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Abstract We study invariant submanifolds of manifolds endowed with a normal or complex
metric contact pair with decomposable structure tensor φ. For the normal case, we prove that
a φ-invariant submanifold tangent to a Reeb vector field and orthogonal to the other one is
minimal. For a φ-invariant submanifold N everywhere transverse to both the Reeb vector
fields but not orthogonal to them, we prove that it is minimal if and only if the angle between
the tangential component ξ (with respect to N ) of a Reeb vector field and the Reeb vector
field itself is constant along the integral curves of ξ . For the complex case (when just one
of the two natural almost complex structures is supposed to be integrable), we prove that a
complex submanifold is minimal if and only if it is tangent to both the Reeb vector fields.
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1 Introduction

It iswell known that on aKählermanifold, the J -invariant submanifolds (J being the complex
structure of the Kähler manifold) are minimal. On the other hand, for a Sasakian manifold,
and more generally for a contact metric manifold, a φ-invariant submanifold is also minimal,
where φ is the structure tensor of the contact metric structure. Similar results are known for
a special class of Hermitian manifolds, that is, the class of locally conformally Kähler (lcK)
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manifolds and in particular for the subclass of Vaisman manifolds. Dragomir and Ornea [12,
Theorem 12.1] have shown that a J -invariant submanifold of an lcK manifold is minimal if
and only if the submanifold is tangent to the Lee vector field (and therefore tangent to the
anti-Lee vector field). In fact, this result is a slight generalization of the following result of
Vaisman [15]: a J -invariant submanifold of a generalized Hopf manifold (nowadays called
Vaisman manifold) inherits a generalized Hopf manifold structure if and only if it is minimal
(or, equivalently, if and only if the submanifold is tangent to the Lee vector field). In [9], it
was shown that the notion of non-Kähler Vaisman manifold, after constant rescaling of the
metric, is equivalent to the notion of normal metric contact pair [7] of type (h, 0) and the
Lee and anti-Lee vector fields correspond to the Reeb vectors fields of the pair. Moreover,
this equivalence enlightened the fact that on a Vaisman manifold, there is another complex
structureT with opposite orientationwith respect to J . In termsof normalmetric contact pairs,
the generalization of Vaisman’s result can be stated as follows: a J -invariant submanifold of a
normal metric contact pair manifold of type (h, 0) is minimal if and only if the submanifold is
tangent to the Reeb vector fields or, equivalently, if it is also T -invariant. These observations
lead to the study of the invariant submanifolds of normal metric contact pairs of type (h, k)
[7] also called Hermitian bicontact structures [11].

More precisely, recall that ametric contact pair [6] of type (h, k)on amanifoldM is 4-tuple
(α1, α2, φ, g) such that (α1, α2) is a contact pair [2,5] of type (h, k), φ is an endomorphism
field of M such that

φ2 = −I d + α1 ⊗ Z1 + α2 ⊗ Z2, φZ1 = φZ2 = 0,

where Z1 and Z2 are the Reeb vector fields of (α1, α2), and g is a Riemannian metric such
that g(X, φY ) = (dα1 +dα2)(X, Y ) and g(X, Zi ) = αi (X), for i = 1, 2. The metric contact
pair is said to be normal [7] if the two almost complex structures of opposite orientations
J = φ − α2 ⊗ Z1 + α1 ⊗ Z2 and T = φ + α2 ⊗ Z1 − α1 ⊗ Z2 are integrable. A quite
important notion is the one of decomposability of φ, which means that the tangent spaces of
the leaves of the characteristic foliations of the pair are preserved by φ. The decomposability
of φ is equivalent to the orthogonality of the two characteristic foliations and implies that the
their leaves are φ-invariant submanifolds and moreover minimal [8].

In this paper, after giving some characterizations of normal metric contact pairs with
decomposable φ, we address the problem of the minimality of the invariant submanifolds.
Observe that on a metric contact pair manifold, we have several notions of invariant sub-
manifold: with respect to φ, to J , or to T . We first give some general results concerning
the invariant submanifolds of a metric contact pair manifold with decomposable φ, then we
specialize to the normal case, and we prove the following:

Theorem 3 Let (M, α1, α2, φ, g) be a normal metric contact pair manifold with decompos-
able φ and Reeb vector fields Z1 and Z2. If N is a φ-invariant submanifold of M such that
Z1 is tangent and Z2 orthogonal to N, then N is minimal. Moreover, if N is connected, then
it is a Sasakian submanifold of one of the Sasakian leaves of the characteristic foliation of
α2.

Theorem 4 Let (M, α1, α2, φ, g) be a normal metric contact pair manifold with decompos-
able φ and Reeb vector fields Z1 and Z2. Let N be a φ-invariant submanifold of M nowhere
tangent and nowhere orthogonal to Z1 and Z2. Then, N is minimal if and only if the angle
between ZT

1 (ZT
1 being the tangential component of Z1 along N) and Z1 (or equivalently

Z2) is constant along the integral curves of ZT
1 .

Theorem 5 Let (M, α1, α2, φ, g) be a metric contact pair manifold with decomposable φ

and Reeb vector fields Z1 and Z2. Suppose that the almost complex structure J = φ − α2 ⊗
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Minimality of invariant submanifolds 1109

Z1 + α1 ⊗ Z2 is integrable. Then, a J -invariant submanifold N of M is minimal if and only
if it is tangent to the Reeb distribution.

The last result, applied to the case of a normal metric contact pair, gives the desired general-
ization of the result of Vaisman to normal metric contact pairs of type (h, k). Nevertheless, it
should be remarked that the full generalization of the original Vaisman result concerning the
Vaisman manifolds is not true. In fact, we give an example where the submanifold is both J
and T -invariant, then tangent to the Reeb distribution, and therefore minimal, but it does not
inherit the contact pair structure of the ambient manifold.

In what follows we denote by Γ (B) the space of sections of a vector bundle B. For a given
foliation F on a manifold M , we denote by TF the subbundle of T M whose fibers are given
by the distribution tangent to the leaves. All the differential objects considered are assumed
to be smooth.

