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MINIMALITY AND OTHER PROPERTIES
OF THE WIDTH-w NONADJACENT FORM

JAMES A. MUIR AND DOUGLAS R. STINSON

Abstract. Let w ≥ 2 be an integer and let Dw be the set of integers that
includes zero and the odd integers with absolute value less than 2w−1. Every
integer n can be represented as a finite sum of the form n =

∑
ai2

i, with
ai ∈ Dw, such that of any w consecutive ai’s at most one is nonzero. Such
representations are called width-w nonadjacent forms (w-NAFs). When w = 2
these representations use the digits {0,±1} and coincide with the well-known
nonadjacent forms. Width-w nonadjacent forms are useful in efficiently imple-
menting elliptic curve arithmetic for cryptographic applications. We provide
some new results on the w-NAF. We show that w-NAFs have a minimal num-
ber of nonzero digits and we also give a new characterization of the w-NAF in
terms of a (right-to-left) lexicographical ordering. We also generalize a result
on w-NAFs and show that any base 2 representation of an integer, with digits
in Dw, that has a minimal number of nonzero digits is at most one digit longer
than its binary representation.

1. Introduction

In many radix 2 positional number systems, integers are represented using finite
sums of the form

∑
i≥0 ai2i. If n is an integer and n =

∑
i≥0 ai2i, we call

∑
i≥0 ai2i

a radix 2 representation of n. To denote radix 2 representations, the following
notation is commonly used:

(· · · a3a2a1a0)2 = · · · + a323 + a222 + a121 + a0.

Each of the ai’s is called a digit. In the usual radix 2 positional number system
each digit is equal to 0 or 1.

Let w ≥ 2 be an integer. A radix 2 representation is called a width-w nonadjacent
form (w-NAF, for short) if it satisfies the following conditions:

(1) each nonzero digit is an odd integer with absolute value less than 2w−1;
(2) of any w consecutive digits, at most one is nonzero.

It is convenient to define Dw to be the set of w-NAF digits; that is, Dw is the set of
integers that includes zero and the odd integers with absolute value less than 2w−1.
For example, if w = 3, then Dw = {0,±1,±3}. The number 42 has a 3-NAF since
the representation (30030)2 (note that 1 denotes −1, 3 denotes −3, etc.) satisfies
conditions (1) and (2), and

(30030)2 = 3 · 24 + 0 · 23 + 0 · 22 − 3 · 21 + 0 · 20 = 42.
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When w = 2, Dw = {0,±1} and the w-NAF coincides with the well-known non-
adjacent form [6]. Because of this, the w-NAF may be regarded as a generalization
of the ordinary NAF.

Cryptographers became interested in the w-NAF primarily through efforts to
efficiently implement elliptic curve scalar multiplication (i.e., computing nP for an
integer, n, and an elliptic curve point, P ). The basic technique for scalar multiplica-
tion is the binary method (also known as the double-and-add method). The number
of elliptic curve group operations required to compute nP using the binary method
is related to how the integer n is represented. In particular, if n = (a�−1 · · · a1a0)2,
then the number of elliptic curve addition operations required is equal to one less
than the number of nonzero ai’s.1

Suppose, for example, that we wish to compute 3885P . Consider the following
radix 2 representations of 3885:

(111100101101)2, (1000101010101)2, (1000100030003)2.

The ordinary binary method can compute nP by processing any {0, 1}-radix 2
representation of n from left to right. For any n, there is exactly one such represen-
tation, and for n = 3885, this representation is listed above. This representation
has eight nonzero digits which results in 7 elliptic curve addition operations.

The signed binary method can compute nP by processing any {0,±1}-radix 2
representation of n from left to right. Using the digit −1 takes advantage of the fact
that, in an elliptic curve group, inverses can be computed essentially for free (so it
is not necessary to precompute and store −P since it can be computed from P as
needed). There are an infinite number of {0,±1}-radix 2 representations of 3885;
however 3885 has a 2-NAF, which is listed above, and it is, in one sense, an optimal
choice because it has a minimal number of nonzero digits (a result initially due to
Reitwiesner [15]). Using this 2-NAF results in 5 elliptic curve addition operations.

The signed binary sliding window method [9], with window width w ≥ 2, can
compute nP by processing any Dw-radix 2 representation of n from left to right.
Unlike the previous two methods, this method requires that dP be precomputed
and stored for each positive digit d in Dw. A 3-NAF of 3885 is listed above, and
using it results in 3 elliptic curve addition operations. However, without performing
a lengthy computation, it is not obvious if some other D3-radix 2 representation of
3885 could result in fewer addition operations. In general, it was not known if the
w-NAF of an integer has a minimal number of nonzero digits, except in the case
when w = 2.

We provide an answer to this question in Section 3 of this paper: we prove that
no other Dw-radix 2 representation of an integer has fewer nonzero digits than
its w-NAF. This result complements the average case analysis carried out in [4]
and provides further evidence that the w-NAF is a good representation to use
with the signed binary sliding window method. As well, this result may also have
applications to the theory of arithmetic codes [10].

