
Eur. Phys. J. C (2019) 79:851
https://doi.org/10.1140/epjc/s10052-019-7377-0

Regular Article - Theoretical Physics

Minimally deformed anisotropic model of class one space-time by

gravitational decoupling

Ksh. Newton Singh1,2,a, S. K. Maurya3,b, M. K. Jasim3,c, Farook Rahaman4,d

1 Department of Physics, National Defence Academy, Khadakwasla, Pune 411023, India
2 Faculty Council of Science, Jadavpur University, Kolkata 700032, India
3 Department of Mathematical and Physical Sciences, College of Arts and Science, University of Nizwa, Nizwa, Sultanate of Oman
4 Department of Mathematics, Jadavpur University, Kolkata, West Bengal 700032, India

Received: 1 August 2019 / Accepted: 3 October 2019 / Published online: 16 October 2019
© The Author(s) 2019

Abstract In this article, we have presented a static
anisotropic solution of stellar compact objects for self-
gravitating system by using minimal geometric deformation
techniques in the framework of embedding class one space-
time. For solving of this coupling system, we deform this
system into two separate system through the geometric defor-
mation of radial components for the source function λ(r) by

mapping: e−λ(r) → e−λ̃(r) + β g(r), where g(r) is defor-
mation function. The first system corresponds to Einstein’s
system which is solved by taking a particular generalized
form for source function λ̃(r) while another system is solved
by choosing well-behaved deformation function g(r). To test
the physical viability of this solution, we find complete ther-
modynamical observable as pressure, density, velocity, and
equilibrium condition via. TOV equation etc. In addition to
the above, we have also obtained the moment of inertia (I ),
Kepler frequency (v), compression modulus (Ke) and stabil-
ity for this coupling system. The M–R curve has been pre-
sented for obtaining the maximum mass and corresponding
radius of the compact objects.

1 Introduction

General Relativity (GR) theory of gravitation has been estab-
lished by Einstein in 1916 in which gravitational properties
spread with the speed of light and the law of physics artic-
ulated to be invariant with respect to accelerated observers
[1–5]. The main assumptions of Einstein’s theory of grav-
itation are based on the (i) all events in the universe as a
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4-dimensional Riemannian manifold, which is called space-
time, (ii) the curvature related with the metric is related to the
matter by Einstein’s field equations (EFE). There will be vari-
ous fields on the space-time which describe the matter content
the space-time through energy-momentum tensor Tµν . The
field equation of GR is non-linear 2nd order partial differen-
tial equation of hyperbolic type, which permits clear freedom
of change of coordinates. The first solution of EFE describ-
ing a self-gravitating, bounded object was obtained by Karl
Schwarzschild [6]. This interior solution represents a con-
stant density model with the outer space-time being empty.
However, the velocity of sound within the sphere exceeds the
velocity of light thus such a model is not realistic. Therefore,
this encouraged us to search for physically viable solutions to
the Einstein field equations which describe the realistic mod-
els. The space-time of Schwarzschild’s exterior solution [7]
was obtained in 1916 which describes the gravitational field
outside a spherical mass by imposing spherical symmetry on
the space-time manifold. The theory of spherical symmet-
ric space-time has been investigated by Takeno (1966) from
the point of view of invariant classification, group of motion,
conformal transformation and embedding classes, etc.

The method of gravitational decoupling by Minimal Geo-
metric Deformation (MGD) is a great and powerful tech-
nique that extends known solutions into more difficult sit-
uations. By using this MGD technique, In Ref. [8], Gab-
banelli et al. have extended isotropic Durgapal–Fuloria solu-
tion in the anisotropic domain while Ovalle and his collabo-
rators [9] have shown that how a spherically symmetric fluid
modifies the Schwarzschild vacuum solution and necessity
of anisotropy in the fluid. In this connection, several other
authors have used the MGD approach to discover the more
complex solution which can be seen in the following Refs.
[10–23]. The GD was developed by Ovalle [25,26] as a con-
sequence of the Minimal Geometric Deformation (MGD)
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[24,27] (see also Ref. [28]) in the framework of Randall–
Sundrum gravity [29,30]. In Ref. [28], the author extended
the Minimal Geometric Deformation approach to investigate
a new black hole solution.

The key features of this approach for new solutions to EFE
are available in literature as [31]:
I. Considering the energy-momentum tensor T̃µν for known
metric as a source and extend known solutions of EFE into
more complex situations. The new source is coupled with
the T̃µν associated with the seed solution through a non-
dimensional coupling constant β which can be written as:

T̃µν �→ T̂ (1)
µν = T̃µν + β(1)T (1)

µν (1)

and then continue to same the process with more sources,
like

T̂ (1)
µν �→ T̂ (2)

µν = T̂ (1)
µν + β(2)T (2)

µν (2)

and so on. In this approach, we can spread direct solutions
of the Einstein equations related with the simplest gravita-
tional source T̃µν into the province of more complex forms

of gravitational sources T̃µν = T̂
(n)
µν .

II. It is noted that we can also use the reverse of the above
methodology in order to find an exact solution to Einstein’s
field equation. In this procedure, we can split a more difficult
energy-momentum tensor T̂µν into simpler components, say

T̃
(i)
µν , and then Einstein’s equations have to be solved for each

one of these components. In this situation, there will be many
solutions corresponding to each component of T̃

(i)
µν associ-

ated with the original energy-momentum tensor. At last, we
can find the solution of Einstein’s equations for the original
energy-momentum tensor T̂µν by combining all the above
individual solution. However, we would like to mention that
this procedure works very well as each source satisfies the
conservation equation identically, which can be written as

∇µT̂ µν = ∇µT̃ (1)µν = ∇µT̃ (2)µν = · · · = ∇µT̃ (n)µν = 0.

(3)

Now we explain the procedure to explore MGD-decoupling
methodology which is as follows: Suppose we have two grav-
itational sources namely R and S where we will first solve the
standard Einstein’s equations corresponding to the source R

and then the other set of quasi-Einstein equations are solved
for the source S. At last, we combine these two solutions to
determine the complete solution for the total system of R∪S.
As we know that Einstein’s field equations are non-linear,
therefore the above procedure leads a powerful technique to
find the solutions and their analysis, especially during the
situations that away form trivial cases.