2 Preliminaries

A contact pair (or bicontact structure) [2,5,11] of type (h, k) on a manifold M is a pair
(α1, α2) of 1-forms such that

α1 ∧ (dα1)
h ∧ α2 ∧ (dα2)

k is a volume form,

(dα1)
h+1 = 0 and (dα2)

k+1 = 0.

The Élie Cartan characteristic classes of α1 and α2 are constant and equal to 2h + 1
and 2k + 1, respectively. The distribution Ker α1 ∩Ker dα1 (respectively, Ker α2 ∩Ker dα2)
is completely integrable [2,5], and then it determines the characteristic foliation F1 of α1

(respectively,F2 of α2) whose leaves are endowedwith a contact form induced by α2 (respec-
tively, α1). The equations

α1(Z1) = α2(Z2) = 1, α1(Z2) = α2(Z1) = 0,

iZ1dα1 = iZ1dα2 = iZ2dα1 = iZ2dα2 = 0,

where iX is the contraction with the vector field X , determine uniquely the two vector fields
Z1 and Z2, called Reeb vector fields. Since they commute [2,5], they give rise to a locally
free R2-action, an integrable distribution called Reeb distribution, and then a foliation R of
M by surfaces. The tangent bundle of M can be split as:

T M = TF1 ⊕ TF2 = H1 ⊕ H2 ⊕ V,

where TFi is the subbundle determined by the characteristic foliation Fi ,Hi the subbundle
whose fibers are given by ker dαi ∩ ker α1 ∩ ker α2, V = RZ1 ⊕ RZ2 and RZ1,RZ2 the
line bundles determined by the Reeb vector fields. Moreover, we have TF1 = H1 ⊕ RZ2

and TF2 = H2 ⊕ RZ1. The fibers of the subbundle H1 ⊕ H2 are given by the distribution
ker α1 ∩ ker α2.

Definition 1 We say that a vector field is vertical if it is a section of V and horizontal if it is
a section of H1 ⊕ H2. A tangent vector will be said vertical if it lies in V and horizontal if
it lies in H1 ⊕ H2. The subbundles V and H1 ⊕ H2 will be called vertical and horizontal,
respectively.

The two distributions ker dα1 and ker dα2 are also completely integrable and give rise to
the characteristic foliations Gi of dαi , respectively. We have TGi = Hi ⊕ V, for i = 1, 2.
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The contact pair on M induces on each leaf of G1 (respectively, of G2) a contact pair of type
(0, k) (respectively, (h, 0)). Each of them is foliated by leaves ofF1 (respectively, ofF2) and
also by leaves of R.

A contact pair structure [6] on a manifold M is a triple (α1, α2, φ), where (α1, α2) is a
contact pair and φ a tensor field of type (1, 1) such that:

φ2 = −I d + α1 ⊗ Z1 + α2 ⊗ Z2, φZ1 = φZ2 = 0,

where Z1 and Z2 are the Reeb vector fields of (α1, α2).
One can see that αi ◦ φ = 0, for i = 1, 2 and that the rank of φ is equal to dim M − 2.

The endomorphism φ is said to be decomposable if φ(TFi ) ⊂ TFi , for i = 1, 2.
In [7], we defined the notion of normality for a contact pair structure as the integrability of

the two natural almost complex structures of opposite orientations J = φ−α2⊗Z1+α1⊗Z2

and T = φ +α2 ⊗ Z1 −α1 ⊗ Z2 on M . This is equivalent to the vanishing of the tensor field

N 1(X, Y ) = [φ, φ](X, Y ) + 2dα1(X, Y )Z1 + 2dα2(X, Y )Z2,

where [φ, φ] is the Nijenhuis tensor of φ.
A compatiblemetric [6] with respect to a contact pair structure (α1, α2, φ) on a manifold

M , with Reeb vector fields Z1 and Z2 is a Riemannian metric g on M such that g(φX, φY ) =
g(X, Y ) − α1(X)α1(Y ) − α2(X)α2(Y ) for all X, Y ∈ Γ (T M). A Riemannian metric g is
said to be an associatedmetric [6] if g(X, φY ) = (dα1+dα2)(X, Y ) and g(X, Zi ) = αi (X),
for i = 1, 2 and for all X, Y ∈ Γ (T M).

It is clear that an associated metric is compatible, but the converse is not true. However, a
compatible metric always satisfies the second equation g(X, Zi ) = αi (X), for i = 1, 2, and
then the subbundles H1 ⊕ H2, RZ1, RZ2 are pairwise orthogonal.

Ametric contact pair (MCP) on amanifoldM is a 4-tuple (α1, α2, φ, g)where (α1, α2, φ)

is a contact pair structure and g an associated metric with respect to it. The manifold M will
be called anMCP manifold or anMCP for short.

For an MCP (α1, α2, φ, g), the endomorphism field φ is decomposable if and only if the
characteristic foliations F1, F2 are orthogonal [6]. In this case, (αi , φ, g) induces a metric
contact structure on the leaves ofF j , for j 	= i . Also, the MCP induces MCP’s on the leaves
of Gi .

It has been shown in [9] that a normal MCP structure of type (h, 0) is nothing but a
non-Kähler Vaisman structure on the manifold.

If the MCP on M is normal with decomposable endomorphism, then the leaves of Fi

are Sasakian. Also, those of Gi are non-Kähler Vaisman manifolds foliated by leaves of Fi

(which are Sasakian) and by leaves of R (which are complex curves).
Interesting examples and properties of such structures were given in [3–8].

