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Minimal Weight Digit Set Conversions
Braden Phillips, Member, IEEE, and Neil Burgess, Member, IEEE

Abstract—This paper considers the problem of recoding a number to minimize the number of nonzero digits in its representation, that

is, to minimize the weight of the representation. A general sliding window scheme is described that extends minimal binary sliding

window conversion to arbitrary radix and to encompass signed digit sets. This new conversion expresses a number of known recoding

techniques as special cases. Proof that this scheme achieves minimal weight for a given digit set is provided and results concerning

the theoretical average and worst-case weight are derived.

Index Terms—Digital arithmetic, redundant number systems, digit set conversion.

�

1 INTRODUCTION

EVALUATION of arithmetic functions can be simplified by
choosing an appropriate number representation. Radix

or digit set can be selected to suit the characteristics of an
algorithm or implementation technology. Such changes can
achieve a number of benefits: The frequency of useful digits
(such as zero) can be increased and the total number of
digits required to represent a number can be reduced. The
cardinality of the digit set can be reduced and this in turn
may reduce the number of precomputed intermediate
results to evaluate and store. Reduced cardinality also
simplifies digit encoding for hardware implementation and
increases the frequency of a given digit and, hence, the
benefit available from precomputation of partial results.

It is usually necessary to trade these benefits one against
the other. For example, increasing the radix usually reduces
the number of digits required to represent a number at the
cost of increased digit set cardinality.

Manipulation of number representation in this way is a
fundamental technique in computer arithmetic. It provides
an endless succession of publications as, for almost every
change in implementation or algorithm, a different number
representation becomes optimal. In many papers, the digit
set conversion is implicit in the algorithm and not studied
directly. Publications that deal with number representation
in a general fashion are more rare.

The goal of this paper is to formalize a large class of
number recoding techniques and provide general results
concerning cardinality and average arithmetic weight. An
algorithm for finding a representation of minimal arith-
metic weight is presented and characterized. Even where a
designer has no intention of implementing this algorithm
directly, these results provide a useful upper bound to the
benefit that can be expected from employing a digit set
conversion.

A notation to describe the conversion of a number
representation from one digit set to another is defined in
Section 2. This notation and terminology provides the solid
ground from which we proceed to survey existing digit set
conversions in Section 3 and to examine in detail a general
family of digit set conversions in Section 4.

1.1 Motivation

The focus in this paper is on digit set conversions that seek
to minimize the number of nonzero digits in the representa-
tion of a number. Our aim is to provide theoretical results
that are independent of a particular application or
implementation technology. Nonetheless, the engineering
audience will be concerned that these results are of more
than theoretical interest. It is appropriate, therefore, that we
consider possible applications before embarking on the
general study.

Let us begin by considering the multiplication of two
integers A�B. A typical implementation forms a partial
product aiB for each digit of the multiplier (ai). The final
result is formed from a sum of shifted partial products.
Clearly, whenever a digit is equal to zero, there is one fewer
partial product to generate and accumulate into the final
result. Although thus varying the number of partial
products is unlikely to be of any benefit for a general
hardware multiplier, it is a useful technique for some
software solutions [1] or for hardware when A is constant
[2]. The latter case—a constant coefficient multiplier—
occurs frequently in the implementation of digital filters.
By reducing the number of nonzero digits in the represen-
tation of the constant coefficients, the hardware complexity
is reduced and an improvement in clock speed may result.

The example of multiplication also exposes a trade off in
choosing a number representation. One may consider
precomputing a table of partial products faiB 8 ai 2 Ag.
Techniques to reduce the number of nonzero digits ai in the
representation of A typically increase the cardinality of the
digit set A and, hence, the size of the precomputed table
and the effort required in precomputation.

Digit set conversion to reduce arithmetic weight has also
been widely applied to exponentiation (for example, in [3],
[4], [5], [6], [7], [8], [9]). To calculate AB, most implementa-
tions require log2 B squarings and then a multiplication for
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every nonzero digit in B. Recoding the exponent B to
reduce the number of nonzero digits can be used to reduce
the number of multiplications.

The authors have also applied digit set conversion to
reduce arithmetic weight for modular reduction [10] and for
optimized squaring with precomputed partial products [11].

2 FORMALIZATION

In this section, we define a notation to express the
operation of digit set conversion between positional
number representations.

Let X be an n-digit positional representation of the integer
jjXjj using the digit set X . We write:

X ¼ ðxn�1; xn�2; . . . ; x0Þ 2 X
n

with

X � ZZ and xi 2 X 80 � i < n

such that

jjXjj ¼
X

n�1

i¼0

xir
i
X

for some radix rX 2 ZZ, rX � 2.
We may then define the following:

. A digit set conversion is a mapping F : Xn ! Ym such
that, if Y ¼ F ðXÞ, then jjY jj ¼ jjXjj.

. A fixed radix conversion is a digit set conversion F :

Xn ! Ym with rX ¼ rY ¼ r.
. The cardinality of a digit set X—the number of digits

in the set—is denoted by jXj.

Let us denote the set of representations of the integer i in
set Xn as VXnðiÞ according to:

VXnðiÞ ¼ fX : X 2 Xn ^ jjXjj ¼ ig:

Thus, the number of representations of the integer i in the
set Xn is jVXnðiÞj. We also denote the set of all integers with
representations in the set Xn as DXn ¼ fjjXjj : X 2 Xng.

This notation allows us to make the following definitions:

. A digit set X is complete for n-digit representations of
D if 8i 2 D 9X 2 Xn such that jjXjj ¼ i.

. A digit set X is redundant for n-digit representations
if 9i such that jVXnðiÞj > 1.

