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Theorem 2.3:Suppose thatD satisfies H1 and H2. Then there exists
a common Lyapunov function forD.

Remark 2.3: Theorem 2.3 generalizes previous results about the ex-
istence of common Lyapunov functions for switched systems.

It generalizes to the nonlinear case the results obtained in [11] for
a linear switched system associated with a finite family of pairwise
commuting Hurwitz matrices.

It also extends the results obtained [13] for a switching system com-
posed of a finite family of exponentially stable subsystems whose flows
commute, and shows that in order to assure global stability, the global
Lipschitz condition of the fields is superfluous.

III. CONCLUSIONS

In this paper, we have presented a sufficient condition for the global
uniform asymptotic stability of an equilibrium of a switched system.
We have shown that when the switched system is composed of a fi-
nite family of subsystems, the global asymptotic stability of each sub-
system and the pairwise commutativity of their flows are sufficient for
the global asymptotic stability of the switched system. We have also
shown, by combining this result with the converse Lyapunov theorem
obtained in [9], that these conditions are also sufficient for the existence
of a common Lyapunov function. The results here presented generalize
those obtained in [11] for linear systems and those local ones obtained
in [13] for exponentially stable systems.

ACKNOWLEDGMENT

The author would like to express his thanks to R. A. García for his
help in preparing the final version of the manuscript.

REFERENCES

[1] A. A. Agrachev and D. Liberzon, “Lie-algebraic conditions for expo-
nential stability of switched systems,” inProc. 38th Conf. Decision and
Control, Phoenix, AZ, 1999, pp. 2679–2684.

[2] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix
Inequalities in System and Control Theory. Philadelphia, PA: SIAM,
1994, vol. 15, Studies in Applied Mathematics.

[3] W. P. Dayawansa and C. F. Martin, “A converse Lyapunov theorem for
a class of dynamical system which undergo switching,”IEEE Trans.
Automat. Contr., vol. 44, pp. 751–760, 1999.

[4] W. Hahn, Stability of Motion. Berlin, Germany: Springer-Verlag,
1967.

[5] D. Liberzon and A. S. Morse, “Basic problems in stability and design of
switched systems,”IEEE Contr. Syst. Mag., vol. 19, pp. 59–70, 1999.

[6] D. Liberzon, J. P. Hespanha, and A. S. Morse, “Stability of switched
systems: A Lie-algebraic condition,”Syst. Contr. Lett., vol. 37, pp.
117–122, 1999.

[7] Y. Lin, E. D. Sontag, and Y. Wang, “A smooth converse Lyapunov the-
orem for robust stability,”SIAM J. Contr. Optim., vol. 34, pp. 124–160,
1996.

[8] H. Nijmeijer and A. J. van der Schaft,Nonlinear Dynamical Control
Systems. New York: Springer-Verlag, 1990.

[9] J. L. Mancilla-Aguilar and R. A. Garcìa, “A converse Lyapunov theorem
for nonlinear switched systems,”Syst. Contr. Lett., vol. 44, pp. 67–71,
2000.

[10] Y. Mori, T. Mori, and Y. Kuroe, “A solution to the common Lyapunov
function problem for continuous-time systems,” inProc. 36th Conf. De-
cision and Control, San Diego, CA, 1997, pp. 3530–3531.

[11] K. S. Narendra and J. Balakrishnan, “A common Lyapunov function for
stable LTI systems with commuting A-matrices,”IEEE Trans. Automat.
Contr., vol. 39, pp. 2469–2471, 1994.

[12] T. Ooba and Y. Funahashi, “On a common quadratic Lyapunov function
for widely distant systems,”IEEE Trans. Automat. Contr., vol. 42, pp.
1697–1699, 1997.

[13] H. Shim, D. J. Noh, and J. H. Seo, “Common Lyapunov function for
exponentially stable nonlinear systems,” in4th SIAM Conf. Control and
its Applications, Jacksonville, FL, 1998.

[14] R. N. Shorten and K. S. Narendra, “A sufficient condition for the exis-
tence of a common Lyapunov function for two second-order linear sys-
tems,” inProc. 36th Conf. Decision and Control, San Diego, CA, 1997,
pp. 3521–3522.

[15] R. N. Shorten and K. S. Narendra, “On the existence of a common Lya-
punov for linear stable switching systems,” inProc. 10th Yale Workshop
Adaptive and Learning Systems, 1998, pp. 130–140.

[16] E. D. Sontag, “Comments on integral variants of ISS,”Syst. Contr. Lett.,
vol. 34, pp. 93–100, 1998.

Minimality and Local State Decompositions of a Nonlinear
State Space Realization Using Energy Functions

Jacquelien M. A. Scherpen and W. Steven Gray

Abstract—In this paper a set of sufficient conditions is developed in terms
of controllability and observability functions under which a given state-
space realization of a formal power series is minimal. Specifically, it is shown
that positivity of these functions, in addition to a stability requirement and a
few technical conditions, implies minimality. Using the nonlinear analogue
of the Kalman decomposition, connections are then established between
minimality, singular value functions, balanced realizations, and various no-
tions of reachability and observability for nonlinear systems.

Index Terms—Controllability and observability functions, formal power
series, minimal realizations, nonlinear systems.

I. INTRODUCTION

The problem of determining when the dimension of a state-space
realization for a given input–output map is minimal is a fundamental
problem in systems. It connects to many other topics in realization
theory like controllability and observability properties, similarity
invariants, balanced realizations, and model reduction. The theory is
quite complete in the case of linear systems. For example, it is well
known that minimality is equivalent to joint controllability and observ-
ability, and for stable systems, this is further equivalent to the positive
definiteness of the controllability and observability Gramians. These
Gramian matrices naturally appear in balanced realization theory and
optimal control problems. In the nonlinear setting, minimality theory
is not nearly as well developed. For example, there are several existing
theories for minimality depending on the exact nature in which the
input–output mapping is described, i.e., in terms of a set of input–output
differential equations (see [20] and the references therein), a Volterra
series [6], [11], [12] or a formal power series/Chen-Fliess functional
expansion [6]. At present, the exact connections between these different
approaches are not completely understood. Furthermore, motivated
by the linear case, we might expect that minimality should have
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connections to the nonlinear extensions of the Gramians, which have
been developed for nonlinear balancing [3], [4], [14]–[16]. But these
connections are also largely unknown at present.

