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This article proposes a general theory and methodology, called the mini-
max entropy principle, for building statistical models for images (or sig-
nals) in a variety of applications. This principle consists of two parts. The 
first is the maximum entropy principle for feature binding (or fusion): 
for a given set of observed feature statistics, a distribution can be built 
to bind these feature statistics together by maximizing the entropy over 
all distributions that reproduce them. The second part is the minimum 
entropy principle for feature selection: among all plausible sets of feature 
statistics, we choose the set whose maximum entropy distribution has the 
minimum entropy. Computational and inferential issues in both parts are 
addressed; in particular, a feature pursuit procedure is proposed for ap-
proximately selecting the optimal set of features. The minimax entropy 
principle is then corrected by considering the sample variation in the ob-
served feature statistics, and an information criterion for feature pursuit 
is derived. The minimax entropy principle is applied to texture modeling, 
where a novel Markov random field (MRF) model, called FRAME (filter, 
random field, and minimax entropy), is derived, and encouraging results 
are obtained in experiments on a variety of texture images. The relation-
ship between our theory and the mechanisms of neural computation is 

also discussed. 

1 Introduction 	  

This article proposes a general theory and methodology, the minimax en-
tropy principle, for statistical modeling in a variety of applications. This 
section introduces the basic concepts of the minimax entropy principle af-
ter a discussion of the motivation of our theory and a brief review of some 
relevant theories and methods previously studied in the literature. 
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1.1 Motivation and Goal. In a variety of disciplines ranging from com-
putational vision, pattern recognition, and image coding to psychophysics, 
an important theme is to pursue a probability model to characterize a set 
of images (or signals) I. This is often posed as a statistical inference prob-
lem: we assume that there exists a joint probability distribution (or density) 
f (I) over the image space; f (I) should concentrate on a subspace that cor-
responds to the ensemble of images in the application; and the objective is 
to estimate f (I) given a set of observed (or training) images. 

f (I) plays significant roles in the following areas: 

1. Visual coding, where the goal is to take advantage of the regularity or 
redundancy in the input images to produce a compact coding scheme. 
This involves measuring the efficiency of coding schemes in terms of 
entropy (Watson, 1987; Barlow, Kaushal, & Mitchison, 1989), where the 
computation of the entropy and thus the choice of the optimal coding 
schemes depend on the estimation of f (I) . For example, two kinds of 
coding schemes are compared in the recent work of Field (1994): the 
compact coding and the sparse coding. The former assumes gaussian 
distributions for f (I), whereas the latter assumes nongaussian ones. 

2. Pattern recognition, neural networks, and statistical decision theory, where 
one often needs to find a probability model f (I) for each category of 
images of similar patterns. Thus, an accurate estimation of f (I) is a 
key factor for successful classification and recognition. 

3. Computational vision, where f (I) is often adopted as a prior model in 
terms of Bayesian theory, and it provides a language for visual com-
putation ranging from images segmentation to scene understanding 
(Zhu, 1996). 

4. Texture modeling, where the objective is to estimate f (I) by a probability 
model p(I) for each set of texture images that have perceptually similar 
texture appearances. p(I) is important not only for texture analysis 
such as texture segmentation and classification, but also plays a role in 
texture synthesis since texture images can be synthesized by sampling 
p(I). Furthermore, the nature of the texture model helps us understand 
the mechanisms of human texture perception (Julesz, 1995). 

However, making inferences about f (I) is much more challenging than 
many of the learning problems in neural modeling (Dayan, Hinton, Neal, 
& Zernel, 1995; Xu, 1995) for the following reasons. First, the dimension 
of the image space is overwhelmingly large compared with the number of 
available training examples. In texture modeling, for instance, the size of 
images is often about 200 x 200 pixels, and thus f (I) is a function of 40, 000 
variables, whereas we have access to only one or a few training images. 
This make it inappropriate to use nonparametric inference methods, such 
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as kernel methods, radial basis functions (Ripley, 1996), and mixture of 
gaussian models (Jordan & Jacobs, 1994). 