Example 1 If (M1, α1, φ1, g1) and (M2, α2, φ2, g2) are two Sasakian manifolds, then the
structure (α1, α2, φ, g) with φ = φ1 ⊕ φ2 and g = g1 ⊕ g2 is a normal MCP on the product
M1×M2 with decomposable endomorphism. So we have such a structure onR2h+2k+2 using
the standard Sasakian structures on R

2h+1 and R
2k+1 given by

α1 = 1

2

(
dz −

h∑
i=1

yidxi

)
, g1 = α1 ⊗ α1 + 1

4

h∑
i=1

(
(dxi )

2 + (dyi )
2)

α2 = 1

2

⎛
⎝dz′ −

k∑
j=1

y′
jdx

′
j

⎞
⎠ , g2 = α2 ⊗ α2 + 1

4

k∑
j=1

(
(dx ′

j )
2 + (dy′

j )
2
)

.
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Minimality of invariant submanifolds 1111

The Reeb vector fields are Z1 = 2 ∂
∂z and Z2 = 2 ∂

∂z′ . The endomorphism φ sends the vector

fields Xi = ∂
∂yi

to Xh+i = ∂
∂xi

+ yi
∂
∂z and X ′

j = ∂
∂y′

j
to X ′

k+ j = ∂
∂x ′

j
+ y′

j
∂

∂z′ .

Remark 1 As already explained in [7, Section 3.4], normal MCP manifolds were already
studied in [11] under the name of bicontact Hermitian manifolds and can be regarded as
a generalization of the Calabi–Eckmann manifolds. An MCP is a special case of a metric
f -structure with complemented frames in the sense of Yano [16]. The normality condition
for such structures is well known and is in fact the same condition we have asked for anMCP
to be normal. What is completely new in our context is the fact that the normality condition
is equivalent to the integrability of the two almost complex structures J and T defined above.
Even in the special case of the Vaisman manifolds, this was not known as it was observed
in [9] (see the short discussion before Proposition 2.10) where it was used for classification
purposes. It should also be observed that P-manifolds introduced in [14] by Vaisman are
MCP manifolds of type (h, 0) with Killing Reeb vector fields.

3 Normal metric contact pairs

We are now interested onmetric contact pairs that are at the same time normal. The following
proposition is an immediate corollary of [4, Corollary 3.2 and Theorem 3.4].

Proposition 1 Let (α1, α2, φ, g) be a normal MCP on a manifold, with decomposable φ,
Reeb vector fields Z1, Z2, and Z = Z1 + Z2. Let ∇ be the Levi–Civita connection of the
associated metric g. Then, we have

g((∇Xφ)Y,W ) =
2∑

i=1

[dαi (φY, X)αi (W ) − dαi (φW, X)αi (Y )] ; (1)

∇X Z = −φX. (2)

Now, we want to characterize the normal MCPmanifolds between the MCP’s as Sasakian
manifolds are between the almost contact manifolds.

Theorem 1 Let (α1, α2, φ, g) be a contact pair structure on a manifold M with compatible
metric g, decomposable φ and Reeb vector fields Z1, Z2. Then, (α1, α2, φ, g) is a normal
MCP if and only if, for all X, Y ∈ Γ (T M),

(∇Xφ)Y =
2∑

i=1

[g(Xi , Yi )Zi − αi (Yi )Xi ], (3)

where Xi and Yi , i = 1, 2, are the orthogonal projections of X and Y , respectively, on the
foliation F j , with j 	= i .

Proof Suppose that (α1, α2, φ, g) is a normal MCP. By (1), for all W ∈ Γ (T M), we have

g ((∇Xφ) Y,W ) = g((∇X1φ)Y,W ) + g((∇X2φ)Y,W )

=
2∑

i=1

[dαi (φY, Xi )αi (W ) − dαi (φW, Xi )αi (Y )]

=
2∑

i=1

[(dα1 + dα2)(φYi , Xi )αi (W ) − (dα1 + dα2)(φW, Xi )αi (Yi )]
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1112 G. Bande, A. Hadjar

=
2∑

i=1

[g(Xi , Yi )g(W, Zi ) − αi (Yi )g(W, Xi )]

= g

(
W,

2∑
i=1

[g(Xi , Yi )Zi − αi (Yi )Xi ]
)

,

which is equivalent to (3).
Conversely, suppose that (3) is true. Putting Y = Z j in (3), we obtain

−φ∇X Z = (∇Xφ)Z = α1(X)Z1 + α2(X)Z2 − X = φ2X,

where Z = Z1 + Z2. This gives ∇X Z = −φX since ∇X Z is horizontal (see [4, Lemma
3.5]). Then, we have

dα1(X, Y ) + dα2(X, Y ) = 1

2

2∑
i=1

[Xαi (Y ) − Yαi (X) − αi ([X, Y ])]

= 1

2

2∑
i=1

[Xg(Zi , Y ) − Yg(Zi , X) − g(Zi ,∇XY − ∇Y X)]

= 1

2
[g(∇X Z , Y ) − g(∇Y Z , X)]

= 1

2
[g(−φX, Y ) + g(φY, X)]

= g(X, φY ),

which means that the compatible metric g is even associated.
To prove the vanishing of the tensor field N 1, let us compute [φ, φ]. Taking X ∈ Γ (TF1)

and Y ∈ Γ (TF2) in (3), we obtain 0 = (∇Xφ)Y = ∇X (φY ) − φ∇XY, which implies
∇X (φY ) = φ∇XY . Then, we obtain

[φ, φ](X, Y ) = φ2[X, Y ] − φ[φX, Y ] − φ[X, φY ] + [φX, φY ]
= φ2(∇XY − ∇Y X) − φ(∇φXY − φ∇Y X)

−φ(φ∇XY − ∇φY X) + φ∇φXY − φ∇φY X

= 0

and N 1(X, Y ) = [φ, φ](X, Y ) = 0. Now by (3) with X, Y ∈ Γ (TF1), we have (∇Xφ)Y =
g(X, Y )Z2 − α2(Y )X. Then, we get

[φ, φ](X, Y ) = φ2(∇XY − ∇Y X) − φ(∇φXY − φ∇Y X − (∇Yφ)X)

−φ(φ∇XY + (∇Xφ)Y − ∇φY X) + φ∇φXY − φ∇φY X

= g(φX, Y )Z2 − g(X, φY )Z2

= −2dα2(X, Y )Z2.