The primary purpose of this paper is to develop a set of sufficient
conditions in terms of controllability and observability functions under
which a given state-space realization of a formal power series is min-
imal. Specifically, it will be shown that positivity of these so-called
energy functions, plus a few technical conditions, implies minimality.
Of course there exists well-known necessary and sufficient conditions
for minimality in terms of Kalman-type rank conditions on the acces-
sibility and observability distributions [6], [11]. So the novelty of the
approach taken here is in establishing a connection between these dif-
ferential geometric type minimality conditions and properties of en-
ergy functions, which are connected with Hamilton–Jacobi type op-
timal control theory. Then, using the nonlinear analogue of the Kalman
decomposition, we establish connections between minimality, singular
value functions and the various notions of reachability and observ-
ability for nonlinear systems which preliminarily appeared in [16].

The paper is organized as follows. In Section II, the background ma-
terial pertaining to all the relevant subjects is briefly reviewed. In Sec-
tion III, we then develop relationships between positivity of the energy
functions and the accessibility/observability rank conditions that are re-
lated to minimality. Then in Section IV, we introduce as an application
of the new minimality results, the decomposition material. Section V
concludes with two examples, where one includes some related com-
putational issues.

Notation: The mathematical notation used throughout is fairly stan-
dard. Vector norms are represented bykxk =

p
xTx for x 2 n.

L2(a; b) represents the set of Lebesgue measurable functions, pos-

sibly vector-valued, with finiteL2 normkxkL =
b

a
kx(t)k2 dt.

If L: n 7! is a differentiable function, then its partial derivative
@L=@x will be the row vector of partial derivatives@L=@xi where
i = 1; . . . ; n. Furthermore,x(t2) = '(t2; t1; x1; u) denotes the solu-
tion at timet2 of the system_x = f(x) + g(x)u with initial condition
x(t1) = x1 and inputu: [t1; t2] ! m. A condition about 0 means
that this conditions holds for a neighborhood of 0. Finally,x(�1) is
an abbreviation forlimt!�1 x(t).

II. BACKGROUND

A. Controllability and Observability Functions for Stable Nonlinear
Systems

Controllability and observability functions play an important role in
balancing and model reduction for stable nonlinear systems [14]. In
this section we give a brief review of the results that are important for
the minimality theory presented in Section III.

Consider a smooth, i.e.,C1, nonlinear system of the form

_x = f(x) + g(x)u

y =h(x) (1)

whereu = (u1; . . . ; um) 2 m, y = (y1; . . . ; yp) 2 p, and
x = (x1; . . . ; xn) are local coordinates for a smooth state space man-
ifold denoted byM . Throughout we assume that the system has an
equilibrium. Without loss of generality we take this equilibrium to be
at 0, i.e.,f(0) = 0, and we also takeh(0) = 0.

Definition 2.1 [14]: Thecontrollability andobservability functions
of (1) are defined as

Lc(x0) = min
u2L (�1;0)

x(�1)=0; x(0)=x

1

2

0

�1

ku(t)k2 dt (2)

Lo(x0) =
1

2

1

0

ky(t)k2 dt; x(0) = x0;

u(t) � 0; 0 � t < 1 (3)

respectively.

The value of the controllability function atx0 is the minimum
amount of control energy required to reach the statex0, and the value
of the observability function atx0 is the amount of output energy
generated byx0. Obviously,Lc(x) andLo(x) are nonnegative. It is
assumed throughout thatLc andLo are finite andsmoothfunctions
of x.

Theorem 2.2 [14]: If f(x) is asymptotically stable on a neighbor-
hoodW of 0, then for allx 2W ,Lo(x) is the unique smooth solution
of the following Lyapunov-type equation:

@Lo

@x
(x)f(x) +

1

2
hT (x)h(x) = 0; Lo(0) = 0: (4)

Furthermore for allx 2W ,Lc(x) is the unique smooth solution of the
following Hamilton–Jacobi equation:

@Lc

@x
(x)f(x) +

1

2

@Lc

@x
(x)g(x)gT (x)

@TLc

@x
(x) = 0;

Lc(0) = 0 (5)

with �(f(x) + g(x)gT (x) (@TLc=@x) (x)) asymptotically stable on
W .

Remark 2.3: If we assume thatf(x) is asymptotically stable and
that (4) has a smooth solution, it then follows thatLo, as in (3), ex-
ists, i.e., is finite, [14]. See [1] for more results about the existence
and the continuity ofLo (in [1] Lo also plays an important role in the
context of stability and invariance). Furthermore, if we assume that
(5) has a smooth solutionLc that is antistabilizing (i.e.,�(f(x) +
g(x)g(x)T (@TLc=@x) (x)) is asymptotically stable), it follows that
Lc, as in (2), exists [14].

Theorem 2.4 [14]: Assume f(x) is asymptotically stable on
a neighborhoodW of 0 and (5) has a smooth solutionLc on W .
ThenLc(x) > 0 for x 2 W , x 6= 0, if and only if �(f(x) +
g(x)gT (x) (@TLc=@x) (x)) is asymptotically stable onW .

For the analysis in this paper the definitions of localreachability,
(strong) accessibility, andobservabilityare needed. We refer to stan-
dard references like [5], [6], [11], and [13]. These definitions are usu-
ally given in the context where only piecewise constant inputs are ad-
missible. However, the effects of approximations of more general in-
puts by piecewise constant inputs have been considered in earlier work
[18], and statements about these properties holding for larger classes
of inputs can be found in [17], [21], and [19]. For clarity we mention a
special case of observability, though also well known, it is less standard,
namely,zero-state observability. System (1) iszero-state observableif
any trajectory whereu(t) � 0, y(t) � 0 impliesx(t) � 0. We say
that (1) islocally zero-state observable, if there exists a neighborhood
W of 0 where the system is zero-state observable. The following the-
orem is closely related to results that appear in [5] and [13]. It reveals
an important relationship between zero-state observability and positive
definiteness of the observability function.