In Section 4, we generalize a known result about the length of w-NAFs. It is
stated without proof in [12] that the length of the w-NAF of an integer is at most
one digit longer than its binary representation. We show that this is in fact a
property of representations with a minimal number of nonzero digits; that is, any

1This does not account for any addition operations that might be performed during a precom-
putation step.
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Dw-radix 2 representation of an integer with a minimal number of nonzero digits
is at most one digit longer than its binary representation.

In Section 5, we provide a new characterization of the w-NAF in terms of a
(right-to-left) lexicographical ordering. For an integer n, we consider the set of all
Dw-radix 2 representations of n. The positions of the zero and nonzero digits in
these representations define binary strings. Dictionary, or lexicographical, order is
the usual way to compare strings, and we show that under this order the smallest
representation in this set is the w-NAF.

Before we present our results, we first establish some of the basic theory on
w-NAFs in Section 2. Aside from being of value to readers new to the w-NAF,
this material provides proofs for some results which are stated without proof in the
literature.

1.1. Notation. All of the radix 2 representations we are concerned with in this
paper are finite sums of the form

∑
i≥0 ai2i, which we denote by (· · · a2a1a0)2.

Since (· · · a2a1a0)2 stands for a finite sum, all but a finite number of the ai’s are
zero. Because of this property, we can consider the length of a representation:

Definition 1.1. The length of a representation (· · · a2a1a0)2 is the integer

min{� ∈ Z : � ≥ 0, and for any i ≥ �, ai = 0}.

For the representation (a�−1 · · · a1a0)2, it is implicit that ai = 0 for all i ≥ �; note
that if a�−1 �= 0, then this representation has length �.

The set, Dw, of w-NAF digits, was defined earlier. The set of all strings of
digits from Dw is denoted by Dw

∗. The empty string is in Dw
∗ and is denoted

by ε. Now, given a representation (a�−1 · · · a1a0)2, where each ai is in Dw, then
a�−1 · · · a1a0 is a string in Dw

∗. Conversely, any string α ∈ Dw
∗ corresponds to

a radix 2 representation with digits in Dw, namely (α)2. If α, β ∈ Dw
∗, then we

denote their concatenation by α‖β. Also, we denote the string formed by deleting
the leading zeros from α by α̂.

It is important to note that representations and strings have different properties.
For example, the strings 30030 and 0030030 are different; however (30030)2 and
(0030030)2 denote the same representation.

If α is a string of digits, then we write wt(α) to denote the number of nonzero
digits in α. The value wt(α) is often called the Hamming weight of α.

2. Known results

The w-NAF seems to have been first described by Cohen, Miyaji and Ono [5].
However, the w-NAF is closely related to the binary window method and this may
explain why it was proposed independently by Blake, Seroussi and Smart [2] and
by Solinas [16].

Results on the w-NAF are scattered among different papers, and often proofs
are not given. For completeness, we give proofs of the following basic facts about
the w-NAF:

(1) every integer has at most one w-NAF;
(2) every integer has a w-NAF;
(3) an integer’s w-NAF is at most one digit longer than its binary representa-

tion.
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2.1. Uniqueness.

Proposition 2.1. Every integer has at most one w-NAF.

Proof. We suppose the result is false and show that this leads to a contra-
diction. Suppose there are two different w-NAFs, say (a�−1 · · · a2a1a0)2 and
(b�′−1 · · · b2b1b0)2, such that

(a�−1 · · · a2a1a0)2 = (b�′−1 · · · b2b1b0)2,

where � and �′ are the respective lengths of these representations. We can assume
that � is as small as possible. These representations stand for the same integer, call
it n.

If a0 = b0, then
(a�−1 · · · a2a1)2 = (b�′−1 · · · b2b1)2,

and so we have two different, and shorter, w-NAFs which stand for the same integer,
contrary to the minimality of �. So, it must be that a0 �= b0.

If n is even, then a0 = b0 = 0. However, a0 �= b0, so it must be that n is odd;
hence, both a0 and b0 are nonzero. Because the representations are both w-NAFs,
we have

(a�−1 · · · aw00 · · · 0a0)2 = (b�′−1 · · · bw00 · · · 0b0)2
=⇒ a0 ≡ b0 (mod 2w).

However, −(2w−1 − 1) ≤ a0, b0 ≤ 2w−1 − 1, and thus

−2(2w−1 − 1) ≤ a0 − b0 ≤ 2(2w−1 − 1).

The only multiple of 2w in this range is 0, and since 2w|(a0 − b0) it must be
that a0 − b0 = 0. However, this contradicts the fact that a0 �= b0. Thus, the
representations cannot exist and the result follows. �

2.2. Existence. We present an algorithm which, on input n, computes a string α
such that (α)2 is a w-NAF of n. Unlike the algorithms in [2] and [16], our algorithm
handles negative integers as well as positive ones. Proving that the algorithm is
correct establishes that every integer has a w-NAF.

The quotient-remainder theorem tells us that, for any integer n, there exist
unique integers q′ and r′ such that

n = q′ · 2w + r′ where 0 ≤ r′ < 2w.

