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Preface

As with most research, this thesis and related work did not occur in a vacuum. When I first

arrived at the University of Michigan my initial work was on the model reduction of an

electrochemical battery model created by Doyle, Fuller, and Newman [2, 3]. Broadly, the

lab’s interest was in the design of PHEVs and our focus was largely on the battery pack. In

this work I used infinite dimensional Padé approximation to reduce a spherical diffusion

submodel within the DFN model. My colleague, Dr. Saied Bashash, reduced and simplified

the algebraic constraints in the model with quasi-linearization. This work resulted in a

conference paper, a journal article, and my Master’s Thesis [4–6]. It is not included in this

document although it enables a great deal of the computational work presented. It also has

been used in several collaborations [7–9].

After this it became clear that efficient simulation of the DFN model was not enough,

we would also need to experimentally characterize the LiFePO4 cells. To this end we

decided to focus on noninvasive and nondestructive experiments, for various reasons as are

discussed in later this document. Another colleague, Dr. Scott Moura, built a battery test

setup capable of running a wide variety of tests, including Hardware In the Loop (HIL). We

then used this setup to collect data that I processed with an evolutionary algorithm. This

algorithm estimated the DFN model parameters by matching the resulting input-output

behavior. This set of parameters has been leveraged in several other works that I have been

involved with [7, 9–11]. The parameter identification work resulted in a conference and

journal paper and is the basis of Chapter 2 [12, 13]. Additionally it lead me to learn about

Fisher information and the underlying need for optimal experimental design, which greatly

influenced the remainder of my thesis work.

At this point the importance of modeling battery health became very clear within the lab.

With very little LiFePO4 battery health modeling in the literature we decided to setup our

own battery aging experiment. The goal of this experiment was to create an experimentally

derived map similar to that used in [8] which would be ideal for both control and design

optimization. Dr. Scott Moura priced and ordered the long term battery cycling equipment,

and I’m grateful for Professor Huei Peng’s cooperation, patience, and funding with regard
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to acquiring and using said equipment. For this work I performed optimal experimental

design using the previously validated DFN model. This resulted in a set of 14 different

Constant Current Constant Voltage (CCCV) cycling experiments, 4 of which were used

solely for validation. This experiment is still ongoing, but a model fit to 429 days of cycling

experiments matches the validation data very well. This work has been submitted and

accepted to 2012 Dynamic Systems and Control Conference and is the work presented in

Chapter 3 [10].

Based on the initial parameter identification work and a desire to make a battery State-of-

Health (SoH) diagnostic, Chapter 4 focuses on design of open loop current trajectories that

optimally gather information while attempting to minimize battery damage. The nucleation

point of this work occured when Dr. Scott Moura and I were trying different battery cycles

to aid in my identification work in Chapter 2. I found the trial and error necessary to

generate information rich cycles frustrating and wondered why there was not a systematic

way to design these cycles. Chapter 4 presents such a systematic method, optimizing for

information content while minimizing battery damage. Battery damage is assesed using

both the model in Chapter 3 and the work of Whitacre et al. [14]. Chapter 4 is intended for

submission to the 2013 American Control Conference.

The common thread running through this thesis is a focus on minimally invasive battery

characterization. I attempt to bring the science of optimal experimental design and informa-

tion theory to the art of experimental battery testing. This is not to say that the art is not

valuable - it is just that when combined with the science greater things become possible.

I believe the work in this thesis along with my other work at the University of Michigan

greatly improves our ability to efficiently characterize and simulate LiFePO4 batteries.
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Abstract

This dissertation bridges an important gap from optimal experimental design and informa-

tion theory to battery modeling and experimentation. In doing so it creates methods to

efficiently model and characterize batteries intended for electrified vehicles. This modeling

and characterization focuses on both estimating parameters for a pseudo 2D electrochemical

model and the determination of a battery aging model. One of the major goals within the

work is to be minimally invasive. For the initial parameter identification and health modeling

work this means that the cells are not being disassembled. Later in the dissertation this

idea is taken further by using battery health models to minimize the damage caused by

experiments. Another theme throughout this work is the use of Fisher information, which is

a measure of how much information a set of data contains for estimating model parameters.

This is used for both a posteriori analysis of parameter estimation accuracy and as an a

priori goal for the two optimal experimental design problems within this dissertation.

This dissertation has three major parts. The first is a parameter identification exercise

for the Doyle-Fuller-Newman model, a pseudo 2D electrochemical battery model. In this

several experiments based on Plug-in Hybrid Electric Vehicle drive cycles are conducted

and the resulting data sets are used to estimate a set of 88 model parameters. This estimation

is accomplished using a genetic algorithm. The input-output model results are matched very

well and Fisher information is used to quantify the parameter estimation accuracy. This

estimation demonstrates not only that the model is appropriate for LiFePO4 but also how to

quickly parameterize batteries for this model.

The second part of the dissertation focuses on battery health modeling. Initially it uses

the previously parameterized electrochemical model to create a set of possible constant

current constant voltage battery experiments. This set is then acted on by the DETMAX

algorithm which creates a locally optimal subset of experimental trials. These cycles are

then run repeatedly to age the batteries with battery health tests conducted intermittently.

Results from the first 429 days of this experiment yield a battery aging model that accurately

fits our validation data. This model is designed specifically to be useful for control and

optimization work.
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The third major part of this dissertation is focused on designing battery experiments that

maximize parameter information gathered while minimizing battery damage. The structure

of the experiment is to design a current trajectory that maximizes parameter information

carried by the output voltage trajectory. The NSGAII-DE evolutionary algorithm is used

with the previously fit electrochemical model and the battery aging model to generate Pareto

fronts in the form of Fisher information versus battery damage. The resulting improvements

are verified by running an estimator on simulated data with noise.

Together this dissertation’s contributions provide methods and algorithms for efficient

and accurate battery characterization. These contributions will only become more relevant

with the increasing prevalence of vehicle electrification and continued creation of new

battery types.
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Chapter 1

Introduction

1.1 Motivation and Objectives

As Plug-in Hybrid Electric Vehicles (PHEVs) increase in market share they create great

potential to reduce dependence on petroleum, potentially decreasing green house gases,

avoiding environmental disasters, and decreasing foreign resource dependence. However,

PHEVs may have an Achilles heal in one major component - the battery pack. Battery

packs today are typically a sizable portion of the cost of a PHEV, to the extent that they

frequently must be subsidized to be economically competitive. Batteries must be well

modeled to ensure that on vehicle controllers can effectively manage available power and

capacity effectively. Additionally, since battery’s health degrades with use, it is important to

understand battery State-of-Health (SoH). SoH affects available power and capacity which,

in turn, effects available power and remaining trip length.

Fortunately the dynamic battery modeling literature is relatively mature for Li-ion bat-

teries (which are typical in today’s PHEVs). However these models still require appropriate

calibration through parameter identification. Unfortunately the Li-ion battery health model-

ing literature is not nearly as mature. The battery health literature has a solid understanding

of potential degradation mechanisms, but is still struggling to produce health models suitable

for controllers.

Experiments are necessary to identify parameters for electrochemical battery models

and to correctly deduce health models. While the literature is rich with battery experiments

few of these make use of information theory or Optimal Experimental Design (OED). This

is important because information theory and OED have great promise for both reducing time

and money spent on experiments while at the same time improving parameter identification

results from experiments. Information theory allows one to evaluate how well successful one

can hope to be from given data. OED optimizes information, specifically Fisher information,

for experiments by designing them through either selection of trials (for static experiments)

or input trajectory design (for dynamic experiments).
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This dissertation applies, creates and studies several information theory and OED tech-

niques and uses them on three relevant battery identification problems. The first problem

serves as a motivating example. In this the author attempts to identity 88 parameters re-

lated to scalar and parametric function control points in the Doyle-Fuller-Newman (DFN)

electrochemical model. This uses a Genetic Algorithm (GA) to fit the model parameters to

noninvasively collected current and voltage data. The noninvasiveness of the experiment is

important because measuring invasive parameters within the battery often requires special

equipment and manufactures frequently consider these parameter values proprietary. The

data sets used to drive the experiment are based largely on PHEV drive cycles as opposed to

experimental design. Despite the GA being able to accurately fit the model’s input-output

behavior an information study reveals that some parameters are completely unidentifiable or

nearly so given the selected data. To improve this, increasing identifiability through input

trajectory design is revisited in the third problem.

The second problem serves to show how static OED can make battery health tests more

effective. Battery health is critical to PHEV operation: degraded batteries provide less

power, shorten all electric range, and decrease hybrid mode fuel efficiency. Unfortunately,

battery health experiments are both costly and time consuming, taking on the order of weeks

to months - potentially years. OED can help alleviate this by selecting experimental trials

that are best suited for health model identification. This decreases the number of iterations

needed for a successful experiment and improves the model identified at the end of the

experiment. Since this model can be used to predict and understand how PHEV use affects

battery SoH its accuracy has both economic and vehicle design ramifications. Additionally

this strategy can serve as a template for identifying health models for other types of batteries.

The third serves as a demonstration of how to design input trajectories to make the

DFN model parameters most identifiable. It uses NSGAII-DE to design input trajectories

that maximize Fisher information while minimizing the battery’s exposure to damage. We

demonstrate this with two different health metrics and generates Pareto fronts of Fisher

information versus each. In both cases Fisher information is based on the simultaneous

estimation of two parameters: d2, solution diffusivity and RSEI , the resistance due to anode

film thickness. Each of these relates to battery health, and d2 is chosen specifically due to

previous difficulties in its estimation [13]. This method can be used for SoH estimation by

applying it to parameters relating to health (such as as RSEI). It can also be used to design

more efficient experiments to improve battery characterization.

The remainder of the chapter is organized as follows. Next §1.2 outlines the three

major contributions for this dissertation. §1.3 explains how these contributions improve the

literature and then summarizes various technical areas of the literature for the reader. §1.4
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then provides technical background on electrochemical battery modeling. The final section

in this chapter §1.5 explains how the remainder of this document is organized.

1.2 Intellectual Contributions

This dissertation makes three major intellectual contributions which are summarized in this

section.

1.2.1 Noninvasive Electrochemical Model Identification using Genetic

Algorithms

While the DFN model has applicability to a large class of battery types one major hurdle in

using this model is the identification of parameters and parameterized functions [2, 3]. A

GA identification method is use to noninvasively identify the parameters and parameterized

functions of the DFN model. This GA optimizes using noninvasively collected voltage and

current data to fit the model parameters. As a demonstration, laboratory data is collected

for a LiFePO4 cell and the identification is carried out successfully. Some of this laboratory

data is based on driving cycles simulated for a Prius with a 5 kWh PHEV conversion kit. A

validation study of model fit is conducted and a Fisher information study has been conducted

to assess parameter accuracy.

1.2.2 Optimal Experimental Design for Battery Health Modeling

This dissertation uses traditional OED to design battery health degradation experiments for

determining a voltage and current driven health model [15–17]. The OED selects a set of

experimental procedures that minimize the geometric sum of Cramér-Rao variance bounds

for estimating the model’s parameters [18]. This minimization creates the best possible set

of data for performing parameter identification. The designed experiments are conducted in

a laboratory to obtain this data-driven health model. This sequence serves as a prototype for

conducting battery health experiments on other types of batteries. Additionally the specific

health model can be used for health-conscious controllers, system level design decisions

and warrantying decisions [8, 19].
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1.2.3 Maximizing Fisher Information through NSGAII-DE for Bat-

tery Health Diagnostics

This dissertation investigates using NSGAII-DE to maximize Fisher information to design

input trajectories for experiments that minimize Cramér-Rao lower bound on variance for

identifying selected parameters. As a test case the author considers designing inputs to the

DFN model. This input trajectory minimizes the variance in identifying the resistance of the

solid electrolyte interface layer, RSEI which is a major factor in battery health [20–34]. The

solution diffusivity, d2, is also simultaneously identified with RSEI . One specific application

of this technique is a diagnostic procedure for determining battery SoH in an efficient

manner. The improvements of the optimized trajectories are verified using an estimator on

simulated data with noise.

1.2.4 An OED Battery Modeling and Characterization Toolbox

Together these contributions provide a toolbox for battery system engineers. This toolbox

allows one to characterize the battery for the DFN model, determine an empirical data driven

health model, and then design diagnostics for determining specific battery parameters. This

toolbox incorporates methods from OED to ensure that the experiments are efficient and

result in appropriate models and parameters. In addition the author demonstrates specific

pairings of method and numerical algorithm, showing the reader how to perform the appro-

priate computations for the experiments. This toolbox should be very helpful to engineers

work on the design, control, and optimization of battery systems as it provides efficient and

systematic ways to determine the necessary battery models.

1.3 Literature Review and Background

The issue of battery parameter identification has been addressed in the literature using a

number of different models, identification methods, and parameter sets. Santhagopalan et

al., for instance, successfully identify a subset of the DFN model parameters using extended

Kalman filtering [35]. Speltino et al. successfully identify the parameters of a Single Particle

Model (SPM) of battery dynamics by splitting these parameters into two sets and identifying

these sets sequentially [36]. Schmidt et al. also successfully identify an SPM battery model,

with several extensions that incorporate temperature information and relate solid diffusion to

State of Charge (SoC) [37]. The study by Schmidt et al. also examines parameter uncertainty

using Fisher information [37]. Finally, Hu et al. successfully identify the parameters of
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an equivalent circuit battery model using a GA [38]. In contrast to the above literature a

noninvasive technique using GAs is proposed for identifying 88 parameters (scalars and

function control points). This is believed to be the first attempt at trying to identify more

than five parameters simultaneously in the DFN model [35]. This technique serves as a

template for identifying parameters for other batteries and makes use of Fisher information

to evaluate parameter identification accuracy.

There has been much work performed on studying battery health. For the LiFePO4

battery being considered in this dissertation two long-term health studies have already

been conducted (and the literature is rich with health experiments for many types of bat-

teries, see §1.3.6). The first develops a control oriented model based entirely on charge

processed [14]. The second develops a non-control oriented model based on a wider range

of experiments [39]. However virtually no experiments in the battery literature make use

of OED. In contrast, this dissertation uses OED to create battery health experiments that

attempt to minimize parameter estimation error for a given model. Additionally a diagnostic

experiment is designed using input trajectories to maximize the Fisher information for

determining a parameter related to SoH. By designing these experiments to maximize infor-

mation gathered one can minimize uncertainties in identified parameters and by extension

model inaccuracies. Well designed experiments can also decrease time, man-hours and cost

by minimizing the number of experiments and experimental batches needed. As battery

applications, such as PHEVs, become more dependent on SoH the importance of being

able to conduct battery health experiments in an effective and economic matter continues to

increase.

The remainder of this section briefly reviews the relevant areas of the literature. Technical

background for many of these areas is presented later sections.

1.3.1 Fisher Information

Fisher information measures how easily one can observe parameters in a probability density

function from collected data. Due to the Cramér-Rao bound an unbiased parameter esti-

mator must have a variance greater than or equal to the inverse of the Fisher information.

When estimating multiple parameters one calculates a Fisher Information Matrix (FIM) and

inverts it giving a lower bound on the best possible covariance obtainable when estimating

parameters [16, 17, 40].

The concept of Fisher information has been applied to estimating parameters of dynamic

models. This case assumes that the dynamic model has a normally distributed measurement

error. Using this one can create a FIM that is related to the sensitivity functions of the
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dynamic model. This FIM is again inverted, obtaining the best possible covariance matrix

for an unbiased estimator. This is similar to parameter identifiability studies but provides

a quantitative answer rather than a qualitative one. Computationally efficient methods

exist to numerically calculate the FIM for dynamic models. This FIM can be used to

both analyze the quality of data collected from an experiment and as a goal in designing

experiments [16, 17, 37, 41–44].

1.3.2 Optimal Experimental Design

OED is the study of selecting experiments to maximize the Fisher information gained for

parameters within a given model. It can also be used to select which model structures

fit data the best. Frequently one looks at a set of possible experiments to run and then

attempts to select the best subset of these given various objectives and constraints. For static

experiments the DETerminate MAXimizing (DETMAX) algorithm lets one create (locally)

optimal subsets from the library of possible experiments [15–17].

Limited work has been conducted on OED of dynamic experiments. Time domain and

frequency design for linear systems has been considered, as has optimal sampling times. The

use of NSGAII-DE or trajectory design should be broadly applicable and easy to implement,

adding to the work already in this area [15–17].

1.3.3 Genetic Algorithms

GAs work by creating a population where each member represents a possible set of deci-

sion variable values. This is often represented by a binary string that maps bijectively to

these values. This population is evolved using breeding and mutation guided by a fitness

function. Due to their convergence properties GAs are frequently used in optimizations

with large numbers of decision variables. Parallel computing can be used to help decrease

computational expenses in large GA optimizations [18, 45].

1.3.4 The NSGAII-DE

An excellent evolutionary algorithm for multi-objective optimization is the Nondominated

Sorting Genetic Algorithm II (NSGAII) which evolves populations to directly create Pareto

fronts [46]. Another useful evolutionary algorithm is Differential Evolution (DE), which

works directly on real encoded problems and has been shown to be very effective in a variety
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of applications [47–49]. The advantages of each of these evolutionary methods are married

by Kwan, Yang, and Chen who created the NSGAII-DE algorithm [50]. This algorithm

combines the performance of DE with the advantage of direct Pareto front creation, and thus

it is ideal for our problem.

1.3.5 Li-ion Battery Modeling

There has been a variety of work done on making electrochemical models of Li-ion batteries.

Doyle, Fuller, and Newman wrote two papers creating the DFN model [2, 3]. The DFN

model is an electrochemical battery model that models concentration and potential distribu-

tions across the width of the cell as well as concentration profiles in the porous electrodes

of the anode and cathode. In their original form these models are very computationally

inefficient so the Single Particle Model (SPM) was introduced, this simplifies some of the

distributed dynamics [30, 36]. These models are more computationally efficient but suffer

in accuracy at higher C-rates. SPM models have been augmented with thermal models as

well [37]. A variety of work has been conducted on making the DFN model computationally

tractable using model reduction techniques [4, 51–54]. The author specifically has a paper

that uses infinite dimensional Padé approximation and quasi-linearization to reduce the DFN

model (see §1.4) [4].

1.3.6 Li-ion Battery Degradation

Li-ion batteries have many degradation mechanisms depending on which combination of

anode, cathode, electrolyte and dopant chemistries are used.

Anode Resistive SEI Film Formation: This degradation mechanism coats anode particles

at the Solid Electrolyte Interface (SEI) creating a resistive film which increases im-

pendence. Additionally this film is made in part of Li-ions decreasing the quantity of

cyclable Li, negatively affecting maximum capacity [20–34].

Cathode Resistive SEI Film Formation: Similar to anode resistive film formation this

increases impedance and decreases capacity. However in this case the film forms on

cathode particles. This is reported for LixNi0.8Co0.15Al0.05O2, LixNi0.8Co0.2O2 and

LixV2O5 [32, 55–57].

Cathode Dissolution Causing Anode SEI Film: Here SEI film is formed in the anode

from metallic atoms that have been dissolved in the electrolyte and act as Li when

forming the film [20–22, 33, 58–60].
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Loss of Carbon Dopant: In LiFePO4 batteries, cathodes are often coated with a carbon

dopant to increase conductivity. However this carbon may migrate during cycling

decreasing conductivity [32, 55, 60–62].

Crystal Structure Distortion: When crystal structures have either too much or too little

Li they may experience mechanical stresses, causing crystal structure distortion. This

distortion can negatively affect how easily Li can transfer into and out of the crystal

structure [63–65].

Electrolyte Degradation: The electrolyte degrades through a complicated multi step chem-

ical reaction. Specific chemical mechanisms are discussed in [66].

Gas Evolution: As cells are cycled pressure inside them can build up due to gas evolution.

This is reported for cells with LiNixCoyAlzO2 cathodes [58].

Dendrite Formation: In many battery chemistries metallic dendrites can from creating

short circuits inside the battery. In LiFePO4 batteries the dendrites are made of

Fe [67].

For the LiFePO4 batteries under consideration in this dissertation two groups have

already conducted health experiments. One group has created a control oriented health

model based solely on charge processed [14]. The other has created a non-control oriented

model and claim that the major degradation mechanism is anode SEI film formation [39].

This dissertation creates a control oriented health model that takes into account voltage and

current. Experimental results in Chapter 3 show that terminal voltage is an important factor

in battery health.

1.4 The Doyle-Fuller-Newman Electrochemical Model

The DFN model is an electrochemical battery model that models concentration and potential

distributions across the width of the cell as well as concentration profiles in the porous

electrodes of the anode and cathode. Spatial distributions across the width of the cell play

an important role in high-rate charge and discharge dynamics, typical of PHEV cycles. The

model is described thoroughly in [2, 3, 28]. The remainder of this section provides a brief

overview of the mathematics involved in this model.