Many analytical solutions were created by Tolman [32],
which describe the structure of the interior stellar geometry

for the perfect fluid models. However, the anisotropic mod-
els where the tangential and radial pressures are unequal,
allows a better understanding of the highly-dense matter.
Ruderman [33] and Bowers and Liang [34] have been stud-
ied the anisotropic fluid distribution that has explored the
most updated research. In this continuation Mak and Harko
[80] has suggested that anisotropy plays an important role to
understand the variation of properties of the dense nuclear
matter for a strange star. On the other hand, the presence of
anisotropy could be identified through the existence of a solid
core or type 3A superfluid [81], pion condensed phase [82],
and different kinds of phase transitions [83]. The positive
anisotropy inside star provides a realistic star which have
been studied by several authors. If we have the anisotropy
factor ∆(r) = pt − pr > 0, then anisotropic force inside
the stellar system outward-directed which improve the sta-
bility and equilibrium criteria, and if the anisotropy factor
∆(r) = pt − pr < 0, then anisotropic force inside the stel-
lar system is directed inward that introduce instability in the
system.

Now the finding of the solutions to EFE is a great challenge
to meet the requirements of physical acceptability [35–37].
Recently Jasim et al. [38] have constructed an anisotropic
fluid sphere model by supposing a specific form of the poten-
tial metric functions eλ and eν to EFE with MIT bag EOS in
presence of cosmological constant. This model yields a real-
istic fluid sphere such as PSR 1937 +21. In this connection,
an extensive study has been conducted by several authors
to understand the role of anisotropy of the interior of stellar
objects [39–79].
The purpose of this article is to the study of minimally

deformed solution for class one space-time by using grav-
itational decoupling method that gives a generalised solution
for anisotropic compact star models. The paper is organized
as follows. In Sects. 2 and 3, MGD have been used to scruti-
nize the interior space-time and field equation to find new
embedding class one solution. The non-singularity of the
solution has been discussed in Sect. 4 while, in Sect. 5, the
boundary condition and determination of constraints have
been analyzed. The Sect. 6 is devoted for analysis of the
slow rotation approximation, moment of inertia and Kepler
frequency. The elastic property of compact stars in Sect. 7
has been studied to focus and determine Ke Âăon com-
pression modulus Ke while, in Sect. 8 the energy condi-
tions have been considered and confirmed at all points in
the interior of a star. In Sect. 9, we analyzed the physical
features as well as stability of the resulting solution with
the help of graphical illustrations considering the equilib-
rium under various forces, causality, adiabatic index, and
Harrison–Zeldovich–Novikov static. We also compared the
solution for different values of β and analyzed for a well-
behaved solution. Finally, we summarize the results in the
last section.
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2 Interior space-time and field equations with MGD

2.1 Einstein equations for two sources

The action of this modified matter distribution for MGD
defined as [26]

S = SE H + β S1 =
∫ [

R

16π
+ LM + β L1

]√
−g d4x

(4)

provided LM and L1 are matter fields and additional
Lagrangian density due to the extra source respectively. How-
ever R denotes the Ricci scalar, g is the determinant of the
metric tensor gµν andβ is a coupling constant. Now we define
the energy-momentum tensor for both Lagrangian matter
which are given by

T̃µν = − 2√−g

δ(
√−g LM )

δgµν
= −2 ∂(LM )

∂gµν
+ gµνLM (5)

Θµν = − 2√−g

δ(
√−gL1)

δgµν
= −2

δL1

δgµν
+ gµνL1. (6)

By varying the action, (4) with respect to the metric tensor
gµν , we get the general equations of motion

Rµν − 1

2
gµν R = −8π Tµν (7)

where,

Tµν = T̃µν + β Θµν . (8)

The symbols used in above equations have their usual mean-
ings. Let us consider the inside of spherical body is filled of
an anisotropic fluid matter, therefore in the current situation
the stress-energy tensor T̃µν takes the following form

T̃µν = (ρ̃ + p̃t )uµuν − p̃t gµν + ( p̃r − p̃t ) vµvν, (9)

where the covariant component uν denote the 4-velocity, ful-
filling uµuµ = −1 and uν∇µuµ = 0. Here, ρ̃, p̃r and p̃t

represent the matter density and pressures (radial and tan-
gential) for anisotropic matter. It is noted that the presence
of this extra source Θµν in Eq. (8) produce an anisotropies in
self gravitating system that can be a scalar, vector or tensor
field. We would like to mention here that the Einstein tensor
is always divergence free, therefore the stress tensor Tµν in
Eq. (7) must satisfy the conservation law,

∇µTµν = 0, (10)

To describe the space-time geometry inside the body for com-
plete system we assume a spherically symmetric line element
of the form,

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(

dθ2 + sin2 θdφ2
)

(11)

where ν and λ are functions of the radial coordinate ‘r ’
only. Then the Einstein field equations (7) together with the
Eqs. (8), (9) and line element (11) give the following set of
the equations,

8π(ρ̃ + βΘ t
t ) = e−λ

(

λ′

r
− 1

r2

)

+ 1

r2
, (12)

8π( p̃r − βΘr
r ) = e−λ

(

ν′

r
+ 1

r2

)

− 1

r2
, (13)

8π( p̃t − βΘϕ
ϕ ) = e−λ

4

(

2ν′′ + ν′2 + 2
ν′ − λ′

r
− ν′λ′

)

.