Theorem 2.5 [14]: Assumef(x) is asymptotically stable on a
neighborhoodW of 0. If (1) is zero-state observable onW , then
Lo(x) > 0, 8x 2W , x 6= 0.

It is well known, e.g., [11], that for the accessibility distribution,
C, the strong accessibility distribution,C0, and the observation space,
O, with its corresponding codistribution,dO, there exist rank condi-
tions implying local (strong) accessibility and local observability. For
local zero-state observability a similar rank condition exists with the
zero-state observation spaceO0 defined by the linear space of functions
on M containingh1; . . . ; hp and all repeated Lie derivativesLk

fhj ,
j 2 1; . . . ; p, k = 1; 2; . . .. As a consequence, local zero-state ob-
servability implies local observability at 0. Furthermore, it follows that
local strong accessibility atx0 implies local accessibility atx0.

Local zero-state observability is certainly more restrictive than local
observability. The previous results in a more general observability
setting require the input to play a role. Given the system(f; g; h),
the corresponding homogeneous system is denoted by(f; gh; h),
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wheregh(x) = g(x) � g(0). Thus, under our general assumptions
(f(0); gh(0); h(0)) = (0; 0; 0). It is easily shown that(f; g; h) and its
homogeneous counterpart always have the same observability spaces,
and thus have basically the same observability properties. Consider
the following definition.

Definition 2.6 [3], [4]: Thenatural observability functionfor (1) is
defined as

LNo (x0) = max
u2B

x(0)=x ; x(1)=0

1

2

1

0

k~y(t)k2 dt (6)

whereB� := fu 2 L2[0;1): kukL � �g with � � 0 a fixed real
number, and~y is the output response of the corresponding homoge-
neous system.

ClearlyLNo (x0) is the maximum output energy one could expect
from initializing the homogeneous system atx(0) = x0 and applying
any input with energy bounded by�. When� = 0, we have the ob-
servability function given in Definition 2.1. A defining equation forLNo
analogous to (4) exists. We refer to [3] and [4] for the details. A smooth
solution to this equation implies the existence ofLNo and as is also the
case forLo, the converse can be stated. The following theorem gives
the relation between observability and positivity ofLNo .

Theorem 2.7 [3], [4]: Suppose 0 is an asymptotically stable equilib-
rium of the system(f; g; h) on a neighborhoodW of 0 andh(0) = 0. If
the system(f; g; h) is observable with respect toB� thenLNo (x) > 0
whenx 2W , x 6= 0.

B. Balanced Realizations

Balanced realizations play an important role in a variety of realiza-
tion and control problems. The classic linear case was first introduced
by Moore in [10]. The extension to the nonlinear case appears in [14]
and [15]. Consider a nonlinear system of the form (1) with smooth and
well-defined controllability and observability functionLc andLo, re-
spectively, as in Definition 2.1. Additionally, assume the following.

1) f(x) is asymptotically stable on some neighborhoodY of 0.
2) The system is zero-state observable onY .
3) (@2Lc=@x

2) (0) > 0 and(@2Lo=@x2) (0) > 0.
From Morse’s lemma, e.g., [8], one can bring the system into input
normal form. Furthermore, by applying the Fundamental Theorem of
Integral Calculus and smoothness results from [7], the following input-
normal/output-diagonal results are obtained.

Theorem 2.8 [14]: Consider (1) with certain technical conditions
(see [7] and [8]). Then there exists a neighborhoodU of 0 and a co-
ordinate transformationx =  (z),  (0) = 0, such that in the new
coordinatesz 2 W :=  �1(U) the functionsLc, andLo are of the
form

�Lc(z) :=Lc( (z)) =
1
2
zT z

�Lo(z) :=Lo( (z)) =
1
2
zT

�1(z) 0

. . .

0 �n(z)

z

where�1(z) � . . . � �n(z) are the smoothsingular value functions.

The form of the controllability and observability function is not yet
entirely balanced. For that we need a simple additional coordinate
transformation. We refer to [14] for the details on this matter.

C. Minimal Realizations Via Formal Power Series

In this section we briefly review a theory of minimal state space re-
alizations for input–output systems that can be represented by a formal
power series (Chen–Fliess functional expansion). A detailed treatment
may be found in [6]. Ultimately this leads to the well-known rank con-
ditions, which are necessary and sufficient conditions for a realization
to be minimal.

LetS be a given input–output map represented by a convergent gen-
erating series

S:u! y(t) =
�2I

c(�)E�[u](t; t0)

Ei ...i [u](t; t0) =
t

t

ui (�)Ei ...i [u](�; t0)d� (7)

whereI� is the set of multi-indices for the index setI = f0; 1; . . . ;mg,
c(�) 2 p, for t 2 [t0; T ] with E;(t; t0) [u] := 1 andu0(t) := 1.
The mappingS can then also be represented by a formal power
series in noncommuting monomialsZ = fz0; z1; . . . ; zmg via
c =

�2I c(�)z�, wherez� = zi . . . zi when� = (ik . . . i0).
Now define hZi as the set of polynomials inZ over , and phhZii
as the set of formal power series inZ over p. The (block) Hankel
mapping associated withc is defined as the -vector space morphism
H: hZi ! phhZii, uniquely specified by the generalized shifting
property[H(z�)](�) = c(� �), where�; � 2 I�. In this context we
have the following definition.

Definition 2.9: TheLie rankof a formal power seriesc is defined
as�L(c) := dim(H(L(Z))), whereL(Z) denotes the smallest Lie
algebra containingZ .

An analytic state space realization(f; g; h) defined lo-
cally about x0 is said to realize a formal power seriesc if
c(ik . . . i0) = LX LX . . .LX h(x0) for every(ik . . . i0) 2 I�,
whereXi 2 ff; g1; . . . ; gmg. It is well known that if a certain growth
condition on the coefficientsfc(�)g�2I is satisfied, then there
exists a realization ofc if and only if the Lie rank ofc is finite. A
realization(f; g; h) aboutx0 of a formal power seriesc is minimal
if its dimension is less than or equal to the dimension of any other
realization ofc. The following results characterize minimality.

Theorem 2.10 [6]: An analytic realization(f; g; h) aboutx0 of a
formal power seriesc is minimal if and only if its dimension is equal
to the Lie rank�L(c).