The diffusion of Li-ions within the electrolyte is governed by Fick’s law of linear diffu-

sion combined with an intercalation current density term, J, transferring Li-ions between
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the solution and solid:

ε2
∂c2

∂ t
= ∇(d

e f f
2 ∇c2)+

1− t+

F
J. (1.1)

The above intercalation current density, J, also acts as an input to the dynamics of Li-ion

diffusion within the solid. This diffusion occurs at every point in the anode and cathode and

can be modeled using a spherical, radially symmetric diffusion law as follows:

∂c1, j

∂ t
=

D1, j
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∂

∂ r
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)
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The total intercalation current density, J, equals the main intercalation reaction current

density, J1, plus any additional intercalation current density Jsd representing side reactions

in the battery. The main intercalation reaction current density, J1, is driven by potential

differences between the solid and electrolyte solution, and governed by the Butler-Volmer

equation:

J1 = a ji0, j

(

e
αa, jF

RT
η j − e

−
αa, jF

RT
η j

)

, (1.3)
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1, j − cS

1, j

)αa, j
(

cS
1, j

)αc, j

(c2)
αa, j . (1.4)

The over-potentials in the above equations equal the differences between the solid and

solution potentials minus the reference potentials for the main intercalation reaction, which

in turn depend on the local SoC, see Eq.1.5 and Eq.1.6.

ηp = φ1−φ2−upre f , (1.5)

ηn = φ1−φ2−unre f −
J

an
RSEI. (1.6)

Since the above potentials/over-potentials can change much faster than the Li-ion concen-

trations, they are assumed to respond instantaneously. The solid potential is governed by

Ohm’s law with a term governing the charge transfer due to intercalation:

∇

(

σ
e f f
j ∇φ1, j

)

− J = 0. (1.7)

Similarly, the solution potential is governed by Ohm’s law, intercalation current density, and

the charge carried by the ions in solution:

∇

(

κe f f ∇φ2

)

+ J+∇(κD∇ ln(c2)) = 0. (1.8)
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The above system of equations governs the dynamics of charging and discharging in the

Li-ion cell. From a dynamic systems perspective, it is a system of Differential Algebraic

Equations (DAEs), where the differential equations govern the diffusion dynamics and

the algebraic equations constrain the potentials and intercalation current accordingly [68].

Fortunatly there are efficient methods to numerically simulate the DFN model, see §A.1.

1.5 Document Organization

The remainder of this document is organized as follows. While the next three chapters of

this dissertation have a logical progression they are self contained enough that they may

be read independently. The first of these, Chapter 2 uses an experimental setup along with

a genetic algorithm to identify parameters to match the input output behavoir of the DFN

model. The last part of this chapter discusses parameter accuracy using Fisher information.

This then transistions to the ideas of Chapter 3 where optimal experimental design is used to

create battery aging experiments which optimize Fisher information. These experiments are

then conducted and a control/optimization oriented model is created. Then, in Chapter 4

we revisit the parameter identification problem but use the NSGAII-DE algorithm to design

current trajectories that maximally gather parameter Fisher information while minimizing

battery damage (which is computed from the model in Chapter 3). The final chapter in this

dissertation is Chapter 5 which is the conclusion.
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Chapter 2

Genetic Identication and Fisher

identifiability analysis of the

Doyle-Fuller-Newman model from

experimental cycling of a LiFePO4 cell

2.1 Introduction

This chapter examines the problem of identifying the parameters of the electrochemical

battery model developed by Doyle, Fuller, and Newman (DFN) [2, 3] using noninvasive

voltage-current cycling experiments. The chapter presents a framework for solving this

problem, consisting of a Genetic Algorithm (GA) for parameter identification combined with

Fisher information-based estimation of parameter identifiability and identification errors. We

apply this framework to LiFePO4 battery cells intended for plug-in hybrid electric vehicles

(PHEVs). The ultimate goal is to obtain an experimentally-validated, electrochemistry-based

model of these batteries that can enable the optimization of PHEV design and control for

objectives such as reducing PHEV fuel consumption and greenhouse gas emissions [69].

The DFN model is well-suited for this study because it is a first-principles electrochemi-

cal model that can capture high-rate transient effects. In contrast to equivalent circuit models,

first-principles models make it easier to relate model parameters back to physical quantities

(such as diffusivity and porosity). This is important because one of our goals is to investigate

the accuracy with which one can estimate these physical quantities from noninvasive voltage

and current data. The DFN model also captures high-rate transient effects typical of PHEV

applications. In particular, a recent study by Santhagopalan et al. shows that the DFN

model fits battery behavior above 1C current rates better than a single particle model (SPM)

[35]. The DFN model achieves these advantages over the SPM in part by modeling spatial

distributions of lithium across the width of the anode, separator, and cathode. These effects

are ignored in SPMs.
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A significant body of literature already exists on battery parameter identification using

different models and identification methods for different parameter sets. Here we focus

exclusively on identification methods that, like our own work, are intended for offline use.

Santhagopalan et al., for instance, successfully identify a subset of five parameter values

under constant charge and discharge conditions for both the DFN and SPM models [35].

In both cases, the Levenberg-Marquardt optimization algorithm is used to obtain param-

eters that minimize model error. Speltino et al. successfully identify the parameters of a

single-particle model of battery dynamics using a two-step process: they first identify the

cathode equilibrium potential function from open circuit voltage measurements, assuming a

known anode equilibrium potential function from the literature. They subsequently perform

dynamic tests to estimate the remaining model parameters [36]. Schmidt et al. also suc-

cessfully identify a single-particle battery model, with several extensions that incorporate

temperature information and relate solid diffusion to State-of-Charge (SoC) [37]. The study

by Schmidt et al. also examines parameter uncertainty using Fisher information. Finally,

Hu et al. successfully identify the parameters of an equivalent circuit battery model using a

GA [38]. They focus on two types of batteries, one of which is the A123 Systems 26650

cell examined in this chapter. Their equivalent circuit formulation is a set of n parallel

resistor-capacitor pairs connected to each other in series.

The above literature provides a rich background for this chapter. In contrast to that

background, this work achieves a combination of five important goals never pursued simul-

taneously in the previous literature to the best of the author’s knowledge. First, we focus on

identifying parameters of the DFN model: a choice justified by this model’s first-principles

nature and suitability for high-rate transient battery operation. Second, we identify the

full set of parameters (88 scalars and function control points) of the DFN model using

a GA, as opposed to a subset of these parameters. Third, we perform this identification

using multiple battery cycles derived from vehicle drive cycles. (Note, altogether, these

three choices of battery model, identification parameters, and cycling data represent an

overarching goal of obtaining a DFN parameter set suitable for PHEV simulation and

design/control optimization). Fourth, we use Fisher information to assess the accuracy of all

88 DFN model parameters, as opposed to computing Fisher information for a subset of these

parameters. This is extremely important, because a parameter deemed identifiable based

on Fisher information computation for a small parameter set may lose identifiability when

one computes Fisher information for a larger parameter set. Fisher information provides

a minimum variance bound for the estimated parameters via the Cramér-Rao inequality

[40–44]. In addition, this chapter provides original insights about the dominant dynamics in

the LiFePO4 battery under the tests considered herein, and relates these insights to parameter
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uncertainties.

The remainder of this chapter is organized as follows. §2.2 describes the experiments

used for identifying the DFN model. This includes a discussion of the experimental setup

along with the various PHEV drive cycle inputs. §2.3 summarizes the DFN model. §2.4 and

§2.5 describe the unknown parameter set and genetic optimization algorithm, respectively.

§2.5 also briefly describes model reduction methods used to simulate the DFN model,

including quasi-linearization and modal decomposition [5, 54]. §2.6 presents validation

studies for the identified model. This includes voltage and power trajectories of validation

data along with probability density plots summarizing the errors. Finally, §2.7 presents the

Fisher information results on parameter accuracy analysis. §2.8 summarizes and concludes

the chapter.

2.2 Experimental Setup

The battery cells examined in this chapter are A123 Systems ANR26650M1 cells with

LiFePO4 cathodes. These cells have a 2.3Ah nominal capacity when fresh, a nominal volt-

age of 3.3V, and a maximum continuous discharge current of 70A (30.4 C-rate). The cells

are intended for transient high-power applications including commercial PHEVs, PHEV

conversion kits, and portable power tools. Experimental cycling data sets have been col-

lected for these cells using a custom-built battery tester. This tester is capable of highly

transient current/voltage profiles and can switch quickly between charging and discharging.

These characteristics make it ideal for testing batteries under conditions similar to those

experienced in PHEV battery packs. Additionally, this setup is capable of battery-in-the-loop

studies, which will be advantageous for future battery control and estimation research [70].

This battery tester combines three major hardware components: an electric load (Soren-

son SLH-60-120-1200), a power supply (Sorenson DSC20-50E), and a Real-Time (RT)

controller and I/O board (dSpace DS1104). Figure 2.1 is a photograph of the battery tester,

and Figure 2.2 is a schematic of the setup where all signal lines are connected to the I/O

board. The power supply and electric load handle battery charging and discharging, re-

spectively. The RT I/O board coordinates the electric load, power supply, and switching

board. In addition, the RT I/O board records sensor signals including voltage and current.

These signals are exchanged among the setup’s various components in a variety of formats,

including the analog, digital, PWM, SMBus, RS-232, and TTL formats. The switch board

swaps the setup between charging and discharging by swapping the battery’s connection

between the power supply and load. The Schottky diode protects the power supply from
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absorbing battery energy. The battery sensor board measures battery voltage through a

voltage-isolating differential op-amp, and measures battery current via a bi-directional

20A Hall effect sensor (Allegro Microsystems ACS714). Finally, all the battery interface

electronics are implemented on custom-build Printed Circuit Boards (PCBs) to maximize

overall setup reliability, which is critical for long-term tests.

Figure 2.1 Photograph of experimental battery tester

Figure 2.2 Schematic of experimental battery tester
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Seven battery cycling tests have been conducted using this battery tester: two for model

identification and five for validation. All of these tests initialize the battery SoC to 90%

(3.35V relaxed), then subject the battery to a given current profile and measure the re-

sulting battery voltage. In the first identification data set, the current profile consists of

a Chirp sequence of three CCCV charge/discharge patterns between 2.0V and 3.6V, with

charge/discharge rates of 5C, 2.5C, and 1C. In the remaining tests, the current profiles are

generated by simulating a PHEV powertrain for a given vehicle drive cycle (i.e., velocity-

versus-time profile). Two of these vehicle drive cycles corresponding to the morning and

evening commutes of a real human driver in a naturalistic driving study conducted by the

University of Michigan Transportation Research Institute (UMTRI) [71]. These drive

cycles are exact recordings of driver behavior using mid-sized sedans, these two specific

cycles correspond to the same sedan on the same day. These battery tests are denoted as

Naturalistic1 and Naturalistic2, respectively. The four remaining battery tests correspond

to multiple repetitions of standard vehicle certification drive cycles. These battery tests

are denoted by UDDSx2, US06x3, SC03x4, and LA92x2, where the number in“x#” refers

to the number of drive cycle repetitions [72]. For each of these drive cycle-based battery

tests, a mid-size power-split sedan PHEV is simulated with a previously-optimized power

management algorithm [73] to map the vehicle drive cycles to battery current profiles. This

PHEV has a 5 kWh battery pack consistent with existing Toyota Prius PHEV conversion

kits. Due to sensor limitations, drive cycles that produce current magnitudes greater than

20A (namely, US06x3, SC03x2, and LA92x2) are scaled down such that their maximum

amplitude over time is 20A [72]. Specifically, this scaling divides the current trajectory by

its maximum current and then multiplies the trajectory by 20. Finally, the resulting current

profiles are applied to the battery cell to obtain data sets for identification and validation.

2.3 The Doyle-Fuller-Newman Battery Model

The DFN model is an electrochemical battery model that describes the dynamics of con-

centration and potential distributions across the width of the cell as well as concentration

profiles in the porous electrodes of the anode and cathode. Spatial distributions across the

width of the cell play an important role in high-rate charge and discharge dynamics, typical

of PHEV cycles. The model is described thoroughly in [2, 3, 28]. This section summarizes

the model equations, which constitute a nonlinear partial differential algebraic equation

system. Appendix C contains the model’s boundary conditions.

As seen in Fig. 2.3, a Li-ion battery cell consists of an anode, separator, and cathode
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sandwiched between current collectors. Both the anode and cathode are made of porous

solid material immersed in an electrolyte solution. When the battery is fully charged, Li-ions

occupy interstitial sites in the anode-side solid material. As the battery discharges, the

Li-ions leave these interstitial sites, entering the electrolyte solution. The Li-ions then

migrate through the solution from the anode to the separator, and eventually the cathode.

The discharging process concludes with the lithium ions coming to rest at interstitial sites

in the cathode-side solid material. When a Li-ion leaves its interstitial site in the anode

an electron is freed to flow through the external circuit, producing useful work. When

this electron reaches the cathode it causes a Li-ion to bond with a cathode interstitial site.

Charging the battery is the same process in reverse, with the external circuit providing rather

than consuming energy.

Figure 2.3 Li-ion cell schematic

The DFN model captures local Li-ion concentrations and potentials using coupled par-

tial differential equations (PDEs). These PDEs account for the linear diffusion of Li-ions

in the electrolyte, spherical diffusion of Li-ions in the solid, and the spatially distributed

electrochemical reactions driving them to transfer between the solution and the solid. The

remainder of this section briefly outlines these equations. The parameters of these equations

are summarized in Table 2.1 and all of the boundary conditions for these equations are

summarized in the appendix.
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Table 2.1 Unknown parameters

Name Unit Description

Ln m Anode Thickness

Ls m Separator Thickness

Lp m Cathode Thickness

Rn m Anode Particle Radius

Rp m Cathode Particle Radius

t+ - Transference Number

b - Brugman Number

d2 m2s−1 Solution Diffusivity

ε2n - Anode Solution Volume Fraction

ε2s - Separator Solution Volume Fraction

ε2p - Cathode Solution Volume Fraction

d1n m2s−1 Anode Solid Diffusivity

d1p m2s−1 Cathode Solid Diffusivity

kn

(

Am−2
)(

mol m3
)1+α

Anode Reaction Rate

kp

(

Am−2
)(

mol m3
)1+α

Cathode Reaction Rate

RSEI Ωm2 Anode Film Thickness

c2 mol m−3 Initial Solution Concentration

unre f i V Anode Equilibrium Potential Function: Control Point i

upre f i V Cathode Equilibrium Potential Function: Control Point i

κi Ω−1m−1 Solution Conductivity Function: Control Point i

The concentration of Li-ions within the electrolyte c2 (x, t) is governed by Fick’s law of

linear diffusion combined with an intercalation current density term, J, transferring Li-ions

between the solution and solid:

ε2
∂c2

∂ t
(x, t) =

∂

∂x

(

d
e f f
2

∂c2

∂x
(x, t)

)

+
1− t+

F
J (x, t) . (2.1)

The above intercalation reaction current density, J, also acts as an input to the dynamics

of Li-ion diffusion within the solid. This diffusion occurs at every point in the anode and

cathode and can be modeled using a spherical, radially symmetric diffusion law as follows:

∂c1, j

∂ t
(r, t) =

d1, j

r2

∂

∂ r

(

r2 ∂c1, j

∂ r
(r, t)

)

. (2.2)

where we note that while radial spherical diffusion is an appropriate model for the anode, it

is only an approximation for the cathode. We refer the interested reader to papers on both
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understanding the behavior of the LiFePO4 cathode [74–76] and agglomerate type models

that capture various aspects of the electrode’s behavior [77–82]. The intercalation reac-

tion current density, J, is driven by potential differences between the solid and electrolyte

solution, as governed by the Butler-Volmer equation:

J (x, t) = a ji0, j

[

exp

(

αa, jF

R̄T
η j (x, t)

)

− exp

(

−
αa, jF

R̄T
η j (x, t)

)]

, (2.3)

i0, j = k j

(

cmax
1, j − cS

1, j

)αa, j
(

cS
1, j

)αc, j

(c2)
αa, j , j = n, p. (2.4)

The overpotentials in the above equations, η j, equal the differences between the solid

and solution potentials minus the reference potentials for the main intercalation reaction,

which in turn depend on the local SoCs. Mathematically the overpotentials are given by:

ηp (x, t) = φ1 (x, t)−φ2 (x, t)−upre f (x, t) , (2.5)

ηn (x, t) = φ1 (x, t)−φ2 (x, t)−unre f (x, t)−
J (x, t)

an
RSEI. (2.6)

Since potentials and overpotentials described above have dynamics orders of magnitude

faster than the Li-ion concentrations, they are assumed to respond instantaneously. The solid

potential is governed by Ohm’s law with a source term governing the charge transfer due to

intercalation:
∂

∂x

(

σ
e f f
j

∂φ1, j

∂x
(x, t)

)

− J (x, t) = 0. (2.7)

Similarly, the solution potential is governed by Ohm’s law, intercalation current density, and

the charge carried by the ions in solution:

∂

∂x

(

κe f f ∂φ2

∂x
(x, t)

)

+ J (x, t)+
∂

∂x

(

κD
∂

∂x
ln(c2 (x, t))

)

= 0. (2.8)

The above system of equations are the DFN model that represent the dynamics of charg-

ing and discharging in the Li-ion cell. The boundary conditions for this model are given

in the Appendix. When the DFN model is discretized it becomes a system of Differential

Algebraic Equations (DAEs), where the differential equations govern the diffusion dynamics

and the algebraic equations constrain the potentials and intercalation current accordingly.
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2.4 Parameter Set

This section describes the DFN model parameters identified in this chapter, and explains

some of the constraints placed on these parameters during identification. The parameters are

summarized in Table 2.1. Altogether, 88 parameters are optimized by the GA. Five of these

parameters pertain to cell geometry, namely, the anode thickness Ln, separator thickness Ls,

cathode thickness Lp, anode particle radius Rn, and cathode particle radius Rp. One may

directly measure these quantities by disassembling the cell. However, our aim is to use

non-destructive methods for identifying the parameters. Three parameters characterize ion

diffusion rates. They include the solid diffusivity d1n in the anode, solid diffusivity d1p in the

cathode, and solution diffusivity d2. One parameter governs the fraction of the intercalation

current carried by Li-ions, namely, the transference number t+. Two parameters govern rate

kinetics, namely, the k-rates kn in the anode and kp in the cathode. These multiplicatively

affect the current densities generated by the electrochemical reactions. One parameter scales

the solution conductivity and diffusivity to their effective values, namely, the Brugman

number b. Three parameters summarize the cell’s porosity, namely, the solution volume

fractions ε2n for the anode, ε2s for the separator, and ε2p for the cathode. One parameter

captures the effective impedance of the anode-side solid electrolyte interphase layer, namely,

RSEI . The last scalar parameter is the initial concentration of the solution, c2, which we

assume to be uniformly constant in space. This variable reflects the amount by which the

battery electrolyte is initially lithiated.

In addition to the above 17 scalar parameters, the GA also optimizes three parametric

functions in the DFN model. Two of these functions are the equilibrium potential functions,

unre f and upre f , of the anode and cathode, respectively. We parameterize these functions

using 33 control points each, and use monotonic splines to interpolate between these points

[83]. The third function is κe f f (c2), which determines the effective conductivity of the

solution as a function of solution concentration. We parameterize this function using five

control points spaced linearly from 0 mol m−3 to 4000 mol m−3, and interpolate between

these control points using conventional cubic splines with natural end conditions [84].

Several constraints are placed on the above parameters in the GA. All of these constraints

are related to underlying identifiability issues within the model - each of them improves

parameter identifiability by first removing parameters from the optimization problem and

then algebraically relating them to parameters remaining within the optimization problem.

First, we constrain the capacity of each electrode to equal exactly 2.7 Ah. This constraint

provides two key benefits. It creates two 0.2 Ah buffers in each electrode, which improves

the numerical stability of the DFN model. These buffers add 0.2 Ah of capacity to the
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maximum and minimum values of the electrodes. This allows the GA to tolerate minor local

over and under filling of electrodes as it searches for the correct parameter values. Finally,

it eliminates the interplay between changes in electrode charge capacity and changes in

equilibrium potential functions versus capacity. The second optimization constraint forces

the three electrode widths (Ln, Ls, Lp) and the area of the sheet rolled up inside the battery

to collectively fit within the volume of the battery cell. Constraining the sheet area is

particularly important because it acts as a multiplicative scale factor relating applied current

to internal current density. The third constraint sets the volume fractions ε1 and ε2 in the

anode and cathode to sum to exactly one. The final constraint sets the solid conductivities

σ1n and σ1p to equal 100, consistent with [28]. This is justified since both conductivities

have absolutely zero effect on the voltage trajectory (so long as they are both positive).

Not all of these constraints are fully physically justified: a fact that reflects the presence of

underlying identifiability issues. This motivates the Fisher information study in Section 2.7.

