vertices. If dim(C) = d

then C = AB
•

= A
•

B, C
•

= A
•

B
•

and |L| = |K |. If

dim(C) = d +1 then C = AB, C
•

= AB
•

∪ A
•

B and
|L| is pl homeomorphic to |K |.]

If k = d we take B = b ∈ A
◦

then κ(A, b) is
equivalent to starring at b. If k = 0 then κ(u,B) is
equivalent to collapsing the vertex u. If 0 < k < d
then κ(A,B) is called a proper bistellar move.

Observe that S2 (defined above) is obtained
from S1 by the bistellar 1-move κ(36,12).

Two pure simplicial complexes M and N are
called bistellar equivalent (or N is obtained from
M by bistellar flips) if there exists a finite sequence
M1, . . . ,Mn of pure simplicial complexes such that
M1 = M, Mn = N and Mi+1 is obtained from Mi
by a bistellar move for 1 ≤ i ≤ n−1.

Triangulations
A triangulation of a polyhedron P is a pair (K , t),
where K is a simplicial complex and t :|K | → P is a
pl homeomorphism. Moreover, if t is linear on each
simplex then (K , t) is called a linear triangulation.
We identify two triangulations of a polyhedron P
if they differ by an isomorphism (i.e., we identify
(K1, t1) and (K2, t2) if there is an isomorphism
i:K1 → K2 such that t2 ◦ |i| = t1). If (K , t) is a
triangulation of P and K ′ CK then (K ′, t) is called
a subdivision of (K , t).

For a simplicial complex K , if |K | is
homeomorphic to a topological space X then we say
that K is a triangulation of X.
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Combinatorial Balls
For d ≥ 0, let 1d be the d-simplex
{(x1, x2, . . . , xd+1) : xi ≥ 0 for 1 ≤ i ≤ d +

1,
∑d+1

i=1 xi ≤ 1} in Rd+1 with vertices v1 =

(1,0, . . . ,0), . . . , vd+1 = (0, . . . ,0,1). Then 1d

is pl homeomorphic to the pl ball I d . Let Cl(1d)

denote the simplicial complex whose simplices
are all the faces of 1d . Then |Cl1d

| = 1d . The
simplicial complex Cl(1d) is called the standard
d-ball. A finite simplicial complex K is called a
combinatorial d-ball, if |K | is pl homeomorphic to
1d (i.e., K ≈ Cl(1d)).

Combinatorial Spheres
Let Bd(1d+1) denote the simplicial complex
Cl(1d+1) \ {1d+1

} (d ≥ 0). Then |Bd(1d+1)| is
homeomorphic to the sphere S d . (|Bd(1d+1)| =

1
•

d+1 is pl homeomorphic to the pl sphere ∂Id+1.)
The simplicial complex Bd(1d+1) is called the
standard d-sphere and is denoted by S d

d+2(V ) (or

simply by S d
d+2), where V = {v1, . . . ,vd+2} is the

vertex-set of 1d+1.
A simplicial complex K is called a combinatorial

d-sphere, if |K | is pl homeomorphic to |S d
d+2| (i.e.,

by Proposition 1.5, K ≈ S d
d+2).

If a combinatorial d-sphere is k-neighbourly
then, by Corollary 4.10, k ≤ b

d+1
2 c. Thus, a

b
d+1

2 c-neighbourly combinatorial d-sphere is called
neighbourly.

Polytopal Spheres
For d ≥ 0, let P be a simplicial (d +1)-polytope
in Rd+1. Then the set of proper faces of P form a
combinatorial d-sphere and is called the boundary
complex of the polytope P.

A combinatorial d-sphere S is called a polytopal
sphere if it is isomorphic to the boundary complex
of a simplicial (d +1)-polytope.

Stacked Spheres
A combinatorial d-sphere S is called a stacked sphere
if there is a sequence S1, . . . ,Sk of combinatorial
d-spheres such that S1 = S d

d+2, Sk = S and Sj+1 is
obtained from Sj by starring a vertex on a facet of
Sj for 1 ≤ j ≤ k−1.

It follows from Proposition 1.2 that a stacked
d-sphere is isomorphic to the boundary complex of

a stacked (d +1)-polytope. Clearly, the face-vector
of an n-vertex stacked d-sphere S is given by

fk(S) =

(
d +2

k+1

)
+ (n−d −2)

(
d +1

k

)
=

(
d +1

k

)
n−

(
d +2

k+1

)
k for 1 ≤ k < d,

fd(S) = (d +2)+ (n−d −2)d

= dn− (d +2)(d −1). (1)

Combinatorial Manifolds
A simplicial complex K is called a combinatorial d-
manifold if lkK (v) is a combinatorial (d−1)-sphere
(i.e., ≈ S d−1

d+1 ) for each vertex v in K . Clearly, a
two dimensional complex K is a combinatorial
2-manifold if the link of each vertex is a cycle.
(A cycle is a connected finite graph in which the
degree of each vertex is 2. A cycle with n vertices is
called an n-cycle and is denoted by S1

n. An n-cycle
with edges v1v2, . . . ,vn−1vn, vnv1 is also denoted
by S1

n(v1, . . . ,vn).)
Since the link of a vertex in S k

k+2 is a standard

(k−1)-sphere, it follows that (i) S k
k+2 (and hence

a combinatorial k-sphere) is a combinatorial
k-manifold and (ii) if σ is an i-simplex in a
combinatorial d-manifold K then lkK (σ) is a
combinatorial (d − i−1)-sphere for 0 ≤ i ≤ d −1.

A simplicial complex K is called a combinatorial
d-manifold with boundary if lkK (v) is a
combinatorial (d − 1)-sphere or combinatorial
(d −1)-ball for each vertex v in K and there exists a
vertex u whose link is a combinatorial (d −1)-ball.

Triangulated Manifolds
If the geometric carrier |K | of a simplicial complex
K is a closed topological d-manifold then K is
called a triangulated d-manifold. So, a combinatorial
manifold is triangulated manifold and for d ≤ 3,
a triangulated d-manifold is a combinatorial d-
manifold.

Homology Manifolds
A d-dimensional simplicial complex K is called
a homology manifold if for any x ∈ |K | and
i < d, Hi(|K |, |K | \ {x};Z) = 0 and Hd(|K |, |K | \

{x};Z) = Z. So, a triangulated manifold is a
homology manifold.
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Eulerian Complexes
A d-dimensional simplicial complex K is called
an Eulerian Complex if χ(lkK (σ)) = 1+ (−1)d−i−1

for any i-simplex σ, 0 ≤ i < d. So, a triangulation of
a sphere is an Eulerian Complex.

PL Structures on Manifolds
A compact topological manifold M is called
triangulable if it is homeomorphic to the geometric
carrier of a simplicial complex K . Moreover, if K is a
combinatorial manifold (i.e., by Proposition 1.6, |K |

is a pl manifold) then we say K is a combinatorial
triangulation of M .

If a combinatorial manifold K triangulates M ,
then the combinatorial equivalence class K of
combinatorial manifolds containing K is called
a combinatorial structure or pl structure of M .

Pseudomanifolds
A pure d-dimensional simplicial complex K is
called a d-dimensional pseudomanifold (or d-
pseudomanifold) if (i) each (d −1)-simplex is a face
of exactly two facets of K and (ii) for any pair σ1, σ2

of facets of K , there exists a sequence τ1, . . . ,τn of
facets of X , such that τ1 = σ1, τn = σ2 and τi ∩ τi+1

is a (d − 1)-simplex of K for 1 ≤ i ≤ n − 1. By
convention, S0

2 is the only 0-pseudomanifold.

Normal Pseudomanifolds
A d-pseudomanifold is said to be a normal
pseudomanifold if the links of all the simplices of
dimension ≤ d −2 are connected. Clearly, the 1-
dimensional normal pseudomanifolds are the cycles
and the 2-dimensional normal pseudomanifolds
are just the connected combinatorial 2-manifolds.
But, normal pseudomanifolds of dimension d
form a broader class than connected combinatorial
d-manifolds for d ≥ 3. In fact, any connected
triangulated manifold is a normal pseudomanifold.

Irreducible Pseudomanifolds
For n ≥ d +3, an n-vertex d-pseudomanifold M is
called irreducible if M can not be written as S c

c+2 ∗N
for some pseudomanifold N and c ≥ 0. M is called
completely reducible if it is the join of one or more
standard spheres. By Theorem 5.28, (d +3)-vertex
d-pseudomanifolds are completely reducible.

One-Point Suspension
Let K be an n vertex d-dimensional pseudomanifold
in Rm

≡ Rm
× {0} ⊆ Rm+1 and u ∈ V (K ). Let

v = (0, . . . ,0,1) ∈ Rm+1. Consider the (d + 1)-
dimensional pseudomanifold 6uK whose facet-set
is {uα : α a facet of K and u 6∈ α}∪{vβ : β a facet
of K}. Observe that uv is an edge of 6uK and if
w is an interior point in uv then the simplicial

complex obtained from 6uK by starring at w is
isomorphic to K ∗S0

2. So, |K | is homeomorphic to
the suspension of |K |. The pseudomanifold 6uK
is called the one-point suspension of K (see [7] for
more).

Complementarity
A simplicial complex K is said to satisfy
complementarity if ∅ 6= U ⊆ V (K ) and U 6= V (K )

imply exactly one of 〈U〉, 〈V (K )\U〉 is a simplex
of K . The simplicial complexes RP2

6 and CP2
9

(in Examples 3.2 and 3.10 respectively) satisfy
complementarity.

Abstract Simplicial Complex
An abstract simplicial complex is a collection of non-
empty finite sets (sets of vertices) such that every
non-empty subset of a member is also a member.
For i ≥0, a member of size i+1 is called an i-simplex
of the complex. For an abstract simplicial complex
K , V (X) denotes the vertex-set of K . An abstract
simplicial complex is called pure if all the maximal
simplices contain same number of vertices. For
an abstract simplicial complex X, EG(X) denote
edge-graph of X (i.e., EG(X) consists of vertices
and edges of X). If EG(X) is connected then we say
that X is connected.

If K is a simplicial complex then Ka := {σ :

σ ⊆ V (K ), 〈σ〉 ∈ K} is an abstract simplicial
complex and is called the abstract simplicial complex
corresponding to K .