It is common to denote this value of r′ by “n mod 2w”. It follows that there also
exist unique integers q and r such that

n = q · 2w + r where − 2w−1 < r ≤ 2w−1.

We will denote this value of r by “n mods 2w”. For example, if w = 3, then
13 mods 23 = −3. Note that if n is odd, then so is n mods 2w. As well, when
n > 0 it must be that q ≥ 0, and similarly, when n < 0, q ≤ 0. So, for n �= 0, we
have q/n ≥ 0.

Our algorithm makes use of the following two functions:

(2.1) fw(n) :=

{
n/2 if n is even,
(n − r)/2w where r = n mods 2w, otherwise;
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(2.2) gw(n) :=

{
0 if n is even,
0w−1r where r = n mods 2w, otherwise.

Note that fw returns an integer and gw returns a string. For example, if w = 3,
then f3(13) = 2 and g3(13) = 003.

Now we can describe our algorithm:

Algorithm2.1: NAFw(n)

α ← ε
while n �= 0

do
{

α ← gw(n) ‖ α
n ← fw(n)

return α̂

As NAFw(n) executes, it builds a string, α, in Dw
∗. Assuming NAFw(n) termi-

nates, which we will prove in a moment, it returns this string minus its leading
zeros (i.e., α̂).

We justify the title “Algorithm” by showing that NAFw(n) terminates for all
n ∈ Z. If n = 0, then NAFw(n) clearly terminates, so we need only consider n �= 0.
We will argue that |fw(n)| < |n| whenever n �= 0.

If n is even, then fw(n) = n/2 and thus |fw(n)| < |n|. If n is odd, then we
consider two cases. First, suppose |n| < 2w−1. Then we see that n mods 2w = n
and thus

|fw(n)| = 0 < |n| .
Second, suppose |n| ≥ 2w−1; then we have

|fw(n)| =
∣∣∣∣n − r

2w

∣∣∣∣ ≤ ∣∣∣ n

2w

∣∣∣ +
∣∣∣ r

2w

∣∣∣ <
∣∣∣ n

2w

∣∣∣ +
1
2
.

Now,
1
2

=
2w−1

2w
≤ |n|

2w
,

and, since w ≥ 2, it follows that

|fw(n)| < 2
∣∣∣ n

2w

∣∣∣ =
∣∣∣ n

2w−1

∣∣∣ < |n| .

So, the sequence formed by taking the absolute value of the variable n during the
execution of NAFw(n) is strictly decreasing. Thus, the variable n must reach 0,
and so NAFw(n) terminates for all n ∈ Z.

Now we argue that the algorithm is correct.

Proposition 2.2. Let α be the string returned by NAFw(n) where n ∈ Z. Then
(α)2 is a w-NAF and (α)2 = n.

Proof. By the definition of gw, it is clear that (α)2 is a w-NAF, so we just have
to show that (α)2 = n. If i is a nonnegative integer, we write fw

i to denote i
applications of the map fw; that is,

fw
i = fw ◦ fw ◦ · · · ◦ fw︸ ︷︷ ︸

i

.
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Since NAFw(n) terminates, there is some integer i ≥ 0 such that fw
i(n) = 0. We

will argue by induction on i.
When i = 0, fw

i(n) = 0 implies n = 0. For n = 0, we have α = ε and then
n = (α)2 as required. Suppose i > 0. Let n′ = fw(n) and let α′ be the string
returned by NAFw(n′). Note that fw

i−1(n′) = fw
i(n) = 0 and so by induction we

have that n′ = (α′)2. By the definition of Algorithm 2.1 we see that

α = α′‖gw(n)

=⇒ (α)2 = (α′‖gw(n))2

=⇒ (α)2 = 2|gw(n)|(α′)2 + (gw(n))2

=⇒ (α)2 = 2|gw(n)|n′ + (gw(n))2

=⇒ (α)2 = 2|gw(n)|fw(n) + (gw(n))2.(2.3)

From (2.1), we see that the function fw can be defined in terms of gw as follows:

fw(n) =
n − (gw(n))2

2|gw(n)| .

Thus, the right-hand side of (2.3) equals n, and so (α)2 = n as required. �

Because of Propositions 2.1 and 2.2, we now know that each integer n has a
unique w-NAF. Henceforth, we will refer to this representation as the w-NAF of n.

2.3. Length. We show that the length of the w-NAF of n is at most one digit
longer than the {0, 1}-radix 2 representation of |n|. This fact seems to have been
first stated, without proof, by Möller [12]. A more general result is proved in Section
4; however, we feel it is of interest to provide a direct proof here.

We start with a lemma.

Lemma 2.3. Let (a�−1 · · · a1a0)2 be a w-NAF of length � where � ≥ 1. If n =
(a�−1 · · · a1a0)2, then n > 0 if and only if a�−1 > 0.

Proof. Note that since the length of (a�−1 · · · a1a0)2 is � we have a�−1 �= 0. We
argue by induction on �. The result is clearly true when � = 1. Suppose � > 1.