(14)

where the effective density (ρ), effective radial pressure (pr ),
effective tangential pressure (pt ) and effective anisotropy
corresponding to the energy momentum tensor Tµν can be
defined as,

ρ = ρ̃ + βΘ t
t , (15)

pr = p̃r − βΘr
r , (16)

pt = p̃t − βΘϕ
ϕ , (17)

∆ = p̃t − p̃r + β(Θr
r − Θϕ

ϕ ). (18)

Further, we would like to mention that the linear com-
bination of Eqs. (12)–(14) satisfy the conservation equation
for the energy-momentum tensor T

µ
ν = T̃

µ
ν + βΘ

µ
ν with

coupling parameter β as

−d p̃r

dr
− β

[

ν′

2
(Θ t

t − Θr
r ) − dΘr

r

dr
+ 2

r
(Θϕ

ϕ − Θr
r )

]

−ν′

2
(ρ̃ + p̃r ) + 2( p̃t − p̃r )

r
= 0. (19)

2.2 Gravitational decoupling by MGD approach

Since the system of Eqs. (12)–(14) contains seven unknown
functions which are namely p(r), ρ(r), ν(r), λ(r) and three
independent components of Θ . Therefore, this system has
infinitely many solutions. Now we will apply the MGD
approach to solve this system of equations. In this approach,
the system will be converted in the such way that the field
equations connected with the source Θµν will satisfy “effec-
tive quasi-Einstein” [namely Eqs. (29)–(31)]. Now we can
start by taking a solution of the Eq. (7) for the stress-tensor
T̃µν which correspond to GR perfect fluid solution [that will
be same as the Eqs. (12)–(14) when β → 0] with the line
element,

ds̃2 = eν̃(r)dt2 − eλ̃(r)dr2 − r2(dθ2 + sin2θdφ2), (20)

where the gravitational potential eλ̃(r) can be defined as,

e−λ̃(r) = 1 − 8π

r

∫ r

0
r2 ρ(r)dr = 1 − 2m(r)

r
(21)

123



851 Page 4 of 15 Eur. Phys. J. C (2019) 79 :851

here the m(r) represents the Misner–Sharp mass function
for the standard general relativity. The influence of the extra
source Θµν on the energy-momentum tensor T̃µν can be
determined by the geometric deformation via. perfect fluid
geometry {ν̃(r), λ̃(r)} in Eq. (20) as

eν̃ → eν = eν̃ + β f (r) (22)

e−λ̃ → e−λ = e−λ̃ + βg(r). (23)

where f (r) and g(r) are the deformation functions associ-
ated with the temporal and radial components of line ele-
ments, respectively. It is noted that these deformation func-
tions depend only on radial coordinate while constant β is a
free parameter. The considered MGD method allows to set
g = 0 or f = 0, then for this situation the deformation will
be performed only on the radial component and other tempo-
ral one unaltered (it corresponds to f = 0). By setting f = 0
we get

e−λ̃ → e−λ = e−λ̃ + β g(r) (24)

This is called as the Minimal Geometric Deformation (MGD)
along the radial component of the line element. After plug-
ging the Eq. (24) into field equations (12)–(14), we get two
sets of equations as first set corresponding to the standard
Einstein field equations for an energy-momentum tensor T̃µν

which is given as,

1 − e−λ̃

r2
+ e−λ̃λ̃′

r
= 8πρ̃ (25)

e−λ̃ − 1

r2
+ e−λ̃ν̃′

r
= 8π p̃r (26)

e−λ̃

(

ν̃′′

2
+ ν̃′2

4
− ν̃′λ̃′

4
+ ν̃′ − λ̃′

2r

)

= 8π p̃t . (27)

along with the conservation equation,

−d p̃r

dr
− ν′

2
(ρ̃ + p̃r ) + 2( p̃t − p̃r )

r
= 0. (28)

while second set of equations for the source Θµν , called
as quasi-Einstein equations, is given as

−g′

r
− g

r2
= 8πΘ t

t (29)

−g

(

ν̃′

r
+ 1

r

)

= 8πΘr
r (30)

−g

2

(

ν̃′′ + ν̃′2

2
+ ν̃′

r

)

− g′

2

(

ν̃′

2
+ 1

r

)

= 8πΘ
φ
φ . (31)

The corresponding conservation equation ∇νΘµν = 0 gives,

ν′

2
(Θ t

t − Θr
r ) − dΘr

r

dr
+ 2

r
(Θϕ

ϕ − Θr
r ) = 0. (32)

The above expression is a linear combination of the quasi-
Einstein equations. At this stage it is noted that both sources
T̃µν and Θµν are individually conserved, which implies that
both systems interact only gravitationally.

2.3 Embedding class one condition associated with line
element (20)

If the space-time (20) satisfies the Karmarkar [84] condition

R1414 R2323 = R1212 R3434 + R1224 R1334 (33)

then the two metric functions λ̃ and ν̃ can be link via

λ̃′ ν̃′

1 − eλ̃
= λ̃′ ν̃′ − 2ν̃′′ − ν̃′2 (34)

The above condition implies that the four dimensional
space-time (20) is embedded into five dimensional pseudo-
Euclidean space i.e. embedding class one solutions. The Kar-
markar condition must satisfy the Pandey and Sharma con-
dition [85] R2323 �= 0 to describe a class one solution.
On integrating (34) we get

eν̃ =
(

A + B

∫
√

eλ̃ − 1 dr

)2

(35)

where A and B are constants of integration.
Using the definition of anisotropy in Eqs. (26) and (27)

together with Eq. (35) we express the anisotropic factor, ∆̃(r),
corresponding to energy-momentum tensor T̃µν by some
manipulation [64] as

∆̃(r) = p̃t − p̃r = ν̃′

32πeλ̃

[

2

r
− λ̃′

eλ̃ − 1

][

ν̃′eν̃

2 r B2
− 1

]

.