Let X be an abstract simplicial complex. A
simplicial complex K is called a geometric realization
of X (and is denoted by Xgr) if Ka is isomorphic
to X. Clearly, two geometric realizations of a finite
abstract simplicial complex are isomorphic.

Let X be a finite abstract simplicial complex
with V (X) = {v1, . . . , vn}. Let A be an (n − 1)-
simplex with vertices a1, . . . , an in Rn−1. Let
K = {ai1 ···aik : {vi1 , . . . , vik } is a simplex of X}.
Then K is a subcomplex of the simplicial complex
Cl(A). Clearly, K is a geometric realization of X . So,
geometric realizations exist for finite complexes. For
infinite case see [68].

Isomorphism and Automorphism
An isomorphism between two abstract simplicial
complexes X and Y is bijection ϕ:V (X) → V (Y )

such that A ∈ X if and only if ϕ(A) ∈ Y . Two
abstract simplicial complexes are called isomorphic
if such an isomorphism exists. We identify two
isomorphic complexes. An isomorphism from an
abstract simplicial complex X to itself is called an
automorphism. All the automorphisms of X form
a group under composition, which is denoted by
Aut(X).
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Quotient Complex and Proper Action
Let X be an abstract simplicial complex and G be
a group of automorphism (i.e., G is subgroup of
Aut(X)). Let η : V (X) → V (X)/G be the natural
projection. Let X/G denote the abstract simplicial
complex {η(A) : A ∈ X}. This complex is called the
quotient complex.

Let X be a connected abstract simplicial complex.
For u,v ∈ V (X), let dX (u,v) denote the length
of a shortest path from u to v in EG(X). (Then
dX is a metric on V (X).) Let G be a group of
automorphism of X. It is easy to see that if X is a
pure d-dimensional abstract simplicial complex and
dX (u, g(u)) ≥ 2 for all u ∈ V (X) and 1 6= g ∈ G
then X/G is also a pure d-dimensional abstract
simplicial complex. We say that G acts properly on X
if dX (u,g(u)) ≥ 3 for all u ∈ V (X) and 1 6= g ∈ G.

Proposition 1.1. Let K be a combinatorial d-
manifold. Let G be a group of automorphism of Ka.
Let K/G denote the geometric realization (Ka/G)gr

of the quotient Ka/G. If G acts properly on Ka then
K/G is also a combinatorial d-manifold.

Proof. Let η : V (Ka) → V (Ka/G) be the natural
projection. Then η induces an abstract simplicial
map ηgr from K to K/G. For v ∈ V (Ka), let
[v]= η(v). Since the action is proper, it follows that
K/G is a pure d-dimensional simplicial complex.
Assume that V (Ka) = V (K ) and V (K/G) =

V (Ka/G) = {[v] : v ∈ Ka}.
Let [u] be a vertex of K/G. Let v and w be two

vertices in lkK (u). Since vu and uw are edges in
K , it follows that the length of the shortest path in
K between v and w is at most 2. Therefore (since
the action of G is proper), [v] 6= [w]. This implies
that ηgr |lkK (u) : lkK (u) → lkK/G([u]) is injective
and hence an isomorphism. Thus the link of each
vertex in K/G is a combinatorial sphere. This proves
the result. �

Proposition 1.2. Let M be the boundary complex
of a simplicial (d + 1)-polytope P. Let N be the
combinatorial d-sphere obtained from M by starring
a vertex in a facet σ of M . Then N is isomorphic to the
boundary of the polytope Q which is obtained from P
by attaching a (d +1)-simplex along the d-face σ of
P.

Proof. Assume that P is in Rd+1. Let σ = v0 ···vd+1

and a =
1

d+2 (v0 +···+ vd+1) ∈ σ
◦

. We may assume
that N is obtained from M by starring at a. Let L be
the closed half line through a and perpendicular
to σ such that L∩P ={a}. Then there exists ε > 0
such that x ∈ L\{a} and distance between a and x
≤ ε implies P∪ (xσ) is convex. (xσ denotes the join
of x and σ.) Fix a point v on L at a distance ε from

a. Let Q = P ∪ (vσ). Then Q is a (d +1)-polytope.
Let ϕ be the map from N to the boundary of Q
given by ϕ(u) = u if u is a vertex of P and ϕ(a) = v.
It is easy to see that ϕ is an isomorphism. �

In [7], we have shown the following :

Proposition 1.3. Let 6uK be the one-point
suspension of a pseudomanifold K . The
pseudomanifold 6uK is a polytopal sphere if and
only if K is so.

Here we present some basic results in pl-
topology. See [65] for proofs.

Proposition 1.4. Any compact polyhedron is the
geometric carrier of some simplicial complex.

Proposition 1.5. Let K and L be two simplicial
complexes. If f : |K | → |L| is pl, then there are
simplicial subdivisions K ′ C K and L′ C L such that
f :|K ′

| → |L′
| is simplicial.

Proposition 1.6. Suppose K is a simplicial complex
then |K | is a pl n-manifold if and only if lkK (v) ≈

Bd(1n) or Cl(1n−1) for each v ∈ V (K ).

Proposition 1.7. For p, q ≥ 1, let Bp, Bq be
combinatorial balls (of dimensions p and q
respectively) and S p−1, S q−1 be combinatorial spheres
(of dimensions p −1 and q −1 respectively). Then
(i) Bp

∗ Bq is a combinatorial (p + q +1)-ball, (ii)
S p−1

∗ Bq is a combinatorial (p + q)-ball and (iii)
S p−1

∗S q−1 is a combinatorial (p+q−1)-sphere.

2. A Brief History of Triangulations
• It was shown by Rado in 1924 that all 2-

manifolds are triangulable. Since the link of a
vertex in a triangulated 2-manifold is a cycle,
2-manifolds have pl structures.

• In 1935, Cairns proved that each closed
smooth manifold is triangulable.

• In 1940, Whitehead proved that each closed
smooth manifold has a pl structure.

• In 1952, Moise showed that all 3-manifolds
are triangulable. Again, the link of a vertex in
a triangulated 3-manifold is a triangulation
of the 2-sphere and all triangulations of the
2-sphere are combinatorial 2-spheres. So,
3-manifolds have pl structures. Moise also
showed that each 3-manifold admits a unique
pl structure.

• In 1960, Kervaire gave the example of a pl
10-manifold which is not smoothable.
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• In 1961, Eells and Kuiper (independently,
Tamura) gave examples of 8 dimensional pl
manifolds which are not smoothable.

• In 1964, Lojaciewitz proved that each real
algebraic variety is triangulable.

• In 1967, Kuiper obtained algebraic equations
for all non-smoothable pl 8-manifolds.

• It is shown by Munkres in 1967 that there is
an one to one correspondence between the set
of smooth homotopy m-spheres and the set
of pl homotopy m-spheres for 3 ≤ m ≤ 4. So,
by Freedman’s classification of 4-manifolds,
there is an one to one correspondence
between the set of pl structures on S 4 and
the set of smooth structures on S 4.

• In 1969, Kirby and Siebenmann
(independently, Lashof and Rosenberg)
proved that (i) there is exactly one well
defined obstruction in H 4(M; Z2) to
imposing a pl structure on a closed
topological m-manifold M, m ≥ 5 and (ii)
given one pl structure, there is a bijection
between the class of distinct pl structures
and H 3(M, Z2). Therefore, Sm has a
unique pl structure for m ≥ 5. [For smooth
structures on Sm we know the following:
In 1963, Milnor and Kervaire proved that
the set 2DIFF

m of smooth (homotopy) m-
spheres is a finite abelian group under the
connected sum operation for m ≥ 5. For
m = 5,6,7,8,9,10,11, 2DIFF

m = 0,0, Z28, Z2,
Z2 ⊕Z2 ⊕Z2, Z6, Z992 respectively.]

• In 1970, Siebenmann showed that for each
n ≥ 5 there exists a closed manifold M n

of dimension n which does not admit a pl
structure.

• In 1970, Siebenmann gave the example of
a triangulable 5-manifold which does not
admit any pl structure.

• In 1974, Hirsch and Mazur showed that if the
dimension of a closed manifold M with a pl
structure is ≤ 7 then M is smoothable. So,
for n ≤ 7, a n-dimensional closed topological
manifold is smoothable if and only if it has a
pl structure.

• In 1974, Hirsch showed that if M × N is
smoothable, where M and N are closed
pl manifolds, then both M and N are
smoothable. So, if M is an 8-dimensional
non-smoothable pl manifold (by Eells and
Kuiper such M exists) then M ×S d is a non-
smoothable pl manifold of dimension 8+d
for all d ≥ 1.

• In 1976, Galewski and Stern (independently,
Matumoto) defined an obstruction element
τ ∈H5(M;ρ) such that the closed topological
n-manifold M n, n ≥ 5, is triangulable if
and only if τ = 0. Then they proved that
all closed topological manifolds of dimension
≥ 5 are triangulable if and only if there is
a homology 3-sphere 6 such that (i) 6

has Rohlin (or Rochlin) invariant 1 (i.e.,
bounding a parallelizable 4-manifold of index
8) (ii)∗ the (n−3)-fold suspension of 6 is
homeomorphic to S n and (iii) 6#6 bounds
a smooth homology 4-disc. They also proved
that each simply connected closed topological
6-manifold is triangulable.

• In 1977, Akbulut and King proved that
each pl manifold of dimension ≤ 10 is
homeomorphic to a real algebraic variety.

• In 1982, Freedman showed that there are
closed 4-manifolds which are not smoothable.
So, by Hirsch and Mazur’s result, there
are closed 4-manifolds which have no pl
structures.

• In 1985, Casson showed that there exists a
closed 4-manifold which is not triangulable.

• For more, see [49], [66] and the following
AMS Mathematical Review numbers : 2,73e,
14,72d, 22 #12536, 25: #2608, 25: #2612,
26 #5584, 26: #6978, 26 #6980, 31 #5209,
33 #6641, 35 #3671, 39 #3494, 39 #3500,
40 #895, 42 #6837, 54: #3711, 54 #8650,
54 #11335, 55 #13434, 80e: 57019, 80m: 57014,
81b: 57015, 81f: 57012, 84e: 57006.

3. Examples
• In this section, we present some

combinatorial manifolds. Most of these
are vertex-minimal triangulations. We will
discuss about these in the next section.