Hence, N 1(X, Y ) = [φ, φ](X, Y ) + 2dα2(X, Y )Z2 = 0. In the same way, we obtain
N 1(X, Y ) = [φ, φ](X, Y ) + 2dα1(X, Y )Z1 = 0 for all X, Y ∈ Γ (TF2). This shows the
normality and completes the proof. �
Theorem 2 Let (M, α1, α2, φ, g) be an MCP manifold with decomposable φ, Z1, Z2 the
Reeb vector fields and Z = Z1 + Z2. Let R be the curvature operator of g. Then, the MCP
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Minimality of invariant submanifolds 1113

(α1, α2, φ, g) is normal if and only if

RXY Z =
2∑

i=1

[αi (Yi )Xi − αi (Xi )Yi ]. (4)

Proof Suppose that the MCP is normal. By (2) and (3), for all X, Y ∈ Γ (T M), we have

RXY Z = −∇X (φY ) + ∇Y (φX) + φ[X, Y ]
= −(∇Xφ

)
Y + (∇Yφ

)
X

=
2∑

i=1

[αi (Yi )Xi − αi (Xi )Yi ].

Conversely, suppose that (4) is true. Then, for Y horizontal, we have

RZY Z = −Y1 − Y2 = −Y.

Using this in the following equation

1

2

(
RZ X Z − φ(RZφX Z)

) = φ2X + h2 X,

which holds for MCP manifolds (see [4, Proposition 4.1]), where h = 1
2LZφ and LZ is the

Lie derivative along Z , we get

1

2
(−Y − φ(−φY )) = φ2Y + h2 Y

which implies h = 0. In particular, from the equation∇X Z = −φX−φ h X (see [4, Theorem
3.4]), we have ∇X Z = −φX . Since h = 0, the vector field Z is Killing [4,6], then it is
affine, and we have

RZ X Y = −∇X∇Y Z + ∇∇XY Z = ∇XφY − φ∇XY = (∇Xφ)Y.

Then, for every X, Y,W ∈ Γ (T M), recalling that for an MCP with decomposable φ the
characteristic foliations are orthogonal, we obtain

g((∇Xφ)Y,W ) = g(RZ X Y,W ) = g(RYW Z , X) = g

(
2∑

i=1

[αi (Wi )Yi − αi (Yi )Wi ], X
)

=
2∑

i=1

[g(αi (W )Yi , Xi ) − g(W, αi (Yi )Xi )]

=
2∑

i=1

[g(W, Zi )g(Yi , Xi) − g(W, αi (Yi )Xi )]

= g

(
W,

2∑
i=1

[g(Yi , Xi )Zi − αi (Yi )Xi ]
)

,

which implies that (∇Xφ)Y = ∑2
i=1[g(Xi , Yi )Zi − αi (Yi )Xi ] and then the pair is normal

by Theorem 1. �
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4 φ-invariant submanifolds

In this section, we study the φ-invariant submanifolds of MCP manifolds. We first give some
general results and then we specialize to several cases concerning the submanifold position
relative to the Reeb distribution.

Let (α1, α2, φ) be a contact pair structure of type (h, k) on a manifold M .

Definition 2 A submanifold N of M is said to be invariant with respect to φ (or φ-invariant)
if its tangent space at every point is preserved by φ, that is if φpTpN ⊂ TpN for all p ∈ N .

In the same way, one can define J -invariant submanifolds and T -invariant submanifolds
for the two almost complex structures defined in Sect. 2.

The simplest examples of φ-invariant surfaces are given by the leaves of the foliation R
tangent to the Reeb distribution. When we suppose the endomorphism field φ decomposable,
by definition the leaves of the two characteristic foliationsFi of the 1-formsαi areφ-invariant.
The same is true for the leaves of the two characteristic foliations Gi of the 2-forms dαi .

Observe that in the second case, only one of the two Reeb vector fields is tangent to the
submanifolds. In the first and third cases, both the Reeb vector fields are tangent and such
submanifolds are invariant with respect to J and T .

Despite the case of ametric contactmanifold, where theReeb vector field is always tangent
to a φ-invariant submanifold, in our case, the situation can be quite different as we have just
seen. We will show several nontrivial examples in the sequel.

In what follows (M, α1, α2, φ, g) will be a given MCP manifold with Reeb vector fields
Z1, Z2 and N a φ-invariant submanifold of M . We will denote by ZT

i (respectively, Z⊥
i ) the

tangential (respectively, normal) component of the two vector fields Z1 and Z2 along N .

Proposition 2 Along the φ-invariant submanifold N, the tangent vector fields ZT
1 , Z

T
2 and

the normal vector fields Z⊥
1 , Z

⊥
2 are vertical.

Proof For every X ∈ Γ (T N ), we have g(φZ⊥
i , X) = −g(Z⊥

i , φX) = 0 because φX ∈
Γ (T N ). Then, the vector fields φZ⊥

i are also orthogonal to N . As 0 = (φZi )|N = φZT
i +

φZ⊥
i , we get φZ

T
i = φZ⊥

i = 0 because one is tangent and the other is orthogonal to N . We
conclude by recalling that the distribution ker φ is spanned by Z1 and Z2. �

Proposition 3 There is no point p of the φ-invariant submanifold N such that the tangent
vectors (Z1)p and (Z2)p are both orthogonal to the tangent space TpN.

Proof If, at a point p ∈ N , the two vectors (Zi )p (for i = 1, 2) are orthogonal to the
tangent space TpN , we have (Z⊥

i )p = (Zi )p and they are linearly independent. Take an
open neighborhood U of p in M such that on U ∩ N , the two vector fields Z⊥

1 , Z
⊥
2 still

remain linearly independent. By Proposition 2, they span RZ1 ⊕ RZ2 along U and then the
Reeb vector fields Z1, Z2 are both orthogonal to Tq N at each point q ∈ U ∩ N .