(36)

Here some comments are in order: (i) in this paper, we want
to determine a new solution for the field equations (25)–(27)
using embedding class one condition. However, it is well
known that we can achieve only two kinds of perfect fluid
solutions, namely Schwarzschild interior solution (by van-
ishing of first factor in Eq. (36)) and Kohlar–Chao solution
(by vanishing of second factor in Eq. (36)), for embedding
class one space-time which have been already discussed in
the literature. Therefore, we choose anisotropic matter dis-
tribution corresponding to energy momentum tensor T̃µν for
determining a new solution of embedding class one space-
time. (ii) After solving the system (25)–(27), we will solve
the quasi-Einstein equations (29)–(31) by taking a suitable
form of the deformation function g(r) which we are going
to discuss in next section.
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3 New embedding class one solution by MGD

Here the field equations (25)–(27) corresponding to energy
momentum tensor T̃i j depends upon two unknown source
functions, namely λ̃ and ν̃. Once these source functions are
determined then immediately we can obtain the thermody-
namical observable like ρ̃, p̃r and p̃t to describe the complete
structure of the proposed model. In this connection, the phys-
ical validity of this source function ν̃(r) has been proposed
by Lake, in which the function should be monotonic increas-
ing function with a regular minimum at r = 0 that gives a
physically viable static spherically symmetric perfect fluid
solution of Einstein’s equations which is regular at r = 0
[86]. On the other hand, the form of another source function
λ̃(r) must ensure that eλ̃(r)) = 1 + O(r2). This form of λ̃

gives a sufficient condition for a static perfect fluid solution to
be regular at the centre. Therefore in view of above points we
consider a new source function λ̃(r), to generate the physical
viable solution, of the form as,

eλ̃ = 1 + cr2enar2
. (37)

where c and a are arbitrary parameters with the dimension
of length−2 while n is a positive constant. Now form Eq. (37)

we observe that eλ̃ → 1 + O(r2) and regular at centre as

eλ̃(0) = 1. On inserting Eq. (37) into Eq. (35) and integrate
we obtain,

eν̃ =
(

A + B
√

c

an
eanr2/2

)2

. (38)

We observe that ν̃(r) is regular at centre r = 0 and posi-
tive increasing throughout within the stellar compact object
which provides a realistic compact star model. Therefore,
the solution of the field equations (25)–(27) can be given by
following line element,

ds̃2 =
(

A + B
√

c

an
eanr2/2

)2

dt2 −
(

1 + cr2enar2
)−1

dr2

+ r2(dθ2 + sin2 θ dφ2). (39)

Now our next task to find all the components of Θ
µ
ν to

describe the complete structure of the model. As we see that
all these components depend on the deformation function
g(r) that requires some restrictions to lead the well-behaved
solutions i.e. free of undesired mathematical and physical
singularities, and non-decreasing nature, etc. These choices
of deformation functions g(r) have been widely considered
by authors [87–89]. However, we can also be considered
other options like as radial pressure associated with Θr

r to
the mimic radial pressure i.e. Θr

r = pr and density associ-
ated with Θ t

t to mimic energy density i.e. Θ t
t = ρ, or relate

only Θ-sector components through a polytropic, barotropic,
or linear equation of state. It is worth mentioning that both

Fig. 1 Variation of metric functions with radial coordinate r for 4U
1608-52 (M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2

and β = 0.01

later cases are too complicated for determining the deforma-
tion function f (r). Therefore, we adopt the first procedure to
construct the physically acceptable model then deformation
function g(r) has the following form,

g(r) = ncr2

cr2 + 1
. (40)

This form was inspired by the property of eλ that it tends to
unity if r → 0 and increasing outward to describe the well-
behaved solutions. Then the explicit form of the complete
space-time associated with the energy momentum tensor Tµν

can be written as

ds2 =
(

A + B
√

c

an
eanr2/2

)2

dt2 − r2(dθ2 + sin2 θ dφ2)

−
[

(1 + cr2enar2
)(cr2 + 1)

(cr2 + 1) + βncr2 (1 + cr2enar2
)

]

dr2. (41)

where,

eλ(r) = (1 + cr2enar2
)(cr2 + 1)

(cr2 + 1) + βncr2 (1 + cr2enar2
)
, (42)

eν(r) =
(

A + B
√

c

an
eanr2/2

)2

= eν̃(r). (43)

The variation of both gravitational functions are shown in
Fig. 1.

Now the density, pressures (radial and transverse), and
anisotropy for complete system are given as,
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8πρ(r) = 1

r2

[

2anr2 + 1

cr2eanr2 + 1
−

2
(

anr2 + 1
)

(

cr2eanr2 + 1
)2

−
βcnr2

(

cr2 + 3
)

(

cr2 + 1
)2 + 1

]

, (44)

8πpr (r) =
c
(

cr2 + 1
)−1

(

cr2eanr2 + 1
)−1

a An
√

cr2eanr2 + Bcreanr2

[

ar An
√

ceanr2
{

eanr2
(

cr2(βn − 1) − 1
)

+βn
}

+ Breanr2
{

cn
[

2ar2(βn + 1) + β

]

+ceanr2
[

cr2
{

βn
(

2anr2 + 1
)

− 1
}

− 1
]

+2an
}

]

, (45)

∆ =
cr2

(

cr2 + 1
)−2

(

cr2eanr2 + 1
)−2

a An
√

cr2eanr2 + Bcreanr2

[

Br { f2(r) + f3(r)} eanr2 − a An f1(r)

√

cr2eanr2
]

(46)

8πpt (r) = 8πpr + ∆ (47)

where,

f1(r) = neanr2
[

a
(

cr2 + 1
)2

+ 2βc2r2
]

+ ce2anr2

[

βc2nr4 −
(

cr2 + 1
)2
]

+ βcn (48)

f2(r) = 2cneanr2
[

βcr2
(

anr2 + 1
) {

c
(

anr2 − 1
)

+ an
}

− a
(

cr2 + 1
)2
]

(49)

f3(r) = c2e2anr2
[

βcnr4
(

anr2 + 1
) {

c
(

anr2 − 1
)

+ an
}

+
(

cr2 + 1
)2
]

+ n
[

a2n(cr2 + 1)
{

cr2(βn + 1)

+ 1
}

+ aβcn − βc2
]

(50)

The variations of density, pressure and anisotropy are
shown in Figs. 2, 3 and 4.

As we see that the central density is decreasing when n

moves from 0.5 to 3.5 while the surface density increases for
same n. This implies that the core will be more denser if n

increases. However, it will have reverse situation for surface
density. On the other hand, the pressure has totally opposite
behavior than density. From Fig. 3, it can be observed that
central pressure increases with increasing value of n. In this
connection, we would like to mention that local anisotropies
play an important role in the study of the compact objects.