• Since the facet-set of a pure simplicial
complex determines the simplicial complex,
we identify a pure simplicial complex with its
facet-set in this section.

• Whenever we say that v1 ···vk is a simplex
then we mean that v1 ···vk is the convex hull
of k affinely independent points v1, . . . ,vk in
some RN .

∗This condition is now superfluous because of Cannon’s
result mentioned in Example 3.19.
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• In the examples below, v1 ···vm and u1 ···un

are two simplices in a simplicial complex
K and {v1, . . . ,vm}∩{u1, . . . ,un}=∅ mean
we have taken the vertices of K in some
RN such that v1 ···vm ∩ u1 ···un = ∅. This
is possible since K is finite. In fact, if K has r
vertices then we can consider K in Rr−1 by
considering the vertices of K to be affinely
independent.

Example 3.1. For c1, . . . ,cn ≥ 0, S c1
c1+2 ∗···∗S cn

cn+2
is a combinatorial (c1 +···+ cn +n−1)-sphere on
c1 +···+ cn +2n vertices.

Example 3.2. Two combinatorial 2-manifolds of
positive Euler characteristics.

I = {uuiui+1,uiui+1vi+3,

vivi+1ui+3,vvivi+1 : 1 ≤ i ≤ 5} and

RP2
6 = {uuiui+1,uiui+1ui+3 : 1 ≤ i ≤ 5}.

Additions in the subscripts are modulo 5. The
geometric carrier of I is the 2-sphere and it
corresponds to the boundary of the Platonic solid
icosahedron. The geometric carrier of RP2

6 is the
real projective plane. The complex RP2

6 is called the
hemi-icosahedron. Observe that Z2 (={1,−1}) acts
properly on the abstract simplicial complex Ia by
(−1)u = v, (−1)v = u, (−1)ui = vi, (−1)vi = ui

and I/Z2 = RP2
6.

Example 3.3. Two combinatorial 2-manifolds of
Euler characteristic 0.

T = {wiwi+1wi+3,wiwi+2wi+3 : 1 ≤ i ≤ 7} and

K = {u1u2v1,u1u2v2,u1u3v1,u1u3v3,u1u4v2,

u1u4v4,u2u3v2,u2u3v4,

u2u4v1,u2u4v3,u3u4v3,u3u4v4,u1v3v4,

u2v3v4,u3v1v2,u4v1v2}.

Additions in the subscripts are modulo 7 in T . The
geometric carrier of T is the torus and the geometric
carrier of K is the Klein bottle.

Example 3.4. Two combinatorial 2-manifolds of
negative Euler characteristics.

M = {u1+pu4+pu7+p,ui+3puj+3puk+3p :

(i, j,k) ∈ {(1,2,5),(1,3,5),(1,3,4),

(1,8,9),(1,6,8),(1,2,6),(2,3,6)},

0 ≤ p ≤ 2} and

N = {uuiui+1,uiui+1ui+4,uiui+2ui+4,

uiui+3ui+6 : 1 ≤ i ≤ 9}.

Additions in the subscripts are modulo 9. The
geometric carrier of M is the non-orientable
surface of Euler characteristic −3 and the geometric
carrier of N is the non-orientable surface of Euler
characteristic −5.

Example 3.5. Five 8-vertex combinatorial 3-
spheres.

S 3
8,35 = {1234,1267,1256,1245,2345,2356,

2367,3467,3456,4567,1238,1278,

2378,1348,3478,1458,4578,1568,

1678,5678},

S 3
8,36 = {1234,1256,1245,1567,2345,2356,

2367,3467,3456,4567,1268,1678,

2678,1238,2378,1348,3478,1458,

1578,4578},

S 3
8,37 = {1234,1256,1245,1457,2345,2356,

2367,3467,3456,4567,1568,1578,

5678,1268,2678,1238,2378,1348,

1478,3478},

S 3
8,38 = {1234,1237,1267,1347,1567,2345,

2367,3467,3456,4567,2358,2368,

3568,1268,1568,1248,2458,1478,

1578,4578} and

S 3
8,39 = κ(46,357)(S 3

8,4).

First four of these combinatorial manifolds are 2-
neighbourly and were found by Grünbaum and
Sreedharan (in [34], these are denoted by P8

35, P8
36,

P8
37 andM respectively). They showed that S 3

8,35,

S 3
8,36, S 3

8,37 are polytopal spheres and S 3
8,38 is a

non-polytopal sphere (known as the Brückner-
Grünbaum sphere). The sphere S3

8,39 (obtained

from S 3
8,38 by the bistellar 2-move κ(46,357)) is

a non-polytopal sphere and found by Branette in
[16].

Example 3.6. Consider the 11-vertex pure 3-
dimensional simplicial complex RP 3

11 (on the vertex-
set {1, . . . ,9,a,b}) whose maximal simplices are

1237,123b,1269,126b,1279,135a,135b,137a,

1479,147a,1489,148a,1568,156b,158a,1689,

2348,234b,2378,246a,246b,248a,2578,2579,

258a,259a,269a,3459,345b,3489,359a,3678,

367a,3689,369a,4567,456b,4579,467a,5678.
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This simplicial complex is a combinatorial 3-
manifold and triangulates the 3-dimensional real
projective space RP3. This was first constructed by
Walkup in [71]. Theorem 5.14 shows that 11 is the
minimal number of vertices required to triangulate
RP 3.

Example 3.7. Let L3
12 be the 12-vertex pure 3-

dimensional simplicial complex (on the vertex set
{1, . . . ,9,a,b,c}) whose facets are

1234,123a,1249,1256,1259,126b,12ab,1347,

1378,138a,1479,156c,1579,157c,16bc,178c,

18ab,18bc,234c,23ac,2489,248c,2568,2589,

2678,267b,278c,27ab,27ac,3456,345b,3467,

34bc,3568,3589,359b,3678,389a,39ac,39bc,

456a,45ab,4679,469a,489a,48ab,48bc,56ac,

579b,57ab,57ac,679b,69ac,69bc.

This complex is a combinatorial 3-manifold
and triangulates the lens space L(3,1) ([51]).
Since L(3, 1) is a Z2-homology 3-sphere
(H1(L(3, 1), Z) = Z3, H2(L(3, 1), Z) = 0), it
follows from Theorem 5.51 that 12 is the least
number of vertices required to triangulate L(3,1).

Example 3.8. Consider the 15-vertex 3-
dimensional pure simplicial complex

T3
15 = {uiui+pui+p+qui+p+q+r :

{p,q,r} = {1,2,4},1 ≤ i ≤ 15}.

(Additions in the subscripts are modulo 15.)
This simplicial complex is a combinatorial 3-
manifold and triangulates S 1

×S 1
×S 1 ([47]). A

generalization of this is presented in Example 3.22.

Example 3.9. Let H3
16 be the 16-vertex pure 3-

dimensional simplicial complex (on the vertex set
{1, . . . ,9,a,b,c,d,e, f ,g}) whose facets are

1249,124f ,126e,126f ,129e,134c,134f ,137a,

137c,13af ,149c,156d,156e,158b,158d,15be,

16df ,178a,178b,17bc,18ad,19bc,19be,1adf ,

235a,235b,237a,237d,23bd,249d,24bd,24bf ,

258b,258c,25ac,26ac,26ae,26cf ,279d,279e,

27ae,28bf ,28cf ,345e,345f ,34ce,35af ,35be,

37cd,3bde,3cde,4567,456e,457f ,467b,46ab,

46ae,47bf ,489c,489d,48ad,48ae,48ce,4abd,

567d,579d,579f ,589c,589d,59ac,59af ,67bc,

67cd,6abc,6cdf ,78ae,78bf ,78ef ,79ef ,8cef ,

9abc,9abg ,9af g ,9beg ,9ef g ,abdg ,adf g ,bdeg ,

cdef ,def g .

This simplicial complex is a combinatorial 3-
manifold and was constructed by Björner and
Lutz in [19]. The complex H 3

16 has f -vector
(16,106,180,90) and triangulates the Poincaré
homology 3-sphere. It follows from Theorem 5.51
that at least 12 vertices are required to triangulate
the Poincaré homology 3-sphere.

Example 3.10. Consider a 9-vertex abstract
simplicial complex X as follows. The vertices
of X are the points of the affine plane P over
the 3-element field. Fix a set 5 of three mutually
parallel lines of P (i.e., 5 is a parallel class of lines
in P). Let the lines in 5 be γ0, γ1, γ2, in a fixed
cyclic orientation. The set of maximal simplices of
X is as follows.

{γi+1 ∪γi \{x} : x ∈ γi,0 ≤ i ≤ 2}∪{α∪β :

α 6= β two intersecting lines of P outside 5}.

(Addition in the suffix is modulo 3.) This gives
3×3+ (9×6)/2 = 9+27 = 36 maximal simplices
of X . Then the geometric realization Xgr of X is a
combinatorial 4-manifold. This Xgr triangulates
the complex projective plane and is denoted by
CP2

9 ([6,43,44,60]). This was first constructed by
Kühnel and Banchoff in [45]. Check that, the link
of any vertex in CP2

9 is isomorphic the Brückner-
Grünbaum sphere S 3

8,38.

Example 3.11. Consider the 11-vertex 4-
dimensional pure simplicial complex S 2,2

11 whose
facets are

12346,12347,12369,12379,12458,12459,

12468,12479,12568,12569,13467,13567,

13569,1357a,1359b,135ab,1379a,139ab,

1458a,1459b,145ab,1467b,1468a,146ab,

1479b,15678,1578a,1678b,168ab,178ab,

179ab,23468,23478,2357a,2357b,235ab,

2368a,2369a,2378b,2379a,238ab,24589,

24789,2568b,2569a,256ab,25789,2578b,

2579a,268ab,3467b,3468a,3469a,3469b,

3478b,3489a,3489b,3567b,3569b,389ab,

4569a,4569b,456ab,4589a,4789b,5678b,

5789a,789ab.