2.5 Parameter Optimization Scheme

To identify the DFN model’s parameters, we first choose: (i) an optimization objective

representing the model’s accuracy, and (ii) experimental data sets for which this metric is

optimized. The parameter identification objective we use in this chapter is to minimize the

L2 error between the experimentally measured voltage V (t) and DFN-simulated voltage

trajectories V̂ (t;θ), for a given battery current trajectory, with respect to the DFN model

parameter vector θ̂ , i.e.,

min
~θ

∫ T

0

(

V (t)−V̂
(

t;~θ
))2

dt. (2.9)

We optimize the above objective using only two of the seven cycles previously mentioned,

Chirp and Naturalistic1, leaving the remaining 5 cycles for model validation. The Chirp

cycle makes SoC-dependent and rate-dependent parameters easier to identify by sweeping

through the full range of battery states of charge at different charge/discharge rates. Further-

more, the Naturalistic1 cycle makes parameters associated with battery transients easier to

identify due to rich frequency content resulting from PHEV drive cycle dynamics.

The GA optimizes the above L2 error over the course of the Chirp and Naturalistic1

cycles by varying 88 of the DFN model’s parameters. GAs are well-suited for such large-

scale optimization, especially when gradient information is difficult to obtain analytically

or numerically. Figure 2.4 provides a high-level snapshot of this chapter’s GA-based DFN

parameter identification scheme. The optimization process starts with the selection of inputs
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to the DFN model, in this case the Chirp and Naturalistic1 current profiles versus time. We

apply these current profiles experimentally to the battery, and measure the resulting voltage

output. Next, we initialize the GA to a randomized population, where each population

member is a DFN model parameter set. The DFN model is simulated for each population

member, and a comparison of the resulting simulated voltage versus experimental data

furnishes a fitness value based on the inverse of the L2 voltage fitting error. Population

members are selected for removal at random by a fitness-weighted roulette game. This

selection process is elitist, in the sense that the fittest population member is excluded from

removal. Once the fitness-based selection is complete, we use binary mutation and crossover

operators to create new population members. Parents are chosen randomly for mutation,

with a selection probability weighted by their fitness. Mutations occur in a purely random

manner, and are not weighted by fitness. The DFN model is then used once more to assign

fitness values to the new population members, and the process repeats until convergence to

a minimal model fitting error level. The final parameter values are obtained from the fittest

member of the population. For further background on GA-based optimization, the reader is

referred to [85].

Figure 2.4 Optimizing model parameters via a genetic algorithm

To ensure the convergence of the GA an additional optimization was conducted (hence-

forth we will refer to this as the tuning optimization and the first optimization as the base

optimization). The tuning optimization started with a population centered about the base

optimization’s fittest population member. Additionally only parameters that were in the

identifiable set were taken as variables in this optimization. Recall that to determine this set

one needs to already be close to the optimum as the identifiable set is based on local identifi-

ability properties (which is why it could not be computed a priori for the base optimization).

The tuning optimization converged and slightly improved on the base optimization’s result.
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The base (tuning) optimization process occurs in the R
88 (R43) Euclidean space, with

each parameter quantized at 16 bits. This is a very large optimization space, comprising

7.083×10423 (1.284×10207) possible parameter sets. We employ two main tools to render

these optimizations numerically tractable. First, we use model reduction to accelerate the

speed with which the DFN model is simulated, with minimal loss of accuracy. Specifically,

we use a Legendre modal coordinate expansion similar to [54], together with algebraic

constraint quasi-linearization similar to [12], to improve the DFN model’s simulation

speed. We apply quasi-linearization directly to the Legendre modal coordinates, allowing

for efficient solution of the algebraic constraints imposed by the coupled φ1 and φ2 boundary

values problems. This improves computational speed to the point where we are able to

simulate the DFN model for each new set of parameters in up to 63 seconds of computation

time. Second, we parallelize the GA at the level of simulation function calls, with one

server program coordinating multiple quad-core computers, which is a typical server-client

arrangement. Custom Java computer code handles server-client information exchange over a

TCP/IP network within a MATLAB implementation of the GA and DFN model. Altogether,

this use of model reduction in conjunction with parallel processing makes it possible for

five quad-core computers (Intel Q8200) to complete the optimization in approximately three

weeks.

2.6 Validation Results

One of the major results of this chapter is a set of GA-fitted parameter values that match

all five validation cycles; see Fig. 2.5 and Table 2.6. These parameters are based on the

tuning optimization which offers slight improvements over a related set of values identified

previously [12], which have already been used in two studies of PHEVs: one on power

management and one on charge pattern optimization [19, 86]. The values of the fitted

parameters are given in Tables 2.3, 2.4, and 2.5. Additional parameters necessary to run

the DFN model but not explicitly optimized are listed in Table 2.2. These parameters are

implicitly related to the optimization process, in the sense that they are functions of the

optimally identified parameters; see Section 2.5 for details. Relative error in voltage and

consequently power never exceeds 5% for any of the validation cycles. As shown in Table

2.6, the 50th percentile of voltage error is 15.8mV and the 90th percentile of voltage error is

still only 50.5mV.

To examine the accuracy of the optimal parameter fit further, consider the results for the

Naturalistic2 and LA92x2 validation cycles, which are representative of the set of five cycles.
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Table 2.2 Parameters not directly involved in genetic algorithm

Name Value Unit

c1n 2.479E+04 mol m−3

c1p 1.649E+03 mol m−3

c1nmax 2.948E+04 mol m−3

c1pmax 1.035E+04 mol m−3

T 2.982E+02 K

α 5.000E-01 -

ε1n 3.812E-01 -

ε1p 4.794E-01 -

σn 1.000E+02 m−1Ω−1

σp 1.000E+02 m−1Ω−1

Area 3.108E-01 m2
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Figure 2.5 Probability density plot of voltage error and the percentiles of absolute volteage error

for all five of the validation cycles

Naturalistic2 is based on recorded data from a real driver’s evening commute, as opposed

to Naturalistic1, which is used for fitting and represents a morning commute. Figure 2.6

shows traces of voltage error and Fig. 2.7 shows traces of power error for Naturalistic2.

The voltage error never exceeds 118.9mV and the 50th percentile of voltage error is 12.5mV.

Figure 2.8 presents a probability density plot and a percentile plot of this error.
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Table 2.3 First third of optimized parameters

Name Value Unit Variance 95% Confidence interval

Min Max Rel%

Ln 2.880E-05 m 1.30E-15 2.87E-05 2.89E-05 0.25%

Ls 1.697E-05 m U U U U

Lp 6.508E-05 m 3.45E-14 6.47E-05 6.54E-05 0.57%

Rn 3.600E-06 m 2.98E-18 3.60E-06 3.60E-06 0.10%

Rp 1.637E-07 m U U U U

t+ 2.495E-01 - U U U U

b 1.439E+00 - 1.11E-02 1.23E+00 1.65E+00 14.63%

d2 6.930E-10 m2s−1 9.55E-19 -1.26E-09 2.65E-09 281.98%

ε2n 6.188E-01 - 2.62E-02 2.95E-01 9.43E-01 52.33%

ε2s 3.041E-01 - U U U U

ε2p 5.206E-01 - 4.49E-03 3.87E-01 6.55E-01 25.73%

d1n 8.275E-14 m2s−1 1.44E-26 -1.57E-13 3.23E-13 289.99%

d1p 1.736E-14 m2s−1 U U U U

kn 8.692E-07
(

Am2
)(

molm3
)1+

6.38E-20 8.69E-07 8.70E-07 0.06%

kp 1.127E-07
(

Am2
)(

molm3
)1+

U U U U

RSEI 3.697E-03 Ωm2 6.49E-10 3.65E-03 3.75E-03 1.38%

c2 1.040E+03 molm−3 8.42E+00 1.03E+03 1.05E+03 0.56%

unre f 1 3.959E+00 V U U U U

unre f 2 3.400E+00 V U U U U

unre f 3 1.874E+00 V U U U U

unre f 4 9.233E-01 V 5.15E-02 4.70E-01 1.38E+00 49.14%

unre f 5 9.074E-01 V 2.54E-05 8.97E-01 9.17E-01 1.11%

unre f 6 6.693E-01 V 3.27E-04 6.33E-01 7.06E-01 5.40%

unre f 7 2.481E-03 V U U U U

unre f 8 1.050E-03 V U U U U

unre f 9 1.025E-03 V U U U U

unre f 10 8.051E-04 V U U U U

unre f 11 5.813E-04 V U U U U

unre f 12 2.567E-04 V U U U U

unre f 13 2.196E-04 V U U U U

The results for LA92x2 are similar to those for Naturalistic2. Figures 2.9 and 2.10 give

the voltage and power trajectories along with their relative and absolute errors. Voltage

error never exceeds 150.3mV and the 50th percentile of voltage error is 28.0mV. Figure 2.11

presents probability density and percentile plots of this error.

As a final validation check, we examine whether the voltage errors for the five validation
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Table 2.4 Second third of optimized parameters

Name Value Unit Variance 95% Confidence interval

Min Max Rel%

unre f 14 1.104E-04 V U U U U

unre f 15 3.133E-06 V U U U U

unre f 16 1.662E-06 V U U U U

unre f 17 9.867E-07 V U U U U

unre f 18 3.307E-07 V U U U U

unre f 19 1.570E-07 V U U U U

unre f 20 9.715E-08 V U U U U

unre f 21 5.274E-09 V U U U U

unre f 22 2.459E-09 V U U U U

unre f 23 7.563E-11 V U U U U

unre f 24 2.165E-12 V U U U U

unre f 25 1.609E-12 V U U U U

unre f 26 1.594E-12 V U U U U

unre f 27 1.109E-12 V U U U U

unre f 28 4.499E-13 V U U U U

unre f 29 2.250E-14 V U U U U

unre f 30 1.335E-14 V U U U U

unre f 31 1.019E-14 V U U U U

unre f 32 2.548E-16 V U U U U

unre f 33 1.654E-16 V U U U U

upre f 1 5.502E+00 V U U U U

upre f 2 4.353E+00 V 1.79E-02 4.09E+00 4.62E+00 6.15%

upre f 3 3.683E+00 V 1.36E-05 3.68E+00 3.69E+00 0.20%

upre f 4 3.554E+00 V 1.64E-06 3.55E+00 3.56E+00 0.07%

upre f 5 3.493E+00 V 9.58E-06 3.49E+00 3.50E+00 0.18%

upre f 6 3.400E+00 V 8.66E-06 3.39E+00 3.41E+00 0.17%

upre f 7 3.377E+00 V 8.03E-06 3.37E+00 3.38E+00 0.17%

upre f 8 3.364E+00 V 8.51E-06 3.36E+00 3.37E+00 0.17%

upre f 9 3.363E+00 V 1.28E-05 3.36E+00 3.37E+00 0.21%

cycles are correlated with either input current or SoC. Such correlation would suggest failure

to accurately represent internal battery resistance or open-circuit potential as a function

of SoC, respectively. Table 2.7 presents the R2 correlation values between voltage error

on the one hand and battery current and SoC on the other hand, for each of the validation

cycles. None of the validation cycles have voltage errors linearly correlated with input

current, which implies that the identified model captures at least internal battery resistance
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Table 2.5 Third third of optimized parameters

Name Value Unit Variance 95% Confidence interval

Min Max Rel%

upre f 10 3.326E+00 V 1.09E-05 3.32E+00 3.33E+00 0.20%

upre f 11 3.324E+00 V 1.27E-05 3.32E+00 3.33E+00 0.21%

upre f 12 3.322E+00 V 1.13E-05 3.32E+00 3.33E+00 0.20%

upre f 13 3.321E+00 V 1.57E-05 3.31E+00 3.33E+00 0.24%

upre f 14 3.316E+00 V 1.54E-05 3.31E+00 3.32E+00 0.24%

upre f 15 3.313E+00 V 1.40E-05 3.31E+00 3.32E+00 0.23%

upre f 16 3.304E+00 V 1.64E-05 3.30E+00 3.31E+00 0.25%

upre f 17 3.295E+00 V 1.20E-05 3.29E+00 3.30E+00 0.21%

upre f 18 3.293E+00 V 6.76E-06 3.29E+00 3.30E+00 0.16%

upre f 19 3.290E+00 V 1.11E-05 3.28E+00 3.30E+00 0.20%

upre f 20 3.279E+00 V 1.22E-05 3.27E+00 3.29E+00 0.21%

upre f 21 3.264E+00 V 1.19E-05 3.26E+00 3.27E+00 0.21%

upre f 22 3.261E+00 V 1.04E-05 3.25E+00 3.27E+00 0.20%

upre f 23 3.253E+00 V 6.13E-06 3.25E+00 3.26E+00 0.15%

upre f 24 3.245E+00 V 7.85E-06 3.24E+00 3.25E+00 0.17%

upre f 25 3.238E+00 V 1.59E-05 3.23E+00 3.25E+00 0.25%

upre f 26 3.225E+00 V 1.09E-05 3.22E+00 3.23E+00 0.20%

upre f 27 3.207E+00 V 5.81E-05 3.19E+00 3.22E+00 0.48%

upre f 28 2.937E+00 V 1.64E-04 2.91E+00 2.96E+00 0.87%

upre f 29 2.855E+00 V 1.09E-04 2.83E+00 2.88E+00 0.73%

upre f 30 2.852E+00 V 1.13E-04 2.83E+00 2.87E+00 0.74%

upre f 31 1.026E+00 V U U U U

upre f 32 -1.120E+00 V U U U U

upre f 33 -1.742E+00 V U U U U

κ1 1.050E-01 Ω−1m−1 U U U U

κ2 1.760E-01 Ω−1m−1 U U U U

κ3 2.190E-01 Ω−1m−1 U U U U

κ4 8.166E-02 Ω−1m−1 U U U U

κ5 3.014E-02 Ω−1m−1 U U U U

very well. The upper bound on the correlation between model error and SoC is R2 = 0.433

which is the case for the Naturalistic2 drive cycle. As a point of comparison the correlation

between predicted and measured voltage for Naturalistic2 is R2 of 0.871, implying that the

identified model captures the dependence of battery dynamics on SoC quite well. This SoC

is the “system” SoC (as opposed to the chemical SoC which would be calculated based on

the quantity of Li in the anode) and is calculated for the battery by integrating and scaling
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Table 2.6 Percentile errorrs of voltage [mV]

Drive cycle Percentile of error [mV]

25% 50% 75% 100%

Naturalistic2 9.8 12.5 13.6 118.9

LA92x2 11.7 28.0 41.0 150.3

US06x3 10.6 23.4 41.5 140.0

SC03x4 9.7 21.0 32.7 146.3

UDDSx2 12.0 28.3 33.2 140.9

All Val Cycles 10.4 15.8 31.9 150.3
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Figure 2.6 Voltage response for Naturalistic2

current, knowing that each experiment was initialized at 90% SoC, i.e.,

SoCSystem =

∫ t
0 I (τ)dτ

NamePlateCapacity
+0.9. (2.10)

In summary, this section shows that the DFN model, together with the parameter values

identified in this chapter, accurately simulates battery cells under the loading characteristics

of PHEVs. This accuracy is evident from the small errors in the voltage and consequently,

power traces of the DFN model compared to experimental data. The parameter values in

this chapter make it possible to accurately simulate the ANR26650M1A cell for PHEV
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Figure 2.7 Power response for Naturalistic2
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Figure 2.8 Probability density plot of voltage error and the percentiles of absolute voltage error for

Naturalistic2

applications.
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Figure 2.9 Voltage response for LA92x2
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Figure 2.10 Power response for LA92x2
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Figure 2.11 Probability density plot of voltage error and the percentiles of absolute voltage error

for LA92x2

Table 2.7 R2 coefficients of correlation with voltage estimation error

Drive cycle Iapp SoC

Naturalistic2 0.023 0.433

LA92x2 0.127 0.190

US06x3 0.153 0.151

SC03x4 0.179 0.204

UDDSx2 0.100 0.246

2.7 Fisher Information and Parameter Variance

Section 2.6 of this chapter assesses the degree to which the identified DFN model is able to

replicate input-output voltage/current battery cycling behavior. The overarching goal of this

section, in contrast, is to evaluate the quality of the model parameter estimates. Previous

work by the authors pursues this goal using the identifiability matrix, and shows that while

the identified DFN model fits input-output voltage/current data very well, certain model

parameters are unidentifiable [12]. This chapter enhances this analysis by quantifying

the parameter estimation variance via Fisher information techniques. Fisher information

provides the minimum variance for parameter estimation via the Cramér-Rao inequality
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[40, 41]. The Cramér-Rao inequality applies to the GA algorithm used herein since we

use this algorithm as a maximum likelihood estimator (the GA chooses parameters values

to minimize L2). Thus the inverse of the Fisher information matrix is the covariance of

estimating the model parameters. Since there is only one output, Fisher information can be

calculated by multiplying the identifiability matrix by the voltage sensor’s variance. This

variance was computed from the voltage error between simulation and experiment for the

fitting data sets.

The variance of the estimated parameters is presented in Tables 2.3, 2.4, and 2.5 along

with 95% (two standard deviations) confidence bounds and relative error. For each parameter,

this relative error is the upper 95% confidence bound minus the parameter’s estimated value,

divided by this estimated value. Not all of the parameters are identifiable, and those that

are unidentifiable are marked with a U. Unidentifiability was determined using the method

in [12] where the minimum condition number for the identifiability matrix was taken as

10−10. Lower condition numbers caused unreasonable numerical errors in the inversion of

the Fisher information matrix.

The process of partitioning a given parameter set into identifiable versus unidentifiable

parameters makes it possible to make quantitative statements regarding these parameters

accuracy. Unidentifiable parameters cannot be estimated from experimental measurements.

One can only, therefore, estimate their accuracy by comparing their estimated values with

the published literature. Identifiable parameters can, in contrast, be estimated from ex-

perimental data. Furthermore, the accuracy of these identifiable parameters can itself be

methodically estimated from the Fisher information matrix, provided one can associate a

priori assumed levels of error with the unidentifiable parameters. The remainder of this

chapter demonstrates the process of methodically calculating the estimation errors associated

with the identifiable parameters, under the optimistic assumption that the unidentifiable

parameters are known a priori. Our goal, here, is to demonstrate the value of identifiability

analysis for the DFN model, rather than to quantify DFN parameter estimation errors exactly.

It is very important to note, here, that the choice of which parameters are identifiable vs.

unidentifiable has a significant impact on the identification errors computed by this process.

One must therefore be very vigilant when making this choice/partitioning.

Of the eleven identifiable scalar parameters six are estimated with good accuracy (relative

error <2%). These are associated with geometry: Ln the anode width, Lp the cathode width,

Rn the spherical radius in the anode, kn the k-rate in the anode, RSEI the solid electrolyte

interface resistance, and c2 the initial concentration of Li in solution. The remaining five

scalar parameters all have relative errors greater than 25%. It is important to note that

these variances correspond to the case where one attempts to identify all model parameters
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simultaneously, with the unidentifiable values fixed. If one knows some parameters with

certainty and can therefore estimate a smaller subset of the DFN model parameters, the

variance in these parameters will be lower (or at least the same). For example, if one is

designing a state of health estimator whose sole goal is to estimate RSEI assuming all other

DFN model parameters to be known, the variance in estimation would be 4.387E-014, and

the relative error in estimating RSEI would decrease from 1.38% to 0.0113%. These results

are important, because they: (i) quantify the errors in the parameters identified herein, (ii)

highlight the difficulties in estimating specific parameters solely through voltage and current

time traces, and (iii) underscore the importance of examining the identifiability of all DFN

model parameters, not just a subset of those parameters.

To provide further insights into the DFN model’s parameter identifiability, Figures 2.12

and 2.13 present the estimates of the cathode-side and anode-side equilibrium potentials

versus SoC, along with their 95% confidence bounds. For plotting purposes, the unidentifi-

able parameters have confidence bounds at ±2σ . In the model these equilibrium potential

functions are represented by monotonic cubic splines in terms of SoC. Here we plot these

functions as piecewise linear since the confidence bounds are only for the control points.

Between the two equilibrium potential functions, upre f has much less variance than unre f .

Specifically, the estimation of upre f exhibits low variance, where the confidence bounds

correspond to relative errors less than 1% for 0% SoC to 95% SoC (where this SoC does not

include the buffers). In contrast, most of unre f is unidentifiable, and even the identifiable

control points still have very high variances. The equilibrium potential functions provide a

good example of the effects of assuming that the unidentifiable values are correct. Since

upre f is very dependent on unre f , and unre f is largely incorrect, upre f is mostly identifiable

but to make the upre f values accurate one needs to plug in accurate values for the unre f first.

The conductivity function is completely unidentifiable indicating that the interplay between

solution concentration and conductivity could not be determined through these experiments.