. A digit set X is nonredundant for n-digit representa-
tions if jVXnðiÞj � 1 8i 2 D.

2.1 Examples

Some examples will help to clarify these definitions.
Let us consider 3-digit representations (n ¼ 3) in a
digit set X ¼ f0; 1; 2; 3g in radix 4 (rX ¼ 4). One such
representation is X ¼ ð1; 0; 3Þ which has the integer
value jjXjj ¼ ð1� 42Þ þ ð0� 41Þ þ ð3� 40Þ ¼ 19. It can be
shown that this is the only representation of the value 19 in
X 3, that is, VX3ð19Þ ¼ fð1; 0; 3Þg and jVX3ð19Þj ¼ 1.

It is well-known that the set of all integers with 3-digit
representations in the set X is: DX3 ¼ f0; 1; 2; . . . ; 63g. We
can, therefore, say that the digit set is complete for 3-digit
representations of f0; 1; 2; . . . ; 63g. It is also possible to show

that each of these integer values has only one representation
in X 3. Hence, we may say that X is nonredundant for 3-digit
representations.

Let us take a second radix-4 digit set Y ¼ f0; 1; 2; 3; 4g
and imagine a digit set conversion F that maps representa-
tions in X3 onto representations in Y3. For example, it may
be that, for X ¼ ð1; 0; 3Þ, we have Y ¼ F ðXÞ ¼ ð0; 4; 3Þ. Note
that this conversion has preserved the arithmetic value of
the representation: jjY jj ¼ jjXjj ¼ 19. Also note that ð1; 0; 3Þ)
and ð0; 4; 3Þ are both valid representations of the value 19 in
Y3. In this case, we say that Y is redundant for 3-digit
representations.

2.2 Comments on this Notation

Digit set conversion as stated above is sufficiently general to
express a number of arithmetic representation schemes
from existing literature. It does not exclude the possibility
that the initial and final digit sets (X and Y) are the same
and that the digit set conversion is simply a recoding within
that digit set. Similarly, it does not preclude conversions
from digit sets in one radix to another. It is, however,
assumed that a digit set is associated with a single
radix—when we define the set X , we must also state the
radix rX . (Mixed radix conversions, for which this is not the
case, are discussed briefly in Section 3).

2.3 Weight of a Representation

In a redundant number system, there may be more than one
representation of a given algebraic value and those repre-
sentationswith theminimumnumber of nonzerodigits are of
particular interest. Subsequent sections place an emphasis on
digit set conversions that decrease the frequency of nonzero
digits. Let us now define this objective.

The number of nonzero digits in a number representa-
tion is variously called the Hamming weight, the arithmetic
weight, or just the weight of that representation. Hamming
weight is most often applied to the number of nonzero bits
in a binary representation. Here, we will just use the term
weight to emphasize that we may be dealing with the
number of nonzero digits in a higher radix representation.

Let CðY Þ be the weight of the representation Y , thus:

C : Ym ! ZZ

such that

CðY Þ ¼
X

m�1

i¼0

�ðyiÞ;

where �ðyiÞ ¼ 1 if yi 6¼ 0 and �ðyiÞ ¼ 0 otherwise.
We can then make the following definitions:

. The minimum weight of an integer jjY jj is:

MðjjY jjÞ ¼ minfCðYiÞ : Yi 2 Y
m ^ jjYijj ¼ jjY jjg:

. The average weight of a digit set conversion F : Xn !
Ym is:

CðF Þ ¼
X

X2Xn

CðF ðXÞÞ

jXnj
:
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. Call a representation Y a minimal representation if
CðY Þ ¼MðjjY jjÞÞ.

. Call the digit set conversion F : Xn ! Yn a minimal
digit set conversion if, for all Y ¼ F ðXÞ, Y is a minimal
representation of jjXjj.

3 EXISTING DIGIT SET CONVERSIONS

This section presents a survey of digit set conversions from
published literature, focusing on those that have been used
to produce representations of reduced weight.

3.1 Booth Recoding

Booth recoding [12] converts a 2’s complement binary
number to a signed binary digit set f�1; 0; 1g. The recoded
digits are selected from overlapping pairs of adjacent bits in
the original multiplier according to Table 1. For example,
the representation:

X ¼ ð1; 1; 0; 1; 1; 0; 1; 0; 1Þ ð1Þ

is converted to:

Y ¼ ð1; 0;�1; 1; 0;�1; 1;�1; 1;�1Þ: ð2Þ

Booth conversion can reduce the weight of a representa-
tion [13]. This is due to the frequently cited observation that
Booth conversion will replace strings of 1s by a string of
zeros thus: ð0; 1; 1; 1; 1Þ ¼ ð1; 0; 0; 0;�1Þ. However, Booth’s is
not a minimal recoding, as is evident from the example
above in which the weight of the recoded form (2) is greater
than that of the original (1).

If we consider the 2-bit scanning described by Table 1, it
can be seen that, for large n, each row of the table is equally
likely. Therefore, yi 6¼ 0 is chosen half of the time. Half of the
time an extra bit is required for yn ¼ 1. Hence, the average
weight is ðnþ 1Þ=2 and, despite the elimination of strings of
1s, there is no improvement over nonredundant binary.

3.2 Modified Booth Recoding

Booth conversion proceeds by considering pairs of adjacent
bits, with each pair overlapped by 1 bit. Modified Booth
recoding [14] is the extension of this process to 3-bit groups
overlapped by 1 bit. This is usually expressed as a
conversion to the radix-4 digit set f�2;�1; 0; 1; 2g according
to the recoding rule in Table 2.