Let X be a vector field defined on U , tangent to N and such that X p 	= 0. Then, φX and
[X, φX ] are also tangent to N . Since for every point q ∈ U ∩ N , the tangent space Tq N is
in the kernels of α1 and α2 (because it is orthogonal to (Zi )q ), along N , we have

0 = (α1 + α2) ([X, φX ]) = −2 (dα1 + dα2) (X, φX) = 2g(X, X)

contradicting the fact that X p 	= 0. �
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Minimality of invariant submanifolds 1115

4.1 The case N tangent to only one Reeb vector field

Proposition 4 If the φ-invariant submanifold N is tangent to one of the two Reeb vector
fields, say Z1, and transverse to the other one Z2, then N is everywhere orthogonal to Z2.
Moreover, the dimension of N is odd.

Such submanifolds were called semi-invariant by Blair, Ludden, and Yano [11] in the
context of Hermitian manifolds. The semi-invariance is understood with respect to the almost
complex structure J = φ − α2 ⊗ Z1 + α1 ⊗ Z2.

Proof Since Z1 is tangent to N , we have ZT
1 = (Z1)|N 	= 0. Now, 0 = g (Z1, Z2)|N =

g(ZT
1 , ZT

2 ), which implies ZT
2 = 0. Indeed, if at a point p ∈ N , ZT

2 	= 0, the two vectors
(ZT

i )p would be linearly independent. By Proposition 2, they will span the tangent subspace
R(Z1)p ⊕R(Z2)p and then Z2 will be tangent to N at p, but Z2 is supposed to be transverse
to N. Now, it is clear that φ is almost complex on the orthogonal complement of RZ1 in T N .
Hence, the dimension of N is odd. �

The following result is a restatement of [11, Propositions 4.2 and 4.3]:

Proposition 5 (Blair et al. [11]) If the φ-invariant submanifold N is tangent to the vector
field Z1 and orthogonal to Z2, then (α1, φ, g) induces a metric contact structure on N. If in
addition the MCP on M is normal, then N is Sasakian.

Proof Let α̃1 and α̃2 denote the forms induced on N by α1 and α2. To prove that α̃1 is a
contact form, one has just to show that ˜dα1 is symplectic on ker α̃1. First, observe that since
Z2 is orthogonal to N , we have α̃2 = 0, then dα̃1 = dα̃1+dα̃2. Now, for p ∈ N , let X ∈ TpN
such that α̃1(X) = 0 and dα̃1(X, Y ) = 0 for every Y ∈ TpN . Then, (dα̃1 + dα̃2)(X, Y ) = 0
and we get g(X, φY ) = 0. As we also have 0 = α1(X) = g(X, Z1), one can say that
g(X, ·) = 0 on N and then X = 0. Hence, α̃1 is contact on N . The normality of the induced
structure on N follows from the vanishing of the tensor N 1 and the fact that dα̃2 = 0 on N .

�
4.2 The case N nowhere orthogonal and nowhere tangent to Z1 and Z2

Proposition 6 If theφ-invariant submanifold N is nowhere orthogonal and nowhere tangent
to Z1 and Z2, then it has odd dimension. Moreover, its tangent bundle T N intersects the
vertical subbundle V along a line bundle spanned by the vector field ZT

1 (or equivalently by
ZT
2 ).

Proof In this case, by Proposition 2, we have necessarily that ZT
1 and ZT

2 are vertical, linearly
dependent and nonzero. The same holds for Z⊥

1 and Z⊥
2 . So ZT

1 spans the intersection of
T N with the vertical subbundle V . Now, every vector field tangent to N and orthogonal to
ZT
1 is necessary orthogonal to the Reeb distribution. By the φ-invariance of T N , φ is almost

complex on the orthogonal complement of RZT
1 in T N and then N has odd dimension. �

Example 2 Asamanifold, consider the product H6 = H3×H3 whereH3 is the 3-dimensional
Heisenberg group. Let {α1, α2, α3} (respectively, {β1, β2, β3}) be a basis of the cotangent
space at the identity for the first (respectively, second) factor H3 satisfying

dα3 = α1 ∧ α2, dα1 = dα2 = 0,

dβ3 = β1 ∧ β2, dβ1 = dβ2 = 0.
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1116 G. Bande, A. Hadjar

The pair (α3, β3) determines a contact pair of type (1, 1) on H6 with Reeb vector fields
(X3, Y3), the Xi ’s (respectively, the Yi ’s) being dual to the αi ’s (respectively, the βi ’s). The
left invariant metric

g = α2
3 + β2

3 + 1

2

(
α2
1 + β2

1 + α2
2 + β2

2

)
is associated to the pair with decomposable tensor structure φ given by φ(X2) = X1 and
φ(Y2) = Y1. TheMCPmanifold (H6, α3, β3, φ, g) is normal because it is the product of two
Sasakian manifolds. Let h3 denotes the Lie algebra of H3. The three vectors Z = X3 + Y3,
X1 + Y1, and X2 + Y2 span a φ-invariant subalgebra of the Lie algebra h3 ⊕ h3 of H6,
which determines a foliation in H6. Each leaf is φ-invariant, nowhere tangent and nowhere
orthogonal to the Reeb vector fields.

4.3 The case N tangent to the Reeb distribution

Proposition 7 If the φ-invariant submanifold N is tangent to both Z1 and Z2, then it has
even dimension.

Proof If the Reeb distribution is tangent to N , then on its orthogonal complement in T N the
endomorphism φ is almost complex and this completes the proof. �
Example 3 Take the sameMCP on H6 = H3×H3 as in Example 2. The four vectors X3, Y3,
X1 + Y1, and X2 + Y2 span a φ-invariant Lie subalgebra n4 of h3 ⊕ h3, which determines a
foliation on H6. Each leaf of this foliation is φ-invariant and tangent to the Reeb distribution.

Remark 2 When the φ-invariant submanifold N is tangent to both the Reeb vector fields
Z1 and Z2, the contact pair (α1, α2) on M does not induce necessarily a contact pair on
N . Indeed, from Example 3, take any leaf L4 of the foliation determined by the subalgebra
n4. Then, L4 is a φ-invariant submanifolds of the MCP manifold H6. However, the contact
pair (α3, β3) induces a pair of 1-forms on the 4-dimensional manifold L4 whose Élie Cartan
classes are both equal to 3. Then, the induced pair on L4 is not a contact one.