Parameter identifiability and variance in estimation are the function of several important

factors. First, they are a function of which parameters are being identified and which are

already assumed known. This leads to cases where parameter estimation errors can be

improved dramatically by changing the number of known parameters versus unknown ones

(as shown previously in the case of RSEI). Parameter identifiability also depends on the

values of the parameters after they have been fit to the data. This is due to Fisher infor-

mation being a local quantity in the parameter space. In general, this makes it impossible

to determine which parameters will be identifiable a priori. Finally we note that the ex-

periments themselves can greatly affect parameter identifiability. Both the structure of the

battery experiment (including placement of sensors and actuators) and the experiment’s
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Figure 2.12 Estimated anode equilibrium potential unre f with 95% confidence bounds.
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Figure 2.13 Estimated cathode equilibrium potential upre f with 95% confidence bounds.

trajectory can affect parameter identifiability. As an example of structure, if our cell had a

third electrode then we would have been able to measure two voltages likely improving

our ability to identify unre f and upre f simultaneously. As an example of the experimental
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trajectory’s impact, the Natuarlistic2 and Chirp cycles are different in terms of the battery

dynamics they excite, and therefore different in their impact on parameter identifiability. All

of these factors underscore that matching input-output data is not enough to guarantee that

the model parameter values are physically accurate.

2.8 Summary and Conclusion

This chapter uses a GA to match the Doyle-Fuller-Newman battery model’s voltage pre-

dictions to experimental measurements, for given input current profiles. We optimize 88

parameters of the DFN model, including parameterizations of the anode and cathode equi-

librium potential functions and the solution conductivity function. The end result is a set of

parameter values for the DFN model that predicts cell voltage and power with 5% relative

error for all of the validation data sets examined in this work. All of these validation data

sets are based on simulated Plug-in Hybrid Electric Vehicle battery pack currents that exhibit

high charge/discharge rates and are highly transient in nature. For all of the validation cycles

aggregated together, the 50th percentile of voltage error 15.8mV, and the 90th percentile

of voltage error is still only 50.5mV. This high level of accuracy justifies the use of the

DFN model for the lithium-iron-phosphate (LiFePO4) cathode chemistry examined in this

work. In fact, the parameters values identified herein have already been used in two studies

involving PHEVs [19, 86]. Additionally, this chapter presents some of the computational

logistics involved in using a GA for parameter identification.

The identification procedure used herein makes it possible to find a set of parameter

values for the DFN model noninvasively. Unfortunately, this noninvasiveness causes some

parameters to be unidentifiable or have a large estimation uncertainty. While this does not

affect the accuracy of the model response, it does mean that one must be careful when using

these parameters in other contexts.
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Chapter 3

Optimal Experimental Design for

Modeling Battery Degradation

3.1 Introduction

In recent years there has been increasing interest in vehicle electrification. Electrification has

the potential to both decrease green house gas production and improve energy independence.

However, to realize these benefits, Plug-in Hybrid Electric Vehicle (PHEVs) must have

battery packs that do not rapidly degrade. Accurate modeling of battery health can help both

manage and mitigate battery degradation in a variety of ways. For example, battery health

modeling allows for more intelligent PHEV design decisions regarding battery size and

drive train topology, helping to minimize cost and improve reliability. Additionally, battery

health modeling enables health conscious control, extending battery life through judicious

use of real-time battery and engine management [8]. Finally, battery health modeling makes

feed-forward State-of-Health (SoH) estimation possible - improving online estimation of

available power and capacity. Clearly, accurate battery health modeling is a critical tool

for the design and control of PHEV battery packs. However, battery health modeling for

PHEVs is a challenge due to the aggressive nature of battery pack use.

This challenge emphasizes the importance of experiments for both obtaining and val-

idating battery health models. Unfortunately, conducting battery health experiments can

be extremely costly in terms of time, person-hours, and equipment; efficient use of exper-

imental resources is critical. This chapter bridges an important gap between the Optimal

Experimental Design (OED) and battery experimental/modeling literatures allowing us to

maximize information gained from experiments subject to constraints on time and expense.

To this end, we investigate a specific case of designing and conducting a battery health

modeling experiment using 14 LiFePO4 cells. This experiment is optimally designed to

identify model parameters under given experimental resource constraints. Results include: a

model of battery capacity fade based solely on voltage and current data, demonstration of
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battery health dependence on voltage, and a lack of power fade (at 100% State-of-Charge,

SoC) under the cycling conditions. The success of this case suggests a generalization: the

Optimal Battery Health Model Experiment (OBHME) framework. This framework allows

one to apply static OED methods to a large class of battery health modeling experiments.

OBHME uses Fisher information and the Cramér-Rao bound to optimally guide the selec-

tion of experimental trials. We believe this case and associated framework show the broad

applicability and utility of OED when considering battery health modeling.

The remainder of this chapter is organized as follows. A literature review follows the

introduction, giving a focused review of both LiFePO4 battery health experiments and a

general overview of OED. This is followed by a section which applies OED to health

modeling for PHEV type batteries. This case involves both a theoretical OED part regard-

ing applying static OED to dynamic health models and an experimental part in which the

batteries undergo laboratory cycling. Experimental results follow, beginning with model

fitting and continuing to general observations regarding the degradation of these battery

cells. The OBHME framework follows this, generalizing the procedure and suggesting

alternative design choices. A discussion section follows, focusing on specific details we

would modify in future experiments based on experience gained. The final section presents

several conclusions drawn from this work.

3.2 Literature Review

3.2.1 LiFePO4 Battery Health Experiments

While many groups have conducted battery health experiments, we focus on two that use

the same LiFePO4 battery type as in this chapters’s case study [14, 39]. In [39] the batteries

undergo CCCV cycling with varying current rates, depths of discharge, and temperatures.

They fit a health model to the experimental data, dependent on charge processed, temper-

ature, and maximum C-rate. This model provides useful insights (especially regarding

temperature effects), but is not control oriented due to the inclusion of maximum C-rate as a

parameter. A second group cycles these batteries under conditions related to PHEV drive

cycles [14]. Five different cycles with drive and Vehicle-to-Grid (V2G) portions are taken

as a set of representative behavior. Their analysis of the experiments results in a control

oriented model that is a function of energy processed and scalar that depends on if the cell is

undergoing driving or V2G. Our chapter improves on the existing experimental methods by

demonstrating the applicability of OED to battery health experiments.
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3.2.2 Overview of Optimal Experimental Design

The OED literature is broadly divided into experiment design for static and dynamic mod-

els. This chapter focuses on the static case and here we introduce the reader to relevant

literature. A classic OED text is that of Fedorov [87]. An excellent first introduction to

OED is presented by Atkinson, Donev, and Tobias which covers nearly all that the prac-

titioner would need to design an experiment [15]. For a more in depth study of Fisher

information and the Cramér-Rao bound one can examine Cover and Thomas, which does

an excellent job presenting these mathematical concepts [40]. A thorough discussion of

optimization of the nonlinear case is presented by Walter and Pronzato [16]. OED provides

a variety of mathematical tools for improving results and decreasing expense of model based

experiments.

3.3 Battery Health Modeling Experiment

This section presents an optimal battery health modeling experiment for LiFePO4 cells. A

later section discusses the OBHME framework - a generalization of this specific case. This

case and the general framework share the same major steps: model selection, experiment

design, and realization. In model selection one chooses a health metric (output), input(s),

and form. This model guides the experiment design, which selects trials based on optimizing

information gathered regarding the model parameters. Experiment design involves consider-

ing what trials are possible, generating and regressing their input trajectories, and using an

optimization to select an experimental trial set. In realization, the laboratory experiment

collects data which is then used to estimate the model parameters. The remainder of this

section discusses the experiment and introduces a variety of concepts related to the OBHME

framework.

3.3.1 Model Selection

Battery Health Metric

For this experiment two different battery health metrics are considered: capacity fade and

power fade. For PHEV applications capacity fade is related to how far the vehicle can drive

without charging and power fade is related to maximum available electric power. In this

chapter’s experimental section we discuss measuring these metrics in a laboratory. For the
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modeling work later in the chapter we focus exclusively on the capacity fade health metric

as conclusive power fade has not been observed in our experimental work.

Choice of Model Inputs

Battery health can depend on a wide variety of factors. However, for this work our goal

is to create a control oriented battery health model. Thus, we focus solely on two factors

readily accessible to battery management systems: voltage and current. This choice of

inputs ensures that the model will be applicable to many real-time control applications. Our

interest in voltage is largely due to it being a proxy for battery SoC. We would have used

SoC directly, however, it is difficult to accurately and robustly regulate battery SoC during

long term health experiments. As an alternative we use voltage as an input and add longer

time holds (1800 sec) to the float charge/discharge segments of the CCCV cycles. These

time holds allow the battery to better equilibrate towards the relaxed open circuit voltage,

which is closely related to SoC. As will be shown later, the use of voltage and current as

inputs allows one to make reasonable predictions about battery degradation.

Battery Health Model Form

The inputs and output are connected by the model form. An effective model form considers

a priori knowledge (if available) in addition to the model’s intended application. In this work

a black box model is used due to uncertainty in the underlying degradation process, leading

to a model form based on regression. This regression form is based on our specific interest

in the battery health dependence on voltage and current polarity. This potential voltage

dependence is interesting because it affects optimal PHEV charge scheduling (scheduling

charging at different times changes the PHEV battery rest voltage). The effect of current

polarity is important because the battery degradation rate may change during charging and

discharging.

Based on these interests and a desire to keep the number of model parameters small we

arrived at the following model form, referred to as the “Asymmetric” model:

ḣ(I+, I−,V ) =β1 +β2I++β3I−+β4V +β5I2
++β6I2

−

+β7V 2 +β8I+V +β9I−V +β10V 3.
(3.1)

Where I+ is the current charging the cell, I− is the current discharging the cell, V is the

cell terminal voltage, and h is the battery health. This model has different behavior in
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charging versus discharging, a cubic dependence on voltage, and can age under zero current

conditions. To keep our exposition more abstract we focus on a generalized form of the

model in Eq. 3.1:

ḣ(~x) =
m

∑
i=1

βi fi (~x) . (3.2)

Where fi maps the model inputs~x to real numbers. This model form is Linear in its Parame-

ters (LP) and has no autoregressive component. An additional model of this form, referred

to as the “Symmetric” model, is:

ḣ(I,V ) =β1 +β2‖I‖+β3V +β4‖I‖
2 +β5V 2

+β6‖I‖V +β7V 3,
(3.3)

Where, unlike Eq. 3.1, this model does not distinguish between current polarities. With the

model in Eq. 3.1 selected, the experiment is now ready to be optimized.

3.3.2 Experiment Design

Possible Trial Set

Trial selection is the key to optimizing experiments. This selection begins with the set of

all possible trials, Ξ. For battery health experiments members of Ξ are typically rules for

cycling an individual battery for a period of time. We use CCCV cycling to generate a wide

variety of robust inputs for long term cycling. These CCCV cycles are described by the

archetype cycle in Alg. 1.

Three tunable parameters are used to construct Ξ: Vmin, Vmax, and Imax, with values:

Vmin ∈ {2.0V,2.1V, · · · ,3.5V} (3.4a)

Vmax ∈ {2.1V,2.2V, · · · ,3.6V} (3.4b)

Imax ∈ {0.5C,1.0C, · · · ,2.5C} . (3.4c)

This results in a total of 680 unique cycles. The next step of experiment design uses these

rules to generate (approximate) input trajectories.
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Algorithm 1 CCCV Cycle

Require: Vmin, Vmax, Imax, Itrickle, thold

loop

while (V <Vmax) do

Constant Current Charge at Imax

end while

t = Time

while (‖I‖> Itrickle) And ((Time− t)< thold) do

Constant Voltage Float at Vmax

end while

while (V >Vmin) do

Constant Current Discharge at Imax

end while

T = Time

while (‖I‖> Itrickle) And ((Time− t)< thold) do

Constant Voltage Float at Vmin

end while

end loop

Input Trajectory Generation

Input trajectories are generated using electrochemical battery simulation. Specifically,

we simulate voltage and current trajectories with the Doyle-Fuller-Newman (DFN) cell

model [2–4]. The parameter values of this model are obtained from a previous study that

fit the DFN model to a LiFePO4 battery [12]. To better approximate quasi steady-state

conditions, the third cycle simulated is used. In spite of identical charge and discharge

current limits, the battery exhibits asymmetric behavior in charging and discharging, due to

its electrochemical nature. Next, we regress these input trajectories, encapsulating their data

for the optimization algorithm.

Input Trajectory Regression

Regressor vectors encapsulate how trial input trajectories affect the estimation information

gathered. This encapsulation converts the dynamic form of the model into a static form

appropriate for optimization. Since the health measurements happen intermittently we only

collect discrete measurements of change in health over a time interval. Consider integrating
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the model over the time period between health tests:

∫ t f

0
ḣ(~x)dt =

∫ t f

0

m

∑
i=1

βi fi (~x)dt (3.5a)

∆h =
m

∑
i=1

βiui, (3.5b)

where:

∆h≡
∫ t f

0
ḣ(~x)dt (3.6a)

ui ≡
∫ t f

0
fi (~x)dt. (3.6b)

Here ∆h is the change in battery health and each ui is a regressor associated with the function

fi. Unique trials can be indexed with j and the model can be rewritten as follows:

∆h j =
m

∑
i=1

βiui j = ~β ·~u j. (3.7)

This specific form will be important for the optimization algorithm. For now it provides a

formula to compute the~u j regressor vectors:

~u j =
(

∫ t f

0 f1(~x(t))dt, · · · ,
∫ t f

0 fm(~x(t))dt

)T

/t f . (3.8)

These regressor vectors will form the rows of the Fisher information matrix which will be

optimized through the selection of experimental trials.

Experiment Optimization

Let us consider a natural way to compile the experimental data. One can create a matrix

equation by stacking each ∆h j into a vector of health measurements and stacking each~uT
j

into a corresponding matrix row:













∆h1

∆h2

...

∆hn













=















u11 u12 · · · u1m

u21 u22
. . .

...
...

. . .
. . .

...

un1 · · · · · · unm















~β . (3.9)
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This can be rewritten as:

H =U~β , (3.10)

where H and U are the appropriate matrices.

The Fisher information matrix F is then defined as:

F =
UTU

σ2
, (3.11)

where the measurement error of experiment is assumed be a normal distribution with zero

mean and variance σ2. The inverse of F is the best possible covariance one can achieve

when estimating ~β due to the Cramér-Rao bound [40]. Furthermore by using least squares,

an unbiased estimator, this bound is achieved. Thus the covariance in estimating ~β is:

covar
(

~β
)

= σ2(UTU)−1. (3.12)

The importance of Eq. 3.12 is twofold. Firstly it shows that the response of the trials does

not affect the covariance for estimating ~β so it can be ignored for the experimental design

(this occurs because of the LP assumption). Second one can influence the covariance directly

through the selection of experimental trials. For our work we assume that σ2 is fixed, but

in practice one can influence this value as well, by using better sensors or testing methods.

We now describe the DETerminant MAXimizing algorithm (DETMAX), an optimization

method for selecting experimental trials.

The objective of OED is to select trials that allow one to estimate ~β with minimum

covariance (by a given metric). D-optimum is a very common metric in OED and is based

on maximizing the determinant of the Fisher information matrix. This in turn, minimizes

the determinant of its inverse, the covariance matrix. Minimizing the determinant of the

covariance matrix minimizes the product of its eigenvalues. Geometrically if one investigates

the confidence region of the ~β estimate this results in the smallest possible (by content)

hyper ellipsoid [15].

DETMAX attempts to find a subset of fixed size q contained in Ξ that maximizes the

value of det(F). It does this by selecting regressor vectors from Ξ to create the experiment

matrix U . Mathematically DETMAX attempts to:

max
~α

det
UTU

σ2
(3.13a)

U =
[

~uα1
~uα2

· · · ~uαq

]T

, (3.13b)
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subject to:

αi ∈ {1, · · · , p} (3.14a)

i 6= j⇒ αi 6= α j (3.14b)

~ui ∈ Ξ. (3.14c)

DETMAX attempts to select locally D-optimum trial subsets contained in Ξ from the set

of all possible experiments. Here local optimality is in the sense of swapping - one cannot

swap any of the experiments in the set with any other possible experiment and increase

det(F). In practice we initialize this algorithm with many random sets to help ensure that

the resulting set is closer to the global optimal. DETMAX has a few variations, the version

we use is as follows. First DETMAX computes det(F) for the current set. Then it iterates

over all possible swaps of trials between this set and the set of all possible experiments. For

each swap a new det(F) is computed and stored. The swap which improves det(F) the most

is then performed and the process repeats. DETMAX concludes when no swaps improve on

det(F) [15, 16].

DETMAX is ideal because we have a low number of battery cells and do not want to

complicate the experiment by switching cycles after each health test. We decided to batch

the experiment using 10 cells for the first batch and 4 cells for the second batch (DETMAX

can be used to optimize batched experiments) [15, 16]. The second batch is used solely for

validation and is not included in the model fitting exercise. With the experimental trials

selected our attention now turns to the laboratory experiment.

3.3.3 Realization

Laboratory Experiment

The batteries are repeatedly cycled based on the optimized set of trails (see Tab. 3.1). Thus

far, the experiment has been carried out for 429 days with health data being collected ap-

proximately every two weeks. For health, we measure capacity fade as discharge capacity in

Amp-Hrs during 0.5C CCCV cycling. These cycles repeat four times during each health test

and the first value is removed to avoid memory (hysteresis) effects. Power fade is measured

by a 2.5C constant current draw for 15 seconds when the batteries are fully charged. All of

the tests are conducted at ambient room temperature. We set the cycle parameters Itrickle to

50mA and thold to 1800 seconds. The cycling and health measurements are conducted using

an Arbin BT-2000 battery cycler.
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Table 3.1 Experimental trials as determined by DETMAX

Batch Vmin Vmax I

1 3.0V 3.3V 2.5C

1 2.6V 3.6V 1.5C

1 2.0V 3.5V 0.5C

1 3.0V 3.1V 2.5C

1 3.2V 3.5V 2.5C

1 2.0V 2.1V 0.5C

1 2.4V 2.5V 0.5C

1 2.2V 3.5V 2.5C

1 2.0V 3.2V 2.0C

1 3.5V 3.6V 0.5C

2 3.4V 3.6V 2.5C

2 3.0V 3.4V 2.5C

2 2.0V 3.1V 2.5C

2 2.0V 3.6V 1.5C

This version of the cycler has 32 independent channels that can each source or sink up

to 15A. Each of these channels can operate from 0V to 10V (but not negative). 14 of the

32 channels were dedicated to this experiment. All of the cycling was conducted at room

temperature.

The cells cycled are manufactured by A123 Systems; the model number is ANR18650M1A.

These cells are interesting because they are scaled down versions of those intended for use in

PHEVs and are able to continuously discharge at 30C giving them excellent rate capability.

They have a rated capacity of 1.1 Amp-Hrs, a nominal voltage of 3.3V, and a voltage range

from 2.0V to 3.6V.

Equipment down time is addressed by back filling voltage data with constant values

(current is taken as zero during these periods). This is an approximation, but since there is a

limited amount of downtime and the batteries relax within a few hours this is considered

appropriate.

As the battery experiment is conducted the model input trajectories (voltage and current)

are recorded for each battery. This data is mapped to the regressor vectors associated with

changes in battery health. These, along with the health data, are then used to calculate the

parameters for the battery health model. In the next section we discuss the specifics of

parameter estimation.
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Parameter Estimation

With all of the experimental data recorded estimating ~β is straightforward. One begins by

compiling the recorded the health measurements and associated regressor vectors. These

can then be arranged to form the matrix equation in Eq. 3.9. This, in turn, can be rewritten

as Eq. 3.10, leading to the least squares solution of ~β as follows:

~β =
(

UTU
)−1

UT H. (3.15)

The next section discusses the specific results of this model fitting work.

3.4 Experimental Results

3.4.1 Model Fitting Results

Our plan for this model fitting work was to use both power and capacity fade as health

metrics. However, as is discussed in the next subsection, power fade was negligible during

the experiment (at least for our method of measurement). Thus, we only consider the

capacity health metric. As mentioned before this experiment divides the cells into two

batches, the first for identification and the second for validation (the batches are conducted

concurrently). Only data collected from the first batch is used in the estimation of ~β .

Initially we attempted to fit the Asymmetric model, given in Eq. 3.1. We then considered

the Symmetric model, given in Eq. 3.3, which differs from the Asymmetric model only by

not distinguishing between positive and negative current. It was found that the Symmetric

model predicts the validation slightly better than the Asymmetric model, which indicates

that not all of the parameters in the Asymmetric model are needed for prediction. Figure 3.1

presents the Symmetric model prediction results for the validation cycles. These predictions

are initialized with the first set of collected health data and then simulated open-loop. Figure

3.2 summarizes the prediction errors for the validation cycles with a histogram and percentile

plot.