Second, f (I) is often far from being gaussian; therefore some popular 
dimension-reduction techniques, such as the principal component analysis 
(Jolliffe, 1986) and spectral analysis (Priestley, 1981), do not appear to be 
directly applicable. As an illustration of the nongaussian property, Figure la 
shows the empirical marginal distribution (or histogram) of the intensity 
differences of horizontally adjacent pixels of some natural images (Zhu 
& Mumford, 1997). As a comparison, the gaussian distribution with the 
same mean and variance is plotted as a dashed curve in Figure la. Similar 
nongaussian properties are also observed in Field (1994). Another example 
is shown in Figure lb, where the solid curve is the histogram of F * I, with 
I being a texton image shown in Figure 8a, and F is a filter with the same 
texton (see section 4.5 for details). It is clear that the solid curve is far from 
being gaussian, and as a comparison, the dotted curve in Figure lb is the 
histogram of F * I, with I being a white noise image. The outliers in the 
histogram are perceptual features, not noise! 

1.2 Previous Methods. A key issue in building a statistical model is the 
balance between generality and simplicity. The model should include rich 
structures to describe real-world images adequately and should be capa-
ble of modeling complexities due to high dimensionality and nongaussian 
property, and at the same time, it should be simple enough to be computa-
tionally feasible and give simple explanation to what we observe. To reduce 
complexity, it is often necessary to impose structures on the distribution. In 
the past, two main methods have been adopted in applications. 

The first method adopts some parametric Markov random field (MRF) 
models in the forms of Gibbs distributions—for example, the general smooth-
ness models in image restoration (Geman & Geman, 1984; Mumford & Shah, 
1989) and the conditional autoregression models in texture modeling (Be-
sag, 1973; Cross & Jain, 1983). This method involves only a small number of 
parameters and thus constructs concise distributions for images. However, 
they do not achieve adequate generality for the following reasons. First, 
these MRF models can afford only small cliques; otherwise the number of 
parameters will explode. But these small cliques can hardly capture image 
features at relatively large scales. Second, the potential functions are of very 
limited and prespecified forms, whereas in practice it is often desirable for 
the forms of the distributions to be determined or learned from the observed 
images. 

The second method is widely used in visual coding and image recon-
struction, where the high-dimensionality problem is avoided by represent-
ing the images with a relatively small set of feature statistics, and the latter 
are usually extracted by a set of well-selected filters. Examples of filters in-
clude the frequency and orientation selective Gabor filters (Daugman, 1985) 
and some wavelet pyramids based on various coding criteria (Mallat, 1989; 
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Figure 1: (a) The histogram of intensity difference at adjacent pixels and gaus-
sian curve (dashed) of same mean and variance in domain [--15.15]. (b) His-
togram of the filtered texton image (solid curve) and a filtered noise image 
(dotted curve). 
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Simoncelli, Freeman, Adelson, & Weeger, 1992; Coifman & Wickerhauser, 
1992; Donoho & Johnstone, 1994). The feature statistics extracted by a certain 
filter is usually the overall histogram of filtered images. These histograms 

are used for pattern classification, recognition, and visual coding (Watson, 
1987; Donoho & Johnstone, 1994). Despite the excellent performances of 

this method, there are two major problems yet to be solved. The first is the 
feature binding or feature fusion problem: given a set of filters and their his-

tograms, how to integrate them into a single probability distribution. This 

problem becomes much more difficult if the filters used are not all linear and 
are not independent of each other. The second problem is feature selection: 

for a given model complexity, how to choose a set of filters or features to 
characterize best the images being modeled. 

1.3 Our Theory and Methodology. In this article, a minimax entropy 

principle is proposed for building statistical models, and it provides a new 

strategy to balance between model generality and model simplicity by two 

seemingly contrary criteria: maximizing entropy and minimizing entropy. 