The simplicial complex S 2,2
11 is a combinatorial

4-manifold and triangulates S 2
× S 2. This was

constructed by Lutz in [51]. Observe that, by
Theorems 5.21 and 5.23, 11 is the minimum number
of vertices required to triangulate S 2

×S 2.
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Example 3.12. Let G be the subgroup of S16

generated by (2, 7)(4, 10)(5, 6)(11, 12) and
(1, 2, 3, 4, 5, 10)(6, 8, 9)(11, 12, 13, 14, 15, 16).
Then G ∼= S6 and G acts on the set V ={u1,. . .,u16}

by α(ui) = uα(i) for α ∈ G. This action induces
an action on the set of subsets of V , namely,
α(U ) = {α(a) : a ∈ U} for U ⊆ V . Consider the
16-vertex abstract simplicial complex

K = {α({u1,u2,u4,u5,u11}),

α({u1,u2,u4,u11,u13}) : α ∈ G}.

Let R 4
16 = Kgr be the geometric realization of K .

Then R 4
16 is a combinatorial 4-manifold with f -

vector (16,120,330,375,150) and triangulates
the 4-dimensional real projective space RP 4. This
was constructed by Lutz in [51]. It follows, from
Theorem 5.42, that 16 is the minimum number of
vertices required to triangulate RP 4.

Example 3.13. Let F4 = {0,1,x,y} be the field of
order 4. Consider the space F4 ⊕F4 ={

v0 =

(
0
0

)
,v1 =

(
1
0

)
,v2 =

(
x
0

)
,v3 =

(
y
0

)
,

v4 =

(
0
1

)
,v5 =

(
1
1

)
, v6 =

(
x
1

)
,v7 =

(
y
1

)
,

v8 =

(
0
x

)
,v9 =

(
1
x

)
,v10 =

(
x
x

)
,v11 =

(
y
x

)
,

v12 =

(
0
y

)
,v13 =

(
1
y

)
,v14 =

(
x
y

)
,

v15 =

(
y
y

)}
.

Let G be the group generated by all the translations

in F4 ⊕F4 and the matrix A =

(
0 y
y 1

)
. Then the

order of G is 240 and G acts transitively on F4 ⊕F4.
This action induces an action on the set of subsets
of F4 ⊕ F4, namely, g(U ) := {g(a) : a ∈ U} for
U ⊆ F4 ⊕F4.

Consider the abstract simplicial complex K on
the vertex-set F4 ⊕F4 as

K = {g({v1,v2,v3,v4,v8}),

g({v1,v4,v6,v9,v10}) : g ∈ G}.

(One orbit of 4-simplices of length 240 and one
orbit of 4-simplices of length 48.) Let K316 =Kgr
be the geometric realization of K. Then K316 is a
combinatorial 4-manifold and triangulates a K3
surface. This was constructed by Casella and Kühnel
in [23]. Since the Euler characteristic of a K3 surface
is 24, by Theorem 5.21, 16 is the minimum number
of vertices required to triangulate a K3 surface.

Example 3.14. Consider the 12-vertex 5-
dimensional pure simplicial complex S 3,2

12 (on
the vertex set {1, . . . ,9,a,b,c}) whose facets are

12346a,12346b,123478,12347b,12348a,12357b,

12357c,12359b,12359c,1236ab,12378c,1238ac,

1239ab,1239ac,124678,12467b,124689,12469a,

12489a,1257bc,1259bc,12678c,1267bc,12689c,

1269ab,1269bc,1289ac,134678,13467b,13468a,

13579b,13579c,13678c,1367bc,1368ac,136abc,

1379ab,1379ac,137abc,145689,14568a,14569a,

14589c,1458ac,1459ac,1489ac,15689b,1568ab,

1569ab,1579ab,1579ac,157abc,1589bc,158abc,

1689bc,168abc,23456a,23456c,23458a,23458b,

2345bc,2346bc,23478b,235678,23567c,23568a,

23578b,2359bc,23678c,2368ac,236abc,239abc,

24567a,24567c,24578a,24578b,2457bc,246789,

24679a,2467bc,24789a,25678a,26789a,2689ac,

269abc,345679,34567c,345689,34568a,34579c,

34589b,3459bc,346789,3467bc,34789b,3479bc,

356789,35789b,379abc,45679a,4578ab,4579ac,

457abc,4589bc,458abc,4789ab,479abc,489abc,

56789a,5689ab,5789ab,689abc.

The simplicial complex S 3,2
12 is a combinatorial

5-manifold and triangulates S 3
× S 2. This was

constructed by Lutz in [51]. Observe that, by
Theorem 5.47, 12 is the minimum number of
vertices required to triangulate S 3

×S 2.

Example 3.15. In R d+1 consider the moment
curve Md+1 defined parametrically by x(t) =

(t , t2, . . . , td+1). Let t1 < t2 < ··· < tn and vi =

x(ti) for 1 ≤ i ≤ n. For n ≥ d + 2, let V =

{v1, . . . ,vn}. Let C(n,d +1) be the convex hull of
V . Then C(n,d +1) is a simplicial convex (d +1)-
polytope. The boundary complex of C(n,d +1) is
called the cyclic d-sphere and is denoted by Cd

n .
Then (i) C(n,d + 1) (and hence Cd

n) is b
d+1

2 c-
neighbourly and (ii) a set U (⊆ V ) of d +1 vertices
spans a d-face of C(n,d + 1) if and only if any
two points of V \ U are separated on Md+1 by
even number of points of U (see [33], Pages 61–
63). Observe that the link of a vertex in C 2c+1

m+1 is
isomorphic to C 2c

m .
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If d is odd then, by (ii), v1v3 . . .vd+2 is not a
simplex of C d

n . So, C d
n is not ( d+1

2 +1)-neighbourly.
If d is even then, by (ii), v2v4 . . .vd+2 is not a simplex
of C d

n . So, C d
n is not ( d

2 +1)-neighbourly. Thus,

C d
n is not b

d+1
2 +1c-neighbourly for all d ≥ 1.

For odd d ≥ 1, consider the following pure
abstract simplicial complex C. The vertices of C
are the vertices of the n-vertex circle S 1

n and a set of
d +1 vertices is a maximal simplex of C if and only
if the induced subgraph of S 1

n on these d+1 vertices
has no connected component of odd size. By (ii), it
follows that C d

n is the geometric realization of this
C.

Example 3.16. For d ≥ 2 and n ≥ 2d + 3, let
v1, . . . , vn be n affinely independent points (in
R n−1). Consider the (d + 1)-dimensional pure
simplicial complex X on the vertex set {v1, . . . ,vn}

given by :

X = {vivi+1 ···vi+d+1 : 1 ≤ i ≤ n}.

(Addition in the suffix is modulo n.) Then |X| is a
pl manifold with boundary. Let K d

n be the boundary
complex of |X|. More explicitly, the facet-set of K d

n
is

{α : α is a d-simplex in X

and α is in a unique facet of X}.

Then K d
n is a combinatorial d-manifold. It was

shown in [43] the following : (i) K d
2d+3 triangulates

Sd−1
×S1 for d even, and triangulates the twisted

product Sd−1
×− S1 (the twisted Sd−1-bundle over

S1) for d odd. (ii) K d
2d+4 triangulates Sd−1

× S1

for all d. In particular, K 3
9 triangulates the twisted

product S2
×− S1 (often called the 3-dimensional Klein

bottle) and K 3
10 triangulates the product S2

× S1.
The combinatorial 3-manifolds K 3

9 and K 3
10 were

first constructed by Walkup in [71].
From the definition, it follows that the abstract

simplicial complex (K d
n )a corresponding to K d

n is
the pure abstract simplicial complex whose vertices
are the vertices of the n-cycle S1

n(v1, . . . ,vn) and the
d-simplices are the sets of d +1 vertices obtained by
deleting an interior vertex from the (d+2)-paths in
the cycle. (In fact, the maximal simplices of Xa are
the (d +2)-paths in S1

n(v1, . . . ,vn).)

Example 3.17. For d ≥ 2, consider the (3d + 5)-
vertex abstract simplicial complexesM andN on
the vertex set V = {1, . . . ,3d +5} given by :

N = {{i, . . . , j −1, j +1, i+d +1 :

i+1 ≤ j ≤ i+d, 1 ≤ i ≤ 2d +4},

M = N ∪{{1, . . . ,d +1},{2d +5, . . . ,3d +5}}.

Then Mgr is a stacked d-sphere and (hence)

Ngr triangulates Sd−1
×[0,1].

Let p = (p1, . . . ,pk) be a partition of d +1. Put

s0 = 0 and sj =
∑j

i=1 pi for 1 ≤ j ≤ k. Let πp be the
permutation of {1,2,. . .,d+1} which is the product
of k disjoint cycles (sj−1 + 1, sj−1 + 2, . . . , sj),
1 ≤ j ≤ k. Since πp(i) ≤ i +1 for 1 ≤ i ≤ d +1, it
follows that dM(2d +4+ i,πp(i)) ≥ 3. Consider
the equivalence relation ρ(p) on V given by : jρ(p)j
for j ∈V and (2d+4+ i)ρ(p)πp(i) for 1≤ i≤d+1.
Let ηp:V → V/ρ(p) be the canonical surjection.

Let K(p) = N /ρ(p) denote the abstract
simplicial complex whose vertex set is V/ρ(p)

and simplices are ηp(σ), where σ ∈ N . Let

K d
2d+4(p) =K(p)gr be the geometric realization

of K(p). It was shown in [12] that K d
2d+4(p)

is a combinatorial d-manifold and triangulates
Sd−1

× S1 (respectively, the twisted product
Sd−1

×− S1) if p is an even (respectively, odd)
partition of d+1. If p0 = (1,1, . . . ,1) then πp0 = Id
and the corresponding combinatorial d-manifold
K d

2d+4(p0) is same as K d
2d+4 defined in Example

3.16.
[Recall that for any positive integer n, a partition

of n is a finite weakly increasing sequence of positive
integers adding to n. The terms of the sequence
are called the parts of the partition. A partition
of n is even (respectively, odd) if it has an even
(respectively, odd) number of even parts. It was
shown in [12] that the number of odd (respectively,
even) permutations of n is ≥

1
2×(the number of

partitions of n−1).]

Observe that the number of edges in K d
2d+4(p)

is
(2d+4

2

)
− (d + 2). We would like to make the

following :

Conjecture 3.18. Let K be a non-simply connected
(2d +4)-vertex combinatorial d-manifold. If d ≥ 3

then the number of edges in K is at least
(2d+4

2

)
−

(d +2).