To ensure that each of the β parameters is converging in a meaningful manner we ob-

served how they changed after each health data set was collected. Health data was collected

approximately every two weeks. Figure 3.3 shows how the β values changed with each

iteration of data collection. We see that they appear to converge smoothly, which helps

to confirm that they are not being over fitted. Next we consider additional experimental

observations that are not directly related to model fitting.
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Figure 3.1 Symmetric model predictions of validation cycles. Curve is the Symmetric model and

circles represent experimental health measurements
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Figure 3.2 Aggregated errors of validation data for the Symmetric model.

3.4.2 Results Independent of Model Fitting

This section presents two experimental results that are independent of model fitting. The first

is the dependency of battery aging on voltage, in contrast to [14], where battery degradation
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Figure 3.3 Convergence of the 7 β parameters. Each iteration corresponds to a new health test

(health tests occur approximately every two weeks).

Table 3.2 Estimated parameters for the Symmetric model

Parameter Value Units

β1 1.1484×10−7 Amp×Hour×Sec−1

β2 −3.9984×10−8 Hour×Sec−1

β3 −1.3158×10−7 Amp×Hour×Sec−1×Volt−1

β4 −5.5487×10−10 Amp×Hour×Sec−1×Amp−1

β5 4.9680×10−8 Amp×Hour×Sec−1×Volt−2

β6 1.1166×10−8 Hour×Sec−1×Volt−1

β7 −6.1665×10−9 Amp×Hour×Sec−1×Volt−3

is found to be entirely a function of energy processed. Specifically batteries that undergo

light duty cycling at voltages at or above 3.4V age much more quickly than those cycled

with voltages at 3.1V or below. For the group of batteries that underwent more moderate

cycling there is an approximately linear fit between battery health and energy processed - in

agreement with [14]. Capacity results for these three groups are in presented Fig. 3.4.

The second major result is that power fade is negligible in all of the batteries, see Fig.

3.5. This could perhaps be an artifact of either our measurement method or simply not
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Figure 3.4 ∆ Capacity as a function of charge processed

driving the batteries aggressively enough. The batteries are rated for 30C discharge whereas

they were tested at 2.5C. The power test was a 15 second constant current draw, starting

with the battery at 100% SoC (based on float charging at 3.6V). The recorded voltages

and currents during this period were used to compute average power. Experimental design

methods likely facilitated the appearance of the voltage dependence related to battery health.

In the next section we discuss a generalization of this experimental work: OBHME.

3.5 The OBHME Framework

The work in this chapter suggests a generalized framework for conducting optimal battery

health modeling experiments. The OBHME framework has three main steps: model se-

lection, experiment design, and realization; see Fig. 3.6. The first step, model selection,

chooses health metrics, model inputs, and an appropriate model form. The second step,

experiment design, creates the possible trial set, generates and regresses the associated

trials, and optimizes the trial set to maximize Fisher information. The final step, realization,

conducts the battery experiment and then estimates the model parameters. The remainder of

this section highlights how OBHME provides a method appropriate for optimizing a wide

variety of battery health experiments.
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Figure 3.5 Average discharge power as a function of experimental time

3.5.1 Model Selection

The goal of OBHME is to efficiently produce an accurate model of observed physical

phenomena. Typically, this model is intended for design, control, and/or optimization

applications. When selecting a model one must consider the physical phenomena being

investigated and the intended use of said model. The model selection step is critical because

the optimal experiment depends directly on the selected model. The remainder of this

section focuses on the individual parts of the battery health model: health metric (output),

input(s), and model form.

Health Metric

The battery health metric’s importance is two-fold; it both measures battery health and

quantifies the health model’s output. Capacity and power fade are typical choices for health

metrics, although a variety of additional metrics exist. For example, in destructive testing,

one may consider looking at specific internal features of the battery such as the solid elec-

trolyte interface layer’s thickness. One may also use Electric Impedance Spectroscopy (EIS)

to investigate the frequency response characteristics related to battery aging. While many

features of battery health are of interest, a good metric considers the following factors: in-

tended model application, physical phenomena, and measurement cost. Health metrics play
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Figure 3.6 The OBHME Framework

key roles in both measuring aging phenomena and interpreting the battery health model’s

output.

Model Inputs

Similar to model outputs, choice of model inputs is tremendously important for both observ-

ing phenomena and ensuring the model’s later applicability. One may choose from a variety

of inputs, including: voltage, current, SoC, and temperature. Use of dynamic modeling

and/or in situ measurements allows one to include various internal battery states as inputs.

For example, local inputs such as current density, over potential and SoC can be used as
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inputs by using the DFN model to simulate them. Internal temperature can be included

through the use of in situ temperature measurement [88]. The input and output of the battery

health model are connected by its mathematical form.

Model Form

The model form is selected based on a priori information if available, or an appropriate

regression form otherwise. Models that can be cast in the form of Eq. 3.2 can be used

without further mathematical complications. However, model’s with autoregressive compo-

nents or that are nonlinear in their parameters can still be accommodated in principle, but

the mathematical complication will increase [16]. In the next step OBHME optimizes the

experiment’s trial set to gather the maximum parameter estimation information.

3.5.2 Experiment Design

The key to OBHME is deciding on a model before conducting the experiment and optimizing

the selected experimental trials. The experiment design step breaks down into four steps.

First one must decide on what set of experimental trials they are willing to consider - the

possible trial set. Second one must generate their associated trajectories - the ones that are

input into the battery health model. These trajectories are then regressed into a form that

makes them appropriate for parameter estimation. Finally an optimization method is used

on these regressed forms to either select a subset or duty cycle fraction. The remainder of

this section discusses alternative choices one can make when design these experiments.

Possible Trial Set

The possible trial set Ξ is the set of all trials one wishes to consider and can actually conduct

for an experiment. Typically this is limited by available equipment and conditions desired

for the battery modeling. Earlier we focused entirely on a set of CCCV cycles described by

an archetype cycle. Here we present an alternative archetype cycle which would be based on

PHEV drive cycles, the Drive Charge Cycle (DCC). The Ξs generated by DCC is interesting

because they mimic what PHEV batteries would experience in the field. For driving the

battery undergoes a current trajectory (that may involve charging and discharging) mimick-

ing PHEV battery pack behavior with appropriate scaling. One can imagine a probabilistic

type cycle parameterized by driver aggressiveness and trip length. Additionally the vehicle

battery may be parameterized by size and weight when converting the drive cycles into
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current trajectories for the battery. After each drive (or several drives) the battery will need

to be charged. This can be done using the charge portion of a CCCV cycle or one could use

a Constant Power Constant Voltage (CPCV) cycle in order to better emulate battery pack

charging. Additionally one can choose to emulate charging the vehicle with the various

classes of PHEV home charging units. Algorithm 2 outlines how one would implement the

DCC type cycles in a laboratory environment.

Algorithm 2 Drive Charge Cycle

Require: I(t); P, Vmax, Itrickle

loop

Track Current Trajectory I(t)
while (V <Vmax) do

Constant Power Charge at P

end while

t = Time

while (‖I‖> Itrickle) And ((Time− t)< thold) do

Constant Voltage Float at Vmax

end while

end loop

Of course, DCC is just one of the many possibilities. The possible trial set can be

customized for cycles based on cell phones, laptops, and satellites. In the next section we

consider how to convert these cycle rule sets into these input trajectories for the battery

health model.

Trajectory Generation and Regression

With a set of possible trials decided upon the trials must now be converted from rule sets

to input trajectories for the health model. To achieve this one can generate quasi steady-

state cycling trajectories through a variety of methods (these are cycles that repeat almost

identically). The assumption here is that the input trajectories are not going to change sub-

stantially throughout the experiment, so all of the cycling behavior can be approximated in

this behavior (alternative methods are needed for models with autoregressive components).

These quasi steady-state input trajectories are obtained in two main ways, both with

tradeoffs. The first method is to use simulation. This requires that one has models that

generate accurate trajectories of the variables to be used as inputs. An alternative method

is to use laboratory equipment and directly measure the quasi steady-state cycles. One

advantage of this method is it may result in highly accurate cycles as it eliminates model

error. The results of both methods are the same, namely they both produce input trajectories
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from steady-state cycles based on trial rule sets. The choice between these methods is largely

dependent on the size of Ξ and available resources.

The input trajectories for each trial are then mapped to a trial regressor vector, to create

a encapsulated version of the input trajectory’s effects on the battery health model. The

regression vectors are then collected into a set that describes the information available from

various combinations of each of the trials. The procedure is the same as demonstrated earlier,

see Eq. 3.8. Now we have a form amenable to optimizing the choice of experimental trials.

Experiment Optimization

OBHME allows for the direct use of either the DETMAX algorithm or a Linear Matrix

Inequality Interior Point algorithm (LMIIP) both of which provide optimal experimental

designs given slightly differing experimental structures [16, 89]. DETMAX was discussed

in detail earlier so we focus on LMIIP here.

Instead of selecting a small subset of trials for the experiment, as DETMAX does, LMIIP

allows one to incorporate all the possible trials. Specifically LMIIP finds the global optimum

of the following problem:

max
~λ

det
UTU

σ2
(3.16a)

UTU =
p

∑
k=1

(

λk~uk~u
T
k

)

, (3.16b)

subject to:

p

∑
k=1

λk = 1 (3.17a)

λk ≥ 0, i = 1, · · · , p. (3.17b)

Where here there are two interpretations. The first is that there are a large number of cycles

conducted and the λis determine the portion of time that each cycle is being conducted.

Alternatively, one can treat this as a probability mass function and use it to generate ran-

domized subset of cycles [89]. This is especially nice for stochastic type cycles (such

as the aforementioned DCC) because it allows the incorporation of stochasticity into the

experiment. With the trials/time fractions selected we continue onwards to the laboratory

experiment.
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3.5.3 Realization

The battery experiment is carried out by repeatedly running the cycles associated with the

optimized set of trials. This cycling is interrupted at various times to conduct battery health

measurements as related to the previously selected metric. For experiments generated with

LMIIP there must be a mechanism to change the cycles after every health measurement.

The regressors associated with these health measurements are computed by mapping the

recorded input trajectories in accordance with the model form (see Eq. 3.8). This data can

then be directly compiled into a form amenable for the linear least squares estimation of ~β

(see Eq. 3.15). At the conclusion of the method one may wish to design a new experiment

based on the results, perhaps to fine tune the modeling efforts further.

3.6 Discussion

Based on experience gained from this experiment, we suggest several opportunities for

improving future iterations. First, duplicating trials would help to better elucidate under-

lying statistical properties of the batteries. Second, for reasons mentioned earlier, future

modeling efforts may be further improved through nonidentical current limits, increasing

the charge and discharge asymmetry. Additionally, there are several areas where increasing

experimental scope is also desirable. For example, temperature can become an additional

input by using several thermal chambers to regulate multiple ambient temperatures. Also,

more aggressive cycling is possible by increasing the current limits, leading to a health

model with broader applicability (although internal temperature may need to be consid-

ered). Further, replacing SoC as an input for voltage could provide additional insights into

battery degradation, at the expense of requiring a robust implementation strategy. Finally,

power testing could be augmented by conducting it at different SoCs, higher rates, and/or

incorporating EIS. Clearly, the experience gained from this experiment suggests several

advantageous improvements and extensions.

3.7 Conclusions

This chapter demonstrates how to apply OED to a specific battery case and then introduces

a general framework for handling a wide variety of battery health experiments. This spe-

cific case designs and conducts a battery health modeling experiment for LiFePO4 battery

cells. The experiment results in a control oriented model useful for design, control, and
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optimization of PHEVs. This initial work suggests the OBHME framework, which bridges

an important gap between the OED literature and the battery health experimental/modeling

literature. It is hoped that the OBHME framework case study in this chapter provides a guide

for making battery health experiments less costly in terms of time, effort, and equipment

and more profitable in terms of information and model accuracy.
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Chapter 4

Electrochemical Model Parameter

Characterization via Optimal Design of

Maximally Informative and Minimally

Invasive LiFePO4 Cell Experiments

4.1 Introduction

Understanding, estimating, and managing battery health for ever increasing fleets of elec-

trified vehicles is clearly of great financial and engineering importance. Financially, the

quantity of electric vehicles continues to increase. For many of these vehicles, the battery

will be a significant portion of their manufacturing cost. From an engineering perspective,

battery health affects usability, including vehicle performance and range. This chapter im-

proves on understanding, estimating, and managing battery health by creating a systematic

method for designing battery experiments and diagnostics based on tools from optimal

experimental design and evolutionary optimization. These experiments and diagnostics

gather the greatest amount of battery parameter estimation information possible while min-

imizing damage to the battery. We demonstrate this method by using it to create Pareto

fronts of current trajectories that maximize Fisher information (in the D-optimal sense)

while minimizing battery damage. To assess damage we use two metrics: energy processed

(following Whitacre et al. [14]) and the health model created in Chapter 3. The generated

trajectories are simulated with artificial measurement noise which is fed to an estimator

for validation. This creates sets of parameter estimations whose statistics can be related

to Fisher information. Since this method improves parameter estimation accuracy while

minimizing battery damage, it can improve both battery State-of-Health (SoH) estimation

and battery health modeling experiments.

The trajectories designed by this method have a variety of practical applications. Firstly,

the diagnostics based on these trajectories can be implemented to run while the vehicle
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charges overnight. The estimation algorithm can then be computed on-site with a micro

processor or off-site via cloud computing. After this computation the vehicle’s estimate of

SoH would be updated, allowing the vehicle controllers to make better decisions. This is

different from traditional SoH estimation methods in that it is both offline and the trajectory

the battery undergoes is prescribed [90–94]. We believe conducting estimation offline is not

only appropriate but actually beneficial. It is appropriate, as the SoH changes very slowly

and beneficial because it does not increase the online computational burden. Additionally,

the trajectory is custom designed rather than imposed by the driver and vehicle which helps

to increase information content. Another interesting application is the improvement of long

term battery health experiments. An ideal battery health test for long term experiments

would be short in duration (to minimize the time the battery does not spend cycling), cause

very little damage (so that observing health has a minimal impact on the measured results),

and maximally informative about the parameters of interest. The trajectories created by this

method help with all three of these goals: one can specify the duration and then use the

Pareto front to choose an appropriate trade-off between information and damage. This has

the potential to further improve the methods described in Chapter 3.

The major difference between our approach and that typically used for battery exper-

iments is the scope of possible trajectories considered. Typically one works with a small

finite set of trajectories and the problem is treated as a subset selection problem. This is the

case in the health experiments in [10] as well as by Schmidt et al.’s work fitting a single

particle model [37]. Rather than limiting ourselves to preselected trajectories, we use an

algorithm that explores the function space (up to a sampling rate of 5 Hz). This has a variety

of advantages. Firstly, by being dramatically less restrictive, it enables the optimization

to achieve greater improvements. Second, it enables us to gain insight into what types of

trajectories are best for this identification work. Finally, it allows one to approach situations

where it is unclear which trajectories might be appropriate. The cost of these advantages

is a dramatic increase in the computational complexity of the optimization. As computers

continue to become faster this will continue to become less disadvantageous. Presently the

authors overcome this difficulty by making use of parallel computing clusters. This allows

us to simulate 10 minutes of the Doyle-Fuller-Newman (DFN) model roughly 1.5 million

times per optimization.

For this work we focus on estimating parameter’s of the DFN model. Intuitively, ease

of estimating parameters depends on how slight perturbations of parameters affect the

measured outputs of the model. This work designs input current trajectories that maximize

the parameter estimation information carried by the voltage output. This idea of estimation

information is formalized by Fisher information, which uses the output parameter sensi-
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tivities to compute information content. In the linear case (the DFN model is nonlinear)

Fisher information provides a bound on best possible parameter estimation behavior [40].

In the nonlinear case it is a useful guide for improving estimator performance. Each current

trajectory has an associated Fisher information value, and this value is used as one of the

two optimization multi-objectives.

An excellent evolutionary algorithm for multi-objective optimization is the Nondomi-

nated Sorting Genetic Algorithm II (NSGAII) which evolves populations to directly create

Pareto fronts [46]. Another useful evolutionary algorithm is Differential Evolution (DE),

which works directly on real encoded problems and has been shown to be very effective in

a variety of applications [47–49]. The advantages of each of these evolutionary methods

are married by Kwan, Yang, and Chen who created the NSGAII-DE algorithm [50]. This

algorithm combines the performance of DE with the advantage of direct Pareto front creation,

and thus it is ideal for our problem.

By pairing both health metrics with Fisher information we create optimization problems

for which NSGAII-DE generates Pareto fronts. In both cases Fisher information is based

on the simultaneous estimation of two parameters: d2, solution diffusivity and RSEI , the

resistance due to anode film thickness. Each of these relates to battery health, and d2 is

chosen specifically due to previous difficulties in its estimation [13].

Both optimizations result in similar Pareto fronts. Specifically, at high energy and

damage ranges there is little to no improvement in Fisher information. However, at mid to

low energy and damage ranges the Fisher information improves, frequently by orders of

magnitude. The practical nature of these improvements are validated through the repeated

use of an estimator on simulated data. This validation finds that Fisher information is an

excellent qualitative guide for the estimator’s performance. However, it is a poor quantitative

predictor as the estimator dramatically out performs the predicted Fisher information. This

is likely due to Fisher information being based on linear assumptions whereas the DFN

model is highly nonlinear - this idea is further considered in the discussion section.

The remainder of this chapter focuses on the specifics of optimal trajectory generation,

estimation and results. Specifically, §4.3 presents the problem in a mathematical context

and discusses how the application is optimized. §4.4 presents the results of the optimization

along with estimator results based on simulated noise (as a validation). A discussion fol-

lows in §4.5 where assumptions, computational advantages, and extensions to the method

are discussed. Finally §4.6 contains concluding remarks and a summary of this chapter’s

contributions.
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4.2 Batterys and Electrochemical Model

4.2.1 Lithium Iron Phosphate

As with the rest of this thesis we focus on the LiFePO4 battery chemistry. Specifically we

focus on cells ANR26650M1 cells from A123 systems. These cells are used in several

PHEV and EV applications. They are capable of very high rates, including a continuous

30 C-rate discharge. They have a nominal voltage of 3.3V and an operating region of 2.0V

to 3.6V. The name plate capacity of these batteries is 2.3 Amp-Hrs. These batteries have

been used in several PHEVs, including a plug-in Prius upgrade kit. Of course, the methods

within this paper could be applied to other battery types, provided the correct parameters are

available for accurate simulation of the DFN model.

4.2.2 The Doyle-Fuller-Newman Model

The DFN model originates from work by Doyle, Fuller, and Newman published in 1993

and 1994 [2, 3]. Much has been written about this model and it has been used in a variety of

applications regarding batteries. Of specific interest is [5], which fits many parameters of

the DFN model to experimental data for the LiFePO4 cells that are used within this work.

The salient features of the DFN model are diffusion in both the solution and the solid, where

the distribution in the solid is distributed in a pseudo 2D manner. These are connected to

the electrical equations within the battery by two highly coupled nonlinear boundary value

problems that control the flow of current and voltage distributions within side the battery.

This creates a nonlinear DAE which can be very computationally intensive to solve. We use

a combination of model reduction methods to simulate the model, see §A.1 and article [5].

The DFN model excels in areas where there are high rates that are highly transient as the

model stems from first principles (it is based on binary concentrated solution theory).

The importance of the model in this application is two-fold. A model is obviously

needed for simulation. However, the model also plays an important role in how the Fisher

information is defined. Fisher information is related to the ease of estimating various pa-

rameters, but these parameters must be from a model. In fact, different Fisher information

values can result for a physical parameter if the model used in calculation is changed. In

addition, for Fisher information to be useful the model used must be reasonably accurate.

For all of these reasons we use the DFN model solely throughout this chapter.
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4.2.3 Parameters of Interest

In this work we focus on two parameters of interest in the DFN model. The first, RSEI , is

the resistance of the solid electrolyte interface layer on the anode and it is related to battery

health in two ways. First, creation of this film consumes the batteries cyclable Li-ions which

decreases the maximum capacity. Second, the film resistance can cause power fade (at least

within the DFN model) as the resistance decreases the batteries ability to provide power. The

second parameter d2, the diffusivity of the electrolyte, is slightly related to battery health

as its decrease represents the electrolyte clogging within the battery. However our major

interest in this parameter is as a challenge to the method - this parameter has been shown to

be very difficult to identify in a previous work by the author [5]. Of course any combination

of model parameters could have been used, and these two were chosen for demonstration. It

is worth noting the that method is not limited to the two parameter case - Fisher information

can be readily computed for larger sets of parameters.

4.3 Trajectory Optimization Method

Our goal is to design dynamic experiments to maximize the Fisher information gained

regarding relevant parameters while minimizing battery damage. To this end we design

open-loop current trajectories and measure the voltage response of the cell. These current

and voltage trajectories are then fed to an offline estimator which attempts to minimize volt-

age error (L2) by assigning the model appropriate parameter values. This section explains

the mathematical and computational specifics of this procedure. The following section

discusses the results for the trajectory optimization and the estimator’s performance.