Theorem 2.11 [6]: An analytic realization(f; g; h) aboutx0 of a
formal power seriesc is minimal if and only if dimC(x0) = n and
dim dO(x0) = n.

III. M INIMALITY AND ENERGY FUNCTIONS

A. The Controllability Function and the Accessibility Rank Condition

In this section we develop connections between the controllability
function and the accessibility rank condition in order to apply The-
orem 2.11. It is assumed throughout that the system (1) is asymptoti-
cally stable on a neighborhoodY of 0.

The following relation is easily deduced (following the lines of the
proof of [13, Th. 13])

Lc(x0) = Lr(x0) := inf
u2L (�t;0)

t�0
x(�1)=0; x(0)=x

1

2

0

�t

ku(t)k2 dt (8)

and thus reachability fromx0 implies well-definedness ofLr for all
x 2 M , and likewise forLc. However, reachability is not implied
from a well-defined and positive definiteLc. For our application it is
sufficient (as observed from Theorem 2.4) to consider only the antista-
bilizability of the solution of the Hamilton–Jacobi equation (5), which
is a condition that can be seen as reachability from 0 in infinite time
(so-called asymptotic reachability from 0). This notion is formally de-
fined below.

Definition 3.1: System (1) is said to beasymptotically reachable
from x0 on a neighborhoodW of x0 if 8x 2 W there exists
a u 2 L2(0;1) such that'(�; 0; x0; u) 2 W for � � 0, and
limt!1 '(t; 0; x0; u) = x.
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System (1) is said to belocally asymptotically reachable fromx0 if
there exists a neighborhoodW of x0 such that the system is asymptot-
ically reachable fromx0 on every neighborhoodV �W of x0.

Clearly, this notion of asymptotic reachability corresponds to the no-
tion of antistabilizability, which is related to the positivity and finite-
ness ofLc in Remark 2.3 and Theorem 2.4. ByRV (x0; T ) we denote
the reachable set fromx0 at timeT > 0, following the trajectories
which remain in the neighborhoodV of x0 for t � T , and define
RV

T (x0) := [��TR
V (x0; �). In the following theorem, we obtain the

relation between local asymptotic reachability fromx0 and local ac-
cessibility fromx0.

Theorem 3.2: Assume that the accessibility distributionC has con-
stant dimension aboutx0. Then local asymptotic reachability fromx0
implies that the system is locally accessible fromx0.

Proof: Suppose that the system is not locally accessible fromx0,
then we know from standard results in the literature (e.g., [11]) that
dimC(x0) = k < n. Hence from [11, Proposition 3.12] there must
exist a neighborhoodV of x0 and local coordinatesx1; . . . ; xn such
that the submanifoldSx = fq 2 V jxi(q) = xi(x0), i = k +

1; . . . ; ng containsRV

T (x0) for any neighborhoodV � V of x0 and
for all T > 0. This implies that allq 2 V such thatq 62 Sx are not
asymptotically reachable fromx0 onV , and thus the local asymptotic
reachability fromx0 is contradicted.

Our main aim now is to relate the positive definiteness and
finiteness of the controllability function to the accessibility rank
condition. Note that havingLc(x) finite onW implicitly implies that
'(�;�1; 0; u) 2 W for all � � 0. This, combined with Remark 2.3
and Theorem 2.4 gives rise to the following corollary.

Corollary 3.3: Assume that the accessibility distributionC has con-
stant dimension about 0, and assume thatf is locally asymptotically
stable. If there exists a neighborhoodW of 0 such that the controlla-
bility function Lc(x) is smooth, finite and satisfiesLc(x) > 0 for
x 2 V , x 6= 0, for all V �W , then dimC(0) = n.

Remark 3.4: The above corollary is restricted by local requirements
onLc, since we need local asymptotic reachability from 0 in order to
use Theorem 3.2. Only asymptotic reachability on a neighborhoodW
of 0 does not suffice. An example of a smooth system that is asymp-
totically reachable on a neighborhoodW of 0 and that is not locally
accessible is easy to construct. However, if we assume that (1) isana-
lytic, then we can relax the local requirements onLc to requirements on
a neighborhoodW of 0. This is due to the fact that asymptotic reacha-
bility from x0 implies local accessibility fromx0 for analytic systems,
e.g., [17] and [21]. Analyticity is actually not a strong restriction in our
setting, since it is also a standing assumption for the realization theory
in Section II-C.

The analysis in Remark 3.4 results in the following corollary.
Corollary 3.5: Let (1) be analytic. Assume that the accessibility

distributionC has constant dimension about 0, and assume thatf is
asymptotically stable on a neighborhoodW of 0. If the controllability
functionLc(x) is smooth, finite and satisfiesLc(x) > 0 for x 2 W ,
x 6= 0, then dimC(0) = n.

So far, the focus has been on the concept of local accessibility. How-
ever, for the state space analysis presented in Section IV, we use the
nonlinear counterpart of the Kalman decomposition, and thus we need
to use the concept of local strong accessibility. The local strong acces-
sibility version of Theorem 3.2 is given below.

Theorem 3.6:Assume that the strong accessibility distributionC0

has constant dimension aboutx0. Then local asymptotic reachability
from x0 implies that the system is locally strongly accessible fromx0.

Proof: Suppose that the system is not locally strongly accessible
fromx0, then we know from standard results in the literature (e.g., [11])
that dimC0(x0) = k < n. Hence from [11, Proposition 3.22] there
are two possibilities:

i) If f(x0) 2 C0(x0), then the proof here follows similar to the
Proof of Theorem 3.2.

ii) If f(x0) =2 C0(x0), then by continuityf(q) =2 C0(q) for all
q 2 ~U , ~U � U is a neighborhood ofx0, and dimC(q) =
dimC0(q) + 1 for all q 2 ~U . In this case, one can select the
coordinates~xk+1; . . . ; ~xn in such a way thatSTx = fq 2
~U j~xk+1(q) = T , ~xk+2(q) = . . . = ~xn(q) = 0g contains
R
~U (x0; T ) for anyT > 0. Again, we have two cases: (a) If

dimC0(x0) < n� 1, then this implies that allq 2 ~U such that
q 62 STx are not asymptotically reachable fromx0 on V , and
thus the local asymptotic reachability fromx0 is contradicted.
(b) If dim C0(x0) = n� 1, then allq 2 ~U such that~xn = �K,
K > 0, are not asymptotically reachable fromx0 on ~U . This
concludes the proof.