Example 3.19. Let H3
16 be the combinatorial 3-

manifold defined in Example 3.9 and u be a
vertex of H3

16. Let 61H3
16 := 6uH1

16 be the one-
point suspension of H3

16 and for n ≥ 2, let
6nH3

16 := 6u(6n−1H3
16). Let U = V (6nH3

16) \

V (H3
16). Then σ := 〈U〉 is an (n − 1)-simplex

of 6nH3
16 and lk6n H3

16
(σ) = H3

16. Thus, 6nH3
16

is not a combinatorial manifold. Since |H3
16| is

a homology 3-sphere and |6nH3
16| is the n-th

suspension of |M|, by Cannon’s theorem (which
states that the double suspension of any homology
d-sphere is homeomorphic to S d+2) [22], |6nH3

16|

is homeomorphic to S 3+n for n ≥ 2. So, 6nH3
16 is a

triangulation of S 3+n for n ≥ 2. Clearly, 6nH3
16 has

3+n vertices. So, for d ≥5, S d has a (d+13)-vertex
non-combinatorial (non-pl) triangulation.
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Example 3.20. Let S 3
8,38 be the Brückner-

Grünbaum 3-sphere defined in Example 3.5 and
u be a vertex of S 3

8,38. Let 61S 3
8,38 := 6uS 3

8,38 be

the one-point suspension of S 3
8,38 and for n ≥ 2,

let 6nS 3
8,38 := 6u(6n−1S 3

8,38). Then 6nS 3
8,38 is an

(n+8)-vertex combinatorial (n+3)-sphere. Since
S 3

8,38 is a non-polytopal sphere, by Proposition

1.3, 6nS 3
8,38 is a non-polytopal sphere. So, for

d ≥ 3, there exists an (d +5)-vertex non-polytopal
combinatorial d-sphere. Note that, by Theorem
5.30, a (d +k)-vertex combinatorial d-sphere is a
polytopal sphere for 2 ≤ k ≤ 4.

Example 3.21. For d ≥1, let 1d+1 be the d-simplex
with vertices v1 = (1,0. . . . ,0)−

1
d+2 (1,1, . . . ,1),

. . . , vd+2 = (0, . . . , 0, 1) −
1

d+2 (1, 1, . . . , 1) in

Rd+2. We know that the standard d-sphere
S d

d+2 is the boundary complex of 1d+1. Let

ϕ : |S d
d+2| → S d+1

⊆ Rd+2 be the radial projection.

Then S := ϕ(|S d
d+2|) is a d-sphere in Rd+2 and

ϕ : |S d
d+2|→ S is a homeomorphism. Let α : S → S

be the antipodal map. Then the quotient space S/α

is the d-dimensional real projective space RP d .
Let S d

:= (S d
d+2)

(1) be the first barycentric

subdivision of S d
d+2. Let V ={v1, . . . ,vd+2}. Let S d

a
be the abstract simplicial complex corresponding
to S d . We can identify V (S d

a ) with the set of
proper subsets of V by 〈̂U〉 7→ U . Let η : V (S d

a ) →

V (S d
a ) be given by η(U ) = V \ U . Then η is an

automorphism of S d
a and η◦η = Id. Observe that

dS d
a
(U ,V \ U ) = 3 for any proper subset U of

V . (Since d ≥ 1, #(U ) or #(V \ U ) ≥ 2. Assume
that #(U ) ≥ 2 and u ∈ U . Then U{u}((V \ U )∪

{u})(V \ U ) is a path of length 3 from U to
η(U ) = V \ U .) So, G = {Id,η} acts properly on
S d

a . Thus, by Proposition 1.1, P d
:= S d/G is a

combinatorial d-manifold. Since the number of
vertices in S d is 2d+2

−2, the number of vertices in
P d is 2d+1

−1.
Let ηgr : V (S d)→ V (S d) be the simplicial map

induced by η (i.e., η(〈̂U〉) = ̂〈V \U〉). Then ηgr is
an automorphism and α◦ϕ=ϕ◦|ηgr |. This implies

that |S d/G| = |S d
|/ηgr is homeomorphic to S/α.

Thus, P d is a (2d+1
−1)-vertex triangulation of

RP d . An explicit description of P d is given by
Mukherjea in [61]. (In [42], Kühnel has given
another description ofS d

a and the abstract simplicial
complex corresponding to P d .)

Example 3.22. Consider the isometry group G :=

Zd
: Sd of Rd , where the symmetric group

Sd acts on Rd by (g(x))i = xg(i) for 1 ≤

i ≤ d and Zd acts by translations. Let σ :=

{(x1, . . . , xd) : 0 ≤ xd ≤ xd−1 ≤ ··· ≤ x1 ≤ 1} ⊆

Rd . Then σ is a d-simplex with vertices
(0, . . . ,0),(1,0, . . . ,0),(1,1,0, . . . ,0), . . . , (1, . . . ,

1,0), (1, . . . ,1). Observe that σ
◦

∩ g(σ) = ∅ for
1 6= g ∈ G. Consider the pure d-dimensional
simplicial complexes

Y = {g(σ) : g ∈ Sd} and X = {g(σ) : g ∈ G}.

Then Y triangulates the d-cube [0,1]
d and hence

X triangulates Rd . Clearly, G is a group of
automorphisms of Xa (the abstract simplicial
complex corresponding to X).

Let Ld := {(x1, . . . , xd) :
∑d

i=1 2i−1xi ≡

0 mod 2d+1
− 1} ⊆ Zd . Then Ld is a subgroup

of G. (Ld is a sub lattice of Zd and {(2d+1
−

1,0, . . . ,0), . . . , (−1,0, . . . ,0,2d+1−i,0, . . . ,0), . . .,
(−1,0, . . . ,0,4)} is a basis of Ld .) Then Ld

acts properly on Xa. Therefore, by Proposition
1.1, X/Ld is a combinatorial d-manifold. Since
[Zd

:Ld] = 2d+1
−1, it follows that the number of

vertices in X/Ld is 2d+1
−1. The combinatorial

d-manifold X/Ld was constructed by Kühnel and
Laßmann in [48]. They have shown that X/Ld

triangulates the d-dimensional torus S1
×···×S1.

In [52], Lutz conjectured the following :

Conjecture 3.23. The combinatorial manifold
X/Ld is a vertex-minimal triangulation of the
d-dimensional torus S 1

×···×S 1 for all d ≥ 3.

Conjecture 3.24. The combinatorial manifold
X/L3 is the unique 2-neighbourly triangulation
of S 1

×S 1
×S 1.

4. Some General Results on Triangulations
In this section, we are presenting some results on
triangulations. Some of them are interesting and
classical and some of them are very useful.

Theorem 4.1. (Dehn-Sommerville Equations.) If
M is a combinatorial d-manifold then the f -vector
and the h-vector of M satisfy the following.

(i)
∑d

i=0(−1)i fi(M) = χ(M) (= 0 if d is odd).

(ii) If d is even then
∑d

i=2j−1(−1)i
( i+1

2j−1

)
fi(M) =

0 for 1 ≤ j ≤ d
2 .

(iii) If d is odd then
∑d

i=2j(−1)i
(i+1

2j

)
fi(M) = 0 for

1 ≤ j ≤ d−1
2 .

(iv) If d = 2k then hj(M) − hd+1−j(M) =

(−1)d+1−j
(d+1

j

)
(χ(M)−2) for 0 ≤ j ≤ k.

(v) If d = 2k−1 then hj(M)−hd+1−j(M) = 0 for
0 ≤ j ≤ k−1.
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Proof. The first equation is the Euler equation.
If d is even then the link of a (2j −2)-simplex

is a triangulation of the odd dimensional sphere
Sd−2j−1 and hence the Euler characteristic of the
link of a (2j −2)-simplex is 0. If we take the sum
of the Euler equations of the links of all (2j −2)-
simplices, then we get the second equation.

Similarly, we get the third equation by taking
the sum of the Euler equations of the links of all the
(2j −1)-simplices if d is odd.

The last two equations follow from first three
and the definition of h-vector. �

Thus, for a combinatorial d-manifold M,
fd(M), . . . , f(d+1)/2(M) can be express in terms
of f0(M), . . . , f(d−1)/2(M) if d is odd and
fd(M), . . . , fd/2(M) can be express in terms
of χ(M), f0(M), . . . , fd/2−1(M) if d is even.
Since, by the last equation in Theorem 4.1,
(h0(M), . . . , hb(d+1)/2c(M)) determines the h-
vector of M, it follows that the f -vector of M is
determined by (h0(M), . . . ,hb(d+1)/2c(M)). See
[33,41] for more.

For n ≥ d+2 and d ≥1, let ϕd(n,d+1) := dn−

(d+2)(d−1) and ϕk(n,d+1) :=
(d+1

k

)
n−

(d+2
k+1

)
k

for 1 ≤ k ≤ d−1. In the definition of stacked sphere,
we have seen that fk(S) = ϕk(n,d +1) for any n-
vertex stacked d-sphere S and k ≥ 1. In [14,15],
Barnette proved the following :

Theorem 4.2. (Lower Bound Theorem for
Polytopal Spheres.) If M is an n-vertex polytopal
d-sphere (d ≥ 2) then

(i) fk(M) ≥ ϕk(n,d +1) for 1 ≤ k ≤ d and
(ii) for d ≥ 3, fd(M) = ϕd(n,d +1) if and only if

M is a stacked sphere.

In [17], Barnette proved the following
generalization of Theorem 4.2 (i).

Theorem 4.3. If M is an n-vertex connected closed
triangulated manifold of dimension d ≥ 2, then
fd(M) ≥ ϕd(n,d +1).

Towards the classification of all the n-vertex
triangulated d-manifolds M for which fk(M) =

ϕk(n, d + 1), McMullen, Perles and Walkup
observed the following independently (see [15,41,
59]).

Theorem 4.4. Let M be an n-vertex d-dimensional
(d ≥ 1) simplicial complex, such that f1(lkM (σ)) ≥

ϕ1(degM (σ), d − i) for any i-simplex σ in M
(0 ≤ i ≤ d −2).

(i) Then fk(M) ≥ ϕk(n,d +1) for 1 ≤ k ≤ d.
(ii) Moreover, if fk(M) = ϕk(n,d + 1) for some

k ≥ 1 then f1(M) = ϕ1(n,d +1).