Overlapping groups of 4-bits to convert to a radix-8 digit
set f�8;�6;�4;�2; 0; 2; 4; 6; 8g also appears in [14] and
there are many other examples of Booth conversion with
various length groups. The authors of [15], [16] and others
mention that the modified Booth technique (s-bit groups
overlapped by 1 bit) can be extended to groups of any size.
General treatments appear in [17] and [18] in which the
criteria to be met by all correct uniform overlapped multiple-bit

scanning techniques or generalized multibit recoding techni-
ques are derived.

Although the original Booth algorithm does not improve
the average weight, modified Booth conversion using 3-bit
scanning converts 2 bits to a nonzero digit three-quarters of
the time. For even n, an extra digit is required half the time
(i.e., when xn�1 ¼ 1). Thus, an averageweight of ð3nþ 4Þ=8 is
expected. To demonstrate that the conversion is notminimal,
we may consider the conversion X ¼ ð1; 0; 0; 1; 0; 0; 1; 0Þ to
Y ¼ ð1;�2; 1; 1;�2Þ and note that the alternative representa-
tion Y ¼ ð0; 2; 1; 0; 2Þ has lower weight.

3.3 Further Modifications of Booth Recoding

Booth’s original 2-bit scanning will convert the binary
representation ð0; 1; 1; 1Þ to ð1; 0; 0;�1Þ but will also convert
ð0; 1; 0; 1Þ to ð1;�1; 1;�1Þ. Modified Booth with 3-bit
scanning fails to be minimal when confronted with
sequences of three bits ð0; 0; 1Þ as in the example above. It
is possible to further improve the outcome by increasing the
number of bits scanned. This is the idea behind the recoded
binary method of [5] in which the signed bit yi is determined
by the four bits xiþ1, xi, xi�1, and xi�2. The resultant binary
representation Y has an average weight of 3n=8 for large n.
Unfortunately, this is no improvement over the 3-bit
scanning above.

Having performed a binary conversion to improve
weight, groups of adjacent bits can be combined to form
higher radix digits. This leads to the radix-4 string recoding
mentioned in [15] or the recoded m-ary method studied in [5].

The recoded m-ary method starts with the recoded
binary method to improve weight. Then, m-bit digits are
formed on regular m-bit boundaries. Following conversion
with the recoded binary method, not all m-bit strings of
signed bits can actually occur. This has the effect that the
final representation contains digits in the set:

f�2m�1; . . . ;�2;�1; 0; 1; 2; . . . ; 2m�2 þ 2m�1g:

For n-digit representations, the average weight following
conversion is approximately nð1� 5=ð2mþ2ÞÞ [19].1

3.4 Minimal Binary Conversion

Redundant binary representation with the digit set
f�1; 0; 1g, sometimes called modified signed digit representa-
tion (and often just called signed digit representation), does
not exhibit a unique minimal form. Algorithms to generate
a minimal representation are widely reported for both
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TABLE 1
Booth Recoding

TABLE 2
Modified Booth Recoding



multiplication (see, for instance, [14], [15], [20]) and
exponentiation (including [3], [6], [21]).

In [22], it was proven that the representation with no two
adjacent digits being both nonzero was both minimal and
unique for a given algebraic value. This representation is
variously called the canonic, sparse, or nonadjacent form. For
large n, an average weight of n=3 is expected [23]. The exact
distribution of weights of recoded n-bit representations is
derived in [24].

In the previous section, Booth recoded binary represen-
tations were converted to higher radix by grouping bits. The
same technique can be applied to a canonic binary
representation: a number in canonic binary form is
converted to radix r ¼ 2m by forming m-bit groups from
adjacent bits. A specific instance of this appears in [15] in
which the canonic binary form is converted to radix-4 by
forming digits from adjacent pairs of bits. The resultant
representation has digits from the set f�2;�1; 0; 1; 2g. The
more general case in which digits are formed on regular
m-bit boundaries has a target digit set:

f�ð2mþ2 � ð�1Þm � 3Þ=6; . . . ;�1; 0; 1; . . . ;

ð2mþ2 � ð�1Þm � 3Þ=6g:

For n radix r digits and n large, the average weight is
approximately nð1� 22�m=3Þ [19].

3.5 Minimal Higher Radix Conversion

In [25], the authors seek to extend the concept of the canonic
binary form to higher radices. They define a minimal form
called the generalized nonadjacent form (GNAF) using the
digit set f�rþ 1; . . . ; r� 1g. The minimal representation of
a number jjY jj using this digit set is not unique, but there is
only one representation, Y , which satisfies the extra
conditions:

if yiyiþ1 < 0 then jyij < jyiþ1j

jyi þ yiþ1j < r:

The authors provide an algorithm to convert from a
representation using digits f�rþ 1; . . . ; r� 1g to the corre-
sponding GNAF. This conversion involves propagation of
information from the rightmost digit to the left.

The authors of [23] seek their own canonic form for the
digit set f�rþ 1; . . . ; r� 1g. They find another conversion
algorithm (again propagating information to the left) and
use Markov chain analysis to show that the expected value
of the minimum weight is nðr� 1Þ=ðrþ 1Þ for large n.
Combinatorial techniques are used to find the probability
distribution of minimum weights.

3.6 Sliding Window Algorithms

A conversion to the set of odd digits Y ¼ f0; 1; 3; . . . ; 2m � 1g
is implicit in the exponentiation scheme of [26]. To convert
from binary, nonoverlapping groups of m-bits are consid-
ered. Each group forms a digit yi and an offset zi such that,
if the original group had a value xi, then xi ¼ yi2

zi . Fig. 1
demonstrates the process.