4.3.1 Optimization Formulation

The result of this optimization is a set of current trajectories that form a Pareto front for

identifying these two specific parameters, although the problem could easily be reformulated

for different parameters or more parameters. Solving this problem enables more efficient

experiments for battery characterization by better designing input trajectories.

This problem is formulated as a multi-objective open-loop trajectory optimization. Our

first objective is to optimize Fisher information. For multiple parameters different versions

of Fisher information exist. We use D-optimal as this minimizes the area (or volume/content

for dimensions greater than two) of the the estimation ellipses. This makes for more accurate

estimations, provided one is using an appropriate estimator. The second objective is to
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minimize the the damage caused by the trajectory (invasiveness). To this end we use two

different measures, each for one optimization. The first, energy processed, follows [14]

which treat this as proportional to loss of maximum cell capacity (with different multiplica-

tive constants depending on the battery cycling mode). In addition we use the health model

from chapter 3. For the signal we allow any currents that are of magnitude less than 2.5

C-rate. Current trajectories that result in the voltage being less than 2.0V or greater than

3.6V are considered invalid and not used (as these are the outside the batteries’ design limits).

The sample rate on the signal is 5 Hz and all of the points in the current are considered

independent of each other in the optimization. There is no splining or similar method to

decrease the number of points by design - this would filter the signal and as is shown later

the higher frequency content is important in this application. The author originally tried

both cubic splines and Legendre-Gauss-Lobotto points to simplify the optimization but the

signal filtering caused by these methods was substantial and unacceptable.

4.3.2 Fisher Information

For a dynamic model one can compute the Fisher information as follows. We note that we

are dealing with a SISO model (current in, voltage out). Fisher information is not additive

in the two (or higher) parameter case, preventing the use of common dynamic programming

procedures (as the suboptimallity assumption is not applicable) [95]. It may be theoretically

feasible to use suboptimality in the one parameter case, however the large number of states in

the DFN model (even after our modeling reduction techniques) makes this nearly impossible

computationally (save cases with both very short time periods and large numbers of cores).

We now formally introduce Fisher information for dynamic systems and show how it

applies to this problem. There is quite a bit of literature on both Fisher information in

general and Fisher information as applied to dynamic systems [16, 17, 37, 40–44].

Consider the standard model formulation:

ẋ = f
(

x;~θ
)

(4.1a)

y = g
(

x;~θ
)

+ error (4.1b)

error ∼ Normal
(

0,σ2
)

. (4.1c)

Where x is the state and y is the output and f and g are the appropriate functions. ~θ is

the parameter vector, that we are computing the Fisher information for. The astute reader

may notice that this formulation is a differential equation rather than DAE - the DFN model
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has a low enough index that it can be treated as a differential equation for this section [68].

Of particular interest is the sensitives at a set of instances in time, one can form a

sensitivity matrix as follows [44]:

Si, j =

[

∂y(t)

∂θi

]∣

∣

∣

∣

t=t j

. (4.2)

Where the entry Si, j is the output sensitivity to parameter θi sampled at time instant t j. The

Fisher information is then given by [16, 17, 37, 40–43]:

Fisher =
ST S

σ2
. (4.3)

Where Fisher ∈ R
p×p. For optimization we use the D-optimal metric which is as fol-

lows [15]:

FD = det(Fisher) . (4.4)

We compute the Fisher information by perturbing ~θ in each of its direction and simulating

the DFN model. We use forward differencing (instead of central differencing) to decrease

the number of necessary simulation calls. This allows us to compute the two sensitivities

that we need with only three runs of the simulations (or p+1 simulations for p parameters).

We note that the Fisher information is a local measure of information. This can be seen

as it solely depends on the partial derivatives related to the output. For linear systems this

can be used to accurately bound an estimator’s performance via the Cramér-Rao bound. For

nonlinear systems this is only an approximation that we use as a guide for our optimizations.

We continue further with this guide notion in §4.5, where we discuss the results of the

optimization and simulated estimator.

4.3.3 Energy and Health

We consider two measures of invasiveness. The first is based entirely on energy processed

following Whitacre et al. [14]. The second is based on Chapter 3 where a battery health

model is developed.

Energy processed is straightforward, we compute and integrate the battery’s power:

energy =
∫ t=Tf

t=0
I(t)V (t)dt. (4.5)

Where I and V are current and voltage respectively.
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Table 4.1 Estimated parameters for the Symmetric model (repeated)

Parameter Value Units

β1 1.1484×10−7 Amp×Hour×Sec−1

β2 −3.9984×10−8 Hour×Sec−1

β3 −1.3158×10−7 Amp×Hour×Sec−1×Volt−1

β4 −5.5487×10−10 Amp×Hour×Sec−1×Amp−1

β5 4.9680×10−8 Amp×Hour×Sec−1×Volt−2

β6 1.1166×10−8 Hour×Sec−1×Volt−1

β7 −6.1665×10−9 Amp×Hour×Sec−1×Volt−3

The battery health model is as follows:

ḣ(I,V ) = β1 +β2‖I‖+β3V +β4‖I‖
2 +β5V 2 +β6‖I‖V +β7V 3. (4.6)

Where the β parameters are given in Table 4.1. The objective then is to minimize:

damage =−
∫ t=Tf

t=0
ḣ(t)dt. (4.7)

Where this model has been developed with long term cycling of multiple batteries undergo-

ing different CCCV cycles. For both of these objectives (energy and damage) the goal is

minimization of the values.

4.3.4 Trajectory Constraints

The current trajectories in these specific optimizations are constrained to be exactly 10

minutes long. The sampling rate is at 5 Hz so each trajectory has 3001 control points. One

could use splines and other methods to decrease the number of control points (indeed, the

author has in the past - cubic and Gauss-Legendre-Lobotto, see [96]). However decreasing

the number of control points introduces filtering due to the choice of splines. Typically,

when one expects a smooth trajectory as a result of an optimization this is not a problem.

However, OED trajectories tend to have very high frequency characteristics. Due to this

we opt to make every point in the trajectory a control point. As can be seen in §4.4 the

optimized trajectories do have a high frequency component.

Additionally the voltage and current are both bound. The current is bound between

±5.75A (±2.5C-rate). This bounding is easy to implement - the optimization algorithm
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will not try trajectories outside of this. The voltage is bound between 2.0V and 3.6V which

are the design specifications for these specific cells. This voltage constraint is enforced by

rejecting population members that violate it.

4.3.5 NSGA-II with DE

There are a multitude of optimization methods available in the literature. Evolutionary

algorithms are typically very useful in environments with large numbers of variables and

cases where models are noisy. In this case we happen to be dealing with both of these so

these methods are ideal. Additionally there are a variety of ways to generate Pareto fronts.

One can change the weights on each objective and reoptimize repeatedly. Or one can use an

evolutionary method where one searches for the entire Pareto front at once by optimizing an

entire population. NSGAII is such an algorithm [46].

NSGAII is the Nondominated Sorting Genetic Algorithm II and was created by Deb,

Pratap et al. [46]. This algorithm starts as a typical genetic algorithm. However, rather

than using a single objective related to fitness, it can use several. It does this by sorting the

population into fronts, where members of each front are dominated by exactly i members.

Here, a member is dominated if another member has better values for all of the multi-

objective functions. The best front is the front of members which are not dominated by any

member of the population and this front forms the Pareto front. As the population evolves

NSGAII selects members from the least dominated fronts and has a mechanism to avoid

overcrowding sections of the fronts. Because of this, it can compute a Pareto front in one

optimization, rather than having to reoptimize with different weighting factors on each of the

objectives. This frequently saves large amounts of computational time, as the evolutionary

algorithm does not have to repeat similar optimizations.

Originally NSGA-II was designed to use a genetic algorithm for cross breeding and

mutations - the mechanisms that create a new population from an old one. However, one can

use other mechanisms to build new populations. We choose to use DE because it is naturally

real encoded (as is our problem) and has been shown to be very effective on a variety of

difficult optimization problems [49]. DE was introduced by Storn and Price in [47] and has

performed very well as a optimization/search algorithm. The basic DE algorithm works as

follows. An initial population is generated randomly. Each population member is then per-

turbed based on vector directions with in the population. Not all of the elements are written

to the new vector, this is controlled by a weighted coin flip (with probability CR). Fitness

values for the new population are then computed, and if the perturbed members improve

on their associated nonpertubred member they are used to replace them. One can refer to a
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variety of the literature on the subject for further specifics on the algorithm [47–49,97]. One

of the major advantages of DE is it changes step size and direction based on the spread of the

population members. When the spread is large DE creates large perturbations for searching

the space. When the population members are close, the step size is proportionally reduced.

Additionally, the optimization variable sensitivity is automatically taken into account with

the population spread. All of this happens with a very low number of tuning parameters for

the algorithm, making it easier to robustly apply to a variety of optimization problems.

Ideally one would like to combine the benefits of both NSGAII and DE. NSGAII-DE is

such an algorithm - it uses NSGAII to directly evolve Pareto fronts and DE to improve its

search and optimization [50]. NSGAII-DE uses an unmodified version NSGAII’s selection

mechanism and a slightly modified form of DE’s member generation. This modification

creates new members based solely off perturbations about the members of the nondominated

front. Each member of the nondominated front is equally likely to be used in each perturba-

tion. These perturbations are then combined with the base population and culled by NSGAII

to produce the next generation. This combination of NSGAII with DE is highly effective, as

can be seen in the results section. The next subsection discusses the computational specifics

of running NSGAII-DE for the trajectory optimization and plain DE for estimation.

4.3.6 Computation

There are two main computational problems within this work. The first is the NSGAII-DE

optimization which evolves the current trajectories. This requires the Fisher information to

be computed for each trajectory considered. The second examines the effects of these created

trajectories through the repeated use of DE to estimate parameters based on simulated data

with measurement noise. These DE optimizations adjust the estimation parameter values by

computing and comparing voltage responses. Much of the computation between these two

problems is similar, we discuss these similarities first and then follow with their differences.

In both of these problems efficient computation of the DFN model is critical. To this

end we use the modal Legendre form of the DFN model with quasi-linearization, see Ap-

pendix A.1. We use a 5th order polynomial representation across the width of each cell

region: anode, separator, and cathode. In the radial direction we use a 10th order polynomial

representation, where the polynomials of odd degree are omitted due to symmetry. By using

Legendre modes we reduce the number of differential equations to 56 and the number of

algebraic equations to 30. In addition, we use quasi-linearization nearly identical to that

in [5] except it is applied to the modal coordinates. We implement our simulation code in

MATLAB although other environments may provide better computational speed (MATLAB
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Table 4.2 NSGAII-DE optimization values

Parameter Value

Initial Population Members 4000

Population Members 1000

Cr 0.9

Number of Generations 550

is excellent for agile development).

Even with these computational reductions we still need to make use of parallel comput-

ing. Specifically we use a server-client architecture to parallelize the optimization function

calls. The NSGAII-DE and normal DE run on the server, and then evaluation requests are

sent out to the clients. This communication uses custom Java code to connect the server and

clients over TCP/IP. We link the DFN model simulations to this code by calling it within the

MATLAB environment. A combination of our in lab cluster and the University of Michi-

gan’s Center for Advanced Computing cluster were used to conduct these computations.

Maximally we had 56 cores running to compute the trajectory optimizations.

Another commonality between these two problems is that they both feature bounds on

their optimization variables. To gracefully handle perturbations that find members outside

these bounds we only halve their distance to the boundary when they violate it [48]. This

performs better than placing them on the boundary, which would discourage population

diversity.

Despite all these similarities the two problems have a few important differences. For

the trajectory optimization we have a 3001 point current trajectory for 10 minute runs. To

compute Fisher information we repeat the runs with the parameters perturbed. This allows

us to compute an optimization evaluation with three DFN model runs. The specifics of

the trajectory optimization are summarized in Table 4.2. Where Cr is the probability that

a specific value mutates and the number of generations was decided upon by stopping the

optimization after it appeared to have converged for a substantial number of steps.

It is important to note how the optimization population is initialized. We use stochastic

Algorithm 3 to create the initial trajectories. In this algorithm ri, j is the ith trajectory’s jth

value. This gives us a set of trajectories similar to white noise, but with nonzero means that

allow the State-of-Charge (SoC) to drift. Originally we had only used white noise, but we

discovered this useful heuristic through experimentation with the population initializations.

While the estimation work is very similar there are some key differences. The estimator

was run 50 times for each of the 26 cases (7 optimized and 7 initial for energy and another
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Algorithm 3 Initial Population Generation

Require: NumberO f Tra jectories; NumberO fControlPoints; Imax

for i = 1→ NumberO f Tra jectories do

p← (i−1)/(Numbero f Tra jectories−1)
for j = 1→ NumberO fControlPoints do

randomReal← RandomUniform[0,1]
randomSign← RandomUniform{−1,1}
if p≤ 0.5 then

ri, j← 2× Imax× randomSign× randomReal

else

ri, j← 2× Imax× randomSign× (1− (2− p)randomReal)
end if

end for

end for

6 each for damage). For the estimator we only need to run the DFN model once to

get an evaluation (the trajectory optimization has to be run three times to compute Fisher

information). There are only two inputs to the estimator’s optimization: the values of RSEI

and d2. The optimizations are cut off after 500 generations - this only occurs for the lowest

energy case (where the estimator consistently fails to converge due to lack of information).

The stopping criteria is based on the spread of the top 50% (Stopping Criteria Value 1) of

the population, and stops when the maximum distance between these selected population

members is less than 10−4 (Stopping Criteria Value 2). This is the MaxDistQuick criteria

from [98]. We base this not on absolute distance in the parameter space (as the parameters

are scaled differently) but base it on the maximum and minimum values that the parameters

are bound (artificially) by. This distance between the population members is computed as

follows:

popDistance(x,y) =

(

(

xd2
− yd2

max(d2)−min(d2)

)2

+

(

xRSEI
− yRSEI

max(RSEI)−min(RSEI)

)2
) 1

2

.

(4.8)

We note that using DE for this estimation works very well, as is does an excellent job quickly

searching the space and the population members always come within close agreement.

We use the estimation sets to compute a Fisher information based on estimator perfor-

mance. In a linear system this would be in near agreement with the trajectory optimization

Fisher information. However in a nonlinear system these can vary from each other by quite

a bit (as is shown later). To compute the Fisher information based on estimator perfor-

mance we compute the covariance matrix of the estimations, invert this and compute the
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Table 4.3 DE estimator values

Parameter Value

Population Members 40

Cr 0.9

Stopping Criteria Value 1 0.5

Stopping Criteria Value 2 1×10−4

max(d2) 1×10−8m2s−1

min(d2) 0 m2s−1

max(RSEI) 1×0.01Ω

min(RSEI) 0 Ω

determinant:

F̂D = det
(

Covariance(Estimations)−1
)

. (4.9)

The agreement and disagreement between the predicted and actual Fisher information is

discussed further in the results and discussion sections.

4.4 Trajectory Optimization Results

This section discusses the trajectory optimizations and their related estimation results. These

optimizations yield Pareto fronts of trajectories that increase the Fisher information content.

However - since the DFN model is nonlinear - this improvement cannot be directly quanti-

fied through the Cramér-Rao bound. Instead, we quantify this informational improvement

by applying an estimator to sets of simulated data containing measurement noise. This

allows us to generate sets of estimations whose statistics quantify the trajectories’ practical

estimation improvements. Some of the more interesting estimation sets are presented. These

are followed by plots similar to Pareto fronts showing the improvements offered by the

optimized trajectories as quantified by the estimator results. Finally we present graphs of

the optimized trajectories for the interested reader. Together, these results demonstrate that

using Fisher information as a multi-objective creates dramatic improvements in estimator

performance.
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4.4.1 Optimization Results

We performed two trajectory optimizations, both using Fisher information as a multi-

objective (d2 and RSEI are taken as the parameters of interest). These optimizations differ in

their other multi-objective: the first focuses on energy processed and the second uses the

battery health model from Chapter 3. Both cases yield similar results, making large gains

in Fisher information at low to mid energy/damage ranges and at the high range the differ-

ences become inconsequential. Figures 4.1 and 4.2 present the energy and damage results

respectively, with Fisher information presented on a logarithmic scale. However, Fisher

information is only a guide for this nonlinear model and next we present a more accurate

quantification metric based on simulating estimator performance. Unfortunately, simulat-

ing estimator performance is not computationally tractable for use as a multi-objective in

optimization (see the discussion section).
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Figure 4.1 Trajectory optimization Pareto front: Fisher information and energy

4.4.2 Estimation Results

By using an estimator on simulated data we are better able to quantify the improvements of

using these optimized trajectories. Unfortunately it was not computationally tractable to run

an estimator on every single trajectory. Instead we selected subsets of interesting trajectories

from each Pareto front. Then, to compare with the initial population, we took the trajectories
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Figure 4.2 Trajectory optimization Pareto front: Fisher information and health

Table 4.4 energy values for the compared trajectory pairs

Trajectory Energy [J]

Number Value Optimal Best Initial

1e 0 0 0

2e 1000 1014 1013

3e 2000 2015 1992

4e 5000 4996 4970

5e 8000 8004 8011

6e 10000 10002 9994

7e 11000 11130 11048

from the best initial front that were closest in value to the energy and damage levels of

interest. Tables 4.4 and 4.5 summarize our selection of energy and damage values.

To create a statistically meaningful set of estimations we ran the estimator 50 times on

for each trajectory on simulated data. This data took the voltage measurement error to be

zero mean Gaussian with σ = 1mV which is well within what is possible with laboratory

equipment. The results of these estimator runs are a cloud each of 50 estimations of the RSEI

and d2 pair. The statistics of these clouds allow us to compute an estimator based Fisher

information, which is used for comparisons both between estimators and from the initial

predicted Fisher information from the optimization.
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Table 4.5 damage values for the compared trajectory pairs

Trajectory Damage [µ Amp-Hr]

Number Value Optimal Best Initial

1h 1 1.022 1.011

2h 2 1.910 1.925

3h 4 4.035 4.014

4h 6 5.880 5.861

5h 8 7.976 7.980

6h 10 9.978 10.00

The results for the energy based optimization are shown in Figures 4.3, 4.4, and 4.5.

These are the trajectories 2e to 4e, which show improvements over the best trajectories in

the initial set with similar energy values (see Table 4.4). The estimator fails to converge

when acting on trajectory pair 1e’s simulation data due to these trajectories’ having low

information content. Trajectory pairs 5e to 7e perform similarly in both the initial population

and the optimized set, yielding no meaningful improvements in estimator performance.

The damage case is similar and estimator results of 1h to 3h are shown in Figures 4.6, 4.7,

and 4.8. All of these yield excellent improvements over the best trajectories in the initial

set with similar damage values (see Table 4.5). We choose not to run the lowest possible

damage case as it was likely to have the same results as 1e. 4h yields some improvements

(plot not shown) and then 5h and 6h yield no meaningful improvements over their associated

initial trajectories. For both the energy and damage cases substantial improvements are

made at the low to mid ranges and then no meaningful improvements are made at the high

range.

Now we use the Fisher informations calculated from the estimator results to compute the

improvement of the optimizations. Figures 4.9 and 4.10 show these results for the energy

and damage optimizations respectability. These have been normalized so that σ = 1V to

be consistent with the predicted Fisher information. The estimator based Fisher information

is much higher than originally predicted by the optimization. However, the qualitative trends

are similar when compared to figure s 4.1 and 4.2. Thus we have found Fisher information

to be an excellent guide for these optimizations.
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Figure 4.3 Energy trajectory pair 2e approximately 1000 Joules
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Figure 4.4 Energy trajectory pair 3e approximately 2000 Joules
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Figure 4.5 Energy trajectory pair 4e approximately 5000 Joules
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Figure 4.6 Health trajectory pair 1h approximately 1e-6 Amp-Hr

4.4.3 Optimized Trajectories

Of course, one may wonder about the shape, character, and salient features of these opti-

mized trajectories. The optimized trajectories for 2e to 4e are shown in Figures 4.11,4.12,
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Figure 4.7 Health trajectory pair 2h approximately 2e-6 Amp-Hr
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Figure 4.8 Health trajectory pair 3h approximately 4e-6 Amp-Hr

and 4.13. The cases for 1h to 3h are shown in Figures 4.14,4.15, and 4.16. We note that in

all cases the trajectories have high frequency components (with respect to the sample rate)
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Figure 4.9 Energy estimator Fisher information
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Figure 4.10 Health estimator Fisher information

and that they result in SoC trajectories that look similar to weighted random walks. The lack

of smoothness in the trajectories shows that not using splines was appropriate as they would

not have been able to accurately capture all of the salient features of the trajectories.
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Figure 4.11 Optimized energy trajectory 2e
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Figure 4.12 Optimized energy trajectory 3e

4.5 Discussion

This paper investigates two specific cases of designing current trajectories to gather informa-

tion using NSGAII-DE. This can be thought of as demonstrating a general method, in which
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Figure 4.13 Optimized energy trajectory 4e
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Figure 4.14 Optimized health trajectory 1h

many variations are possible. The most obvious variation is that one could easily change

the parameters used in estimation. Additionally, while the DFN model is a very interesting

and important model, it is by no means the only model that could be used. For example,
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Figure 4.15 Optimized health trajectory 2h
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Figure 4.16 Optimized health tsrajectory 3h

if one wanted to further improve the modeling work, the spherical diffusion submodel in

the cathode could be replaced with an appropriate submodel that accurately captures its

path dependence behavior. For more information on the physics of this see [74–76] and
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for modeling see [77–82]. If one is more focused on less complicated models (perhaps for

control or optimization applications) then one could replace the DFN model with a single

particle models [35–37]. Of course, in addition to changing the parameters or underlying

model one can also change some of the inputs and outputs to the model. For example,

nuclear magnetic resonance imaging can be used to measure the neutron transmission,

which is related to Li concentration, leading to additional outputs [99]. This can be used

to observe spatial concentrations of Li throughout a sample of the cell. In this case Fisher

information’s direct use of sample times may be very beneficial as imaging speed can be

very limited. Another, more readily available example of an additional output is that of a

third electrode [100]. This would yield two different voltages allowing one to collect greater

quantities of information about the cell’s parameters.