Fig. 2 Variation of density with radial coordinate r for 4U 1608-52
(M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2 and
β = 0.01

Fig. 3 Variation of pressure with radial coordinate r for 4U 1608-52
(M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2 and
β = 0.01

Fig. 4 Variation of anisotropy with radial coordinate r for 4U 1608-
52 (M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2 and
β = 0.01
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Fig. 5 Variation of pressure to density ratio with radial coordinate r for
4U 1608-52 (M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2

and β = 0.01

Since positive anisotropy leads the repulsive force which
allows to more compact objects while negative anisotropy
gives inward force that encourage the compact in collaps-
ing direction. The Fig. 4 shows that the local anisotropy is
increasing towards the boundary for each value of n.

The mass, compactness parameter, equation of state
parameter and red-shift can be evaluated from

m(r) = 4π

∫

r2ρ(r) dr

= r

2

[

1 − 1

cr2eanr2 + 1
+ βn

(

1

cr2 + 1
− 1

)]

(51)

u(r) = 2m(r)

r
(52)

ωr = pr

ρ
; ωt = pt

ρ
(53)

z(r) = e−ν/2 − 1. (54)

For a realistic equation of state, the equation state param-
eters must be less than unity. The variations of equation state
parameter and red-shift are shown in Figs. 5 and 6.

4 Non-singularity of the solution

The physical cogency of the solution confirm that the central
values of pressure and density must be finite i.e.

ρc = 3c(βn − 1)

8π
> 0, ∀ βn < 1 and c < 0, (55)

prc = ptc = a Acn(βn − 1) + B
√

c[2an + c(βn − 1)]
8π(a An + B

√
c)

.

(56)

Fig. 6 Variation of red-shift with radial coordinate r for 4U 1608-52
(M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2 and
β = 0.01

Also, it needs to ensure that any physical fluid fulfills the
Zeldovich’s criterion i.e. prc/ρc ≤ 1 which implies

prc

ρc

= a Acn(βn − 1) + B
√

c[2an + c(βn − 1)]
3c(βn − 1)(a An + B

√
c)

≤ 1.

(57)

Now a limitations on B/A arises due to (56) and (57) as

−2acn(βn − 1)

3c3/2(βn − 1) − √
c{2an + c(βn − 1)} ≤ B

A

<
−acn(βn − 1)√

c[2an + c(βn − 1)] . (58)

5 Boundary conditions and determination of constants

The line element (2) which describes the interior of the star
should join continuously with the exterior Schwarzschild

metric, and can be written as

ds2 = −
(

1 − 2m

r

)

dt2 +
(

1 − 2m

r

)−1

dr2

+ r2(dθ2 + sin2 θdφ2) (59)

with the radial coordinate r must be greater than 2m.
At the pressure free interface (r = R), which needs

the equality of corresponding potential functions eν and eλ

across the boundary (r = R), to get the following equations
[90]

1 − 2M

R
= eνs = e−λs . (60)

Whereas the extrinsic curvature or the 2nd fundamental form
of stars Kµν = ∇µrν , where the unit radial vector rµ is
normal to any surface of radius r which is also continuous at
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the interface (r = R). This can be stated in terms of Einstein’s
tensorial form as [91]

[Gµνrν]Σ = lim
r→R+

(Gµνrν) − lim
r→R−

(Gµνrν) = 0. (61)

By using the field equations and (61) we get

[

8πTµνrν
]

Σ
= 0, (62)

which implies
[

8π

(

pr − β Θ1
1

)]

Σ
= 0

Or pr (R) − β Θ1
1 (r → R−) = 0. (63)

On using the boundary conditions (60) and (63) we get

c = e−an R2

2R4[2M + R(βn − 1)]

×
[

R3ean R2 − 2M R2ean R2 − 2M R2 − βn R3

+R2
{

[

2M
(

ean R2 + 1
)

− Rean R2 + βn R
]2

−8Mean R2 [2M + R(βn − 1)]
}1/2

]

(64)

A =
√

1 − 2M

R
− B

√
c ean R2/2

an
(65)

B = an

√

1 − 2M

R

√

cR2ean R2
[

ean R2
{

cR2(βn − 1) − 1
}

+βn]
[

cR ean R2
{

ean R2
[

cR2(βn − 1) − 1
]

+ βn
}

Rean R2
{

cn
[

2a R2(βn + 1) + β

]

+ cean R2

[

cR2
{

βn
(

2an R2 + 1
)

− 1
}

− 1
]

+ 2an
}]−1

. (66)

The observed values of compact stars are providing us the
values of M and R, where a, n, β as free constraints.

6 Slow rotation approximation, moment of inertia and

Kepler frequency

The moment of inertia for a uniformly rotating star with angu-
lar velocity ω̄ is assumed by [92]

I = 8π

3

∫ R

0
r4(ρ + pr )e

(λ−ν)/2 ω̄

Ω
dr (67)

where, the Hartle’s equation has been satisfied for the rota-
tional drag ω̄ [93]

d

dr

(

r4 j
dω̄

dr

)

= −4r3ω̄
d j

dr
. (68)

Fig. 7 M–I graphs for a = 0.001 km−2 and β = 0.2

Fig. 8 M–R graphs for non-rotating case with a = 0.001 km−2 and
β = 0.2

with j = e−(λ+ν)/2 at boundary value j (R) = 1. The
moment of inertia solutions I up to the maximum mass Mmax

have been provided by Bejger and Haensel [94] as

I = 2

5

(

1 + x
)

MN R R2
N R, (69)

where x = (MN R/RN R) ·km/M⊙. The solution so obtained
have been plotted mass vs I in Fig. 7 that demonstrated as
n increases, the mass and moment of inertia are increasing
till up to convinced value of mass and then decreases. From
M–R diagram and by comparing Figs. 7 and 8, we have
noticed that the mass corresponding to Imax and Mmax are
not equal. Actually, the mass corresponding to Imax is lesser
by ∼ 1.46% from the Mmax . This occurs to the EoSs due to
hyperonization or phase transition to an unusual state without
any strong high-density softening[95]. Using this graph we
can estimate the maximum moment of inertia for a particular
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Fig. 9 M–R graphs for rotating (R) and non-rotating (NR) cases with
a = 0.001 km−2 and β = 0.2

compact star or by matching the observed I with the Imax we
can determine the validity of a model.