(I). The Maximum Entropy Principle (Jaynes 1957). Without loss of gen-

erality, any image feature can be expressed as Ow (I), where Ow ( ) can 

be a vector-valued functions of the image intensities and a is the index of 

the features. The statistic of the feature Om (I) is Ef [0(') (I)], which is the 

expectation of OM (I) with respect to f (I) and is estimated by the sample 
mean computed from the training images. Then, given a set of features 

S = {0(a)  , a = 1, 2, 	, K}, a model p(I) is constructed such that it repro- 

duces the feature statistics as observed; that is, E p[e)  (I)] = Ef[0(a ) (I)], for 
a = 1, 2 	K. Among all model p(I) satisfying such constraints, the max- 
imum entropy principle favors the simplest one in the sense that it has the 

maximum entropy. Since entropy is a measure of randomness, a maximum 

entropy (ME) model p(I) is considered as the simplest fusion or binding of 

the features and their statistics. 

(II). The Minimum Entropy Principle. The goodness of p(I) constructed 
in (I) is measured by KL(f, p), that is, the Kullback-Leibler divergence from 

f (I) to p(I) (Kullback & Leibler, 1951), and it depends on the feature set S 

that we selected. As we will show in the next section, KL(f, p) is, up to a 
constant, equal to the entropy of p(I). Thus, to estimate f (I) closely, we need 
to minimize the entropy of the ME distribution p(I) with respect to S, which 
often means that we should use as many features as possible to specify p (I) . 

In this sense, a minimum entropy principle favors model generality. When 
the model complexity or the number of features K is limited, the minimum 
entropy principle provides a criterion for selecting the feature set S that best 
characterizes f (I). 

Computational procedures are proposed for parameter estimation and 
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feature selection. The minimax entropy principle is further studied in the 

presence of sample variation of feature statistics. 
As an example of application, the minimax entropy principle is applied 

to texture modeling, where the features are extracted by filters that are se-

lected from a general filter bank, and the feature statistics are the empirical 

marginal distributions (usually further reduced to the histograms) of the 

filtered images. The resulting model, called FRAME (filters, random fields, 
and minimax entropy), is a new class of MRF model. Compared with pre-
vious MRF models, the FRAME model employs a much more enriched 

vocabulary and hence enjoys a much stronger descriptive ability, and at the 
same time, the model complexity is still under check. Texture images are 

synthesized by sampling the estimated models, and the correctness of esti-

mated models is thus verified by checking whether the synthesized texture 

images have similar visual appearances to the observed images. 

The rest of the article is arranged as follows. Section 2 studies the mini-
max entropy principle, where algorithms are proposed for parameters es-

timation and feature selection. In Section 3 we study the minimax entropy 

principle in depth by correcting it in the presence of estimation error and 

addressing the issue of variance estimation in homogeneous random fields. 

Section 4 applies the minimax entropy principle to texture modeling. Sec-

tion 5 concludes with a discussion of the texture model and the relationship 

between minimax entropy and neural modeling. 

2 The Minimax Entropy Principle 	  

To fix notation, let I be an image defined on a domain D; for example, D 
can be an N x N lattice, for each point 0 E D, I(v) E ,C, and .0 is the range 
of image intensities. For a given application, we assume that there exists an 

underlying probability distribution (or density) f (I) defined on the image 
space LID1, where 1D1 is the size of the image domain. Then the objective 
is to estimate f (I) based on a set of observed images Tbs. i = 1, . , 
sampled from f (I). 