In [39], Kalai showed that for d ≥ 3, the edge
graph of any connected triangulated d-manifold is
“generically (d +1)-rigid” in the sense of rigidity of
frameworks. The case k = 1 of Theorem 4.3 is an
immediate consequence of Kalai’s rigidity theorem.
Kalai also succeeds in using his rigidity theorem to
prove the following :

Theorem 4.5. (LBT for Triangulated Manifolds).
If M is an n-vertex triangulated closed manifold of
dimension d ≥ 2 then

(i) f1(M) ≥ ϕ1(n,d +1) and
(ii) for d ≥ 3, f1(M) = ϕ1(n,d +1) if and only if

M is a stacked sphere.

In [71], Walkup proved Theorem 4.3 for
d = 3,4 and Theorem 4.5 for d = 3. For d = 2
one observes the following : If M is an n-vertex
connected combinatorial 2-manifold of Euler
characteristic χ(M) then f1(M) = 3n − 3χ(M)

and f2(M) = 2n − 2χ(M). For every connected
combinatorial 2-manifold M, χ(M) ≤ 2 and
χ(M) = 2 if and only if M is a (polytopal) 2-sphere.
Thus, (i) fi(M) ≥ ϕi(n,3) for 1 ≤ i ≤ 2 and (ii)
fi(M) = ϕi(n,3) for i = 1 or 2 if and only if M is a
(polytopal) combinatorial 2-sphere. From Theorems
4.4 and 4.5 one gets :

Theorem 4.6. Let M be an n-vertex triangulated
closed manifold of dimension d ≥ 3. If fk(M) =

ϕk(n,d + 1) for some k ≥ 1 then M is a stacked
d-sphere.

In [70], Tay generalized Theorem 4.5 to normal
pseudomanifolds to prove :

Theorem 4.7. (LBT for Normal Pseudomanifolds).
If M is an n-vertex normal pseudomanifold of
dimension d ≥ 2 then

(i) fk(M) ≥ ϕk(n,d +1) for 1 ≤ k ≤ d and
(ii) for d ≥ 3, if fk(M) = ϕk(n,d +1) for some k,

1 ≤ k ≤ d then M is a stacked sphere.

In [13], we have presented a self-contained
combinatorial proof of Theorem 4.7.

Let C d
n be the polytopal d-sphere as in

Example 3.15. Then C d
n is a b

d+1
2 c-neighbourly

combinatorial d-manifold and hence hj(C d
n ) =(n−d−2+j

j

)
for all j = 0, . . . , b

d+1
2 c. In [58],

McMullen proved the following :

Theorem 4.8. Let X be a triangulation of the sphere
S d with n vertices. Then

(i) If hj(X) ≤
(n−d−2+j

j

)
for all j = 0, . . . ,b d+1

2 c

then fi(X) ≤ fi(C d
n ) for all i = 0, . . . ,d.
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(ii) If X is a polytopal d-sphere then hj(X) ≤(n−d−2+j
j

)
for all j = 0, . . . ,b d+1

2 c.

In [67], Stanley proved the following ‘Upper
Bound Conjecture’ by showing that hj(X) ≤(n−d−2+j

j

)
for all j = 0, . . . ,b d+1

2 c whenever X

triangulates S d .

Theorem 4.9. (Upper Bound Theorem for
Spheres). Let X be an n-vertex simplicial complex. If
X triangulates S d then fi(X) ≤ fi(C d

n ) for 1 ≤ i ≤ d.

For a combinatorial d-sphere, we get the
following from Theorem 4.9 :

Corollary 4.10. Let M be an n-vertex k-neighbourly
d-dimensional pseudomanifold. If M triangulates the
d-sphere S d and n ≥ d +3 then k ≤ b

d+1
2 c.

Proof. Since C d
n is not (b d+1

2 c+1)-neighbourly
for all d with n ≥ d +3, the corollary follows from
Theorem 4.9. �

For a combinatorial d-sphere, Corollary 4.10
also follows from Theorem 4.1.

Let T and CP 2
9 be as in Examples 3.3 and 3.10

respectively. Then their f -vectors are as follows :
f (T ) = (7,21,14), f (CP 2

9 ) = (9,36,84,90,36).
Since the f -vectors of any S2

7 and C 4
9 are (7,15,10)

and (9,36,74,75,30) respectively, it follows that
the Upper bound theorem is not true for all
manifolds. In [62], Novik prove proved the
following generalizations of Theorem 4.9.

Theorem 4.11. (UBT for odd-dimensional
Homology Manifolds). Let X be an n-vertex
(2k − 1)-dimensional homology manifold. Then
fi(X) ≤ fi(C 2k−1

n ) for 1 ≤ i ≤ 2k−1.

Theorem 4.12. For d even, let X be an n-vertex d-
dimensional homology manifold. If either

(i) d ≡ 0 (mod 4) and χ(X) ≤ 2, or
(ii) d ≡2 (mod 4), χ(X)≥2 and Hd/2(|X|;Z)=0

then fi(X) ≤ fi(C d
n ) for 1 ≤ i ≤ d.

In [50], Lickorish presented a proof of the
following :

Theorem 4.13. Two simplicial complexes are
combinatorially equivalent if and only if they are
stellar equivalent.

Clearly, if two pseudomanifolds are bistellar
equivalent then they are combinatorially equivalent.
In [63], Pachner proved the following (see [50] for
a proof).

Theorem 4.14. Two combinatorial manifolds are
combinatorially equivalent if and only if they are
bistellar equivalent.

5. Minimal Triangulations
In this section, we are presenting some results
without proofs. Proofs are available in the references
given. We sometime identify a simplicial complex X
with the abstract simplicial Xa corresponding to X.

Let K be an n-vertex combinatorial 2-manifold.
If (n, f1, f2) is the f -vector then 2f1 = 3f2 and
f1 ≤

(n
2

)
. Thus, χ(K ) = n − f1 + f2 = n −

1
3 f1 ≥

n −
1
3

(n
2

)
=

7n−n2

6 . This implies that n ≥
1
2 (7 +

√
49−24χ(K )). It is known that the Klein bottle

(whose Euler characteristic is 0) has an 8-vertex
triangulation and has no 7-vertex triangulation
(Theorem 5.2 below). From the classification of
8-vertex combinatorial 2-manifolds (Theorem
5.3 below), we know that there is no 8-vertex
combinatorial 2-manifold of Euler characteristic
−1. In two articles ([64,38]), Ringel and Jungerman
proved the following :

Theorem 5.1. Let M be a closed surface which is
not the Klein bottle, the double torus or the non-
orientable surface of Euler characteristic −1. Then
M has an n-vertex triangulation if and only if
n ≥

1
2 (7+

√
49−24χ(M)). In each of those three

cases, one needs one more vertex for triangulations.

It is known that the only combinatorial 2-
manifolds on at most 6 vertices are S 2

4 , S 0
2 ∗ S1

3,
S 0

2 ∗ S 0
2 ∗ S 0

2 , 61(S1
5) and RP 2

6 . In [26], we have
shown the following :

Theorem 5.2. There are exactly nine 7-vertex
combinatorial 2-manifolds, five of which triangulate
the 2-sphere S 2, three of which triangulate RP 2 and
one triangulate S1

×S1.

In [29], we have proved the following :

Theorem 5.3. There are exactly 44 distinct
combinatorial 2-manifolds on 8 vertices. One of
these combinatorial 2-manifolds consists of two copies
of S 2

4 ’s, 14 of these triangulate S 2, 16 triangulate
RP 2, seven triangulate S1

×S1 and six triangulate
the Klein bottle.

For g ≥ 0, let M(g ,+) denote the orientable
surface of genus g and let M(g ,−) denote the
non-orientable surface of genus g . (So, M(1,+) =

S1
× S1 and M(2,−) is the Klein bottle.) Thus,

χ(M(g ,+)) = 2−2g and χ(M(g ,−)) = 2− g . In
[55,69], Lutz and Sulanke have enumerated (via
computer search) all the triangulated 2-manifolds
with at most 12 vertices. They have shown the
following :

Theorem 5.4. There are precisely 655 combinatorial
2-manifold with 9 vertices: 50 of these triangulate S2,
112 triangulate S1

× S1, 134 triangulate RP 2, 187
triangulate the Klein bottle, 133 triangulate M(3,−),
37 triangulate M(4,−) and 2 triangulate M(5,−).
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Theorem 5.5. There are precisely 42426
combinatorial 2-manifold with 10 vertices: 233
of these triangulate S2, 2109 triangulate S1

× S1,
865 triangulate M(2,+), 20 triangulate M(3,+),
1210 triangulate RP 2, 4462 triangulate the
Klein bottle, 11784 triangulate M(3,−), 13657
triangulate M(4,−), 7050 triangulate M(5,−),
1022 triangulate M(6,−) and 14 triangulate
M(7,−).

Theorem 5.6. There are precisely 11590894
combinatorial 2-manifold with 11 vertices: 1249
of these triangulate S2, 37867 triangulate S1

× S1,
113506 triangulate M(2,+), 65876 triangulate
M(3, +), 821 triangulate M(4, +), 11719
triangulate RP 2, 86968 triangulate the Klein bottle,
530278 triangulate M(3,−), 1628504 triangulate
M(4,−), 3355250 triangulate M(5,−), 3623421
triangulate M(6,−), 1834160 triangulate M(7,−),
295291 triangulate M(7,−) and 5982 triangulate
M(9,−).

Theorem 5.7. There are precisely 12561206794
combinatorial 2-manifold with 12 vertices: 7,595
of these triangulate S2, 605496 triangulate S1

×S1,
7085444 triangulate M(2,+), 25608643 triangulate
M(3,+), 14846522 triangulate M(4,+), 751593
triangulate M(5,+), 59 triangulate M(6,+),
114478 triangulate RP 2, 1448516 triangulate
the Klein bottle, 16306649 triangulate M(3,−),
99694693 triangulate M(4, −), 473864807
triangulate M(5, −), 1479135833 triangulate
M(6, −), 3117091975 triangulate M(7, −),
3935668832 triangulate M(8,−), 2627619810
triangulate M(9, −), 711868010 triangulate
M(10,−), 49305639 triangulate M(11,−) and
182200 triangulate M(12,−).

We know (see Theorem 5.30 below) that a
combinatorial 3-manifold on at most 7 vertices
is a polytopal 3-sphere. In [1], Altshuler proved the
following :

Theorem 5.8. Every combinatorial 3-manifold with
at most 8 vertices is a combinatorial 3-sphere.