If a0 = 0 we let n′ = (a�−1 · · · a1)2. Then we see that

n > 0 ⇐⇒ 2n′ > 0 ⇐⇒ n′ > 0 ⇐⇒ a�−1 > 0,

where the last equivalence follows by induction.
If a0 �= 0, then

a�−1 · · · aw · · · a1a0 = a�−1 · · · aw0 · · · 0a0,

since (a�−1 · · · a1a0)2 is a w-NAF. Thus,

n = 2w(a�−1 · · · aw)2 + a0 where − 2w−1 < a0 ≤ 2w−1.

Since a�−1 �= 0, we have (a�−1 · · · aw)2 �= 0; thus

n > 0 ⇐⇒ (a�−1 · · · aw)2 > 0 ⇐⇒ a�−1 > 0,

where the last equivalence follows by induction. This proves the result. �

Proposition 2.4. For any integers n, w, where w ≥ 2, the length of the w-NAF of
n is at most one digit longer than the binary representation of |n|.
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Proof. Let � be the length of the w-NAF of |n| and let m be the length of the binary
representation of |n|. If n = 0, then � = m = 0, and so the result is true. Suppose
n �= 0. Let (a�−1 · · · a1a0)2 be the w-NAF of |n|. Since |n| is positive, by Lemma
2.3 we have that a�−1 ≥ 1. Let a = −(2w−1 − 1). Note that

(a�−1a�−2 · · · a1a0)2 = |n|
=⇒ (1a�−2 · · · a1a0)2 ≤ |n|
=⇒ (1 00 · · · 0a︸ ︷︷ ︸

w

00 · · · 0a︸ ︷︷ ︸
w

· · · )2 ≤ |n|

=⇒ (11 · · · 1︸ ︷︷ ︸
w

aa · · ·a︸ ︷︷ ︸
w

aa · · ·a︸ ︷︷ ︸
w

· · · )2 ≤ (2w−1 + · · · + 22 + 21 + 1) |n| .

Consider the representation on the left-hand side of this last inequality. Reading
from left to right, its digits consist of a run of ones, followed by a run of a’s, ended
by a (possibly empty) run of zeros. If we replace this run of zeros with a run of a’s,
then we have

(11 · · · 1︸ ︷︷ ︸
w

aa · · · a︸ ︷︷ ︸
�−1

)2 ≤ (2w−1 + · · · + 22 + 21 + 1) |n|

=⇒ 2�−1(2w − 1) + a(2�−1 − 1) ≤ (2w − 1) |n|
=⇒ 2�−1(2w − 1) − (2w−1 − 1)(2�−1 − 1) ≤ (2w − 1) |n|

=⇒ 2�−1 − 2w−1 − 1
2w − 1

(2�−1 − 1) ≤ |n|

=⇒ 2�−1 − 1
2
(2�−1 − 1) < |n|

=⇒ 2�−2 +
1
2

< |n|

=⇒ 2�−2 < |n| .
Now, from the binary representation of |n|, we have |n| < 2m; thus

2�−2 < 2m

=⇒ � − 2 < m

=⇒ � − m ≤ 1.

This gives us the required result. �

3. Minimality

The main topic of this section is to prove that the w-NAF has a minimal number
of nonzero digits; that is, we want to show that no other representation of an
integer, with digits in Dw, has fewer nonzero digits than its w-NAF. We begin
with a discussion of addition of representations. We will see that the properties of
addition provide a key step in our proof of minimality.

For any α ∈ Dw
∗ and c0 ∈ Z with |c0| < 2w−1, we show that there exists some

β ∈ Dw
∗ such that (β)2 = (α)2 + c0 and

(3.1) wt(β) ≤ wt(α) + 1.

We do so by developing a certain algorithm for addition.
Given α and c0, we want to compute a representation β ∈ Dw

∗ with (β)2 =
(α)2 + c0. Let α = · · · a2a1a0 and β = · · · b2b1b0. To compute the sum we define a
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sequence of integers c1, c2, . . . . Writing our variables in the following array suggests
how these values are related:

· · · c3
a3

c2
a2

c1
a1a0

+ c0

· · · b3b2b1b0

Starting with i = 0, we examine ai and ci and then assign values to bi and ci+1.
The following rules are used to define bi:

ai mod 2 ci mod 2 bi

0 0 ai

0 1 ci

1 0 ai

1 1 0

Furthermore, ci+1 is always set to the value (ai + ci − bi)/2.
We claim the representation β is in Dw

∗. To justify this claim, we first show
that each ci+1 satisfies |ci+1| < 2w−1. Note that bi ∈ {0, ai, ci}. Since ai ∈ Dw, we
have |ai| < 2w−1, and by induction |ci| < 2w−1. Thus,

bi = 0 =⇒ ci+1 =
ai + ci

2
=⇒ |ci+1| < 2w−1,

bi = ai =⇒ ci+1 =
ci

2
=⇒ |ci+1| < 2w−2,

bi = ci =⇒ ci+1 =
ai

2
=⇒ |ci+1| < 2w−2.

Now, it is easy to see that β ∈ Dw
∗. If bi equals 0 or ai, then clearly bi ∈ Dw. If

bi = ci, then, according to our rules, it must be that ci is odd. Since ci is odd and
|ci| < 2w−1, ci ∈ Dw. Hence, bi ∈ Dw for all i.