From this construction, one can also have a most interesting example where, in addition,
the submanifold is closed without being a contact pair submanifold.

Example 4 Consider once again the normal MCP on the nilpotent Lie group H6 = H3 ×H3

defined in Example 2, and the foliation on H6 defined by the Lie algebra n4 described in
Example 3. Let Le be the leaf passing through the identity element of the Lie group H6. One
can see that the Lie subgroup Le is isomorphic toH3×R. In fact, by using the change of basis
of its Lie algebra n4, Ui = Xi + Yi for i = 1, 2, 3 and U4 = X3, we get [U1,U2] = U3 and
the other brackets are zero. Since the structure constants of the nipotent Lie algebra n4 are
rational, there exists cocompact lattices Γ of Le. For example, since H3 can be considered
as the group of the real matrices

γ (x, y, z) =
⎛
⎝1 y z
0 1 x
0 0 1

⎞
⎠ ,

take Γ � Γr × Z where Z acts on the factor R and Γr = {γ (x, y, z)|x ∈ Z, y ∈ rZ, z ∈ Z},
with r a positive integer, acts on the first factor H3 by left multiplication (see, e.g., [13]).
Because Le is a subgoup of H6, it is a lattice of H6 too. Now, the closed nilmanifold
N 4 = Le/Γ is a submanifold of the nilmanifold M6 = H6/Γ . Since the MCP on H6 is left
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Minimality of invariant submanifolds 1117

invariant, it descends to the quotient M6 as a normal MCP (α̃3, β̃3, φ̃, g̃) of type (1, 1) with
decomposable endomorphism φ̃. Moreover, the closed submanifold N 4 is φ̃-invariant and
tangent to the Reeb distribution. Note that the contact pair (α̃3, β̃3) on M6 does not induce a
contact pair on the submanifold N 4, because the Élie Cartan classes of the induced 1-forms
are equal to 3 and the dimension of N 4 is 4.

We know (see [7]) that a normal MCP with decomposable endomorphism is nothing but a
Hermitian bicontact manifold of bidegree (1, 1) [11]. As we will see later in Paragraph 4.4,
in a normal MCP, a φ-invariant submanifold tangent to the Reeb distribution is a complex
submanifold. So according to Example 4, we can state what follows:

Proposition 8 There exists a Hermitian bicontact manifold of bidegree (1, 1) carrying a
closed complex submanifold, which does not inherit a bicontact structure.

Remark 3 This contradicts a statement of Abe (see [1, Theorem 2.2]). The construction of
the MCPmanifold M6 and its submanifold N 4 in Example 4 gives clearly a counterexample.

4.4 Relationship with T and J -invariance

Put ρ = α2 ⊗ Z1 − α1 ⊗ Z2. One can easily see that a connected submanifold of M is
ρ-invariant if and only if it is tangent or orthogonal to the Reeb distribution. The following
holds:

Proposition 9 Let M ′ be a submanifold of the MCP manifold M. If M ′ is orthogonal to the
Reeb distribution, then none of the endomorphisms φ, J and T leaves M ′ invariant.
Proof Let M ′ be a submanifold of M orthogonal to the Reeb distribution. By Proposition
3, it cannot be φ-invariant. Suppose that M ′ is invariant with respect to J or T . Since it is
orthogonal to the Reeb vector fields, it is also ρ-invariant. Now, by the relations φ = J +ρ =
T − ρ, we obtain that M ′ is φ-invariant, and this is not possible. �
Proposition 10 Let M ′ be a submanifold of the MCP manifold M. Then, any two of the
following properties imply the others:

(a) M ′ is φ-invariant,
(b) M ′ is J -invariant,
(c) M ′ is T -invariant,
(d) M ′ is tangent to the Reeb distribution.

Proof From the relations J = φ − ρ and T = φ + ρ, one can remark that any two of the
four endomorphisms fields {φ, J, T, ρ} are linear combinations of the remaining two. So if
we replace the property (d) with “M ′ is ρ-invariant,” then the conclusion is obvious. Suppose
without the loss of generality that M ′ is connected. We have seen that the property “M ′ is
ρ-invariant” is equivalent to “M ′ is tangent or orthogonal to the Reeb vector fields.” But by
Proposition 9, the property “M ′ is orthogonal to the Reeb distribution” is not compatible
with Properties (a), (b), and (c), and this completes the proof. �
Example 5 Consider R2h+2k+2 together with the normal MCP described in Example 1 with
h > 0. For any pair of integers n1, n2 such that 0 < n1 ≤ h and 0 ≤ n2 ≤ k, the
2(n1 + n2)-dimensional distribution spanned by the vector fields Yi = Xi + 1

2 xi Z1, JYi for
i = 1, . . . , n1 and (in the case n2 > 0) by Y ′

j = X ′
j + 1

2 x
′
j Z2, JY ′

j for j = 1, . . . , n2 is
completely integrable. On the open set {xi 	= 0, x ′

j 	= 0}, this distribution is invariant with
respect to the complex structure J but it is not invariant with respect to φ. So it gives rise to
a foliation by 2(n1 + n2)-dimensional J -invariant submanifolds, which are not φ-invariant.
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1118 G. Bande, A. Hadjar

5 Minimal φ-invariant submanifolds

In Sect. 4, we observed that the leaves of the two characteristic foliations of an MCP with
decomposable endomorphism φ are φ-invariant submanifolds. Moreover, in [8], we have
seen that these submanifolds are minimal. In this section, we extend this result to further φ-
invariant submanifolds of normal or complexMCPmanifolds (the latter terminologymeaning
that just one of the two natural almost complex structure is supposed to be integrable).

Theorem 3 Let (M, α1, α2, φ, g) be a normal MCP manifold with decomposable φ and
Reeb vector fields Z1 and Z2. If N is a φ-invariant submanifold of M such that Z1 is tangent
and Z2 orthogonal to N, then N is minimal. Moreover, if N is connected, then it is a Sasakian
submanifold of one of the Sasakian leaves of the characteristic foliation of α2.