While the method presented in this chapter works well in simulation the discrepancies be-

tween the predicted Fisher information and the Fisher information observed by the estimator

require some addressing. To reiterate, we observed similar trends for both, but the estimator

based information is orders of magnitude higher than that predicted (this is after normalizing

for the signal noise). Thus we suggest that the predicted information is a guide and compu-

tational tool. For example, to use the estimator based Fisher information in an optimization

one would need a dramatically larger number of simulations. This is because while the

predicted information can be computed with 3 simulations (2 perturbations and a center) the

estimated information requires running the estimator enough times to create a statistically

meaningful cloud of estimations. For the health estimation we needed 104.5 simulations

on average per estimation point. Assuming 50 points are needed for estimation (this is a

rough number, but in the right order of magnitude), then we would need 50×104.5 = 5225

simulations for the estimator based Fisher information optimization. Clearly when com-

pared with the 3 simulations needed to get the predicted Fisher information this becomes

computationally intractable. With unlimited computing power using the estimator based

method would be preferable, but given that these optimizations already take approximately

3 days when using 56 cores the use of predicted Fisher information has great practical value.

An interested researcher with (even greater) resources could scale this up and see what the

true results would be. There are some practical obstacles to implementing this method.

The main one is that it assumes all of the parameters not being estimated are know. This can

be overcome by measuring them. One could do this for the battery parameters that should

be similar between all of the batteries manufactured and then use this method to estimate

health parameters that will drift. An additional question with this method is robustness - how

optimal do these trajectories remain if the underlying values change substantially? This is a

question of Bayesian estimation which is a more computationally intensive problem [101].
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All things considered, the work in this paper is an excellent starting point for further work

combining dynamic optimal experimental design with battery modeling and experiments.

4.6 Conclusions

This chapter creates and demonstrates a method for designing maximally informative and

minimally invasive input trajectories for battery experiments. This method bridges an im-

portant gap between the dynamic optimal experimental design literature and the battery

modeling literature. By using NSGAII-DE the method allows one to algorithmically design

these experiments making it more efficient to accurately characterize battery parameters.

We note that substantial improvements at equal levels of invasiveness were possible in both

the predicted information and the information observed by simulating the estimator on data

with measurement noise. We believe this method is useful for both directly designing battery

experiments and as a foundation for future dynamic optimal experimental design work for

battery modeling experiments.
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Chapter 5

The Conclusion

5.1 Intellectual Contributions

This dissertation makes three major intellectual contributions which are summarized in this

section.

5.1.1 Noninvasive Electrochemical Model Identification using Genetic

Algorithms

While the DFN model has applicability to a large class of battery types one major hurdle in

using this model is the identification of parameters and parameterized functions [2, 3]. A

GA identification method is use to noninvasively identify the parameters and parameterized

functions of the DFN model. This GA optimizes using noninvasively collected voltage and

current data to fit the model parameters. As a demonstration, laboratory data is collected

for a LiFePO4 cell and the identification is carried out successfully. Some of this laboratory

data is based on driving cycles simulated for a Prius with a 5 kWh PHEV conversion kit. A

validation study of model fit is conducted and a Fisher information study has been conducted

to assess parameter accuracy.

5.1.2 Optimal Experimental Design for Battery Health Modeling

This dissertation uses traditional OED to design battery health degradation experiments for

determining a voltage and current driven health model [15–17]. The OED selects a set of

experimental procedures that minimize the geometric sum of Cramér-Rao variance bounds

for estimating the model’s parameters [18]. This minimization creates the best possible set

of data for performing parameter identification. The designed experiments are conducted in

a laboratory to obtain this data-driven health model. This sequence serves as a prototype for
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conducting battery health experiments on other types of batteries. Additionally the specific

health model can be used for health-conscious controllers, system level design decisions

and warrantying decisions [8, 19].

5.1.3 Maximizing Fisher Information through NSGAII-DE for Bat-

tery Health Diagnostics

This dissertation investigates using NSGAII-DE to maximize Fisher information to design

input trajectories for experiments that minimize Cramér-Rao lower bound on variance for

identifying selected parameters. As a test case the author considers designing inputs to the

DFN model. This input trajectory minimizes the variance in identifying the resistance of the

solid electrolyte interface layer, RSEI which is a major factor in battery health [20–34]. The

solution diffusivity, d2, is also simultaneously identified with RSEI . One specific application

of this technique is a diagnostic procedure for determining battery SoH in an efficient

manner. The improvements of the optimized trajectories are verified using an estimator on

simulated data with noise.

5.1.4 An OED Battery Modeling and Characterization Toolbox

Together these contributions provide a toolbox for battery system engineers. This toolbox

allows one to characterize the battery for the DFN model, determine an empirical data driven

health model, and then design diagnostics for determining specific battery parameters. This

toolbox incorporates methods from OED to ensure that the experiments are efficient and

result in appropriate models and parameters. In addition the author demonstrates specific

pairings of method and numerical algorithm, showing the reader how to perform the appro-

priate computations for the experiments. This toolbox should be very helpful to engineers

work on the design, control, and optimization of battery systems as it provides efficient and

systematic ways to determine the necessary battery models.

5.2 Possible Future Extensions

5.2.1 Future Battery Aging Experiments

There are a few possible extensions for the battery aging experiment discussed in Chapter

3. First, one open question with this work is that perhaps the positive and negative current
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effects on aging could have been separated by using differing charge and discharge current

limits. This could be explored by designing an experiment where these rates were allowed

to differ and then conducting the experiment. Additionally higher charge and discharge rates

could be investigated. Another improvement would be to design an experiment for dealing

with temperature effects. An OED exercise could be conducted based on the Arrhenius

equation for this case.

Another area of interest would be to use cycles that did not have the CCCV form. Specif-

ically it would be interesting to use PHEV or EV based drive cycles with overnight charging

patterns. If this was based on a large set of drive cycles stochasticity could be incorporated

by using the Linear Matrix Inequality Interior Point algorithm. This would be useful for

vehicle management as there would be no logical jump from the type of cycle used.

5.2.2 Trajectory Optimization Experiments

The trajectory optimization work in Chapter 4 suggests a few possible variations and more

extensive follow ons to the work. The most obvious variation is that one could easily change

the parameters used in estimation. Additionally, while the DFN model is a very interesting

and important model, it is by no means the only model that could be used. For example,

if one wanted to further improve the modeling work, the spherical diffusion submodel in

the cathode could be replaced with an appropriate submodel that accurately captures its

path dependence behavior. If one is more focused on less complicated models (perhaps for

control or optimization applications) then one could replace the DFN model with a single

particle models [35–37].

The most obvious piece of follow on work would be to conduct the experiment in a

laboratory (rather than simulation) environment. To do this one will need accurate parameter

values for the DFN model, which will require tearing down the battery or communicating

with manufactures. Then one could program the trajectories into appropriate experimental

equipment and see how well the method works in a laboratory environment. This would

likely result in some valuable insights about the method and promote further fine tuning.

Of course, in addition to changing the parameters or underlying model one can also

change some of the inputs and outputs to the model. For example, nuclear magnetic res-

onance imaging can be used to measure the neutron transmission, which is related to Li

concentration, leading to additional outputs [99]. This can be used to observe spatial con-

centrations of Li throughout a sample of the cell. In this case Fisher information’s direct

use of sample times may be very beneficial as imaging speed can be very limited. Another,

more readily available example of an additional output is that of a third electrode [100]. This
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would yield two different voltages allowing one to collect greater quantities of information

about the cell’s parameters.
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Appendix A

Model Reduction Techniques

A.1 Numerical Simulation of the Doyle-Fuller-Newman

Model

If the DFN model is naively discretized it can easily have a very large numbers of states.

As a specific example if one places 100 points across the width of the cell and another 100

between the center and surface of the spherical direction then the model has 6668 states (this

can vary slightly on the exact implementation of the discretization). However in practice

the actual numerical bottleneck in the model is the algebraic constraint equations. The

author has used model reduction to reduce both the number of states and the difficulties

encountered with the algebraic constraint equations.

A.1.1 Quasi-Linearization

In the DFN model the electric potentials driving the electrochemical reactions are rep-

resented by a coupled nonlinear Boundary Value Problem (BVP). When discretized this

results in a set of algebraic constraint equations that creates a numerical bottleneck within

the model. To reduce the time spent in this bottleneck the authors quasi-linearize these

nonlinear equations. This quasi-linearization is a linearization of the equations about the

previous time step and assumes the diffusion dynamics in the DFN model are frozen in

time (during the calculation). By using this quasi-linearization one can solve a set of linear

equations instead of the previous nonlinear root finding problem. Specific numerical results

are presented in [5].
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A.1.2 Infinite Dimensional Padé Approximation of Spherical Diffu-

sion

While states in the DFN model are not the major bottleneck, reducing the number of states

still has several advantages including: faster computational speeds and making the model

easier to work with. The author has approached this problem by reducing a repeating

submodel within the DFN model: spherical diffusion of Li. This approach applies Padé

approximation to an infinite-dimensional transfer function representing the spherical diffu-

sion submodel. This results in an analytical model reduction that dramatically reduced the

number of states in the DFN model by 98% without significant decreases in accuracy [5].

A.1.3 Legendre Modal Decomposition

The author has also used modal decomposition similar to that presented by [54] to reduce

the DFN model. This modal decomposition uses orthogonal Legendre polynomials along

both the width of the cell and the radial direction of the spheres. Along the width of the

cell these modes couple the Partial Differential Equation (PDEs) and BVP in a very natural

way. This results in both a large reduction in states but more importantly a large reduction

in algebraic constraint equations (the numerical bottleneck) greatly improving computation

time.

A.1.4 Quasi-Linearization Combined with Legendre Modal Decompo-

sition

The author goes further than [54] by quasi-linearizing these modal constraints resulting in

further time savings. Mathematically this is very similar to the original quasi-linearization

but instead of acting on a finite differenced model it acts on the model in a coordinate frame

of orthogonal Legendre polynomials. This has allowed the DFN model to be used in various

optimizations [8, 12, 19].

A.2 Mathematics of Quasi-Linearization Combined with

Legendre Modal Decomposition

The overarching reason that Legendre modal decomposition is useful is that the x direction in

the DFN model can be described by them unifying the PDEs and AEs which both naturally
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connects them and dramatically decreases the number of states. The remainder of this

section is intended for those working on programming the DFN model into this form and as

such the discussion is heavy on mathematics and short on words.

A.2.1 The Projection

Throughout this section we use the Legendre modes as a basis. Where Legi(x) is the ith

mode. A function f can be composed into the basis as follows:

f (x) =
∞

∑
i=0

〈 f (x),Legi(x)〉Legi(x). (A.1)

For notational reasons we define ex
i the ith basis over the x direction.

ex
i (x) = Legi+1(x) (A.2)

f (x)≈
Nx

∑
i=1

〈 f (x),ex
i (x)〉e

x
i (x) =









〈

f (x),ex
1(x)

〉

...
〈

f (x),ex
Nx
(x)
〉









(A.3)

Where Nx is the number of basis vectors used in the x direction. We note that the above

equations map a function to a vector. For further information on the Legendre polynomials

please see [102].

A.2.2 Singularly Perturbed Systems

For the readers familiarity we use the following common method from the theory of linear

singularly perturbed systems [68].

Consider the following singularly perturbed system:

(

~̇x

0

)

=

[

A11 A12

A21 A22

](

~x

~w

)

+

[

B1

B2

]

u (A.4a)

y =
[

C1 C2

]

(

~x

~w

)

D1u. (A.4b)
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Which can be written as (provided A22 is invertible):

~̇x =
[

A11−A12A−1
22 A21

]

x+
[

B1−A12A−1
22 B2

]

u (A.5a)

y =
[

C1−C2A−1
22 A21

]

x+
[

D1−C12A−1
22 B2

]

. (A.5b)

Where x and w can be recovered as follows:

(

~x

~w

)

=

[

I

−A−1
22 A21

]

x+

[

0

−A−1
22 B2

]

u. (A.6)

A.2.3 An Example Problem

Here we demonstrate an example of converting a PDE into a DAE using Legendre modal

decomposition. This example is for a linear diffusion model, with a time and space varying

input. This model is closely related to several submodels with in the DFN model.

The mathematical model is as follows:

∂

∂ t
H(t,z) =

∂ 2

∂ z2
H(t,z)+ J(t,z). (A.7)

With initial condition:

H(0,z) = H0(z). (A.8)

With boundary conditions:

H(t,−1) = 0, (A.9)

∂H(t,1)

∂ z
−u(t) = 0. (A.10)

With outputs:

y1(t) =
∫ 1

−1
H(t,z)dz, (A.11)

y2(t) = H(t,1). (A.12)
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We now use modal decomposition to represent the relevant functions.

H(t,z) =
∞

∑
i=1

Hi(t)e
z
i (z)≈

Nz

∑
i=1

Hie
z
i (z) (A.13a)

J(t,z) =
∞

∑
i=1

Ji(t)e
z
i (z)≈

Nz

∑
i=1

Jie
z
i (z) (A.13b)

ez
i (z) = Legi+1(z) (A.13c)

The time derivative passes neatly through the LHS of equation A.7:

∂

∂ t
H(t,z)≈

Nz

∑
i=1

Ḣi(t)e
z
i (z). (A.14)

The double space derivative in the RHS of equation A.7 is more complicated:

Ai, j =

〈

∂ 2

∂ z2
ez

i (z),e
z
j(z)

〉

, ∀i ∈ {1, · · · ,Nz} , ∀i ∈ {1, · · · ,Nz−2} . (A.15)

We note that if j were allowed to go to Nz the last two columns in the A matrix would

have entries all identical to zero. For notational purposes we do not add these columns to

the matrix, thus A ∈ R
(Nz)×(Nz−2).

∂ 2

∂ z2
H(t,z) =

Nz

∑
i=1

Hi(t)
∂ 2

∂ z2
ez

i (z) (A.16a)

=
Nz

∑
i=1

Hi(t)
Nz−2

∑
j=1

〈

∂ 2

∂ z2
ez

i (z),e
z
j(z)

〉

ez
j(z) (A.16b)

=
Nz

∑
i=1

Hi(t)
Nz−2

∑
j=1

Ai, je
z
j(z) (A.16c)

=
Nz−2

∑
j=1

Nz

∑
i=1

A j,iH j(t)e
z
j(z) (A.16d)

Now we use orthogonality to convert equation A.7 from a PDE into a matrix equation.

We end short two rows of having a uniquely solvable system. These extra two rows come
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from the boundary equations.

〈

Nz

∑
i=1

Hie
z
i (z),e

z
k(z)

〉

=

〈

Nz−2

∑
j=1

(

Nz

∑
i=1

(

A j,iH j(t)e
z
j(z)
)

+ Ji(t)e
z
i (z)

)

,ez
k(z)

〉

∀k∈{1, · · · ,Nz}

(A.17)

Ḣi(t) =
Nz

∑
j=1

AT
j,iHi(t)+ Ji(t), ∀k ∈ {1, · · · ,Nz} (A.18)

Where we note that we’ve omitted the last two rows of this equation because they are

vacuous. In summary we have:









Ḣ1(t)
...

ḢNz−2(t)









= AT









H1(t)
...

HNz
(t)









+









J1(t)
...

JNz−2(t)









. (A.19)

Two additional rows are added to this equation via the boundary conditions. Consider

A.9, the Dirichlet (height) constraint.

Define:

EBC1,i = ez
i (−1), ∀i ∈ 1, · · · ,Nz. (A.20)

Then,

H(t,−1) =

(

Nz

∑
i=1

Hi(t)e
z
i (z)

)∣

∣

∣

∣

∣

z=−1

(A.21a)

=
Nz

∑
i=1

Hi(t)e
z
i (−1) (A.21b)

= EBC1









H1(t)
...

HNz
(t)









. (A.21c)

Thus, the modal form for A.9 is:

EBC1
~H(t) = 0. (A.22)
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Consider A.10, the Neumann (slope) constraint.

∂H(t,1)

∂ z
=

∂

∂ z

Nz

∑
i=1

Hi(t)e
z
i (z)

∣

∣

∣

∣

∣

z=1

(A.23a)

=

(

Nz

∑
i=1

Hi(t)
∂

∂ z
ez

i (z)

)∣

∣

∣

∣

∣

z=1

(A.23b)

=

(

Nz

∑
i=1

Hi(t)
Nz−1

∑
j=1

〈

∂

∂ z
ez

i (z),e
z
j(z)

〉

ez
j(z)

)∣

∣

∣

∣

∣

z=1

(A.23c)

=

(

Nz−1

∑
i=1

Nz

∑
j=1

H j(t)

〈

∂

∂ z
ez

j(z),e
z
i (z)

〉

ez
i (z)

)∣

∣

∣

∣

∣

z=1

(A.23d)

=

(

Nz−1

∑
i=1

Nz

∑
j=1

H j(t)

〈

∂

∂ z
ez

j(z),e
z
i (z)

〉

ez
i (1)

)

(A.23e)

=
Nz−1

∑
i=1

EBC2, jH j(t) (A.23f)

(A.23g)

Where:

EBC2, j =
Nz−1

∑
i=1

〈

∂

∂ z
ez

j(z),e
z
i (z)

〉

ez
i (1) ∀ j ∈ {1, · · · ,Nz} (A.24)

This gives us the modal form:

EBC2
~H(t)+BBC2u = 0. (A.25)

Where:

BBC2 =−1. (A.26)

92



Now we consider the output y1 of this model.

y1(t) =
∫ 1

−1
ez

i (z)dz (A.27a)

=
∫ 1

−1

Nz

∑
i=1

Hi(t)e
z
i (z)dz (A.27b)

=
Nz

∑
i=1

Hi(t)
∫ 1

−1
ez

i (z)dz (A.27c)

=
Nz

∑
i=1

Hi(t)C1,i (A.27d)

Where:

C1,i =
∫ 1

−1
ez

i (z)dz ∀i ∈ {1, · · · ,Nz} (A.28)

Now the modal form for y1 is:

y1(t) =C1
~H(t) (A.29)

Now we consider the second output, y2.

y2(t) =

(

Nz

∑
i=1

Hi(t)e
z
i (z)

)∣

∣

∣

∣

∣

z=1

(A.30a)

=
Nz

∑
i=1

Hi(t)e
z
i (1) (A.30b)

=
Nz

∑
i=1

Hi(t)C2,i (A.30c)

Where:

C2,i = ez
i (1) ∀i ∈ {1, · · · ,Nz} . (A.31)

And thus, the modal form is:

y2(t) =C2
~H(t). (A.32)
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This leads us to a modal form for the whole model.













Ḣ1(t)
...

ḢNz−2(t)

02×1













=







AT

EBC1

EBC2







~H(t)+







I(Nz−2)×(Nz−2) 0(Nz−2)×1

01×(Nz−2) 01×1

I(Nz−2)×1 BBC2



















J1(t)
...

JNz−2(t)

u(t)













(A.33a)

(

y1(t)

y2(t)

)

=

[

C1

C2

]

~H(t) (A.33b)

Which can be further reduced using singular perturbation.

This serves as an analogy for many of the pieces within the DFN model. The main piece

bearing further explanation is the 2D modal reduction for spherical diffusion. We discuss

this next and how the individual pieces connect together later.