Based on the grade-school method of addition, it may seem natural for the rules
that define bi to be implemented inside an appropriate “for” loop. However, for our
purposes, it is more convenient if we take a different approach. We first initialize
the string β = · · · b2b1b0 to equal α = · · · a2a1a0 and then correct the digits of β as
necessary. Here is a description of this process in pseudocode:

Algorithm3.1: add-digit(α, c0)

comment: α = · · · a2a1a0, ai ∈ Dw, |c0| < 2w−1

· · · b2b1b0 ← · · · a2a1a0

i ← 0
while ci �= 0

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a, c) ← (ai, ci) mod 2
if (a, c) = (0, 1)
then bi ← ci

else if (a, c) = (1, 1)
then bi ← 0

ci+1 ← (ai + ci − bi)/2
i ← i + 1

return β = · · · b2b1b0
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For the input α = · · · a2a1a0, let � − 1 be the largest value of i such that ai �= 0
(thus, the representation (α)2 has length �). By convention, we let ai = 0 for all
i ≥ �. The algorithm terminates if and only if the sequence c0, c1, c2, . . . reaches
zero. If none of c0, c1, . . . , c� are equal to zero, then certainly one of c�+1, c�+2, . . .
will be; this is because for i ≥ �, ci+1 is equal to either 0 or ci/2. Thus, we see that
add-digit(α, c0) always terminates.

A short example helps illustrate how the algorithm works. Let w = 4. Then
D4 = {0,±1,±3,±5,±7}. Suppose α = 13570001357 and c0 = 6. Then the
algorithm adds (13570001357)2 and 6 as follows:

13570
0
0

1
0

2
1

4
3

3
57

+ 6
13570011307

It is interesting to note that add-digit computes a sum in Dw
∗ without using the

operator “mods 2w”.
The following lemma verifies that the algorithm is correct.

Lemma 3.1. Let β be the string returned by add-digit(α, c0) where α ∈ Dw
∗ and

|c0| < 2w−1. Then, (β)2 = (α)2 + c0.

Proof. Let i∗ be the value of i when add-digit(α, c0) returns. We argue by induc-
tion on i∗. If i∗ = 0, then

i∗ = 0 =⇒ c0 = 0 and β = α

=⇒ (β)2 = (α)2 + c0.

So, the result holds for i∗ = 0.
Suppose i∗ > 0. From the strings α = · · · a2a1a0 and β = · · · b2b1b0, we define

α′ = · · · a2a1 and β′ = · · · b2b1. Let c1, c2, . . . be the sequence of carries which occurs
during the computation of add-digit(α, c0). From the description of Algorithm
3.1, we see that add-digit(α′, c1) must return the string β′. Moreover, the value
of i when add-digit(α′, c1) returns must be i∗ − 1. Now,

(β′)2 = (α′)2 + c1 (by induction)

=⇒ (β′‖0)2 = (α′‖0)2 + 2c1

=⇒ (β′‖0)2 + b0 = (α′‖0)2 + 2c1 + b0

=⇒ (β)2 = (α′‖0)2 + a0 + c0 (since c1 = (a0 + c0 − b0)/2)

=⇒ (β)2 = (α)2 + c0.

�

Returning to (3.1), if we are given α ∈ Dw
∗ and c0, with |c0| < 2w−1, we can

use add-digit(α, c0) to compute a string β ∈ Dw
∗ such that (β)2 = (α)2 + c0. We

will show that wt(β) ≤ wt(α) + 1.

Lemma 3.2. Let β be the string returned by add-digit(α, c0) where α ∈ Dw
∗ and

|c0| < 2w−1. Then, wt(β) ≤ wt(α) + 1.

Proof. Let i∗ be the value of i when add-digit(α, c0) returns. Consider the se-
quence t0, t1, . . . , ti∗ where

ti = wt(· · · ai+1ai) + wt(ci) + wt(bi−1 · · · b1b0) .
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We argue that this sequence is monotonically decreasing. Once we establish this
fact, we show that the lemma follows.

First, note that from the description of Algorithm 3.1, we have

ci+1 =
ai + ci − bi

2
, for 0 ≤ i ≤ i∗ − 1.

Now, bi ∈ {0, ai, ci}, and after applying a simple case analysis to this equality we
can conclude that

(3.2) wt(ci+1) ≤ wt(ai) + wt(ci) − wt(bi) .

For example, suppose bi = 0. Then we must show that wt(ci+1) ≤ wt(ai) + wt(ci).
Since i < i∗, we have ci �= 0 and thus wt(ci) = 1. Now,

wt(ci+1) ≤ 1 = wt(ci) ≤ wt(ai) + wt(ci) .

The other cases are argued in a similar manner.
For 0 ≤ i ≤ i∗ − 1 we need to show that ti ≥ ti+1. If we compare

ti = wt(· · · ai+1ai) + wt(ci) + wt(bi−1 · · · b1b0)

to
ti+1 = wt(· · · ai+2ai+1) + wt(ci+1) + wt(bi · · · b1b0)

and eliminate equal digits, we see that

ti ≥ ti+1 ⇐⇒ wt(ai) + wt(ci) ≥ wt(ci+1) + wt(bi) .