Proof Denote by B the second fundamental form of the submanifold N , by∇ the Levi–Civita
connection of the metric g on M , and by ∇̃ its induced connection on N . By Proposition
5, (α1, Z1, φ, g) induces a Sasakian structure on N , say (α̃1, Z1, φ̃, g̃). Then, for every X ,

Y ∈ Γ (T N ), we have
(
∇̃X φ̃

)
Y = g̃(X, Y )Z1 − α̃1(Y )X (see, e.g., [10]). Using this and

(3) for all X , Y ∈ Γ (T N ) orthogonal to Z1, we obtain

B(X, φY ) − φ B(X, Y ) = (∇Xφ) Y −
(
∇̃X φ̃

)
Y = g(X2, Y2)(Z2 − Z1) (5)

since X , Y are horizontal, X2 and Y2 being, respectively, the orthogonal projections of X
and Y on TF1. But the vector field B(X, φY ) − φ B(X, Y ) must be orthogonal to N by the
φ-invariance of N . Then, g(X2, Y2) = 0 for every X , Y ∈ Γ (T N ) orthogonal to Z1, which
gives X2 = 0. This implies that N is tangent to the characteristic distribution of α2.

Equation (5) becomes

B(X, φY ) − φ B(X, Y ) = 0.

If we interchange the roles of X and Y and take the difference, we get B(X, φY ) = B(Y, φX),
which implies B(X, Y ) = −B(φX, φY ). Now, locally, take an orthonormal φ-basis of the
metric contact structure on N

Z1, e1, φe1, . . . , es, φes .

We have B(Z1, Z1) = 0 since ∇Z1 Z1 = 0 (see [6]). As e j are orthogonal to Z1, we obtain

trace(B) = B(Z1, Z1) +
s∑

j=1

(
B(e j , e j ) + B(φe j , φe j )

) = 0,

which means that N is minimal. �
Consider a φ-invariant submanifold N of anMCP, which is nowhere tangent and nowhere

orthogonal to the Reeb vector fields. In Proposition 6, we have seen that at every point, its
tangent space intersects the Reeb distribution giving rise to the distribution on N spanned by
ZT
1 (or equivalently by ZT

2 ). For such a submanifold, we have

Theorem 4 Let (M, α1, α2, φ, g) be a normal metric contact pair manifold with decompos-
able φ and Reeb vector fields Z1 and Z2. Let N be a φ-invariant submanifold of M nowhere
tangent and nowhere orthogonal to Z1 and Z2. Then, N is minimal if and only if the angle
between ZT

1 and Z1 (or equivalently Z2) is constant along the integral curves of ZT
1 .
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Minimality of invariant submanifolds 1119

Proof Put ζ = 1
‖ZT

1 ‖ Z
T
1 = ± 1

‖ZT
2 ‖ Z

T
2 . Using (3) for all X , Y ∈ Γ (T N ) orthogonal to ζ , we

obtain

B(X, φY ) − φ B(X, Y ) = ((∇Xφ) Y )⊥ = g(X1, Y1)Z
⊥
1 + g(X2, Y2)Z

⊥
2

since X are Y are horizontal because they are necessarily orthogonal to Z1 and Z2. The term
on the right is symmetric on (X, Y ), then we get

B(X, φY ) − φ B(X, Y ) = 0.

As previously, this yields B(X, Y ) = −B(φX, φY ). Now, take a local orthonormal basis on
N in this manner

ζ, e1, φe1, . . . , es, φes .

We obtain

trace(B) = B(ζ, ζ ) +
s∑

j=1

(
B(e j , e j ) + B(φe j , φe j )

) = B(ζ, ζ ).

In order to compute B(ζ, ζ ), observe that there exists a smooth function θ on N taking
nonzero values in ] − π/2, π/2[ and for which ζ = (cos θ)Z1 + (sin θ)Z2. This function is
well defined on N since ζ lies in V = RZ1⊕RZ2 and g(ζ, Z1) > 0. It represents the oriented
angle (Z1, ζ ) in the oriented orthonormal basis (Z1, Z2) of V along N . One can easily show
that ZT

1 = (cos θ)ζ , ZT
2 = (sin θ)ζ and then since Jζ = −(sin θ)Z1 + (cos θ)Z2, we have

Z⊥
1 = −(sin θ)Jζ and Z⊥

2 = (cos θ)Jζ . Hence, Jζ is a nonvanishing section of the normal
bundle T N⊥ of N in M .

Using the equations ∇Zi Z j = 0, for i, j = 1, 2, concerning MCP’s [6], we obtain

∇ζ ζ = ζ(θ)Jζ.

This yields

trace(B) = B(ζ, ζ ) = ζ(θ)Jζ

which is zero if and only if ζ(θ) = 0. �
Example 6 For the φ-invariant submanifolds described in Example 2, the Reeb vector fields
X3 and Y3 make a constant angle with their orthogonal projection 1

2 (X3 + Y3). Hence, they
are minimal.

A theorem of Vaisman [15] states that on a Vaisman manifold, a complex submanifold
inherits the structure of Vaisman manifold if and only if it is minimal or equivalently if
and only if it is tangent to the Lee vector field (and therefore tangent to the anti-Lee one).
This result has been generalized to the lcK manifolds as follows (see [12, Theorem 12.1]):
a complex submanifold of an lcK manifold is minimal if and only if it is tangent to the Lee
vector field. Non-Kähler Vaisman manifolds are special lcK manifolds. According to [9],
they are, up to a constant rescaling of the metric, exactly normal MCP manifolds of type
(h, 0), the Reeb vector fields being the Lee and the anti-Lee vector field. What follows is a
generalization of the theorem of Vaisman to complex MCP manifolds of any type (h, k).