This theorem gives rise to corollaries similar to Corollaries 3.3 and
3.5, except with accessibility replaced by strong accessibility.

B. The Observability Function and the Observability Rank Condition

For the observability counterpart of the previous section we con-
sider the observability functions as defined in (3) and (6). It is assumed
throughout that (1) is asymptotically stable on a neighborhoodY of 0.
We start with the observability function in (6) for which observability
with respect to the input classB� plays an important role. The cor-
responding results for the observability function (3) then follow as a
special case when� = 0.

Lemma 3.7: Let LNo be the natural observability function (6) for
some fixed� > 0. Assume thatLNo (x) is smooth and finite for system
(1) on a neighborhoodW of 0. ThenLNo (x) > 0 for x 2W , x 6= 0,
implies that (1) is locally observable at 0 with respect toB�.

Proof: Assume that (1) is not locally observable at 0 with respect
toB�. Then the corresponding homogeneous system is also not locally
observable at 0 with respect toB�. Hence there exists an initial state
xa 6= 0 such thath( ~'(t; 0; 0; u)) = h( ~'(t; 0; xa; u), t � 0, 8u 2
B�, where~'(�) denotes the solution to homogeneous system. By def-
inition of the natural observability function, we have thatLNo (0) = 0
and by the positivity ofLNo it follows thatLNo (xa) > 0. However,
from (6) it follows immediately that the maximum overu 2 B� for
both states 0 andxa results in the same optimal inputu. This implies
thatLNo (0) = LNo (xa), and yields the desired contradiction to prove
the lemma.

Motivated by the minimality conditions of Theorem 2.11, we next
obtain the following corollary, which follows straightforwardly from
the previous lemma and some standard results from [6] and [11].

Corollary 3.8: Assume that the observability codistributiondO has
constant dimension about 0. If the natural observability function (6) is
smooth, finite and satisfiesLNo (x) > 0 for x 2 W , x 6= 0, then
dim dO(0) = n.

Now, if we let� = 0, then we obviously return to the observability
function of (3), and the observability with respect to the input classB�

becomes zero-state observability. The following special case of Corol-
lary 3.8 is useful in Section IV.

Corollary 3.9: Assume that the zero-observability codistribution
dO0 has constant dimension about 0. If the observability function
(3) is smooth, finite and satisfiesLo(x) > 0, x 2 W , x 6= 0, then
dim dO0(0) = n.

Remark 3.10: It is interesting to compare the results of this sec-
tion to those of the previous section. They do not completely follow
along similar or “dual” lines. Specifically, the results related to the ob-
servability functions as given by (3) and (6) are given in terms of the
zero-state observability and observability rank condition, respectively.
Starting with the rank conditions the converse of Corollaries 3.8 and
3.9 also hold by applying Theorem 2.5. However, for the controlla-
bility function, we are considering asymptotic reachability which im-
plies local accessibility, which in turn can be related to the accessi-
bility rank condition. The reverse direction is far less obvious in this
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case, however, because accessibility from 0 is not sufficient for asymp-
totic reachability from 0. If asymptotic reachability can somehow be
assumed for a given system, then the converse of Corollaries 3.3 and
3.5 would follow for the controllability function.

C. Sufficient Conditions for Minimality

Briefly summarized below is a main result of the paper.
Theorem 3.11:Assume that the observability codistributiondO (or

the zero-observability codistributiondO0, respectively) and the acces-
sibility distributionC of a system(f; g; h) each have constant dimen-
sion about 0. Furthermore, assume that the analytic system(f; g; h) is
a realization of the formal power seriesc, and thatf(x) is asymptoti-
cally stable. Then, if0 < Lc(x) < 1 and0 < LNo (x) < 1 (or
0 < Lo(x) < 1, respectively) forx 2 W , x 6= 0, then(f; g; h) is
a minimal realization ofc.

These conditions are not necessary due to the fact that, contrary to
the linear case, accessibility and controllability are not equivalent in
general. Only under additional assumptions can a converse result be
obtained.

IV. L OCAL STATE DECOMPOSITIONS

For linear systems it is well known that the Hankel singular values
are independent of the chosen state space realization and only depend
on the input–output behavior of the system. In fact, they are the sin-
gular values of the Hankel operator of the system (e.g., Glover [2]). If
we consider a nonminimal linear state space system with controllability
GramianW and observability GramianM , the nonzero eigenvalues of
MW correspond exactly to the squared Hankel singular values, and
the number of zero eigenvalues ofMW equals the difference between
the state-space dimension of the given system and the state space di-
mension of any minimal representation. In this section we extend these
observations to the nonlinear setting. We are interested in theHankel
structure of the system and the related nonlinear balancing concept pre-
sented in Section II-B. Since the system Hankel operator corresponds
to the mapping from past inputs to future outputs (where the input is
zero for positive time) we consider the controllability function as de-
fined in (2) and the observability function as defined in (3).

Consider the nonlinear system (1) and assume that it is locally
asymptotically stable. In this section we donot assume local
zero-state observability, and hence the observability function is not
necessarily positive definite. Furthermore, we donot assume that
�(f(x)+g(x)g(x)T (@TLc=@x) (x)) is locally asymptotically stable
(or in other words: we donot assume asymptotic reachability from 0),
and thus the controllability function need not be finite for allx.

One can use Frobenius’ theorem to construct the zero-state observ-
able “part” of the system. In order to be able to do the same for the
asymptotically reachable “part” of the system, one must consider the
part of the state space system that is asymptotically reachable from 0,
i.e., where

� f(x) + g(x)gT (x)
@TLc
@x

(x) (9)

is asymptotically stable. In the linear case this part equals the control-
lable part of the system. In the nonlinear case, the converses of Theo-
rems 3.2 and 3.6 are not always true. So, in order to be able to construct
a decomposition analogous to the known nonlinear generalization of
the Kalman decomposition (e.g., [11, Th. 3.51]), we must consider the
strongly accessible part of the system.