However, this last inequality holds by (3.2). Thus, the sequence of ti’s is monoton-
ically decreasing.

Since t0 ≥ t1 ≥ · · · ≥ ti∗ we have t0 ≥ ti∗ . Note that

t0 = wt(· · · a1a0) + wt(c0) = wt(α) + wt(c0) .

Since bi = ai, for i ≥ i∗, and ci∗ = 0 we have

ti∗ = wt(· · · ai∗+1ai∗) + wt(ci∗) + wt(bi∗−1 · · · b1b0) = wt(β) .

Thus, from ti∗ ≤ t0, we can conclude that

wt(β) ≤ wt(α) + wt(c0) ≤ wt(α) + 1.

�

Now we have all the tools we need to proceed with our main result.

Theorem 3.3. If (α)2 is a w-NAF, then for any β ∈ Dw
∗ with (β)2 = (α)2, we

have wt(α) ≤ wt(β).

Proof. Suppose the result is false. Then for some w-NAF, (α)2, there exists β ∈
Dw

∗ with (β)2 = (α)2 and wt(α) > wt(β). Choose (α)2 so that its length is
minimal. Any w-NAF with length less than that of (α)2 must have a minimal
number of nonzero digits.

Let α = · · · a2a1a0 and β = · · · b2b1b0. If a0 = b0, then (· · · a2a1)2 = (· · · b2b1)2
and so (· · · a2a1)2 is a shorter counterexample. However, this contradicts our choice
of (α)2, so it must be that a0 �= b0. A consequence of this is that (α)2 must be odd,
since otherwise a0 = b0 = 0. Hence, both a0 and b0 are nonzero.

Since (α)2 is a w-NAF we have

α = · · · aw00 · · · 0a0.
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Write

α = α1‖
w︷ ︸︸ ︷

00 · · · 0a0 and β = β1‖
w︷ ︸︸ ︷

bw−1 · · · b1b0

where α1, β1 ∈ Dw
∗. Note that since (α)2 is a w-NAF, so is (α1)2, and furthermore,

wt(α) = wt(α1) + 1.
We show that at least two of the digits in the string bw−1 · · · b1b0 must be nonzero.

Suppose not; then all of the digits bw−1 · · · b1b0 are zero except for b0, and so

(α)2 = (β)2
=⇒ (α1‖00 · · · 0a0)2 = (β1‖00 · · · 0b0)2

=⇒ a0 ≡ b0 (mod 2w)

=⇒ a0 = b0 (since a0, b0 ∈ Dw).

But this is a contradiction since a0 and b0 cannot be equal. So wt(bw−1 · · · b1b0) ≥ 2,
and hence wt(β) ≥ wt(β1) + 2.

Now,

(α)2 = (β)2
=⇒ (α1‖00 · · · 0a0)2 = (β1‖bw−1 · · · b1b0)2

=⇒ (α1)2 · 2w + (00 · · · 0a0)2 = (β1)2 · 2w + (bw−1 · · · b1b0)2

=⇒ (α1)2 = (β1)2 +
(bw−1 · · · b1b0)2 − (00 · · · 0a0)2

2w
.

Let c0 = ((bw−1 · · · b1b0)2 − (00 · · · 0a0)2) /2w. Note that c0 must be an integer. We
can derive a bound on |c0|. Every digit in Dw has absolute value at most 2w−1 − 1;
thus

|(bw−1 · · · b1b0)2| ≤ (2w−1 − 1)(2w − 1), and

|(00 · · · 0a0)2| ≤ 2w−1 − 1.

Combining these two inequalities gives

|(bw−1 · · · b1b0)2 − (00 · · · 0a0)2| ≤ (2w−1 − 1)2w

and thus |c0| ≤ 2w−1 − 1, or equivalently, |c0| < 2w−1.
So, we have (α1)2 = (β1)2 + c0. Let β1

′ denote the string returned by add-

digit(β1, c0). Then (β1
′)2 = (β1)2 + c0 and, by Lemma 3.2, wt

(
β1

′) ≤ wt(β1) + 1.
Now, we come to the end of the proof. We have

wt(α) > wt(β)

=⇒ wt(α1) + 1 > wt(β) (since wt(α) = wt(α1) + 1)

=⇒ wt(α1) + 1 > wt(β1) + 2 (since wt(β) ≥ wt(β1) + 2)

=⇒ wt(α1) > wt(β1) + 1

=⇒ wt(α1) > wt
(
β1

′) (since wt(β1) + 1 ≥ wt
(
β1

′)).
But, (α1)2 = (β1

′)2 and (α1)2 is a w-NAF. Thus (α1)2 is a shorter counterexample,
contrary to our choice of (α)2. This proves the result. �
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4. Length of minimal weight representations

We have already seen that the length of the w-NAF of an integer is at most
one digit longer than its binary representation. In this section, we see that this
property is actually a consequence of a more general result. We will show that the
length of any representation in Dw

∗ with a minimal number of nonzero digits is at
most one digit longer than its binary representation.