2.1 The Maximum Entropy Principle. At the initial stage of studying 

the regularity and variability of the observed images I;-)bs, i = 1, 2, ... , M, 
one often starts from exploring a finite set of essential features that are 
characteristic of the observations. Without loss of generality, such features 

are extracted by S = 10(a )  ( ), a = 1, 2, ... , K}, where 0(') (I) can be a vector-
valued function of the image intensities. The statistics of these features are 
estimated by the sample means, 

(,) 
M 

/obs = 	Eo(a)(rbs) 	for a = 1, . . . , K. 
M 
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If the large sample effect takes place (usually a necessary condition for 

modeling), then the sample averages lito( b),, a = 1, . , KI make reasonable 

estimates for the expectations (Ef [Oa)  (I)] , a = 1, . , K1, where Ef denotes 

the expectation with respect to f (I). We call {tto(ab), , a = 1, . , K} the observed 

statistics and {Ef [0(a ) (I)J, a = 1, . , K) the expected statistics of f (I). 
To approximate f (I), a probability model p(I) is restricted to reproduce 

the observed statistics, that is, Ep[0(") (I)1 = ito( b), for a = 1, . . , K. Let 

Qs = {p(I): Ep[0(a) (I)] = [(0( b),,, VCP(a)  E 	 (2.1) 

be the set of distributions that reproduce the observed statistics of feature 
set S; then we need to select a p(I) E Qs provided that Qs 0 0. 

As far as the observed feature statistics {µo( h)s , a = 1, . 	K) are con- 
cerned, all the distributions in Qs explain them equally well, and they are 
not distinguishable from f (I) . The ME principle (Jaynes, 1957) suggests that 
we should choose p(I) that achieves the maximum entropy to obtain the 
purest and simplest fusion of the observed features and their statistics. The 
underlying philosophy is that while p(I) satisfies the constraints along some 
dimensions, it should be made as random (or smooth) as possible in other 
unconstrained dimensions, that is, p(I) should represent information no 
more than that is available and in this sense, the ME principle is often called 
the minimum prejudice principle. 

Thus we have the following constrained optimization problem, 

p(I) = arg max — f p(I) log p(I)dI I , 	 (2.2) 

subject to 	

1111 

Ep[0(') (I)] = f (p(a) (I)p(I)dI = ts, a = 1, . . . , K, 

and 

f p(I)dI = 1. 

By an application of the Lagrange multipliers, it is well known that the 
solution for p(I) has the following Gibbs distribution form: 

1 
p(I; A, S) = 	exp — Ewa), cb(a) (I))  , 	 (2.3) 

Z(A) ,=1 

where A = (x(1) , x(2) , 	x(K)) is the parameter, X4')  is a vector of the same 
dimension as (lo(")  (I), (• , • ) denotes inner product, and 

a=1 
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is the partition function, which normalizes p(I; A) into a probability distri-

bution. 

2.2 Estimation and Computation. Equation 2.3 specifies an exponential 

family of distributions (Brown, 1986), 

Os = {p(I; A, S) : A E Rd}, 	 (2.4) 

where d is the total number of parameters, and A is solved at A, which 

satisfies the constraints p(I; A, S) E Qs, that is, 

E 	A . 5 ) [(1)(a)  (I)] = bobs. a = 1, . . . , K. 	 (2.5) 

However, analytical solution of equation 2.5 is in general unavailable; in-

stead, we solve for p(I; A, S) iteratively from Os by maximum likelihood 

estimator. 
Let L(A, S) = M Em, I  log p(rbs; A, S) be the log-likelihood function for 

any p(I; A, S) E Os, and it has the following properties: 

aL(A, s)) 	1 az 	(a )   

ax(a) 	Z ax (a) 	/lobs = L 

, 
)(1: A ,S)[0(a) ] — p.obs' (a) 	Va, 	(2.6) 

a 2L(A, S) 

ax(coActir = Ep(LA.$)[(0
(a ) (I) — Ar)(ab)s)(0('8) (I) 	 V 	(2.7) 

Following equation 2.6, maximizing the log likelihood by gradient ascent 

gives the following equation for solving A iteratively: 

= Ep(I, A.$)Eq5(") (I)] — iio( b)s, a = 1, . . . , K. 	 (2.8) 

Obviously equation 2.8 converges to A = A. Moreover, equation 2.7 means 

that the Hessian matrix of L(A, S) is the covariance matrix (0(1) (I), 	, 

0(K)(I)) and thus is positive definite under the condition that a(0)  +EaK  =1  a(')  

Ow (I) 	0 	> d")  = 0 for a = 0, 	, K, which is usually satisfied. So 

L (A , S) is strictly concave with respect to A, and the solution for A uniquely 

exists. 