In [34], Grünbaum and Sreedharan shown the
following :

Theorem 5.9. There are exactly 37 polytopal 3-
spheres on 8 vertices.

Grünbaum and Sreedharan have also
constructed the 8-vertex non-polytopal 3-sphere
S 3

8,38 (see Example 3.5). In [16], Barnette have
proved the following :

Theorem 5.10. There are exactly two non-polytopal
combinatorial 3-sphere on 8 vertices, namely, S 3

8,38

and S 3
8,39 (given in Example 3.5).

So, there are exactly 39 combinatorial 3-
manifolds with 8 vertices. We got a different proof
of this. This follows from the next two theorems
which we have proved in [30].

Theorem 5.11. Every 8-vertex 3-pseudomanifold
is obtained from a 2-neighbourly 8-vertex 3-
pseudomanifold by a sequence of bistellar 2-moves.

Theorem 5.12. If M is an 8-vertex 2-neighbourly
combinatorial 3-manifold then M is isomorphic to
one of S 3

8,35, . . . ,S 3
8,38 (given in Example 3.5).

In Example 3.16, we have seen that there
exists a 9-vertex triangulation (namely, K 3

9 ) of the
twisted product S2

×− S1 and there exists a 10-vertex
triangulation (namely, K 3

10) of S2
× S1. In [71],

Walkup proved the following :

Theorem 5.13. There exists an n-vertex
triangulation of S 2

×S1 only if n ≥ 10.

Theorem 5.14. If K is a combinatorial 3-manifold
and |K | is not homeomorphic to S 3, S2

×− S1

or S 2
× S1 then f1(K ) ≥ 4f0(K ) + 8 and hence

f0(K ) ≥ 11.

Thus, for a combinatorial triangulation of RP 3

one needs at least 11 vertices. Therefore, from
Example 3.6 and Theorem 5.14 one gets :

Corollary 5.15. There exists an n-vertex
triangulation of RP 3 if and only if n ≥ 11.

In [3,4], Altshuler and Steinberg showed (via a
computer search) the following :

Theorem 5.16. There are exactly 1297 combinatorial
3-manifolds on nine vertices. One of these is K3

9 and
other 1296 are combinatorial 3-spheres. Among these
1296 combinatorial spheres, 50 are 2-neighbourly.
Among these 50 2-neighbourly combinatorial spheres,
23 are polytopal and 27 are non-polytopal.

Altshuler and Steinberg also showed (using
computer) that any two of these 1296 spheres
are bistellar equivalent via a finite sequence of
proper bistellar moves. In [11], we have presented
computer-free proofs of the following :

Theorem 5.17. Every 9-vertex combinatorial 3-
manifold is obtained from a 2-neighbourly 9-vertex
combinatorial 3-manifold by a sequence of (at most
10) bistellar 2-moves.
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Theorem 5.18. Up to isomorphism, there is a
unique 9-vertex non-sphere combinatorial 3-manifold,
namely K 3

9 .

In [54,69], Lutz and Sulanke have enumerated
(via computer search) all the triangulated 3-
manifolds with 10 and 11 vertices. They have shown
the following :

Theorem 5.19. There are precisely 249015
combinatorial 3-manifold with 10 vertices: 247882
of these triangulate the 3-sphere S3, 615 triangulate
the twisted product S2

×− S1 and 518 triangulate the
sphere product S2

×S1.

Theorem 5.20. There are precisely 172638650
combinatorial 3-manifolds with 11 vertices:
166564303 of these triangulate the 3-sphere S3,
3116818 triangulate the twisted sphere product
S2

×− S1, 2957499 triangulate the sphere product
S2

×S1 and 30 triangulate the real projective 3-space
RP 3.

To get an estimate of the minimal number of
vertices for a triangulation of a 4-manifold in terms
of the Euler characteristic, Kühnel has proved the
following (in [43]) :

Theorem 5.21. If M is a combinatorial 4-manifold
with n vertices then 10(χ(M)−2) ≤

(n−4
3

)
. Equality

holds if and only if M is 3-neighbourly.

Since the Euler characteristic of any K3
surface is 24, by Theorem 5.21, any combinatorial
triangulation of a K3 surface requires at least
16 vertices. In [23], Casella and Kühnel have
constructed a 16-vertex triangulation of a K3
surface (K316 in Example 3.13). It follows from
Theorem 5.21 that any combinatorial triangulation
of (S 2

×S 2)#(S 2
×S 2) requires at least 12 vertices.

In [51], Lutz has proved the following :

Theorem 5.22. There are at least two 12-vertex
combinatorial triangulations of (S 2

× S 2)#(S 2
×

S 2).

Observe that the equality holds in Theorem
5.21 for S 4

6 , CP 2
9 and K316. In [46], Kühnel and

Laßmann showed (by the help of a computer) the
following :

Theorem 5.23. Let M be an n-vertex combinatorial
4-manifold. If n ≤ 13 and M is 3-neighbourly then
M = S 4

6 or CP 2
9 .

For negative Euler characteristic, we get a lower
bound of number of vertices from the following
result of Walkup [71] :

Theorem 5.24. If M is an n-vertex combinatorial
4-manifold then f1(M) ≥ 5n −

15
2 χ(M). Equality

holds if and only if the links of all the vertices are
stacked 3-spheres.

Since f1(M) ≤
(n

2

)
for any n-vertex simplicial

complex M, from Theorem 5.24, one gets the
following (cf. [44]) :

Corollary 5.25. If M is an n-vertex combinatorial
4-manifold then −15χ(M) ≤ n(n −11). Equality
implies M is 2-neighbourly.

In [37], Januszkiewicz has proved the following :

Theorem 5.26. If M is an n-vertex combinatorial
4-manifold then n− f1(M)+ f3(M) ≥ 0.

If M is a combinatorial 4-manifold then, from
Theorem 4.1, 15n − 5f1(M) + f3(M) = 15χ(M).
Thus, from Theorem 5.26, one gets the following :

Corollary 5.27. If M is an n-vertex combinatorial
4-manifold then 4f1(M) ≥ 14n−15χ(M).

A d-dimensional pseudomanifold has at least
d + 2 vertices. It is easy to see that the only d-
pseudomanifold with d +2 vertices is S d

d+2. It is
also known that a combinatorial d-sphere on d +3
vertices is a join of standard spheres. In [7], we have
seen the following :

Theorem 5.28. If M is a d-dimensional (d ≥ 1)

pseudomanifold with d + 3 vertices then M is a
polytopal sphere and is isomorphic to S c

c+2 ∗S d−c−1
d−c+1

for some c < d.

Thus, (d + 3)-vertex d-dimensional
pseudomanifolds are completely reducible. In
[57], Mani has proved the following :

Theorem 5.29. Every combinatorial d-spheres on at
most d +4 vertices is polytopal.

In [7], we have classified all the d-dimensional
pseudomanifold on d +4 vertices. In particular, we
have proved the following :

Theorem 5.30. For n ≥ 6, the n-vertex
combinatorial (n−4)-manifolds consist of :

(a) The 6-vertex combinatorial 2-manifold RP2
6

(defined in Example 3.2),

(b) completely reducible polytopal spheres; their

number is
⌊

n(n−6)
12

⌋
+1, and
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(c) irreducible polytopal spheres; their number is the
integer nearest to

2b(n−3)/2c
−

1

12
n2

−1+
1

4n

∑
r

ϕ(r)2n/r .

Here ϕ is Euler’s totient function and the sum is
over all the odd divisors r of n.

In [18], Barnette and Gannon proved the
following :

Theorem 5.31. Let M be an n-vertex combinatorial
d-manifold, where d ≥ 3 and n ≤ d +5. If d 6= 4 then
M is a combinatorial d-sphere.

In [20], Brehm and Kühnel proved the following
more general results :

Theorem 5.32. Let M d
n be an n-vertex

combinatorial d-manifold (d > 0).

(a) If n < 3dd/2e+3 then M d
n ≈ S d

d+2.

(b) If n = 3d/2+3 and M d
n 6≈ S d

d+2 then d = 2,4,8

or 16. Moreover, M 2
6 = RP 2

6 , M 4
9 triangulates

CP 2 and for d = 8 or 16, |M d
n | is a simply

connected cohomology projective plane over
quaternions or Cayley numbers, respectively.

In [45], Kühnel and Banchoff constructed a
9-vertex triangulation of CP 2 (see Example 3.10).
In [46], Kühnel and Laßmann showed (by the help
of a computer) the following :

Theorem 5.33. Up to isomorphism there is a unique
9-vertex triangulation of CP 2.

Computer-free proofs of the uniqueness of
CP2

9 have appeared in [5] and [6]. In [8], we have
presented a very short (theoretical) proof of the
uniqueness of CP 2

9 .
In [21], Brehm and Kühnel constructed three

15-vertex combinatorial 8-manifolds of Euler
characteristic 3. They also showed that these three
triangulate the same pl manifold, say ∼HP2. So, we
have :

Theorem 5.34. There exist at least three different
15-vertex combinatorial 8-manifolds which are not
combinatorial spheres.

All these 3 triangulations are 5-neighbourly and
hence do not allow any proper bistellar moves. Using
bistellar flips (from the three constructed by Brehm
and Kühnel), Lutz has found three more 15-vertex
combinatorial triangulations of ∼HP2.

Question 5.35. Is there a 27-vertex combinatorial
manifold of Euler characteristic 3?

In [5], Arnoux and Marin proved the following :

Theorem 5.36. If M is a non-sphere combinatorial
d-manifold on 3d/2 + 3 vertices then M satisfies
complementarity.

In [25], we have proved the following converse :

Theorem 5.37. Let M be an n-vertex combinatorial
d-manifold. If M satisfies complementarity then
d = 2,4,8 or 16 with n = 3d/2+3 and M is a non-
sphere.

In [27,9], we have shown the following :

Theorem 5.38. Let M be an n-vertex d-dimensional
pseudomanifold with complementarity. If n ≤ d +6
or d ≤ 6 then M is either RP 2

6 or CP 2
9 .

As a consequence of Theorems 5.1, 5.21, 5.32,
5.36 and Corollary 4.10, we get.