Theorem 4.1:Assume that the distributionsC0, kerdO0 andC0+
kerdO0 all have constant dimension and thatC0+ kerdO0 is involu-
tive. Then one can find local coordinatesx = (x1; x2; x3; x4) such that

C0 = spanf@=@x1; @=@x2g and kerdO0 = spanf@=@x2; @=@x4g.
The system takes the form

_x1 = f1 x1; x3 +

m

j=1

g1j x1; x2; x3; x4 uj (10)

_x2 = f2 x1; x2; x3; x4 +

m

j=1

g2j x1; x2; x3; x4 uj (11)

_x3 = f3 x3 (12)

_x4 = f4 x3; x4 (13)

y =h x1; x3 : (14)

Proof: The proof is similar to that given in [11, Th. 3.51], which
uses Frobenius’ theorem. The primary difference is that here we deal
with the zero-observable part instead of the observable part. Therefore,
for this proof it is enough to observe that the codistributiondO0 is
invariant for the dynamics_x = f(x) sinceLfdO0 � dO0. Hence ker
dO0 = spanf@=@x2g is an invariant distribution for_x = f(x). Since
kerdO0 � kerdh, the theorem is proven.

Remark 4.2: Another way to view the difference between the de-
composition above and that given by [11, Th. 3.51] is in the form of
the input vector field in (10). For zero-state observability, the input
vector field does not matter, while for the more general concept of ob-
servability itmaymatter. That means thatx1 andx3 are zero-state ob-
servable, and thus observable, and thatx2 andx4 are not zero-state
observable, but they still may be observable! However, since we are
interested only in the Hankel structure, and specifically in the singular
value functions of the nonlinear system, the above decomposition is the
most suitable.

Let ni be the dimension ofxi, i = 1; 2; 3; 4, and letY be a neigh-
borhood of 0 where the decomposition above is valid. Then clearly
(10), (12), and (14) form the zero-state observable part of the system,
while (10) and (11) is the strongly accessible part of the system. To
assure that for (10), (12), and (14) the observability function exists,
we assume that in these local coordinates equation (4) in Theorem 2.2
has a smooth solution for(x1; 0; x3; 0) 2 Y . Furthermore, note that
(f3(x3)T ; f4(x3; x4)T )T is asymptotically stable, and by the form of
(12) and (13) it is impossible for�(f(x)+g(x)g(x)T (@TLc=@x) (x))
to be asymptotically stable onY . To assure that for (10) and (11) the
controllability function exists, we assume that in these local coordi-
nates equation (5) has an antistabilizing solution as in Theorem 2.2 for
(x1; x2; 0; 0) 2 Y . In fact, the assumption on the existence of the con-
trollability function for the strongly accessible part of the system im-
plies thatthe part of the system that is asymptotically reachable from 0
corresponds exactly to the strongly accessible part of the system.

Theorem 4.3: If the above assumptions on existence of solutions
and antistabilizing solutions to (4) and (5), respectively, on parts of the
state space are fulfilled, then:

1) Lo(x1; x2; x3; x4) > 0 whenever(x1; x4, x3; x4) 2 Y , and
(x1; x3) 6= (0; 0);

2) Lo(0; x2; 0; x4) = 0 for all (0; x2; 0; x4) 2 Y ;
3) Lc(x1; x2; x3; x4) is infinite whenever(x1; x2; x3; x4) 2 Y ,

(x3; x4) 6= (0; 0);
4) 0 < Lc(x

1; x2; 0; 0) < 1 for all (x1; x2; 0; 0) 2 Y ,
(x1; x2) 6= (0; 0).

Proof—Proof of 1) and 2):It is clear that
h(0; x2(�); 0; x4(�)) = 0 for all � � 0. By the form of (10) and
(12) we obtain that

Lo 0; x2; 0; x4 =
1

2

1

0

h 0; x2(�); 0; x4(�)
T

� h 0; x2(�); 0; x4(�) d� = 0
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for u � 0, and for all (0; x2; 0; x4) 2 Y . Again, by the form of
(10), (12), and (14) we then have�Lo(x1; x3) = Lo(x

1; x2; x3; x4)
for u � 0, where�Lo is the observability function of (10), (12), and
(14). By assumption�Lo = Lo exists and is smooth. By Theorem 2.5
Lo(x

1; x2; x3; x4) = �Lo(x
1; x3) > 0 for (x1; x3) 6= (0; 0).

Proof of 3) and 4): The controllability functionLc must satisfy
(2). Since the system formed by (12) and (13) is asymptotically
stable, it follows immediately thatLc(x1; x2; x3; x4) = 1 for
all (x1; x2; x3; x4) 2 Y , with (x3; x4) 6= (0; 0). By Theorem
2.2 Lc(x1; x2; 0; 0) < 1 for all (x1; x2; 0; 0) 2 Y . Further-
more, by Theorem 2.4 it follows thatLc(x1; x2; 0; 0) > 0 for all
(x1; x2; 0; 0) 2 Y , (x1; x2) 6= (0; 0).

Remark 4.4:Lc is infinite on the subsystem that isnotstrongly ac-
cessible. Hence, that subsystem is alsonot asymptotically reachable
from 0. This in essence yields another proof of Theorem 3.6.

Remark 4.5: Now assume that the full system is locally accessible
(remember that this is, together with local observability, a condition
that implies minimality), butnot locally strongly accessible. We know
from Theorem 4.3 that the states which are not locally strongly ac-
cessible force the controllability functionLc to become infinite. Thus,
one can conclude, contrary to the linear case, that minimality for a non-
linear system as discussed in the previous sections doesnotensure that
the controllability function is finite.

Remark 4.6: The observability counterpart to Remark 4.5 is similar,
but in fact easier to describe. Assume that the full system is locally ob-
servable, butnot locally zero-state observable. We know from Theorem
4.3 that the part of the system which is not locally zero-state observable
corresponds to the observability functionLo being zero. Thus one can
conclude, again contrary to the linear case, that minimality for a non-
linear system doesnotensure the observability function to be positive.
However, we have introduced the natural observability functionLNo in
Section II-A. For this function to be positive definite, we only need ob-
servability with respect toB�, and not the more restrictive zero-state
observability. If observability with respect toB� is equivalent to ob-
servability (which is not very restrictive, since we only require the input
to have finite energy), we can repeat the analysis of this section forLNo
with zero-state observability replaced by observability. The new anal-
ysis results in the generalized Kalman decomposition as found in [11],
and straightforwardly we obtain similar results as forLo, with the addi-
tional property that forLNo the results do coincide with the usual results
for the observability function in the linear case.