Following equations 2.5, 2.6, and 2.7, we have the following conclusion. 

Proposition 1. Given a feature set S, Qs n Os = {p(I; A , S)} where A is both 

the maximum entropy estimator and the maximum likelihood estimator. 

At each step t of equation 2.8, the computation of Ep(i:A.$)10(') (I)] is 
in general difficult, and we adopt the stochastic gradient method (Younes 
1988) for approximation. For a fixed A, we synthesize some typical images 

dA.(a )  

dt 
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i = 1, 	, ATI by sampling p(I; A, S) with the Gibbs sampler (Geman 

& Geman, 1984) or other Markov chain Monte Carlo (MCMC) methods 

(Winkler, 1995), and approximate Ep(i A.$)l0(a)  (I)] by the sample means; 

that is, 

ENI.A.$)i0
(a) 	(a) 

itob (A) = 	.0((x)(rn). a = 1, 	 (2.9) 
=1 

Therefore the iterative equation for computing A becomes 

cWa)  
= A(") (A) = p.,('),„)  (A) — 0( b)s , a = 1, . . . , K. 

	 (2.10) 

For the accuracy of the approximation in equation 2.9, the sample size M' 

should be large enough. The data flow for parameter estimation is shown 

in Figure 2, and the details of the algorithm can be found in (Zhu, Wu, & 

Mumford, 1996). 

2.3 The Minimum Entropy Principle. For now, suppose that the sample 

size M is large enough so that the expected feature statistics {Ef [0(a)  (I)J, a = 

1, . . , K1 can be estimated exactly by neglecting the estimation errors in the 

observed statistics {lits, a = 1, . 	K}. Then an ME distribution p(I; A*, S) 

is computed so that it reproduces the expected statistics of a feature set 

S = {0(a )  , a = 1, 2, ... K); that is, 

Ep(i,m,$)[45(a) (I)] = Ef [Om  (I)], a = 1 	K. 

Since our goal is to make an inference about the underlying distribution 

f (I), the goodness of this model can be measured by the Kullback-Leibler 

(Kullback & Leibler, 1951) divergence from f (I) to p(I; A*, S), 

 
KL(f p(I; A*, S)) = f f (I) log 

p(I; A

)

*, S) 
dI 

= Ef flog f (I)] — Ef [log p(I; A*, 5)]. 

For KL(f, p(I; A*, S)), we have the following conclusion: 

Theorem 1. In the above notation, KL(f, p(I; A*, S)) = entropy(p(I; A*, S)) — 

entropy( f ). 

See the appendix for a proof. 
In the above result, entropy( f) is fixed, and entropy(p(I; A*, 5)) depends 

on the set of features S included in the distribution p(I; A*, S). Thus minimiz-

ing KL(f, p(I; A*, S)) is equivalent to minimizing the entropy of p(I; A*, S). 

We call this the minimum entropy principle, and it has the following intu-
itive interpretations. First, in information theory, p(I; A*, S) defines a cod-

ing scheme with each I assigned a coding length — log p(I; A*, S) (Shan-

non, 1948), and entropy (p(I; A*, S)) = Ep  [— log p(I; A*, S)] stands for the 

dt 
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Figure 2: Data flow of the algorithm for model estimation and feature selection. 

expected coding length. Therefore, a minimum entropy principle chooses 
the coding system with the shortest average coding length. The shortest 

average coding length in the actually estimated model p(I; A , S) is minus 
its log likelihood in view of Proposition 2; hence minimizing entropy is the 
same as maximizing the likelihood of the data: 

Proposition 2. Given a feature set S and p(I; A , S), then L(A, S) = —entropy 

(p(I; A, S)) where A is the ML estimator. 