Theorem 4.1. Let α = a�−1 · · · a1a0 be a string in Dw
∗ such that a�−1 �= 0 and

(α)2 = n. If wt(α) ≤ wt(β) for any β ∈ Dw
∗ with (β)2 = n, then � ≤ �lg |n|� + 2.

Proof. We argue by induction on �, the length of (α)2. Note that since a�−1 is
nonzero the length of (α)2 cannot be zero (i.e., � ≥ 1). Also, a�−1 �= 0 tells us that
n = (α)2 �= 0 and so lg |n| is defined.

If � = 1, then
� = 1 ≤ �lg |n|� + 1 < �lg |n|� + 2,

and so the result is true.
Suppose now that � > 1. Let α1 = a�−1 · · · a2a1, so that α = α1‖a0. Note that

n − a0

2
= (α1)2.

Since (α)2 is a minimal Hamming weight representation of n, (α1)2 must be a
minimal Hamming weight representation of (n−a0)/2. The length of (α1)2 is �−1,
so by induction we have

� − 1 ≤ �lg |(n − a0)/2|� + 2

=⇒ � − 1 ≤ �lg |n − a0|� − 1 + 2

=⇒ � ≤ �lg |n − a0|� + 2.

If �lg |n − a0|� ≤ �lg |n|�, then from the previous step we can conclude

� ≤ �lg |n|� + 2,

which is the result we want. Thus, we can restrict to the case �lg |n − a0|� > �lg |n|�.
In this case, it is clear that a0 �= 0.

The string α contains at least two nonzero digits, namely a�−1 and a0. This tells
us that wt(α) ≥ 2. Because a0 is nonzero and n = (α)2, we have also that n is
odd. The integer n cannot be equal to any of the digits in Dw. To see this, suppose
n ∈ Dw. Then the string β = n is in Dw

∗ and (β)2 = n. However, wt(β) = 1
which is less than wt(α) ≥ 2, contrary to our hypothesis. Thus, |n| > 2w−1. A
consequence of this is that n and n − a0 are either both positive or both negative.

We will suppose n is positive (the case where n is negative is argued in the same
manner). Now,

�lg n� < �lg(n − a0)� =⇒ �lg n� + 1 ≤ �lg(n − a0)�
=⇒ �lg n� + 1 ≤ lg(n − a0)

=⇒ 2�lg n�+1 ≤ n − a0,

so we see that the closed interval [n, 2�lg n�+1] sits inside the closed interval [n, n−a0].
Let d = 2�lg n�+1 − n. Since n is odd, d is odd. The intervals [n, 2�lg n�+1] and
[n, n − a0] have lengths d and |a0|, respectively. By comparing these lengths, we
see that d ≤ |a0| < 2w−1. Thus, d ∈ Dw.
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Consider the string β ∈ Dw
∗ where

β = 100 · · · 0d︸ ︷︷ ︸
�lg n�+2

.

Then, (β)2 = 1 ·2�lg n�+1 +d ·20 = n. So, n can be represented using only 2 nonzero
digits. Thus, wt(α) ≤ 2. Now, both wt(α) ≥ 2 and wt(α) ≤ 2, and so wt(α) = 2.
Thus, the string α has the form

α = a�−100 · · · 0a0.

Now, (α)2 = n and so a�−1 · 2�−1 + a0 = n. Since n is positive and �lg n� <
�lg(n − a0)� it must be that a0 is negative. However, if a0 is negative, then a�−1

must be positive. Thus,

a�−1 · 2�−1 = n − a0

=⇒ 2�−1 ≤ n − a0

=⇒ � − 1 ≤ �lg(n − a0)�
=⇒ � ≤ �lg(n − a0)� + 1.

If �lg(n − a0)� ≤ �lg n� + 1, then this gives us � ≤ �lg n� + 2, which is the desired
result. To finish the proof, we show that �lg(n − a0)� > �lg n� + 1 would lead to a
contradiction. Observe

�lg n� + 1 < �lg(n − a0)�
=⇒ lg n < �lg(n − a0)� (since x < �x� + 1)

=⇒ lg n + 1 ≤ lg(n − a0)
=⇒ 2n ≤ n − a0

=⇒ n ≤ −a0

=⇒ n ∈ Dw (since n is odd),

contradicting the fact that wt(α) = 2. This concludes our proof. �

Note that Proposition 2.4, which we proved directly in Section 2, can now be
obtained as a consequence of Theorem 3.3 and Theorem 4.1.

5. Lexicographic characterization

For an integer n, consider the set of all representations of n with digits in Dw.
We can compare representations in this set in a number of ways. For example,
we can order representations according to how many nonzero digits they have. By
Theorem 3.3, we know that the w-NAF is a minimal representation under this order,
but it is not necessarily unique in this respect. For example, when w = 3, the 3-
NAF of 5 is (1003)2 which has two nonzero digits, and so too do the representations
(101)2, (13)2 and (31)2. However, there is another comparison we can make between
representations which does, in fact, uniquely identify the w-NAF. This comparison
is based on the position of nonzero digits and we introduce it now.
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From any string α ∈ Dw
∗, we can derive a string α′ ∈ {0, 1}∗ defined as follows: if

α = · · · a2a1a0, then α′ = · · · a2
′a1

′a0
′ where

(5.1) ai
′ :=

{
0 if ai = 0,

1 otherwise.