If additionally one assumes that(@2Lo)=(@x1)2 (0) > 0 and
(@2Lc)=(@x

1)2 (0) > 0, then it becomes clear from Theorem 4.3
that Lo(x1; 0; 0; 0) and Lc(x

1; 0; 0; 0) may be transformed into
the form of Theorem 2.8. In fact, there exists a localx1 coordinate
transformationx1 =  (z),  (0) = 0, ( �1(x1); 0; 0; 0) 2 Y ,
such thatLc( (z);0; 0; 0) and Lo( (z);0; 0; 0) are in the form
of Theorem 2.8. Thus this part of the system may be bal-
anced on a neighborhood of 0 with singular value functions
�1(z) � . . . � �n (z). Furthermore, if we also considerx2, then
there exist local coordinates(z1; z2) = ��1(x1; x2) such that
Lc(�(z

1; z2); 0; 0) = (1=2)z1 z1 + (1=2)z2 z2. Now write
Lo(�(z

1; z2); 0; 0) = (1=2)(z1 z2 )M(z1; z2) (z1 z2 )T . If
the assumptions of Theorem 2.8 are fulfilled, one may diagonalize
M(z1; z2). The functions on the diagonal:�1(z1; z2) � . . . �
�n +n (z1; z2) are such that� i(z1; 0) = �i(z), i = 1; . . . ; n1, and
� j(0; z

2) = 0, j = n1 + 1; . . . ; n1 + n2. This is analogous to the
linear case, where the unobservable part corresponds to zero Hankel
singular values. Note that it is not possible to transform the whole
system into the form of Theorem 2.8, sinceLc(0; 0; x3; x4) is infinite,
but this is still in agreement with the linear theory, since here we are
dealing with the “inverse of the controllability Gramian.” Hence that
part of the system that is not strongly accessible yields an “inverse of
the controllability Gramian” that is infinite, and thus a “controllability
Gramian” that is singular.

Fig. 1. The double pendulum.

V. EXAMPLES

The first example is an academic one meant to simply illustrate the
basic theory presented in this paper. The second example is physical
in nature and reveals some computational issues related to solving
Hamilton–Jacobi equations.

Example 5.1: Consider the following system (1), where:

f(x) =

�x1 + x32
�x2 � x32

�x3 + x1x
2
2 + x3x

2
2 � x32

g(x) =

0 � 2� 2(x1 + x3)2 + 2x22

0 2� 2(x1 + x3)2 + 2x22p
2 2� 2(x1 + x3)2 + 2x22

h(x) =
2x1 + 2x3p

2x2
:

This system is asymptotically stable and analytic on a neighborhood
of 0. The rank of the accessibility distributionC at 0 is 2 (it is easily
seen that the Lie bracket directions are already given byg1(0), and
g2(0)). The accessibility distribution equals in this case the strong-ac-
cessibility distribution. The rank of the observability codistributiondO
at 0 is also 2 (the two directions of the zero-state observability codistri-
bution in 0 are given bydh1(0), anddh2(0)). The observability codis-
tribution equals in this case the zero-state observability codistribution.
By Corollaries 3.5 and 3.9 we know now that there existx 2 3 such
thatLo(x) = 0 with x 6= 0 andLc(x) infinite, with x finite. Now, to
bring the system in the form of Theorem 4.1 apply the transformation

x =Tz =

0 �1 1

0 1 0

1 1 �1
z

then
_z1 = �z1 + z1z

2
2 + u1

p
2;

_z2 = �z2 � z32 + u2 2� 2z21 + 2z22
_z3 = �z3;

;
y1 = 2z1
y2 =

p
2z2

:

Obviously, z3 is the nonaccessible and nonobservable part of
the system. By Theorem 4.3, we have thatLo(0; 0; z3) = 0, that
Lo(z1; z2; z3) > 0 for (z1; z2) 6= (0; 0), that0 < Lc(z1; z2; 0) <
1, and thatLc(z1; z2; z3) is infinite for z3 6= 0. This also directly
follows from trying to solve the corresponding Hamilton–Jacobi
equations (4) and (5). For the(z1; z2) subsystem (i.e., the minimal
subsystem) note thatLc andLo are already in the form of Theorem 2.8,
i.e.,Lc(z) = (1=2)zTz andLo(z) = (1=2)zT diag(2; 1 + z21)z. The
singular value functions are therefore�1(z) = 2 and�2(z) = 1 + z21 .

Example 5.2: Consider a frictionless double pendulum (or two-link
robot manipulator) with control torqueu applied at the first joint; see
Fig. 1. The dynamics of such a double pendulum may be obtained via
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Fig. 2. The controllability (left) and observability (right) functions for Example 5.2.

the Hamiltonian formalism. We derive the equations for the simple
Hamiltonian form in order to be able to consider the associated gra-
dient system, which is of smaller order, and therefore computation-
ally easier to handle, but still captures the physical properties of the
system. Furthermore, the frictionless system is only Lyapunov stable,
but not asymptotically stable, while the associated gradient system is
asymptotically stable, and thus fulfills the requirements of this paper.
Let � = (�1; �2) and _� = ( _�1; _�2). The kinetic coenergy is given by
the sum of the kinetic coenergies of the massesm1 andm2, respec-
tively. This yields the equations shown at the bottom of the page. Note
thatM(�) is a positive definite matrix for every�. Similarly the po-
tential energyV is the sum of the potential energies of the two masses,
i.e.,V (�) = �m1gl1 cos �1 �m2gl1 cos �1 �m2gl2 cos(�1 + �2).
Defineq := �, andp := M(�) _�, thus _q = M(q)�1p. Furthermore,
denote byQ the manifold with local coordinatesq1; q2. The Hamil-
tonianH can be written asH(q; p) = 1