It can be seen that this method forms digits from groups
of adjacent bits or windows. The digits are separated by
strings of consecutive zeros. This method does not take
advantage of strings of zeros that do not appear on m-bit
boundaries. A more flexible window method is demon-
strated in [27]. Similar conversions are presented in [4], [7],
[20], [28].

The process to convert from the digit set X ¼ f0; 1g to
Y ¼ f0; 1; 3; . . . ; 2m � 1g can be simply expressed. Starting
with the least significant bit, x0, skip over all bits equal to 0
until a bit equal to 1 is found. This bit and the following
ðm� 1Þ bits form the odd digit y0. The process then returns
to skipping zeros until another digit, y1, is found and so on.
Fig. 2 shows an example.

The conversion to odd m-bit digits in [20] is dubbed an
adaptive m-ary segmentation. In [7], it is called SS(m) and, in
[29], it is shown to be a minimal conversion. The average
weight is found to be approximately n=ðmþ 1Þ with the
approximation getting better for large n.

The string replacement algorithm k-SR in which binary
numbers are converted to a representation using the odd
digits less than or equal to k is studied in [28]. A canonical k-
SR form is defined and the average weight for this
conversion is derived, observing, however, that the cano-
nical form is not always minimal. Note that SS(m) is a
special case of k-SR for k ¼ 2m�1 and will always generate a
minimal representation. The probability distribution of k-SR
recoded representations is derived in [30].

A combination of sliding windows and canonical
binary recoding is called adaptive m-ary segmentation
canonical recoding in [20] and width-m NAF representation
in [21]. A representation is first converted to binary
canonic form and a sliding window is then used to group
adjacent nonzero digits into odd digits. Hence, the target
digit set contains 0 and the ð2=3Þð2m þ ð�1Þmþ1Þ odd
digits with an m-bit canonical representation. For m � 3,
this is �f0; 1; 3; . . . ; ð2=3Þð2m þ ð�1Þmþ1Þ � 1g. The recoding
achieves an average weight for large n of 3n=ð3mþ 4Þ.

3.7 Mixed Radix Algorithms

There are similarities between the sliding window algo-
rithms above and the hybrid number systems of [8] and [9].
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Fig. 1. An example of the conversion from [26] in which groups of 4-bits form an odd digit yi and offset zi.

Fig. 2. An example of sliding window conversion. The binary form is converted by grouping 3-bit windows, starting from the right and progressing to

the left.



However, the former represent a number with redundant
digits from a single radix, whereas the hybrid methods use
two radices, selecting zero digits from the higher radix
whenever possible and nonzero digits from the lower radix
otherwise. A drawback of this approach is that conversion
requires repeated divisions by the numbers 3 or 5.

Table 3 shows a comparison between the two mixed
radix conversions and two other conversions (both of which
are specific instances of the general sliding window
algorithm described in Section 4). From this table, it can
be seen that, for similar digit sets, the sliding window
conversions produce comparable average weight and have
the advantage of trivial conversion from binary.

3.8 Search, Compression, and Other Algorithms

Given a particular arithmetic value, one might fix a digit set
and seek theminimumweight representation in that digit set;
alternatively, onemay set about to find a digit set that yields a
low weight representation. This paper considers the former
approach; the latter is studied in, for example, [4] and [27].

The conversion from [4] uses ideas from data compres-
sion to find patterns of bits in the binary representation of a
value and groups repeated patterns into higher radix digits.
A quick comparison between this and sliding window
conversion can be made by considering their application to
exponentiation. A typical exponentiation algorithm pre-
computes a table of digit powers Abi . During evaluation of
AB, a multiplication is required for every nonzero digit in
the recoded exponent. Taking 1,024-bit exponentiation as an
example, we find that the scheme in [4] requires an average
of 68 multiplications and 8.5 squares in precomputation and
137 multiplications in evaluation. The binary unsigned
sliding window conversion SS(6) (from Section 3.6—a
specific instance of the general sliding window algorithm
of Section 4) would require 31 multiplications and 1 square
in precomputation and an average of 146.3 multiplications
in evaluation.

More general comparisons between sliding windows
and search or compression conversions are difficult to
make. The former use a digit set comprising adjacent odd
digits; the latter use a sparse digit set with very long digits
built-up as patterns extended from shorter digits. The
former use an Oðlog jjXjjÞ conversion procedure, whereas

the latter may require complex searches to find a good
conversion. The best conversion will depend on the target
application.

Finally, it is worth noting that another approach is
possible: One may abandon digit set conversion to a
positional representation and yet still seek to decompose a
number into a representation that facilitates efficient
computation. Thus, in [31], an exponent is represented by
an addition chain for efficient exponentiation and, in [2], a
multiplier is factorized for efficient multiplication.

4 GENERALIZED SLIDING WINDOWS

Let us consider, in very general terms, the complexity of
minimal digit set conversion. According to [32], fixed radix
conversion from any digit set with radix greater than 2, to a
complete, redundant, contiguous digit set can take place in
constant time. Does this still hold if the conversion must
also be minimal?

Fig. 3 examines a fixed radix conversion to a
complete, redundant, but noncontiguous digit set.
Consider conversion of the least significant digit. For
a correct conversion, jjY jjmod r ¼ jjXjjmod r and, thus,
we must have y0 mod r ¼ x0 mod r. This means that there
are only two possible choices in Y for y0 and Fig. 3 traces the
implications of each decision. Note that the optimal choice
of y0 depends upon the values of an arbitrary number of
digits to the left. Similarly, an optimal choice of ym cannot
be made without examination of all of the digits to the right.