Theorem 5 Let (M, α1, α2, φ, g) be an MCP manifold with decomposable φ and Reeb
vector fields Z1 and Z2. Suppose that the almost complex structure J = φ−α2⊗Z1+α1⊗Z2

is integrable. Then, a J -invariant submanifold N of M is minimal if and only if it is tangent
to the Reeb distribution.
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1120 G. Bande, A. Hadjar

We have the same conclusion if we replace J with the almost complex structure T =
φ + α2 ⊗ Z1 − α1 ⊗ Z2. Recall that for a submanifold tangent to the Reeb distribution, we
have equivalence between invariance with respect to J , T , and φ (see Proposition 10). Hence,
minimal J -invariant submanifolds of an MCP are necessarily φ-invariant and T -invariant.
We can restate Theorem 5 for a normal MCP as follows:

Corollary 1 Let (M, α1, α2, φ, g) be a normal MCP manifold with decomposable φ. Then,
a J -invariant submanifold N of M is minimal if and only if it is T -invariant.

The J -invariant submanifolds described in Example 5 are not minimal. Of course, they
are not tangent to the Reeb distribution.

We have seen that theMCP onH3×H3, given in Example 2, is normal because each factor
is a Sasakian manifold. The submanifolds described in Example 3 are tangent to the Reeb
distribution and then they are minimal. The following statement gives further interesting
examples.

Corollary 2 Consider an MCP (α1, α2, φ, g) with decomposable φ on a manifold. Suppose
that J (or T ) is integrable. Then, the leaves of the characteristic foliations G1 and G2 of dα1

and dα2 are minimal.

Proof (of Theorem 5) In order to compute the normal mean curvature H of the J -invariant
submanifold N , one needs the expression of the tensor field F(X, Y ) = (∇X J )Y where ∇
is the Levi–Civita connection of g. Since J is integrable, g is Hermitian with fundamental
2-form

Φ = dα1 + dα2 − 2α1 ∧ α2.

First, observe that α2 ◦ J = α1 and dαi (J X, JY ) = dαi (X, Y ). Moreover, by the decom-
posability of φ, we have πi ◦ J = J ◦πi where πi : T M → TG j (for j 	= i with i, j = 1, 2)
denote the orthogonal projections. Next, using this and the classical equation for a Hermitian
structure 4g((∇X J )Y,W ) = 6d�(X, JY, JW ) − 6d�(X, Y,W ), after a straightforward
calculation, we get

F(X, Y ) = [−dα2(X, Y ) − dα1(X, JY )]Z1 + [dα1(X, Y ) − dα2(X, JY )]Z2

+α2(Y )π1 J X − α1(Y )π2 J X − α1(Y )π1X − α2(Y )π2X.

Any vector v tangent to M at a point of N decomposes as v = vT + v⊥ where vT and v⊥
are tangent and orthogonal to N , respectively. The J -invariance implies that J (vT ) = (Jv)T

and J (v⊥) = (Jv)⊥. Denote by B the second fundamental form of the submanifold N .
Then, B(X, JY ) = J B(X, Y ) + F(X, Y )⊥ and B(J X, JY ) + B(X, Y ) = J F(Y, X)⊥ +
F(J X, Y )⊥. Hence, we obtain

B(X, X) + B(J X, J X) = −2‖π2X‖2Z⊥
1 + 2‖π1X‖2Z⊥

2

+ 2[−α1(X)π1 J X−α2(X)π2 J X−α2(X)π1X+α1(X)π2X ]⊥

Let N ′ be the open set of N consisting of all points where ZT
1 	= 0. It is also a J -invariant

submanifold of M . Take an orthonormal (local) J -basis on N ′

e1, Je1, . . . , en, Jen .

One can choose it in such a way that e1 = 1
‖ZT

1 ‖ Z
T
1 and then Je1 = 1

‖ZT
1 ‖ Z

T
2 . Since the

el and Jel , for l = 2, . . . , n are orthogonal to ZT
1 , Z

T
2 , Z

⊥
1 and Z⊥

2 , they are orthogonal
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to Z1 and Z2 too. So they are horizontal. Now, the normal mean curvature along N ′ is
H|N ′ = 1

2n trace(B) = 1
2n

n∑
l=1

(B(el , el) + B(Jel , Jel)), and becomes

H|N ′ = 1

n

(
−

n∑
l=1

‖π2el‖2Z⊥
1 +

n∑
l=1

‖π1el‖2Z⊥
2 + (π2Z

T
1 − π1Z

T
2 )⊥

)
. (6)

If we suppose N minimal, then H|N ′ = 0 and the scalar products with Z⊥
i yield

0 = ng(H|N ′ , Z⊥
1 ) = −‖π2Z

T
1 ‖2 − ‖Z⊥

1 ‖2
n∑

l=1

‖π2el‖2

0 = ng(H|N ′ , Z⊥
2 ) = ‖π1Z

T
2 ‖2 + ‖Z⊥

2 ‖2
n∑

l=1

‖π1el‖2.

Then, we get π2ZT
1 = 0 and π1ZT

1 = Jπ1ZT
2 = 0 along N ′, which means that ZT

i = Zi at
these points. Hence, Z1 and Z2 are tangent to N ′. Now, we have to prove that N = N ′. Every
point p of N is in the closure of N ′ in N . For otherwise, there exists an open neighborhoodUp

of p in N , which does not intersect N ′, i.e., Z1 and Z2 are orthogonal to the J -invariant (and
also φ-invariant) submanifold Up . But this contradicts Proposition 3. Now, since ZT

1 = Z1

on N ′, by continuity of ZT
1 , we have (ZT

1 )p = (Z1)p and then p ∈ N ′. Hence, N = N ′ so
that Z1 and Z2 = J Z1 are tangent to N .

Conversely, suppose that Z1 and Z2 are tangent to N . Then, ZT
i = (Zi )|N , which implies

that N = N ′, and replacing in Eq. 6, we get H = 0. This completes the proof. �
Remark 4 One could hope on a full generalization of the original Vaisman result, which
could be stated as follows: a J and T -invariant submanifold of a normal MCP inherits the
structure of normal MCP if and only if it is minimal. In fact, this kind of generalization is
not possible, because the submanifold in Example 4 is both J and T -invariant, therefore it is
minimal, but it does not inherit the normal MCP of the ambient manifold by Proposition 8.
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