2
pTM(q)�1p+ V (q), where

the kinetic energy in the(q; p) coordinates is given by the Riemannian
metricM(q) on Q andV (q) is the potential energy. We obtain that
the output mapC is given byC(q) = q1. In the (q; p) coordinates
the equations of the double pendulum in simple Hamiltonian form are
given by

_q =
@H

@p
(q; p)

_p = �
@H

@q
(q; p) +

1

0
u

y =(1 0)q: (15)

LetP (q) = M(q)�1. The associated gradient system is given by

_x = �P (x)
@TV

@x
(x) + P (x)

1

0
u; y = (1 0)x: (16)

Here, we only consider the case wherel1 = l2 = 1, andm1 =
m2 = 1. Mathematica software was employed to approximately solve
the Hamilton–Jacobi equations for the observability and controllability
function,Lo andLc, for the gradient system (16). Specifically, (4) and
(5), are solved up to order 4 using an iterative procedure from Lukes
[9]. If we write

N =
@2Lo
@x2

(0); R = P (0)

Q =
@2V

@x2
(0); H =

@C

@x
(0)

then

Lo(x) =
1

2
xTNx+ Lho (x)

�P (x)
@TV

@x
(x) = �RQx+ fh(x)

1

2
C(x)TC(x) =

1

2
xTHTHx+ �h(x) (17)

whereLho (x), f
h(x) and�h(x) contain higher-order terms (beginning

with degrees 3, 2, and 3, respectively). The Lyapunov type equation (4)
splits into two parts: the first part is the Lyapunov equation of the ob-
servability Gramian of the linearized gradient system, while the second
part is a higher-order equation. Themth order termsL(m)

o (x) ofLo(x)
can now be computed inductively form � 3. Denote themth order
terms in(@Lo=@x)fh(x) + �h(x) byKm(x). Then, since�RQ has
all eigenvalues in the left half-plane, it follows that

@L
(m)
o

@x
(x)RQx =Km(x)) L(m)

o (x)

=
1

0

Km e�RQtx dt: (18)

It is easily seen thatKm(x) only depends on L(m�1)
o ,

L
(m�2)
o ; . . . ; L

(2)
o , and therefore (18) determinesL(m)

o inductively
starting fromL

(2)
o = (1=2)xTNx. This procedure can also be

followed for the controllability functionLc. It yields for our gradient
system the following result:

Lo(x1; x2) = 0:034375x21 + 0:00212286x41 + 0:01875x1x2

� 0:0046596x1x
3
2 � 0:00168806x21x

2
2

+ 0:00015811x31x2 + 0:003125x22

� 0:000909133x42

Lc(x1; x2) = 360x21 � 107:411x41 + 400x1x2

� 24:1667x1x
3
2 � 191:25x21x

2
2

� 230:595x31x2 + 120x22 + 21:875x42:

Examining these functions near the origin (see Fig. 2) it is evident
that they are strictly positive, and hence, the system is minimal. This
corresponds to our physical intuition. Observe that the observability
function is quite close to zero at some values. This gives us a kind
of measure for “weak” zero-observability. Likewise, for the controlla-
bility function we can make a similar observation for “weak” asymp-
totic reachability.

T ( _�) := 1
2
_�TM(�); M(�) =

m1l
2
1 +m2l

2
1 +m2l

2
2 + 2m2l1l2 cos �2 m2l

2
2 +m2l1l2 cos �2

m2l
2
2 +m2l1l2 cos �2 m2l

2
2
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Matrix Approach to Deadlock-Free Dispatching in
Multi-Class Finite Buffer Flowlines

A. Gürel, S. Bogdan, and F. L. Lewis

Abstract—For finite-buffer manufacturing systems, the major stability
issue is “deadlock,” rather than “bounded-buffer-length stability.” The
paper introduces the concept of “system deadlock,” defined rigorously
in Petri net terms, and system operation with uninterrupted part-flow
is characterized in terms of the absence of this condition. For a large
class of finite-buffer multi-class re-entrant flowline systems, an analysis
of “circular waits” yields necessary and sufficient conditions for the
occurrence of “system deadlock.” This allows the formulation of a
maximally permissive one-step-look-ahead deadlock-avoidance control
policy for dispatching jobs, while maximizing the percent utilization of
resources. The result is a generalized kanban dispatching strategy, which
is more general than the standard multi-class last buffer first serve (LBFS)
dispatching strategies for finite buffer flowlines that typically under-utilize
the resources. The problem of computational complexity associated with
Petri net (PN) applications is overcome by using certain sub-matrices of
the PN incidence matrix. Computationally efficient matrix techniques are
given for implementing the deadlock-free dispatching policy.

Index Terms—Control policy, deadlock, dispatching, flexible manufac-
turing system, kanban, matrix methods, Petri net, stability.

I. INTRODUCTION

In flexible manufacturing systems(FMS) [2], resource sharing is
ubiquitous. A given resource may be common to the production pro-
cesses of several part-types (parallel sharing), and/or may be used
multiple times during the production process of a given part-type (se-
quential sharing or reentrance). A key role in job routing/dispatching
is played by the FMScontroller, which allocates resources to per-
form jobs for customers or on parts. Failure by the controller to suit-
ably assign resources during job dispatching can lead to serious per-
formance problems. There are numerous formal job-dispatching rules,
such as first-in-first-out (FIFO), first-buffer-first-serve (FBFS), last-
buffer-first-serve (LBFS), earliest due date (EDD), least slack (LS), and
so on [11], [13].

One fundamental question that needs to be addressed in connection
with any FMS dispatching policy is whether or not it isstable. Studies
of stability for FMS often focus on stability in the sense ofbounded
buffer lengths[9], [11]. However, in practice, the buffer lengths arefi-
nite, and such stability results are inapplicable, since it is not obvious
how to keep the buffer lengths below somefixed finite value. For fi-
nite-buffer multi-class reentrant flowline (MRF) systems [9], which
constitute a large class of FMSs, the issue is stability, not in the sense
of bounded buffer lengths, but in the sense of absence ofdeadlock. A
flowline for a given part-class is said to be deadlocked if it holds a
part that cannot complete its processing sequence. Many popular dis-
patching rules can result in deadlock if care is not taken (for instance,
see [14]). In [11], the FBFS and LBFS policies have been shown to
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