The problem in Fig. 3 arises because of carry propagation
due to the introduction of a negative digit. A similar
situation can be constructed using positive digits and
borrow propagation, as in Fig. 4.

An upper bound on the complexity of finding a minimal
representation in these digit sets can be determined by
considering a brute force approach in which the complete
set of possible representations is enumerated. Beginning at
the least significant digit, x0, one can record each of the
possible values for y0. For each value of y0, there will be a
set of possible values for y1 and, proceeding in this manner,
one can find the set of representations VYnðjjXjjÞ. If there are
at most d possible values for each digit, then enumerating
all representations is a process of complexity OðdnÞ.
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The awkwardness of these two examples is due to their
noncontiguous digit sets. However, as discussed in the
following sections, there are some useful noncontiguous
digit sets for which less computationally complex minimal
conversions can be found.

4.1 A Generalized Sliding Window Algorithm

The sliding window algorithms of Section 3 can be seen as
specific instances of a more general family of sliding
window digit set conversions. Let us define a family of
digit set conversions SWr;m;l;u.

The digit set conversion SWr;m;l;u : Xn ! Ynþ1 is a fixed
radix-r conversion from digit set X ¼ f0; 1; 2; . . . ; r� 1g to
the set of digits Y ¼ fy : l � y � u; y 6¼ 0 mod rg [ f0g. The
parameter m is the width of the sliding window and must
be an integer greater than or equal to 1. This results in a
target digit set of cardinality given by (3).

jYj ¼ u� lþ 1� bu=rc � bð�lÞ=rc: ð3Þ

The lower and upper bounds on the target digit set, l and
u, respectively, are subject to a number of conditions. The
digit set must contain 0 and, for the representation of
positive integers, it must contain 1. Also, for every window
of m digits ðxiþm�1; . . . ; xiþ1; xiÞ and a carry bit c 2 f0; 1g,
the target digit set must contain either of the digits:

yi ¼ cþ
X

m�1

j¼0

xiþjr
j or yi ¼ c� rm þ

X

m�1

j¼0

xiþjr
j: ð4Þ

These considerations lead to the following conditions:

1. 1� rm � l � 0,
2. 1 � u � rm � 1,
3. jYj � rm � rm�1 þ 1.

The proof of the minimality of SW given in the
Appendix also requires:

4. umod r ¼ �1,
5. if l < 0, then lmod r ¼ 1.

An algorithm for the SW conversion is given as
pseudocode in Fig. 5. This begins by converting the least

significant digit and proceeds to convert digits to the left.
Zeros are skipped until a nonzero digit, xi, is found: This
and the following m� 1 digits form the digit yi. At this
point, SW checks if the digit set Y contains the digit yi. If
not, according to (4), Y must contain yi � rm and this digit is
used instead. The algorithm also checks xiþm. If xiþm ¼
r� 1 and it is possible to set yi negative, a carry is generated
that will set yiþm and, possibly, subsequent digits to zero.
Table 4 shows some examples. Note that SW may generate
a carry out that will require one extra digit to store.

The following sections derive some general results
concerning the SW conversion. One result, the complexity,
can be obtained immediately from the algorithm. We note
that there is one iteration of the SW algorithm for each digit
ofX. From this, it is clear that the computational complexity
of SW is Oðlog jjXjjÞ.

4.2 Minimality of SW

Theorem 1 below states the minimality of the SW
conversion. Proof of this result is provided in the Appendix.

Theorem 1. For all X 2 Xn, we have

CðSWr;m;l;uðXÞÞ ¼MðjjXjjÞ:

4.3 Average Weight of SW

The average weight of SWr;m;l;u can be determined by
Markov analysis of the state diagram in Fig. 6 (following the
procedure employed in [33]). Each state represents the
selection of a single digit.

In Fig. 6, the value p corresponds to the probability of
choosing yiþm ¼ 0 following the selection of some yi 6¼ 0. To
determine this value, we need to consider the selection of
the nonzero digit that occurs on the transition from state 0
to state 1. Let us start by imagining the system is in state 0
and that the previous nonzero digit selected was greater
than 0. In the algorithm of Fig. 5, this corresponds to the
carry variable being zero. We will choose a nonzero digit
for yi if xi 6¼ 0, i.e., in rm�1ðr� 1Þ possible cases. Of these,
we will choose a positive digit such that ym ¼ 0 when x ¼
Pm�1

j¼0 rjxiþj � u and xiþm ¼ 0. The number of cases with
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Fig. 3. A difficult digit set conversion. The optimal choice of the least significant digit depends on which string of 7s is longer. This decision can only

be based on knowledge of all the digits rather than just a finite subset.

Fig. 4. Another difficult digit set conversion. The optimal choice of the least significant digit depends on which is longer: the initial string of 0s or the

recurring string of 1s and 6s.



x � u given that xi 6¼ 0 is u� bu=rc and the probability of

xiþm ¼ 0 is 1=r. Therefore, the probability of choosing a

positive digit yi > 0 such that yiþm ¼ 0 is:

Prðyi > 0 \ yiþm ¼ 0 j xi 6¼ 0 \ carry ¼ 0Þ ¼
u� bu=rc

rmðr� 1Þ
: ð5Þ

Similar considerations lead to the following probabilities:

Prðyi < 0 \ yiþm ¼ 0 j xi 6¼ 0 \ carry ¼ 0Þ ¼
�l� b�l=rc

rmðr� 1Þ
;

ð6Þ

Prðyi > 0 \ yiþm ¼ 0 j xi 6¼ 0 \ carry ¼ 1Þ ¼
u� bu=rc

rmðr� 1Þ
;

ð7Þ
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Fig. 5. Pseudocode for the general sliding window digit set conversion SWr;m;l;u.

