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 Minimal Constructions 

A construction is minimal if it cannot 
be simplified by eliminating any one of 
its components 



 

Minimalism is a Very Popular Topic 
in Cryptography: 

There are many papers on: 

 

Minimal cryptographic assumptions 

Minimal key sizes 

Minimal # rounds in Feistel structures 

Minimal # of honest parties in Protocols 

….. 



 

Minimal Provably Secure Stream Ciphers: 

 

 The one time pad: 

 Ciphertext = Plaintext + Key 

 



 

Minimal Provably Secure Block Ciphers: 

 At Asiacrypt 91, Even and Mansour tried to 
construct the simplest possible block cipher 
which has a formal proof of security: 
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Minimal Block Ciphers: 

 In a minimal construction, there should be no 
key-independent invertible operations F and G 
which are applied to the plaintext or ciphertext 
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Minimal Block Ciphers 

The simplest way to process the plaintext 
and ciphertext in a key dependent way is 
to XOR to them a prewhitening key K1 and 
a postwhitening key K2: 
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The Even-Mansour Scheme: 

 Replace the middle part by a single, publicly 
known, randomly selected, keyless permutation F: 
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The Minimality of the Even-Mansour 
Scheme: 

Eliminating either K1 or K2 makes the 
scheme easily breakable since F is known 
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The Minimality of the Even-Mansour 
Scheme: 

 

Eliminating F makes the scheme linear 
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To Study the Exact Security of EM, We 
Have to Formalize an Attack Model: 

Consider the following 4-tuple of 
values in each encryption E(x)=w 
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To Study the Security of EM, We 
Have to Formalize an Attack Model: 

 The attacker is allowed to ask for D pairs of 
known or chosen (X,W) values (D stands for data) 

 The attacker is allowed to evaluate (by himself)  
T pairs of  (Y,Z) values (T stands for time) 

      F 

 

 + + 
W 

 

 

X 

K1 K2 

  

 

 

Z Y 



 

Important Remarks: 

We are old fashioned cryptanalysts here: A 
successful attack means complete key recovery 

 

We distinguish between cheap queries to F and 
expensive queries to E 



 
Is the Even-Mansour Scheme Secure? 

 In their original paper, Even and Mansour formally 
proved that any attack must satisfy  DT > Ω(2n) 

 

 The lower bound proof is information theoretic, 
and  is applicable both to known plaintext attacks 
and to chosen plaintext attacks 

 



 
The EM Proof of Security (Simplified) 

 Initially there are 22n possible keys (K1,K2) 
 

 Given D pairs of (X,W) values of E and T pairs of 
(Y,Z) values of F, we can combine them in DT 
possible ways into a 4-tuple of values (X,Y,Z,W) 
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The EM Proof of Security (Simplified) 

 Each 4-tuple suggests a unique value for the two 
keys via K1=X+Y and K2=Z+W 

 

We cannot say that these values are correct. 
However, we can say that for each K1 all the 
other values of K2 are certainly incorrect 

 

 Similarly, for each K2 all the other values of K1 
are certainly incorrect 



 
The EM Proof of Security (Simplified) 
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The 22n key combinations: 



 
The EM Proof of Security (Simplified) 
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Each 4-tuple defines a unique suggestion for the keys: 

 



 
The EM Proof of Security (Simplified) 
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We can thus erase the following keys as impossible: 

 

 

 

 



 
The EM Proof of Security (Simplified) 

 

 Each one of the DT possible 4-tuples can 
eliminate at most 2(2n-1) key pairs (K1,K2) 

 

 To eliminate all the 22n-1 wrong key pairs, the 
number of 4-tuples DT must be at least (1/2)2n 



 
An Interesting Comment: 

 The proof is actually quite subtle, and 
formalizing it requires great care.  
 

 To demonstrate the subtlety, consider the 
special case in which the random permutation F 
is a random involution (i.e. for all X, F(F(X))=X) 
 

 The only way this affects the simplified proof 
given above is that whenever we query F and 
learn that F(X)=Y, we get another value of F 
(namely, that F(Y)=X) for free, so this can at 
most halve the number of required queries to F 



 
In This Involutional Variant of EM: 

We can actually find K1 XOR K2 (and 
thus eliminate the vast majority of 
the wrong keys) by: 
– asking only D=2n/2 queries of E  
– asking T=0 queries of F 

 

which seems to contradict the lower 
bound proof that DT > 2n      

 



 

Going Back to Random Permutations, 
Can We Find Matching Upper Bounds? 

It is easy to find attacks with: 

– D=2, T=2n 

– T=2, D=2n 

 

Can we connect these extreme cases with 
a known plaintext attack that matches the 
lower bound curve DT = O(2n) for any 
combination of D and T? 



 

Previously Published Attacks: 

At Asiacrypt 1991, Joan Daemen 
described a simple differential attack 
with any T and D satisfying DT = O(2n), 
which matches the lower bound curve, 
but requires chosen plaintexts 

  
At Eurocrypt 2000, Biryukov and Wagner 

described an advanced slide attack 
against Even-Mansour, which uses known 
plaintexts, but matches the lower bound 
curve only at one point: D=2n/2 and T=2n/2 



 

Daemen’s Chosen Plaintext Attack: 

Consider the differential properties of F.  