Proof. Since 

Eri,A,$)[95(a) (I)] = gobs' VO(a)  E S, 

— g Z(A) I 	
K 

lo — E (i' (O o(u) a obs)) 

et=1 
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K 

= — log Z(A) — E(2,(") , p..=) 
01=1 

K 

= — log Z(A) — E (5‘i(-),Epo.,,[0(0(i)])  
a=1 

= —entropy(p(I; A, S)). 

However, to keep the model complexity under check, one often needs to 
fix the number of features K. To be precise, let B be the set of all possible 
features and S c B an arbitrary set of K features. Therefore entropy mini-
mization provides a criterion for choosing the optimal set of features; that 
is, 

S* = arg Tirk entropy(p(I; A*, S)). 	 (2.11) 

According to the maximum entropy principle, 

p(I; A*, S) = arg max entropy(p). 	 (2.12) 
pEc2s 

Combining equations 2.11 and 2.12, we have 

S* = arg min {max entropy(p)}. 	 (2.13) 
IS1=K pcS2, 

We call equation 2.13 the minimax entropy principle. We have demonstrated 
that this principle is consistent with the goal of modeling: Finding the 
best estimate for the underlying distribution f (I), and the relationship be-
tween minimax entropy and maximum likelihood estimator is addressed 
by Propositions 1 and 2. 

2.4 Feature Pursuit. Enumerating all possible sets of features S c B 

and comparing their entropies is certainly impractical. Instead, we propose 
a greedy procedure to pursue the features in the following way.1  Start from 
an empty feature set 0 and p(I) a uniform distribution, add to the model 
one feature at a time such that the added feature leads to the maximum 
decrease in the entropy of ME model p(I; A*, S), and keep doing this until 
the entropy decrease is smaller than a certain value. To be precise, let S = 
{0(') , a = 1 	K) be the currently selected set of features, and let 

K 

p = p(I: A, S) = Z(A) exp — E(),,(a) 0(a )  (I)) 

a=1 

(2.14) 

I  We use the word pursuit to represent the stepwise method and distinguish it from 
selection. 
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be the ME distribution fitted to f (I) (we omit * from A for notational sim-

plicity in this subsection). For any new feature OW)  E B/S, let S+  =SUN)C6) } 

be a new feature set. The new ME distribution is 

p+  = 

Ep+  [4)(a )  (I)] 
for a = 1, ... 

p(I; A+, S+) 

1 
(A.± 	, 

a=) 

for a = 1, 2, 

(I)) 

... , K, 

, 	(I))1 	• 

and in general, X(H`!)  

(2.15) 

A.(')  

exp 
Z(A +) 

= 
, K. 

According to the above discussion, we choose feature cp(K+1)  to maximize 

the entropy decrease over the remaining features; that is, 

o(K+1) - arg max d(e) ), 
q5(1')E13/S 

where 

d(0(13) ) = KL(f, p) - KL(f, p+) = entropy(p) - entropy(p+) = KL(p+, p) 

is the entropy decrease. Let (I)(I) = (0(1)  (I), 	, 0(K) (I)), since Et„ f0 (1)1 = 

E p[(1)(I)] = Ef [(13. 	d(e) is a function of the difference between p+  and p 

on feature $8). By second-order Taylor expansion, d(00)) can be expressed 

in a quadratic form. 

Proposition 3. In the above notation, 

d(0(13) ) = (Ep[O(8) (1)] - Ef[0(s) (1)1)' 

x V71 (E
P 
 [00)(1)] - Ef[0(M (i)]), 

P  
(2.16) 

where p' is a distribution such that Er [43(1)] = Ef[(1)(1)], and E [ (P C8  ) ( I)1 lies 

between Ep[0(13) (1)] and Ef[0(r3)(1)i.  Vp = V22 - V21 ViTil  V12, where V11 = 

Varp, [0(1)], V22 = Varr [03)  (I)1, V12 = COVp,  [CD (I), (/)(l)  (I)], and V21  = Vu. 