TABLE 4
Examples of SW Conversion



Prðyi < 0 \ yiþm ¼ 0 j xi 6¼ 0 \ carry ¼ 1Þ ¼
�l� b�l=rc

rmðr� 1Þ
:

ð8Þ

Taking the sum of (5) and (6) or (7) and (8) yields the same

result and, hence, the value of p is independent of the carry

variable:

p ¼ Prðyi 6¼ 0 \ yiþm ¼ 0 j xi 6¼ 0Þ ¼
u� l� b�l=rc � bu=rc

rmðr� 1Þ
:

ð9Þ

Now, define piðkÞ as the probability of being in state i

after k digits. From Fig. 6, we can write:

p0ðkþ 1Þ ¼
1

r
p0ðkÞ þ p pmðkÞ;

p1ðkþ 1Þ ¼
r� 1

r
p0ðkÞ þ ð1� pÞpmðkÞ;

piðkþ 1Þ ¼ pi�1ðkÞ þ
1

r
pmðkÞ for 2 � i � m:

These equations can be combined into a single matrix

equation:

P ðkþ 1Þ ¼ QP ðkÞ; ð10Þ

where

Q ¼

1
r 0 0 0 . . . 0 p

r�1
r 0 0 0 . . . 0 1� p
0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Taking the Z-transform of (10) and rearranging yields:

PðzÞ ¼ ½zI �Q��1zP ð0Þ; ð11Þ

where PðzÞ is the Z-transform of P ðkÞ. Equation (11) can be

solved using row-reduction to perform the matrix inver-

sion. As k!1, the frequency of state i approaches kpiðkÞ

(from the strong law of large numbers for Markov chains

[23]) and the final value theorem for Z-transforms asserts

that limk!1 pðkÞ ¼ limz!1ðz� 1ÞPðzÞ. Thus, we find that:

lim
k!1

p1ðkÞ ¼
1

mþ ðprÞ=ðr� 1Þ
: ð12Þ

There is a state transition for each of the n digits and the

frequency of state 1 corresponds to the frequency of

nonzero digits. So, the average weight for large n is:

CðSWr;m;l;uÞ �
n

mþ ðprÞ=ðr� 1Þ
: ð13Þ

4.4 Worst-Case Weight

The worst-case weight for SWr;m;l;u occurs when every mth
digit in the final representation is nonzero. The worst-case
weight is therefore dn=me. The conversion of C in Table 4
shows an example.

There is an exception for the case r ¼ 2, l ¼ 1� 2m, and
u ¼ 2m � 1. In this instance, it is always possible to set the
bit following a window to zero. The worst-case weight
occurs when a window is formed every mþ 1 digits. The
weight is then bn=ðmþ 1Þc þ 1. The conversion of D in
Table 4 shows an example.

5 EVALUATION AND CONCLUSIONS

5.1 Evaluation

Table 5 summarizes the features of many of the digit set
conversionsdiscussed in thispaper andshows those thatmay
be considered equivalent to a specific instance of the SW
conversion (equivalent in that both are minimal conversions
to the same digit set). Note that SW conversion expresses as
special cases a number of widely used conversions (such as
binary canonic form and unsigned sliding windows) as well
as some more exotic extreme cases.

That SW conversion is minimal does not necessarily
mean it will be the best choice for a given application. For
example, in many circumstances, it would be better to
choose a constant-time nonminimal conversion such as
modified Booth than a logarithmic-time minimal SW
conversion. Nevertheless, the results concerning SW con-
version do provide a set of bounds according to which such
design decisions can be made.

Where an SW conversion is used, the general results
allow a designer to explore the trade off between digit set
and weight. Such comparisons are considered in [1] and
[10] which describe an implementation of the 1,024-bit RSA
public key cryptosystem that makes extensive use of sliding
window conversion.

The critical function of this system was to evaluate
512-bit modular powers and to do so on a RAM-constrained
32-bit microprocessor without a hardware multiplier or a
long-wordlength hardware coprocessor. Sliding window
digit set conversion was used for modular exponentiation,
multiplication, modular reduction, and optimized squaring.
The case of multiplication provides a useful example for the
current discussion.

For a multiplication B�A, a table of partial products biA
was precomputed. Then, to evaluate the product, an
accumulation was required for every nonzero digit in the
multiplier. Binary signed sliding windows SW2;m;�2mþ1;2m�1

were used to recode the multiplier. Note, however, that
only the positive partial products fA; 3A; . . . ; ð2m � 1ÞAg
were precomputed as negative partial products can be
handled by subtracting the corresponding positive partial
product. That negative partial products can be handled in
this way gives the signed conversion SW2;m;�2mþ1;2m�1 an
advantage over the unsigned SW2;mþ1;0;2mþ1�1 which other-
wise achieves the same average weight for a digit set of the
same cardinality.
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Fig. 6. State diagram for SWr;m;l;u. State 0 corresponds to the selection

of a zero such that the next digit may be nonzero. State 1 selects a

nonzero digit. States 2 to m represent the selection of the m� 1 zeros
that must follow a nonzero digit.