For example, if α = 30030, then α′ = 10010. For α, β ∈ Dw
∗ we write α  β if α′ is

less than or equal to β′ under a right-to-left lexicographic ordering. If β = 100310,
then β′ = 100110 and, after comparing α′ to β′, we see that α  β.

The relation “” induces an order on the set of representations of n with digits
in Dw. Each representation of n identifies a unique string in Dw

∗ that does not have
any leading zeros. Two representations of n are compared by applying the relation
“” to their corresponding strings. For example, suppose w = 3 and n = 42.
Below, we list a number of strings in D3

∗ which correspond to representations of
42. For each string, we give the associated string in {0, 1}∗. The list is sorted under
the relation “”.

3 0 0 -3 0 1 0 0 1 0
1 1 0 0 -3 0 1 1 0 0 1 0
3 -3 0 0 -3 0 1 1 0 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0

1 3 0 1 0 1 1 0 1 0
3 -1 0 1 0 1 1 0 1 0

1 0 0 3 -1 0 1 0 0 1 1 0
3 0 -3 3 0 1 0 1 1 0
3 0 -1 -1 0 1 0 1 1 0

3 3 3 0 1 1 1 0

Notice that the 3-NAF of 42 is the unique smallest representation of the ones
considered. Even if we considered all the representations of 42 with digits in D3,
the 3-NAF of 42 would still be the unique smallest representation. This result is
true in general and is proven in Theorem 5.1.

Theorem 5.1. Let n be an integer. Of all the representations of n with digits in
Dw, the w-NAF of n is the unique smallest representation under the order .

Proof. When n = 0, the only representation of n with digits in Dw is the all-zero
representation. The all-zero representation is the w-NAF of 0, so the result is true
for n = 0. Suppose the result is false for some n �= 0. Choose n so that the length
of the w-NAF of n is minimal. Let (α)2 be the w-NAF of n. There is some string
β ∈ Dw

∗, β �= α, such that n = (β)2 and β  α.
Recall the definition of α′ and β′ from (5.1). If n is even, then a0

′ = b0
′ = 0 and

so the result is also false for n/2, contrary to our choice of n. Thus, n is odd and
so a0

′ = b0
′ = 1. Since α is a w-NAF, aw−1

′ = aw−2
′ = · · · = a1

′ = 0, and since
β  α, we have bw−1

′ = bw−2
′ = · · · = b1

′ = 0. Thus

β = · · · bw00 · · · 0b0,

α = · · · aw00 · · · 0a0.

Since (α)2 = (β)2, we have a0 ≡ b0 (mod 2w). However, a0, b0 ∈ Dw, so it must
be that a0 = b0. But this contradicts our choice of n since we see the result is also
false for (n − a0)/2w. Hence, we have the desired result. �
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6. Comments and further work

A detailed discussion of the costs and benefits of using the w-NAF window
method for elliptic curve scalar multiplication, including several examples applied
to the NIST recommended elliptic curves, is given in [7, Ch. 3]. Much of this
analysis is based on the fact that the average density of nonzero digits among all
w-NAFs of length � is approximately 1/(w + 1) (a proof of a similar result is given
in [4]). Because of Theorem 3.3, we now know that no other family of Dw-radix 2
representations can have density lower than that of the w-NAF.

As with the result on the length of the w-NAF, the result presented in Lemma
2.3 can be generalized to any minimal weight Dw-radix 2 representation.

The w-NAF window method for scalar multiplication is described in [2] and [16]
as a left-to-right method.2 However, Algorithm 2.1 computes the w-NAF of an
integer from right to left. This means that the w-NAF of n must first be computed
and stored in its entirety before computations to determine nP can begin. There
are other representations which use the same digits as the w-NAF but can be
deduced from left to right [1, 13]. Like the w-NAF, these new representations have
a minimal number of nonzero digits. These representations result in a left-to-right
window method which uses less memory.

The results of this paper further strengthen the analogy between the ordinary
NAF and the w-NAF. After the submission of this manuscript, another property
of the ordinary NAF was shown to carry over to the w-NAF. In [10], a simple
algorithm is described (due to Chang and Tsao-Wu [3]) which constructs the NAF
of n by subtracting the binary representation of n from the binary representation of
3n. A similar construction has been discovered for the w-NAF [8, 14]. Lemma 2.3
and Proposition 2.4 appear to be very natural consequences of this construction.

After the submission of this manuscript, the authors became aware of a related
paper by Avanzi [1], which presents an alternate proof of Theorem 3.3. Avanzi’s
proof considers radix 2 representations where the nonzero digits have absolute value
at most 2w−1 and can be either odd or even. Even when these additional digits are
included, Avanzi’s argument shows that the w-NAF still has minimal weight.
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