Theorem 5.39. Let M be an n-vertex combinatorial
2k-manifold. If either k ≤ 2 or n ≤ 3k + 3 then

(−1)k(χ(M)−2) ≤
(n−k−2

k+1

)
/
(2k+1

k

)
with equality

if and only if M is (k+1)-neighbourly.

In [44], Kühnel conjectured that Theorem 5.39
holds for any combinatorial 2k-manifold with n
vertices. In [62], Novik has proved the following :

Theorem 5.40. Let M be an n-vertex 2k-
dimensional homology manifold. If either
n ≤ 3k + 3 or n ≥ 4k + 3 then (−1)k(χ(M) −

2) ≤
(n−k−2

k+1

)
/
(2k+1

k

)
with equality if and only if M

is (k+1)-neighbourly.

Let M be a homology manifold. Let F be a
field such that M is orientable with respect to
F. Let βi = dimF H̃i(M;F). If the dimension of
M is 2k then by Poincaré duality (−1)k(χ(M)−

2) = βk − (βk+1 +βk−1)+ (βk+2 +βk−2)−··· =

βk + 2
∑k

j=1(−1)jβk−j = βk + 2
∑k−1

i=0 (−1)k−iβi.
In [62], Novik has shown that if M is (k + 1)-
neighbourly then βi = 0 for i 6= k, 2k, βk =(n−k−2

k+1

)
/
(2k+1

k

)
and Kühnel’s conjecture holds. She

has also proved the following theorem (which is
stronger than Theorem 5.40) :

Theorem 5.41. Let M be an n-vertex d-dimensional
homology manifold.

(a) If d = 2k and either n ≤ 3k +3 or n ≥ 4k +3

then βk +2
k−2∑
i=0

βi ≤
(n−k−2

k+1 )

(2k+1
k )

.

(b) If d = 2k and either n ≤ 3k +3 or n ≥ 7k +4

then
2k−1∑
i=1

βi = βk +2
k−1∑
i=0

βi ≤
(n−k−2

k+1 )

(2k+1
k )

.
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(c) If d = 2k−1 and either n ≤ 3k+2 or n ≥ 4k+1

then
2k−2∑
i=1

βi = 2
k−1∑
i=1

βi ≤
(n−k−2

k )

(2k−1
k )

·
2n

n+k+2 .

We know from Theorem 5.14 that the minimal
number of vertices required for a triangulation
of RP 3 is 11. We have seen in Example 3.12 that
there exists a 16-vertex triangulation of RP 4. In [5],
Arnoux and Marin proved the following :

Theorem 5.42. Let M be an n-vertex combinatorial
d-manifold. If the cohomology ring of |M| is same as

that of RP d then n ≥
(d+2

2

)
. Moreover, equality is

possible only for d = 1 and d = 2.

Theorem 5.43. Let M be an n-vertex combinatorial
2d-manifold. If the cohomology ring of |M| is same as
that of CP d then n ≥ (d +1)2. Moreover, equality is
possible only for d = 1 and d = 2.

Question 5.44. Is there a 17-vertex triangulation of
CP3?

From Examples 3.6 & 3.12, we know that there is
an 11-vertex triangulation of RP 3 and a 16-vertex
triangulation of RP 4. Let Pd be as in Example
3.21. Using bistellar flip, Lutz found a 24-vertex
triangulation of RP 5 from P5. We would like to
make the following :

Conjecture 5.45. The combinatorial manifold RP 4
16

defined in Example 3.12 is the unique 16-vertex
triangulation of RP 4.

Conjecture 5.46. For d ≥ 5, if there is an n-vertex

triangulation of RP d then n >
(d+2

2

)
+1.

In [20], Brehm and Kühnel proved the
following :

Theorem 5.47. Let M be a combinatorial d-
manifold with n vertices. If n ≤ 2d +3− i for some i
with 1 ≤ i < d/2 then |M| is i-connected.

Corollary 5.48. Let M be a combinatorial d-
manifold with n vertices. If |M| has the same
homology as S d−i

×S i then n ≥ 2d +4− i.

Thus, if m ≥ n ≥ 1 then for a combinatorial
triangulation of S m

×S n we need at least 2m+n+4
vertices. In Example 3.14, we have seen that there
exists a combinatorial triangulation of S 3

×S 2 with
12 vertices. In [51], Lutz has proved the following :

Theorem 5.49. There are at least two 13-vertex
combinatorial triangulations of S 3

×S 3.

In [12], we have improved the case i = 1 of
Theorem 5.47. We proved the following :

Theorem 5.50. Let X be a non-simply connected n-
vertex triangulated manifold of dimension d. If d ≥ 3
then n ≥ 2d +3.

In [10], we have proved the following :

Theorem 5.51. Let M be an n-vertex combinatorial
d-manifold. If |M| is a Z2-homology sphere and
n ≤ d +8 then M is a combinatorial sphere.

Theorem 5.52. Let M be a (d + 9)-vertex
combinatorial triangulation of a Z2-homology d-
sphere. If M is not a combinatorial sphere then M
can not admit any bistellar i-move for i < d.

We have seen in Example 3.7 that there exists a
12-vertex combinatorial triangulation of the lens
space L(3,1). Since L(3,1) is a Z2-homology 3-
sphere, Theorem 5.51 is sharp for d = 3. It follows
from Theorem 5.52 that a 12-vertex combinatorial
triangulation of L(3,1) can not admit any bistellar
i-move for 0 ≤ i ≤ 2. We would like to make the
following :

Conjecture 5.53. The combinatorial manifold L 3
12

defined in Example 3.7 is the unique 12-vertex
triangulation of L(3,1).

From Theorem 5.47, we know that a
triangulation of a non-simply connected closed
pl manifold of dimension d ≥ 3 requires at least
2d +3 vertices. We also know that there exist such
triangulations (namely, Kühnel’s combinatorial d-
manifold K d

2d+3 in Example 3.16) with (2d +3)

vertices. In [12] we have proved the following :

Theorem 5.54. For d ≥ 3, Kühnel’s complex K d
2d+3

is the only non-simply connected (2d + 3)-vertex
triangulated manifold of dimension d.

This result has provided the only known infinite
family of closed manifolds (other than spheres) of
dimensions more than 2 for which the minimal
triangulation is unique.

In [24], Chestnut, Sapir and Swartz have proved
the uniqueness of K d

2d+3 in the broader class of
homology d-manifolds but with a much more
restrictive topological condition. They have proved
the following :

Theorem 5.55. For d ≥ 4, Kühnel’s complex K d
2d+3

is the only (2d +3)-vertex homology manifold of
dimension d with first Betti number nonzero and
second Betti number zero.

From Examples 3.17 and Theorem 5.54 we get :

Corollary 5.56. The minimum number of vertices
for a triangulation of Sd−1

×S1 is 2d +3 for d even
and 2d +4 if d is odd.
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Corollary 5.57. The minimum number of vertices
for a triangulation of Sd−1

×− S1 is 2d +3 for d odd
and 2d +4 if d is even.

These results have provided the only known
infinite families of closed manifolds (other than
spheres) of dimensions more than 2 with vertex-
minimal triangulations. Other than these there are
ten exceptional examples of manifolds for which we
know vertex-minimal triangulations ([52]); see the
table below.

Ten known pl-manifolds which have vertex-
minimal triangulations :

Dimen- Manifolds No. of Minimality
sions vertices follows from

3 RP 3
= L(2,1) 11 Corollary 5.15 &

Example 3.6

3 L(3,1) 12 Theorem 5.51 &
Example 3.7

4 CP 2 9 Theorem 5.32 &
Example 3.10

4 S 2
×S 2 11 Theorems 5.21, 5.23

& Example 3.11

4 (S 2
×S 2)#

(S 2
×S 2)

12 Theorems 5.21 &
5.22

4 RP 4 16 Theorem 5.42 &
Example 3.12

4 a K3 surface 16 Theorem 5.21 &
Example 3.13

5 S 3
×S 2 12 Corollary 5.48 &

Example 3.14

6 S 3
×S 3 13 Corollary 5.48 &

Theorem 5.49

8 ∼HP 2 15 Theorems 5.32 &
5.34
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Experiment. Math. 9 (2000), 275–289.

20. U. Brehm and W. Kühnel, Combinatorial manifolds with few
vertices, Topology 26 (1987), 465–473.

21. U. Brehm and W. Kühnel, 15-vertex triangulations of an
8-manifold, Math. Annalen 294 (1992), 167–193.

22. J. W. Cannon, Shrinking cell-like decomposition of manifolds.
Codimension three, Ann. Math. 110 (1979), 83–112.

23. M. Casella and W. Kühnel, A triangulated K3 surface with the
minimum number of vertices, Topology 40 (2001), 753–772.

24. J. Chestnut, J. Sapir and E. Swartz, Enumerative properties of
triangulations of spherical boundles over S1, Euro. J. Comb.
(to appear). arXiv:math.CO/0611039, 2006.

25. B. Datta, Combinatorial manifolds with complementarity,
Proc. Indian Acad. Sci. (Math. Sci.), 104 (1994), 385–388.

26. B. Datta, Minimal triangulation, complementarity and
projective planes. In: Geometry from the Pacific Rim (ed.:
A. J. Berrick et al), pp. 77–84, Walter de Gruyter & Co.,
Berlin · New York, 1997.

27. B. Datta, Pseudomanifolds with complementarity, Geom.
Dedicata 73 (1998), 143–155.

28. B. Datta, Two dimensional weak pseudomanifolds on seven
vertices, Bol. Soc. Mat. Mexicana 5 (1999), 419–426.

448 Journal of the Indian Institute of Science VOL 87:4 Oct–Dec 2007 journal.library.iisc.ernet.in



Minimal Triangulations of Manifolds REVIEW

29. B. Datta and N. Nilakantan, Two dimensional weak
pseudomanifolds on 8 vertices, Proc. Indian Acad. Sci. (Math.
Sci.) 112 (2002), 257–281.

30. B. Datta and N. Nilakantan, Three dimensional
pseudomanifolds on eight vertices.
arXiv:math.GT/0701038, 2007.

31. J. Eells and N. H. Kuiper, Manifolds which are like projective
planes, Publ. Math. I.H.E.S. 14 (1962), 181–222.

32. L. C. Glaser, Geometrical Combinatorial Topology I, Van
Nostrand Reinhold Company, New York, 1970.
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