Fig. 7 shows the trade off between window length m

and the total number of accumulations required for a 512-

bit multiplication (including those required for precom-

putation). It is worth observing that a slightly suboptimal

choice of m does not increase the number of operations

dramatically but does reduce the size of the tables of

precomputed results. (In the example, choosing m ¼ 4

rather than m ¼ 5 increases the average number of

accumulations from 88.14 to 99.33, but reduces the number

of precomputed partial products to store from 16 to 8.)
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TABLE 5
Summary of Digit Set Conversions



5.2 Conclusions

Although conversion to a redundant digit set can be
accomplished in constant time, the examples at the
beginning of Section 4 demonstrate that the conversion to
a representation of minimal weight may be of exponential
complexity. However, there is a large class of digit sets for
which a minimal representation may be found using a
sliding window conversion of logarithmic complexity. The
SW conversion scheme described in this paper encom-
passes signed and unsigned digit sets at arbitrary radix and
expresses a number of previously published sliding
window conversions as special cases. Proof of the minim-
ality of SW as well as general results concerning digit set
cardinality and average weight have been provided.

Exploration of the SW parameters (radix, window
length, lower and upper digit set bounds) exposes trade
offs in the design of a system and allows designers to
choose an optimal conversion for their particular applica-
tion and implementation platform.

APPENDIX A

PROOF OF THE MINIMALITY OF SW

A.1 The Effect of Carry Propagation

To prove the minimality of SWr;m;l;u, it will help to make
some preliminary observations concerning the effect of
injecting carry (or borrow) digits into a representation.

Lemma 1. Given a representation A in the SWr;m;l;u digit set An

and values i 2 ½0; nÞ and c 2 ½l=ðr� 1Þ; u=ðr� 1Þ�, it is
possible to find a representation A0 from the same digit set
such that jjA0jj ¼ jjAjj þ cri and CðA0Þ � CðAÞ þ 1.

Proof. The Algorithm given in Fig. 8 can be used to
construct A0 from A. Within the loop, the new digit a0i ¼
ai þ c must satisfy one of the following four cases:

1. a0i 	 0 mod r. In this instance, we set a0i ¼ 0,
thereby reducing the weight of the represen-
tation by 1. To compensate for this change,
a carry is propagated to the left. From l �
ai � u and l=ðr� 1Þ � c � u=ðr� 1Þ, we have
l=ðr� 1Þ � a0i=r � u=ðr� 1Þ. So, the carry out is
subject to the same bounds as the carry in and we
may proceed to consider the effect of the carry out
on the weight of the new representation.

2. a0i > u and a0i mod r 6¼ 0. We have u < a0i � uþ
u=ðr� 1Þ from which we may derive that
u > a0i � rm > l. Also note that for, a0i > u, we
must have ai > 0. We can therefore set a0i to the
valid digit a0i � rm. This change does not imme-
diately effect the weight of the representation;
however, to correct for this change, a carry of 1 is
propagated into the digit a0iþm. This carry propa-
gation may have a subsequent effect on the
weight.

3. a0i < l and a0i mod r 6¼ 0. We have l > a0i � lþ
l=ðr� 1Þ from which we may derive that
u > a0i þ rm > l. Also note that, for a0i < l, we
must have ai < 0. We can therefore set a0i to the
valid digit a0i þ rm. This change does not imme-
diately effect the weight of the representation;
however, to correct for this change, a carry of �1
is propagated into the digit a0iþm. This carry
propagation may have a subsequent effect on the
weight.

4. a0i 2 A, in which case A0 is a valid representation
and the carry propagation will terminate. If
a0i ¼ 0, then the weight has decreased by one; if
a0i 6¼ 0 and ai 6¼ 0, then the weight is unchanged;
or, if a0i 6¼ 0 and ai ¼ 0, then the weight has
increased by 1.

The weight of the representation is only increased
when the carry terminates. Therefore, the injection of the
carry can increase the weight of the representation by at
most 1. tu

Lemma 2. Given a representation A in the SWr;m;l;u digit set An

with ai 6¼ 0 for some i 2 ½0; nÞ and a value c ¼ �1, it is
possible to find a representation A0 from the same digit set such
that jjA0jj ¼ jjAjj þ cri and CðA0Þ � CðAÞ.

The proof of Lemma 2 follows that of Lemma 1 with the

additional observation that either the carry does not

propagate (and the weight is unchanged) or, due to
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Fig. 7. Number of accumulation operations for 512-bit multiplication

using SW2;m;�2mþ1;2m�1.

Fig. 8. Pseudocode for carry propagation in a representation using the

SW digit set.



conditions 4 and 5 in Section 4.1, it is possible to set a0i ¼ 0

(in which case the worst carry propagation can do is restore

the weight to its original value).

A.2 The Minimality of SW

We are now ready to provide the proof for the minimality of

SWr;m;l;u. Recall that we wish to prove Theorem 1 which

states that, for all X 2 Xn, we have

CðSWr;m;l;uðXÞÞ ¼MðjjXjjÞ:

Proof. Let us assume the contrary and seek a contradiction.

Assume that, for some X with Y ¼ SWr;m;l;uðXÞ, there

exists another representation Z 2 Yn such that jjZjj ¼

jjY jj and CðZÞ < CðY Þ. Consider the following cases:

1. y0 ¼ z0 ¼ 0. Let Y 0 ¼ ð0; yn�1; . . . ; y2; y1Þ ¼ RðY Þ,
that is, Y , shifted right by 1 digit. Let Z0 ¼ RðZÞ.
N o w , jjY 0jj ¼ jjZ0jj, CðY 0Þ ¼ CðY Þ, a n d
CðZ0Þ ¼ CðZÞ, so, without loss of generality, let
us test the case of Y 0 and Z0 instead.

2. y0 ¼ z0 6¼ 0. Let Y 0 ¼ ð0; yn�1; . . . ; y2; y1Þ ¼ RðY Þ,
that is, Y , shifted right by one digit. Let
Z0 ¼ RðZÞ. Now, jjY 0jj ¼ jjZ0jj, CðY 0Þ ¼ CðY Þ � 1,
and CðZ0Þ ¼ CðZÞ � 1, so, without loss of general-
ity, let us test the case of Y 0 and Z0 instead.