A.2.4 Spherical Diffusion

Spherical diffusion is similar to the example except for two major differences. First it

occurs in two spatial dimensions: r and x. Second, due to symmetry, only even orders of the

Legendre polynomials are relevant. Throughout this section we use the † symbol as ∀†∈ n, p

in order to work through spherical diffusion in the anode and cathode simultaneously.

The model in our case is:

∂c1(t,x,r)

∂ t
=

d1†

r2

∂

∂ r

(

r2∂c1(t,x,r)

∂ r

)

. (A.34)

With boundary condition:

∂c1(t,x,R†)

∂ r
−

1

d1†a†F
J1(t,x) = 0, @r = R. (A.35)

There is only one boundary condition due to symmetry.

With outputs:

~y(t,x) =

(

cS(t,x)

cSoC(t,x)

)

=

(

c1(t,x,r)|r=R†

3
c†,max

∫ R†

0 c1(t,x,r)r
2dr

)

. (A.36)

These outputs interface directly with the DFN model. For notational convenience the
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remainder of this section we use [•] to indicate matrix subscripts.

c1(t,x,r) =
Nx

∑
i=1

Nr

∑
j=1

C1[i, j](t)ex
i (x)e

r
j(r) (A.37)

Where:

er
j(r) = Leg2( j−1)(r), (A.38a)

ex
i (x) = Legi+1(x). (A.38b)

As in the example, the time derivative passes neatly into the modal form.

∂

∂ t
c1(t,x,r) =

Nx

∑
i=1

Nr

∑
j=1

Ċ1[i, j](t)ex
i (x)e

r
j(r) (A.39)

Similar to the example we define a matrix A†.

d1†

r2

∂

∂ r

(

r2∂c1(t,x,r)

∂ r

)

=

(

d1†

r2

∂

∂ r

r2∂

∂ r

) Nx

∑
i=1

Nr

∑
j=1

C1[i, j](t)ex
i (x)e

r
j(r) (A.40a)

=
Nx

∑
i=1

C1[i, j](t)ex
i (x)

Nr

∑
j=1

(

d1†

r2

∂

∂ r

r2∂

∂ r

)

er
j(r) (A.40b)

=
Nx

∑
i=1

C1[i, j](t)ex
i (x)

Nr

∑
j=1

Nr−1

∑
k=1

〈(

d1†

r2

∂

∂ r

r2∂

∂ r

)

er
j(r),e

r
k(r)

〉

er
k(r)

(A.40c)

=
Nx

∑
i=1

C1[i, j](t)ex
i (x)

Nr

∑
j=1

Nr−1

∑
k=1

A†[ j,k]e
r
k(r) (A.40d)

=
Nx

∑
i=1

Nr−1

∑
j=1

Nr

∑
k=1

C1[i,k](t)A†[k, j]ex
i (x)e

r
j(r) (A.40e)

Then by orthogonality in the x and r directions:

Ċ1[i, j](t) =
Nr

∑
k=1

C1[i,k](t)A†[k, j]. (A.41)

Where:

A†[ j,k] =

〈(

d1†

r2

∂

∂ r

r2∂

∂ r

)

er
j(r),e

r
k(r)

〉

∀ j ∈ {1, · · · ,Nr}and k ∈ {1, · · · ,Nr−1} .

(A.42)
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In order to stack this neatly into a matrix equation we remap the indexing of C1 as

follows:

C1[i, j](t)→C1{i+( j−1)(Nr−1)}(t) (A.43)

Where we use {•} to indicate the vector indexing. This allows us to stack the equations

similar to A.33:









Ċ1{1}(t)
...

Ċ1 {(Nx−2)(Nr−1)}(t)









=















AT
† 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 AT
†























C1{1}(t)
...

C1 {(Nx−2)Nr}(t)









. (A.44)

Where the Nx−2 term arises due to how the spherical diffusion problem fits with the

other problems through the unified basis in the x direction, as is discussed later in this

appendix.

Again we have to work with the boundary condition. We work with the first term of

A.35 and then the second term.

∂c1(t,x,R†)

∂ r

∣

∣

∣

∣

r=R

=
∂

∂ r

Nx

∑
i=1

Nr

∑
j=1

C1[i, j](t)ex
i (x)e

r
j(r)

∣

∣

∣

∣

∣

r=R

(A.45a)

=
Nx

∑
i=1

Nr

∑
j=1

C1[i, j](t)ex
i (x)

∂

∂ r
er

j(r)

∣

∣

∣

∣

∣

r=R

(A.45b)

=
Nx

∑
i=1

Nr

∑
j=1

C1[i, j](t)ex
i (x)

Nr−1

∑
k=1

〈

∂

∂ r
er

j(r),e
r
k(r)

〉

er
k(r)

∣

∣

∣

∣

∣

r=R

(A.45c)

=
Nx

∑
i=1

Nr

∑
j=1

C1[i, j](t)ex
i (x)

Nr

∑
k=1

〈

∂

∂ r
er

j(r),e
r
k(r)

〉

er
k(R) (A.45d)

=
Nx

∑
i=1

Nr

∑
j=1

C1[i, j](t)ex
i (x)E†[ j] (A.45e)

Where:

E†[ j] =
Nr

∑
k=1

〈

∂

∂ r
er

j(r),e
r
k(r)

〉

er
k(R). (A.46)
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Now we work through the second term of A.35.

−
1

d1†a†F
J1(t,x)≈−

1

d1†a†F

Nx

∑
i=1

J1[i](t)e
x
i (x) (A.47a)

= B†

Nx

∑
i=1

J1[i](t)e
x
i (x) (A.47b)

(A.47c)

Where:

B† =−
1

d1†a†F
. (A.48)

After making use of orthogonality this gives us:

Nr

∑
j=1

C1[i, j]E[ j]+B†J1[i] = 0 ∀i ∈ {1, · · · ,Nx−2}. (A.49)

Again with re-indexing this makes for a set of matrix equations amenable to singular

perturbation:
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...
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...
. . .

. . . 0

0 · · · 0 AT
†

ET
† 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 ET
†











































C1{1}(t)
...

C1 {(Nx−2)Nr}(t)









. . .

+













0(Nx−2)(Nr−1)

B†

...

B†





















J1[1]
...

J1[Nx]









.

(A.50)

A.2.5 Unifying Basis

The key insight in using the Legendre modal decomposition is that the PDEs and AEs within

the DFN equation are spatially aligned with each other. This lets one use a common basis
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in the x direction for all of the submodels. This means that the models can be connected

modally as well. Consider how the functions c1(t,x,r), c2(t,x), φ1(t,x), φ2(t,x), Jmain(t,x),

Jside(t,x), J(t,x), and δ f ilm(t,x) all have an argument in x. Granted one has to align each

of these over the correct anode, separator, or cathode domain. Additionally one has to tie

the boundary conditions together for several of the submodels at the anode/separator and

separator/cathode interface. However even despite these nuances one is able to dramatically

reduce the overall number of states and the number of algebraic equations that have to be

solved at each time step.

Figure A.1 Basis unification of Legendre modes for the DFN model

A.2.6 Linear Diffusion

This follows the example problem and spherical diffusion problem very closely. The only

difference is that each domain (anode, separtor, and cathode) is treated as a separate are for

modal decomposition and then they are linked through he boundary conditions.

A.2.7 Quasi-Linearization

This is the same as from [5] except the coordinates are in modal form.

A.2.8 Numerical Solution

Numerical solution is very similar to that in [5]. Namely see figure A.2.
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A.2.9 Unifying Basis

Figure A.2 Numerical solution process for Legendre modal model with quasi-linearization

A.2.10 Advantages

The main advantages are a reduction in the number of states, including a large reduction

in the number of states related to the numerical bottle neck that is the constraint equations.

In practice one can run the model very accurately with Nx = Nr = 6. This leads to 5th

order Legendre polynomials in the x direction for the anode, separator, and cathode. In

the r direction the polynomials continue to the 10th order - this is due to only even order

polynomials being used. This results in a total of 56 states and 30 constraint equations. Due

to this the model can be simulated in MATLAB at speeds 2 to 3 orders of magnitude faster

than real time. This has enabled much of the optimization conducted within this thesis.
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Table A.1 Modeling complexity versus Nx and Nr

Nx 3 4 5 6 7 8 9 10 11

Nr Number of Differential Equations:

2 6 12 18 24 30 36 42 48 54

3 8 16 24 32 40 48 56 64 72

4 10 20 30 40 50 60 70 80 90

5 12 24 36 48 60 72 84 96 108

6 14 28 42 56 70 84 98 112 126

Number of Constraint Equations:

15 20 25 30 35 40 45 50 55
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Appendix B

Fisher Information for Dynamic Models

Fisher information can be used with dynamic models to determine how accurately model

parameters can be estimated [16, 17, 37, 41–44]. This theory is introduced using a two

parameter one output dynamic model. Consider:

ẋ =−p2x (B.1a)

y = x+ error;error ∼ N
(

0,σ2
)

(B.1b)

x0 = p1; p2 > 0. (B.1c)

This system’s dynamics are trivial to solve for:

x(t) = p1e−p2t . (B.2)

The two parameter’s output sensitivity functions are:

sp1
(t) =

∂

∂ p1
x(t) = e−p2t , (B.3a)

sp2
(t) =

∂

∂ p2
x(t) =−p1e−p2t . (B.3b)

These sensitivities are dependent on the parameter value and time. The sensitivities

can then be sampled at various points in time ti ∈ {t1, · · · , tn}. This results in a matrix of

sampled parameter sensitives:

S =













e−p2t1 −p1e−p2t1

e−p2t2 −p1e−p2t2

...
...

e−p2tn −p1e−p2tn













. (B.4)
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We note ST S’s rank has direct relevance on identifiability. To convert this matrix to the

FIM we divide by the variance of measurement error:

FIM =
ST S

σ2
. (B.5)

Then by the Cramér-Rao bound the best possible covariance for a unbiased estimator is:

Cov≥ FIM−1. (B.6)

To demonstrate how Fisher information relates to parameter estimation a numerical

example is now presented using p1 = 2, p2 = 3, σ = 0.25. 21 samples at 10Hz are col-

lected for each of 1000 realizations. An example realization is shown in Fig B.1. The

identifications for the 1000 realizations are shown in Fig. B.2 overlayed with the standard

deviations predicted by the Fisher information. Note that the Fisher information is computed

analytically and a priori.

Figure B.1 A realization of a numerical experiment involving Fisher information
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Figure B.2 Predicted and actual results of identifying parameters in a numerical experiment.

Ellipses are 1st, 2nd and 3rd standard deviations of predicted estimation
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Appendix C

Boundary Conditions for the DFN

Model

This appendix summarizes the boundary conditions present in the DFN model. The effective

values of various quantites are related to the volume fraction and the Brugman, b, number as

follows:

d
e f f
2 = d2εb

2 j ∀ j ∈ {n,s, p} , (C.1)

σ
e f f
j = σε1 j ∀ j ∈ {n, p} , (C.2)

κe f f (c2) = κ (c2)εb
2 j ∀ j ∈ {n,s, p} , (C.3)

κD (c2) = κe f f (c2)

(

2R̄T (1− t+)

F

)

. (C.4)

For solid concentration c1:
∂

∂ r
c1 (r) = 0, @r = 0, (C.5)

∂

∂ r
c1 (r) =−

J j (r)

d1 ja jF
, @r = R, ∀ j ∈ {n, p} . (C.6)

For solution concentration c2:

∂

∂x
c2 (x) = 0, @x = 0,x = Ln +Ls +Lp, (C.7)

d
e f f
2 |anode

∂

∂x
c2 (x) = d

e f f
2 |separator

∂

∂x
c2 (x) @x = Ln, (C.8)

d
e f f
2 |separator

∂

∂x
c2 (x) = d

e f f
2 |cathode

∂

∂x
c2 (x) @x = Ln +Ls. (C.9)
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In addition c2 is equated at the anode/separator interface and the separator/cathode interface.

For solid potential φ1:

∂

∂x
φ1 (x) = 0, x = Ln, x = Ln +Ls, (C.10)

φ1 (x) = 0, @x = 0. (C.11)

This locates the ground at the negative electrode. At the positive electrode one can choose

between a current or voltage input. For the current input:

∂

∂x
φ1 (x) =

iapp

Areaσ
e f f
n

, @x = Ln +Ls +Lp, (C.12)

where Area converts from current density to absolute current.

For the voltage input:

φ1 (x) =Voltapp, @x = Ln +Ls +Lp. (C.13)

For the solution potential φ2:

∂

∂x
φ2 (x) = 0, @x = 0, x = Ln +Ls +Lp, (C.14)

κ (c2) |anode

∂

∂x
φ2 (x)+κD (c2) |anode

∂

∂x
ln(c2 (x)) =

κ (c2) |separator
∂

∂x
φ2 (x)+κD (c2) |separator

∂

∂x
ln(c2 (x)) , @x = Ln,

(C.15)

κ (c2) |separator
∂

∂x
φ2 (x)+κD (c2) |separator

∂

∂x
ln(c2 (x)) =

κ (c2) |cathode

∂

∂x
φ2 (x)+κD (c2) |cathode

∂

∂x
ln(c2 (x)) , @x = Ln +Ls.

(C.16)

In addition φ2 is equated at the anode/separator interface and the separator/cathode interface.
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Appendix D

Battery Testing Procedures

D.1 Procedures

This section outlines common procedures that are useful for conducting the battery experi-

ment. They are intended as check lists. These are intended as suggestions and one should

not follow them blindly.

D.1.1 Power On

� In rare instances you may need to plug the equipment back in. This would be typical

after a long planned power outage to avoid damage from an electrical surge. Make

sure to properly twist the plugs into place.

� Ensure that the Arbin machine is turned off.

� Turn on the computer.

� Start MITS-Pro and manually turn off all of the jobs in the scheduler (you need to do

this even though every channel should be in the communcation error mode).

� Turn the Arbin tester back on. If the tester does not turn on check the breaker switch

on the back of the machine.

� Restart all of the jobs in the scheduler. Individuals should restart their own jobs.

The reason for stopping all of the jobs before turning the Arbin tester on is to avoid cases

where a battery starts at a constant voltage. This avoids current spikes caused by step

changes in voltage. It is suggested that individuals restart their own jobs as they have the

best insight into whether the power outage may have caused problems for their batteries.

D.1.2 Experiment Check In

� Start remote login and connect to the computer’s IP address.

� Open the scheduler.

� Stop any unsafe channels and email their owners.
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� Check the step times and ensure that they are reasonable. Occasionally batteries will

be stuck in a constant current mode where no current is being applied. If this is the

case restart the channel or email the owner.

� Disconnect from the machine. DO NOT LOG OUT, THIS WILL STOP ALL OF

THE EXPERIMENTS.

D.1.3 Experiment Turn Over

This is specific to the experiment I’m conducting for this thesis. One can change this for

their own work as needed.

� Set all the schedules back to JF CCCVa 120323a.

� Check the timer in the three places in the file. The last time in the file is the end time.

The other two times in the file should be 30 hours sooner than this time (see steps 9

and 21 in the schedule).

� Start all of the tests. ”JF CCCV <Year><Month><Day> Chan<Channel Num-

ber>.

� Compress the battery data into a .zip file (making sure not to pick files that are

currently running).

� Upload the zip file to Amazon cloud drive.

D.1.4 Data Post Processing

� Download to steinlab3 from cloud.

� Reorder files for health if needed (look at ’i’ and ’a’ files).

� Access .rec→ .txt (using visual basic code, module 1).

� Access update history file (using visual basic code, module 2).

� Open MATLAB version 2010b go to directory C:\Users\steinlab3\Documents\mat11\batt\
� Run batt health aggregatorRunner.m, save as health <date of test end>.mat.

� Run datapointProc.m, making sure to update the number of files.

� Run datapointAgg.m, you need to change endFileNumber and increment the size of

datapoints and cycles.

� Update makeSStruct.m with new health file name.

D.2 Arbin Programming

This section outlines how I programmed the Arbin machine to conduct the experiment.

Admittedly, while successful, my programming practices may not be the best for this en-

vironment. However being able to use only one schedule file is extremely important for

effectively maintaining the experiment.
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Table D.1 Summary of schedule file

Step Label Purpose Notes

1 OCV 10 second rest If voltage ≥ F Vmax goto step 6

2 Charge Ramp 5 second charge ramp Start of CCCV charge

3 CC Charge CC charge at F Crate

4 CV Charge CV charge at F Vmax 1800 sec and |current| ≥ 50mA

5 Charge Rest 10 second rest

6 Discharge Ramp 5 second charge ramp Start of CCCV discharge

7 CC Discharge CC discharge at F CrateNeg

8 CV Discharge CV discharge at F Vmin 1800 sec and |current| ≥ 50mA

9 While Loop Control logic goto 1 if time is ≤ Time1

10 PreCapacityTestRest 10 second rest

11 CC Capacity Charge CC charge 2.5 C-rate

12 TrickleHigh CV charge at 3.6V 1800 sec and |current| ≥ 50mA

13 OCV1 10 second rest Health test cycle starts

14 CC Dis1 CC discharge at 0.5 C-rate

15 CV Dis1 CV discharge at 2.0V 1800 sec and |current| ≥ 50mA

16 OCV2 10 second rest

17 CC Dis1 CC charge at 0.5 C-rate

18 CV Dis1 CV charge at 3.6V 1800 sec and |current| ≥ 50mA

19 HealthForLoop goto step 13 Repeat 4 times

20 Dis 15A 2.5C-rate CC discharge Power measurement, 15 secs

21 OCV Final Rest battery until Time2 Voltage relaxation

The schedule file has two main parts, a step by step schedule for running the experiment

and a set of formulas for importing numbers from the batch file.

Table D.1 shows the purpose and notes for each step, see file Joel Forman\JF CCCVa 110323.sdu.

This is mainly intended for those who may be editing or building on this file in the future.

It is worth noting that the values in Steps 9 and 21 change depending on how long

that section of the experiment is intended to last. Step 9 has two time values that are set

to be identical, Time1. Step 21 has the final end time value Time2 which is always 30

hours later than Time1. Typical values are Time1 = 12 : 18 : 00 : 00 (12 days 18 hours) and

Time2 = 14 : 00 : 00 : 00 (14 days). These are always off set by 30 hours.

This next table shows the formulas used. At a first glance this may seem more compli-

cated than it needs to be, but due to the limited number of inputs and functions available

we go through some mathematical gymnastics of mapping single input numbers to multiple

numbers.
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Table D.2 Importing formulas for the schedule file

Label Experssion

1 F Vmin FLOOR(MV Mass/100) /10*1

2 F Vmax MV Mass/10 - 10*FLOOR(MV Mass/100)

3 F Crate 1.1*MV SpecificCapacity + 0

4 F Ramp 0.22*MV SpecificCapacity + 0

5 F CrateNeg -1.1*MV SpecificCapacity + 0

6 F RampNeg -0.22*MV SpecificCapacity + 0

Specifically the first the MV Mass input is exactly four digits, where:

MV Mass = #1#2#3#4 (D.1a)

F V min = #1.#2 (D.1b)

F V max = #3.#4 (D.1c)

The C-rate limit for the cycles is equal to MV Speci f icCapacity. The Arbin software

only provides these two numbers for import, a third number for import would be more

convenient.

The imported numbers are set in the batch file. They are a randomly ordered version

of 3.1. For all of the cells VoltageClampLow = 1.9 and VoltageClampHigh = 3.7. These

voltage clamps help limit the possible operating region of the cell for safety. Mass and

Speci f icCapacity are the MV Mass and MV Speci f icCapacity values respectively and, of

course, have nothing to do with the cells’ mass or specific capacity.

As an example, the cell on channel 3 has V min = 3.0V , V max = 3.3V , and the

Crate = 2.5. For future experiments one needs only edit the batch file to produce battery

degradation cycles with varying limits.
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Table D.3 The system batch file

Channel Schedule Mass (g) Specific Capacity (Ah/g)

1 Joel Forman\JF CCCVa 110323.sdu 3436 2.5

2 Joel Forman\JF CCCVa 110323.sdu 3033 2.5

3 Joel Forman\JF CCCVa 110323.sdu 2636 1.5

4 Joel Forman\JF CCCVa 110323.sdu 2035 0.5

5 Joel Forman\JF CCCVa 110323.sdu 3031 2.5

6 Joel Forman\JF CCCVa 110323.sdu 3235 2.5

7 Joel Forman\JF CCCVa 110323.sdu 3034 2.5

8 Joel Forman\JF CCCVa 110323.sdu 2021 0.5

9 Joel Forman\JF CCCVa 110323.sdu 2425 0.5

10 Joel Forman\JF CCCVa 110323.sdu 2235 2.5

11 Joel Forman\JF CCCVa 110323.sdu 2032 2

12 Joel Forman\JF CCCVa 110323.sdu 2031 2.5

13 Joel Forman\JF CCCVa 110323.sdu 2036 1.5

14 Joel Forman\JF CCCVa 110323.sdu 3536 0.5
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