See the appendix for proof. 

The V can be interpreted as follows. Let C = -1712V-1-11, and let (/),(/5)  (I) = 

O( T )  (1)+0[13(1) be the linear combination of 00) (1) and (13(I); then under p', it 

can be shown that 0(13)(1) is uncorrelated with (1)(1), thus Vp,  = Varp,  [Or (I)] 

is the variance of 03) (1) with its dependence on (I)(I) being eliminated. 

In practice, Ef[00)(I)] is estimated by the observed statistic /..to(fit,),, and 

Ep I0(13)  (I)] by 143n)  —the sample mean computed from synthesized images 
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sampled from the current model p. If the intermediate distribution p' is 
approximated using the current distribution p, the distance d(00)) is ap-
proximated by 

d(0(1) ) ti _ A
obs 
O) 	"(,8) V

p 
	13) 	(to 

2 	 (N obs Asyn) (2.17) 

where Vp  = Vart,(4)1(fi) ) is the variance estimated from the synthesized im-
ages. We will further study the estimation of Vp in section 3.2. 

The feature pursuit procedure governed by equation 2.17 has the follow-
ing intuitive interpretation. Under the current model p, for any new feature 
,(fi) 	( 	• to 

, s" the statistic we observe from the image samples following p. If 
(t3 ) 

itt,(fiyn)  is close to obs' then adding this new feature to p(I; A) leads to little 
improvement in estimating f (I). So we should look for the most salient new 

feature 00)  such that p.,s(cn)  is very different from p,(P)  The saliency of the obs 

new feature is measured by d(O( P) ), which is the discrepancy between p,s(yn)  

and ito(fib)s  scaled by Vp, where Vp  is the variance of the new feature compen-
sated for dependence of the new feature on the old ones under the current 
model. 

As a summary, Figure 2 illustrates the data flow for both the computation 
of the model and the pursuit of features. 

3 More on Minimax Entropy 	  

3.1 Correcting the Minimum Entropy Principle. In previous sections, 
for a set of features S = {(p(") , a = 1, . , KI, we have studied two ME distri-
butions. One is p(I; A, S), which reproduces the observed feature statistics, 
that is, 

E A.$)t0(a) (I)]  = 4bs o )  ' 	
for a = 1, . . . , K, 

and the other is p(I; A*, S), which reproduces the expected feature statistics, 
that is, 

Ep(t, A. , s) [95(a)  (I)] = Ef [0(') (I)1, 	for a = 1, . . . , K. 

In the previous derivations, we assume that {Ef [0(")  (1)1, a = 1, . , K1 can 

be estimated exactly by the observed statistics {p,ot, a = 1, . , K}, which 
is not true in practice since only a finite sample is observed. Taking the 
estimation errors into account, we need to correct the minimum entropy 
principle and the feature pursuit procedure. 

First, let us consider the minimum entropy principle, which relates the 
Kullback-Leibler divergence KL(f, p(I; A, S)) to the entropy of the model 
p(I; A, S) for A = A*. Since in practice A is estimated at A, the good-
ness of the actual model should be measured by KL(f, p(I; A , S)) instead 
of KL(f, p(I; A*, S)), for which we have: 
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Proposition 4. In the above notation, 

KL(f, p(I; A , S)) = KL(f, p(I; A*, 5)) + KL(p(I; A", S), p(I; A , S)). (3.1) 

See the appendix for proof. 

That is, because of the estimation error, p(I; A, S) does not come as close 

to f (I) as p(I; A*, S) does, and the extra noise is measured by KL(p(I; A*, S), 

p(I; A, S)). In fact, A in model p(I; A, S) is a random variable depending 

on the random sample II;ths, i = 1, . , MI; so is KL(f, p(I; A, S)). Let Eobs  

stands for the expectation with respect to the training images. Applying 

Eobs to both sides of equation 3.1, we have, 

Eobs[KL( f p(I; A,  S))] 

= KL(f, p(I; A*, S)) + EobsiKL(p(I; A*, S), p(I; A, S))] 

= entropy(p(I; A*, S)) — entropy(f) 

+ Eobs[KL(p(I; A*, S), p(I; A, S))]. 	 (3.2) 

The following proposition relates entropy(p(I; A*, S)) to entropy(p(I; A, S)). 