A rotating compact star can hold higher Mmax than non-
rotating one. The mass relationship between non-rotating and
rotating is given by (in the unit G = C = 1) can be written as
(Rotation and accretion powered pulsars P. Ghosh, Singapore
2007, P201)

MR = MN R + 1

2
IΩ2

K . (70)

Due to centrifugal force, the radius at the equator increases
as some factor as compare to the static one. Cheng and Harko
[96] find out the approximate radius formulas for static and
rotating stars as RR/RN R ≈ 1.626. Assuming the compact
star is rotating in Kepler frequency ΩK = (G MN R/R3

N R)1/2

and on using the Cheng–Harko formula we have plotted the
M–R for rotating and non-rotating (Fig. 9). The correspond-
ing frequency of rotating can be determined as [97,98]

ν ≈ 1.22

(

RN R

10 km

)−3/2 (
MN R

M⊙

)1/2

kHz. (71)

The variation of frequency with mass is shown in Fig. 10.

7 Energy conditions

The energy conditions null energy condition (NEC), domi-
nant energy condition (DEC), weak energy condition (WEC)
and strong energy condition (SEC) have to be confirmed at
all points in the interior of a star. Therefore, if the following
inequalities hold, then the energy conditions will be satisfied
simultaneously:

Fig. 10 ν–M graphs for a = 0.001 km−2 and β = 0.2

Fig. 11 Variation of energy conditions (EC) with radial coordinate
r for 4U 1608-52 (M = 1.74M⊙, R = 9.528 km) by taking a =
0.001 km−2 and β = 0.01

WEC : Tµν tµtν ≥ 0 or ρ ≥ 0, ρ + pi ≥ 0 (72)

NEC : Tµνlµlν ≥ 0 or ρ + pi ≥ 0 (73)

DEC : Tµν tµtν ≥ 0 or ρ ≥ |pi | (74)

where T µν tµ ∈ nonspace-like vector.

SEC : Tµν tµtν − 1

2
T λ

λ tσ tσ ≥ 0 or ρ +
∑

i

pi ≥ 0. (75)

where i ≡ (radial r, transverse t), tµ and lµ are time-like
vector and null vector respectively.

With the help of graphical illustrations, the energy condi-
tions have been checked. In Fig. 11, the L.H.S of the above
inequalities have been plotted which confirms that all the
energy conditions are fulfilled at the interior of stellar object.
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Fig. 12 Variation of forces in TOV-equation with radial coordinate
r for 4U 1608-52 (M = 1.74M⊙, R = 9.528 km) by taking a =
0.001 km−2 and β = 0.01

8 Stability of the model and equilibrium

8.1 Equilibrium under various forces

The conservation of stress tensor ∇µT
µ
ν = ∇µT̃

µ
ν +

β∇µΘ
µ
ν = 0 leads to Tolman–Oppenheimer–Volkoff equa-

tions due to fluid and extra sources [25] as

− ν̃

2
(ρ̃ + p̃r ) − d p̃r

dr
+ 2

r
( p̃t − p̃r ) = 0 (76)

− ν̃′

2

[

Θ t
t − Θr

r

]

+ dΘr
r

dr
+ 2

r

[

Θr
r − Θ

φ
φ

]

= 0. (77)

Now the overall TOV-equation becomes

− ν̃

2
(ρ̃ + p̃r ) − d p̃r

dr
+ 2

r
( p̃t − p̃r ) − β

[

ν̃′

2

(

Θ t
t − Θr

r

)

− dΘr
r

dr
− 2

r

(

Θr
r − Θ

φ
φ

)

]

= 0. (78)

The components for different effective forces due to MGD
gravitational decoupling namely gravitational force (Fg),
hydrostatic force (Fh) and anisotropic force (Fa) can be
defined as,

Fg = −ν′

2

[

ρ̃ + p̃ + β(Θ t
t − Θr

r )
]

, (79)

Fh = −
(

d p̃r

dr
+ β

dΘr
r

dr

)

, (80)

Fa = 2

r

[

( p̃t − p̃r ) + β (Θ t
t − Θr

r )
]

. (81)

The profile of three different forces are plotted in Fig. 12.
From this figure we can observe that the system is in equilib-
rium position. Moreover, the gravitational force Fg is bal-
anced the system by joint action of anisotropic force Fa

and hydrostatic force Fh . However, the parameter n plays
an important effects on different forces as gravitational force

Fig. 13 Variation of sound speed with radial coordinate r for 4U 1608-
52 (M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2 and
β = 0.01

Fig. 14 Variation of stability factor with radial coordinate r for 4U
1608-52 (M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2

and β = 0.01

and anisotropic force decreases in magnitude when n → 0.5
to 3.5 while hydrostatic force Fh is increasing when n moves
from 0.5 to 3.5.

8.2 Causality and stability condition

With the help of Causality condition, the stability situa-
tion have been analyzed. The causality condition will occurs
when the sound velocities (radial (v2

r ) and transverse (v2
t )

are greater than zero and less than 1. The radial velocity and
transverse velocity of sound can be achieved as

v2
r = dpr

dρ
, v2

t = dpr

dρ
. (82)

Figure 13, shows the profile of radial and transverse veloc-
ities of sound, which indicates that our model fulfills the
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Fig. 15 Variation of adiabatic index with radial coordinate r for 4U
1608-52 (M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2

and β = 0.01

causality condition. While Fig. 14 shows the stability condi-
tion that proposed by Abreu [99,100]. i.e. −1 ≤ v2

t −v2
r ≤ 0.