3. z0 ¼ 0, y0 6¼ 0. From jjY jj ¼ jjZjj, we must have
jjY jjmod r ¼ jjZjjmod r. G i v e n jjY jjmod r ¼
y0 mod r 6¼ 0 f o r y0 6¼ 0 a n d y0 2 Y a n d
jjZjjmod r ¼ z0 mod r ¼ 0, we conclude jjY jjmod

r 6¼ jjZjjmod r and this contradicts the require-
ment that jjY jj ¼ jjZjj.

4. z0 ¼ y0 � rm and ðz1; . . . ; zm�1Þ ¼ ð0; . . . ; 0Þ. From
jjY jjmod rmþ1 ¼ jjZjjmod rmþ1, we have zmr

m þ
z0 ¼ ymr

m þ y0 þ armþ1 for some integer a. Sub-
stituting z0 ¼ y0 � rm gives:

zm ¼ ym þ arþ 1: ð14Þ

Now, for z0 2 Y condition 1 in Section 4.1 implies

that �rm þ 1 � z0 ¼ y0 � rm and, hence, y0 � 0. In

converting x0 to y0 with SW , y0 has not been set

negative and we can therefore conclude that

xm 6¼ r� 1. Proceeding with SW , we generate

ym from xm by adding multiples of r. We must

have ym 6¼ ð�1Þmod r. We can now return to (14)

and conclude that zm 6¼ 0. This means that it is

possible to set z00 ¼ z0 þ rm ¼ y0 and compensate

for this change by subtracting 1 from z0m and

propagating any borrow to the left. According to

Lemma 2 above, this process can only reduce the

weight of Z0 or leave it unchanged. Finally,

jjZ0jj ¼ jjY jj, CðZ0Þ � CðZÞ, and z00 ¼ y0, so case 2

provides a contradiction. (Note that this case can

only occur for l < 0. Therefore, the requirement

that lmod r ¼ 1 can be relaxed for l ¼ 0.)
5. z0 ¼ y0 þ rm and ðz1; . . . ; zm�1Þ ¼ ð0; . . . ; 0Þ. From
jjY jjmod rmþ1 ¼ jjZjjmod rmþ1, we have zmr

m þ
z0 ¼ ymr

m þ y0 þ armþ1 for some integer a. Sub-
stituting z0 ¼ y0 þ rm gives:

zm ¼ ym þ ar� 1: ð15Þ

Now, for z0 2 Y, condition 2 in Section 4.1 implies

that rm � 1 � z0 ¼ y0 þ rm and, hence, y0 � 0. In

converting x0 to y0 with SW , y0 has been set

negative and we can therefore conclude that

xm ¼ r� 1. Proceeding with SW , we will choose

ym ¼ 0. We can now return to (15) and conclude

that zm 6¼ 0 for r � 2. This means that it is possible

to set z00 ¼ z0 � rm ¼ y0 and compensate for this

change by adding 1 to z0m and propagating any

carry to the left. According to Lemma 2 above,

this process can only reduce the weight of Z0 or

leave it unchanged. Finally, jjZ0jj ¼ jjY jj,

CðZ0Þ � CðZÞ, and z00 ¼ y0, so case 2 provides a

contradiction.
6. For all remaining possibilities with z0 6¼ 0 and

y0 6¼ z0, we will use a process that transforms Z

i n t o s om e Z0 s u c h t h a t jjZ0jj ¼ jjZjj,

CðZ0Þ ¼ CðZÞ, and either z0 ¼ y0 or z0 ¼ y0 �

rm and ðz1; . . . ; zm�1Þ ¼ ð0; . . . ; 0Þ. We can then

refer to one of the cases above for a contradiction.
We must have jjY jjmod rm ¼ jjZjjmod rm and,

hence,

X

m�1

i¼0

zir
i mod rm ¼ y0 mod rm

because, for SW , we have yi ¼ 0 for 0 < i < m.

This implies that, for some integer a,

z0 � y0 ¼ arm � zm�1r
m�1 � zm�1r

m�2 . . .� z1r:

To transform Z to Z0, begin by setting Z0 ¼ Z and

proceed to examine each of the z0i for i ¼ 1 to

i ¼ m� 1. If z0i is not zero, then z0 � y0 is a

multiple of ri. Set z00  z00 þ riz0i and z0i  0,

thereby reducing the weight of Z0 by 1. We have

that lþ lri � z00 � uþ uri and it can be shown that

it is possible to choose an integer � 2 ½l=ðr�

1Þ; u=ðr� 1Þ� such that l � z00 � �rm � u. We can

therefore set z00 to a valid digit and correct for this

change by propagating a carry into z0m. According

to Lemma 1, this carry may increase the weight of

Z0 by at most 1. Overall, the effect of setting z0i ¼ 0

either decreases the weight of Z0 or leaves it

unchanged.

When the transformation terminates, we have

z0i ¼ 0 for 0 < i < mand,hence, z00 � y0 ¼ arm.Also

1� rm � z00 � rm � 1 and 1� rm � y0 � rm � 1, so

�ð2rm � 2Þ � arm � 2rm � 2 and, hence, z00 ¼ y0
or z00 ¼ y0 � rm as required.

All six cases lead to a contradiction of the assumption

that there exists a representation with a weight less than

that produced by SWr;m;l;u. Hence, the hypothesis that

SWr;m;lu is minimal holds. The conversion SWr;m;l;u

always produces a minimal representation for its target

digit set. tu
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