 

Since it is a random  permutation, we 
expect each combination of a particular 
input difference and a particular output 
difference of F to be generated from a 
single pair of input values and a single pair 
of output values.  



 

Daemen’s Chosen Plaintext Attack: 

 

Notice that the XOR’ing of keys to the 
inputs and outputs in the Even-Mansour 
scheme does not change the input/output 
differences of F! 

 

The main problem is that going back from 
differences to values is a difficult task 



 

Daemen’s Simple Solution: 

Prepare D pairs of chosen plaintexts with a 
fixed non-zero input difference d, ask to 
see their encryptions through E, and 
compute their output differences 

 

Prepare another set of T pairs of chosen 
values with the same input difference d,  
and compute by yourself through F their 
output values (and thus their output 
differences) 



 

Daemen’s Simple Solution: 

 By the birthday paradox, when DT > 2n  we expect 
to find some common output difference in the two 
sets of difference values 

 Since the actual input/output values in T are known, 
we can find the (Y,Z) values in an actual encryption 
in D. By combining these (Y,Z) values with (X,W) 
values,  we can easily recover both K1 and K2 

  T D  



 

Ten Years Later, Biryukov and Wagner 
Finally Developed a Known Plaintext Attack: 

 Their attack is an advanced version of a 
slide attack 

 

 Slide attacks are usually applied to 
iterated cryptosystems with a lot of self 
similarity under shifts 

 

 This is surprising, since the Even-Mansour 
scheme is not an iterated cryptosystem and 
does not seem to have any self similarity 

 



 

Standard slide attacks try to identify and use 
shifted versions of the encryption process: 
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A Slide with a Twist attack uses shifted versions 
of an encryption and a decryption process: 
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In this advanced form, Even-Mansour has 
a very minimal form of self similarity: 
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The Biryukov and Wagner Known Plaintext 
Attack on Even-Mansour: 

Given at least D=2n/2 known 
plaintext/ciphertext pairs, we expect 
to find such a slid pair among them, in 
which X in one encryption happens to 
be equal to Y in another encryption 
 

Slid pairs can be efficiently 
recognized, and once they are found 
they can be used to recover the key 
by solving the resultant equation 



 

Can you exploit a smaller number of 
known plaintext/ciphertext pairs? 

Since data is much harder to get than 
time, D=T=2n/2 is not the ideal point on 
the tradeoff curve DT = 2n 
 

Slide attacks (like many other 
cryptanalytic techniques, including 
differential attacks) can not 
effectively exploit a small number of 
known plaintexts, since they have to 
wait for some lucky event to happen by 
chance, and only then start the attack 



 

Our New SLIDEX Cryptanalytic Technique:   
A Slide Plus a Twist Plus a Difference 
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Our New SLIDEX Cryptanalytic Technique:   
A Slide Plus a Twist Plus a Difference 
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Our New SLIDEX Cryptanalytic Technique:   
A Slide Plus a Twist Plus a Difference 
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Our New SLIDEX Cryptanalytic Technique:   
A Slide Plus a Twist Plus a Difference 
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Applying the New SLIDEX Attack: 

Given any number D of known pairs (Xi, Wi),  
search for a triplet  c, X1, X2  satisfying: 

 

   W1+F(X1+c)=W2+F(X2+c)  

 

The number of random values c you have to 
try is expected to be about 2n/D2, since for 
these many D’s the total number of possible 
triplets is  2n, and each triplet satisfies the 
equation with probability of 2-n 



 

Our New Attack (Continued): 

For each c we prepare a list of values of 
W+F(X+c) for all the D known plaintexts 

 

Look for a repetition in each list separately, 
from which it is easy to recover the two keys 

 

  The total running time is thus 
T=(2n/D2)xD=2n/D, so D and T satisfy DT=2n 

 



 

Let Us Reconsider Now the Basic Question: 
Is Even-Mansour Minimal? 

 Consider an even simpler variant of the Even-
Mansour block cipher, in which K1=K2. Such 
simplifications had been suggested before, but 
do they provide exactly the same security? 
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The Importance of Having Tight Bounds 

Security bounds for 
cryptosystem A: 

 

Security bounds for 
cryptosystem B: 
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The Importance of Having Tight Bounds 

Security bounds for 
cryptosystem A: 
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The Equivalence of the Single-Key and 
Double-Key Even-Mansour Schemes 

By carefully examining the lower bound 
proof, we can show that the same lower 
bound DT > Ω(2n) is also applicable here: 
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Let Us Reconsider Now the Basic 
Question: Is Even-Mansour Minimal? 

 
 Clearly, any attack on the two-key variant of EM 

also breaks its single key variant 
 

 Consequently, Even-Mansour is not minimal, and 
can be further simplified by using a single key 
without losing any security! 
 

 The resulting block cipher is extremely simple: 
To encrypt a plaintext, XOR a key, apply a fixed 
known permutation, and XOR the same key again 



 

Concluding Remarks: 

 The SLIDEX attack is a new known plaintext attack  
which overcomes the main limitation of slide 
attacks: We no longer have to wait beyond the 
birthday bound for the lucky event to happen by 
chance – we force it to happen by guessing c 

 

 This attack solves the 20-year old open problem of 
the exact security of the EM scheme, and makes it 
possible to further simplify the scheme by using a 
single key variant without any loss of security 