8.3 Adiabatic index and stability condition

The adiabatic index syndicates the basic features of the
EoS on the randomness formulae and consequently contains
the link between the relativistic structure of the anisotropic
spheres and the EoS of the interior fluid. The stability is linked
to the adiabatic index Γ , which can be written as [101],

Γr = ρ + pr

pr

dpr

dρ
. (83)

The stability of a Newtonian sphere condition is Γr > 4/3
while, for Γ = 4/3 is the condition for a neutral equilib-
rium [102]. Due to the regenerative effect of pressure, this
condition changes for a relativistic isotropic sphere, which
is unstable. For the anisotropic fluid sphere, if the stability
depends on the type of anisotropy then the situation becomes
more complicated [100,101]. A recent work by Moustakidis
[103] reveals that the critical value of adiabatic index strongly
depends on the M/R. The critical value was found to be

Γcri t = 4

3
+ 19

42

2M

R
. (84)

Figure 15, confirms that the model under consideration is
stable, due to the adiabatic index is greater than 4/3.

9 Elastic property of compact stars

Assuming neutron stars exhibits isotropic bcc polycrystal
structure one can defined the elastic properties via equation

Fig. 16 Ke–M graph r for 4U 1608-52 (M = 1.74M⊙, R =
9.528 km) by taking a = 0.001 km−2 and β = 0.01

Fig. 17 Variation of Ke with radial coordinate r for 4U 1608-52 (M =
1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2 and β = 0.01

of deformation energy as [98]

E = 1

2
Ke(∇ · u)2 + µ

(

uik − 1

3
δik ∇ · u

)2

(85)

where Ke and µ represents compression and shear modulus
respectively. The stress tensor is given by

σik = ∂E

∂uik

= Keδik∇ · u + 2µ

(

uik − 1

3
δik ∇ · u

)

(86)

In this work we will focus on compression modulus Ke

which can be determine as Ke = nb(∂pr/∂nb) = Γr pr [98].
The variation of compression modulus w.r.t. radius and mass
are shown in Figs. 16 and 17 respectively.
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Fig. 18 Variation of total mass with central density for R =
9.528 km, a = 0.001 km−2 and β = 0.01

9.1 Harrison–Zeldovich–Novikov static stability criterion

Harrison et al. [104] and [105] have revealed that the adi-
abatic index are the same of pulsating star and in slowly
deformed matter, which leads to be stable if the mass of the
star is increasing with central density i.e. ∂m/∂ρc > 0 and
unstable if ∂m/∂ρc < 0.

Therefore, the mass can be furnished as a function of cen-
tral density and can be defined as

m(ρc) = R

2

⎡

⎣

3 − 3βn

3βn − 8πρc R2ean R2 − 3
− βn+

βn

8πρc R2

3−3βn
+ 1

+ 1

⎤

⎦ (87)

∂m(ρc)

∂ρc

= 4π R3

3 − 3βn

⎡

⎢

⎣

9(βn − 1)2ean R2

(

8πρR2ean R2 − 3βn + 3
)2 −

βn
(

8πρR2

3−3βn
+ 1

)2

⎤

⎥

⎦
(88)

Its can be verified using the M − ρc graph in Fig. 18.

9.2 Effect of coupling parameter β on the models

To complete the analysis in detail, we need to observe the
effects of β on the nature of the solution. To proceed, we are
needed to assume a particular value of n and then see the
behavior by changing β. For n = 3 we have analyzed thor-
oughly and found that the physically acceptable range of β is
limited with a range between 0 and 0.7. As β increases, the
central density and pressure decrease while the anisotropy

changes very little. However, the central values of the adi-
abatic index and sound speed increase with an increase of
β. Therefore, the corresponding equation of state gains its
stiffness along with β i.e. as the MGD+GTR coupling gets
stronger we can obtain a very stiff equation of states, which
may explain the current observations of very massive neutron
stars (i.e. M > 2M⊙). Although, the range of β for a physi-
cally acceptable solution depends on the assumed values of n.

10 Discussion and conclusion

In this article, we have successfully incorporated the con-
cepts of embedding class one in the gravitational decoupling
formalism for the first time. This method makes a simple
way of exploring new solutions in MGD, which leads to the
new window of re-investigating all the existed embedding
class one solutions in MGD formalism and their responses
due to the additional source. The paper represents a new
embedding class one solution which is deformed minimally
by the gravitation decoupling technique. The MGD method-
ology demonstrated its adaptability in this area, making it
an important and acceptable solution for EFE. It is repro-
duced through the graphical analysis, where the variation
of the metric functions with the radial coordinate r , (see
Fig. 1) for M = 1.74M⊙ and R = 9.528 km considering
a = 0.001 km−2 and β = 0.01, and the deformation function
g(r) as in Eq. (24). The deformation function will be vanished
at r = 0, while g(r) = n as r approaches to infinity. Thus,
the metric potential functions are well-behaved at the center
and finite and regular throughout of stars. Therefore they are
proper to produce new models for anisotropic compact stars.

Figures 2 and 3, shows the behavior of density, pres-
sures(radial and transverse) with respect to M = 1.74 M⊙
and R = 9.528 km considering a = 0.001 km−2 and
β = 0.01, which detected that the model is non- singu-
lar, furthermore the model is positively finite, and monotone
decreasing functions throughout the interior of the star, and
achieve their maximum value at the center. Also, radial pres-
sure vanishes at the boundary. The anisotropy factor, which is
given in (Fig. 4) with radial coordinate r . However, ∆(0) = 0
at the center and it is positively increasing away from the
center. From Fig. 5, it is clear that the EoS is characterized
by the parameters ωr and ωt relating to radial coordinate r ,
in which, the EoS factors of the model are less than unity
i.e. within the region and demonstrated as a well-behaved
model. Figure 6 shows the variations of surface red-shift with
radial coordinate r . Thus, the surface of redshift z(r) → 0
as r → 0 and subsequently monotonically increasing onto
the boundary. For n = 2 yields larger moment of inertia
Mmax and Ke (Figs. 7, 8). Also, we have noticed that from
Figs. 7 and 8 the M − I graph is more sensitive and/or sharp
in the stiffness of equation of states than M–R graph. By
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Fig. 19 Variation of metric functions (eν−solid, e−λ−dashed), den-
sity, pressures (pr −solid, pt−dashed) and equation of state parame-
ters (ωr −solid, ωt−dashed) with radial coordinate r for 4U 1608-52
(M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2 and n = 3.
We are using the same color notation in all the graphs from Figs. 19, 20
and 21 as β = 0 (black), 0.014 (brown), 0.028 (blue), 0.042 (green),
0.056 (red) and 0.07 (cyan)

using the concepts of Ghosh and Cheng–Harko i.e. Eq. (70)
and RR/RN R ≡ 1.626 one can compare the M–R graphs
of rotating and non-rotating limits in one frame (Fig. 9),
while the variation of frequency with mass for different val-
ues of n is shown in Fig. 10. The EC with radial coordinate
r for 4U 1608-52 (M = 1.74M⊙, R = 9.528 km) by taking
a = 0.001 km2 and β = 0.01 are shown in Fig. 11, which
confirms that all EC are fulfilled at the interior of the stel-
lar object. While Fig. 12, shows the profile of three different
forces to observe that the system is equilibrium i.e varia-
tion of forces in TOV-equation with radial coordinate for 4U
1608-52 (M = 1.74 M⊙, R = 9.528 km) by taking a =
0.001 km−2 and β = 0.01. In the Table 1, we have presented
the values of physical parameters for different values of n.
The profile of radial and transverse velocities of sound has
been motivated in Fig. 13, which indicates that our model
fulfills the causality condition. While (Fig. 14) shows the
stability condition proposed by Abreu [99].

The satisfactions of static stability criterion, modified
TOV-equation and Herrera’s cracking method also ensures
that the solution is static, equilibrium and stable. Also, we
noticed that the system is stable due to the adiabatic index Γr

is greater than 4/3 as shown in (Fig. 15), and is also increasing
monotonically outward. The Ke − M graphs (Fig. 16) signi-
fies that as the mass of compact star increases, the compres-
sion modulus decreases while the Ke with radial coordinate
r graph implies an increasing trend of Ke as r approaches
the center i.e .the parameter n increases the stiffness of the
corresponding equation of states increases. While in Fig. 17
a variation of Ke with radial coordinate r for 4U 1608-52
(M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2

Fig. 20 Variation of anisotropy, TOV-equation (Fa−dashed,
Fg−small dashed, Fh−solid), sound speed (vr −solid, vt−dashed)
and stability factor with radial coordinate r for 4U 1608-52
(M = 1.74M⊙, R = 9.528 km) by taking a = 0.001 km−2

and n = 3. We are using the same color notation in all the graphs from
Figs. 19, 20 and 21 as β =0 (black), 0.014 (brown), 0.028 (blue), 0.042
(green), 0.056 (red) and 0.07 (cyan)

Fig. 21 Variation of Γr , energy condition (EC) (pr + ρ−solid, pt +
ρ−small dashed, pr + 2pt + ρ−dashed), redshift and compression
modulus with radial coordinate r for 4U 1608-52 (M = 1.74M⊙, R =
9.528 km) by taking a = 0.001 km−2 and n = 3. We are using the
same color notation in all the graphs from Figs. 19, 20 and 21 as β = 0
(black), 0.014 (brown), 0.028 (blue), 0.042 (green), 0.056 (red) and 0.07
(cyan)

and β = 0.01 are motivated for different n. Also, the cen-
tral values of these physical parameters can be confirmed by
the Fig. 18 for n = 2 than n = 0.5. The mass function and
compactness effects are able to illustrate the mass growth
to choose an appropriate specific mass M . So, the profiles
of understanding of the compactness and mass function are
shown in Fig. 18. The m(r) → 0 as r → 0 and monotoni-
cally increasing toward the boundaries.
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Table 1 Few interior
parameters for 4U 1608-52
(M = 1.74M⊙, R = 9.528 km)
by taking a = 0.001 km−2 and
β = 0.01

n ρc × 1014 ρs × 1014 pc × 1034 Γc Mmax R νmax I × 1045

(g/cc) (g/cc) (dyne/cm2) (M⊙) (km) kHz (g cm2)

0.5 9.69 4.06 5.44 2.07 3.27 10.1 2.47 3.45

1.0 9.22 5.09 5.76 2.35 3.14 9.83 2.43 3.21

1.5 8.76 5.19 6.06 2.69 3.01 9.57 2.4 2.93

2.0 8.33 5.30 6.34 3.14 2.87 9.35 2.35 2.65

2.5 7.92 5.39 6.60 3.99 2.73 9.1 2.32 2.38

3.0 7.54 5.50 6.86 5.52 2.61 8.86 2.28 2.12

3.5 7.15 5.61 7.09 9.49 2.48 8.63 2.24 1.91

The former tendency can be explained as the mass
increases the central density also increases which may leads
to generation of many interesting particles that unstiffen the
equation of state and the compression modulus. The later one
is due to the central density is highly dense as compare to
the surface that leads to more compression modulus at the
core than its surface. As the maximum mass Mmax increases
when n increases, the spinning rate νmax also increases. We
have also compared the nature and behavior of the solution
by assuming a particular value of n with different values of β.
For this case, we have found that the central values of density
and pressure decreases with increase in β (Fig. 19). However,
other physical behaviors of solution for different β are given
in Figs. 20 and 21. On the other hand, the stiffness increases
with increase in β as the adiabatic index increases and the
speed of sound approaches the speed of light. Although, the
anisotropy changes in a very small amount when changing
the coupling constant β. The acceptable range of β depends
upon the chosen value of n. For n = 3 the possible range
lies in 0 ≤ β ≤ 0.7. If β > 0.7, the trend of the density
start increase slightly and decreasing near the surface, and
the solution start violating causality condition.

Summing up, we can conclude that our models are phys-
ically acceptable to describe minimally deformed class one
space-time by gravitational decoupling based on the results
so obtained.
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