Proposition 5. In the above notation, 

entropy(p(I; A*, S)) = Eobs [entropy(p(I: A, S))] 

+ Eobsin(p(I; A, S), p(I; A*, S))]. 
	(3.3) 

See the appendix for proof. 

According to Proposition 5, the entropy of p(I; A, S) is on average smaller 

than the entropy of p(I; A*, S); this is because A is estimated from specific 

training data, and hence p(I; A , S) does a better job than p(I; A*, S) in fitting 

the training data. 
Combining equations 3.2 and 3.3, we have 

Fobs[KL(f, p(I; A, S))] = Eobs[entropy(p(I; A, S))] 

— entropy(f) + C1  + C2, 
	 (3.4) 

where the two correction terms are 

Cl = Eobsin(p(I; A*, S), p(I; A, 5))], 

C2 = Eobs[KL(P(I; A, S), p(I; A*, 5))]. 

Following Ripley (1996, sec. 2.2), both C1 and C2 can be approximated by 

2M 

1 
tr(Varf[(1)(I)]Vaq,1 [(1)(I)]) + 0(M-3/2), 
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where tr() is the trace of matrix. Therefore, we arrive at the following form 
of the Akaike information criterion (Akaike, 1977): 

Eobs [KL(f, p(I; A,  S))] ti Eobs[entropy(p(I; A, S))] - entropy( f ) 

1  
+ M tr(Varf (1)1Varp7,1  (I)]), 

where we drop the higher-order term 0(M-312). The optimal set of features 

should be chosen to minimize Eobs [KL(f, p(I; A , S))1, which leads to the 
following correction of the minimum entropy principle: 

S* = arg 
1=-K  
minlentropy(p(I; 	

M 
S)) + —

1
tr (Var

f 	 P* 
(I)]Var-1  [(1)(1)1)} . (3.5) 

In practice, Var f [(13 (I)] and Varp. (I)] can be estimated from the observed 
images and synthesized images, respectively. If Var f[013. (I)] 	Varp. VI) (I)], 

then tr(Varf[0(1)]Vart,7,1 [(I) (I)]) is approximately the number of free param-
eters in the model. This provides another reason for restricting the model 
complexity besides scientific parsimony and computational efficiency. An-
other perspective for this issue is the minimum description length (MDL) 
principle (Rissanen, 1989). 

Now let us consider correcting the feature pursuit procedure. Following 
the notation in section 2.4, at each step K + 1, suppose we choose a new 
feature 03), and let (1)±(I) = ((1)(I), (/)(fi )  (I)); the decrease of the expected 
Kullback-Leibler divergence is: 

Eths [KL(f, p)] - Eobs [KL(f, p+)] 

= d(e) - —ml  [tr(Var f[c (1)]Var-1  [D+ (I)]) 

- tr(Varf[(1)(1)]Varp7,1 [0(1)])]. 

By linear algebra, we can show that 

tr (Var f [43+  (I)]Varp-.1  [43 (I)]) - tr(Varf[(1)(1)]Varp7,1 [0(1)]) 

= tr(Varf[0(13)  (1)1VarpI[0?)  (1)]). 	 (3.6) 

See the appendix for the proof of equation 3.6. 
Therefore, at every step of the (corrected) feature pursuit procedure, we 

should choose 00)  to maximize 

ci (0(M) = c/(0(fi)) - —1  tr (Var f[e)  ]Var p7,+1  [(el) . 

In practice, we approximate Varp.±  [0] )] by Varp[O L(fi) 1, and estimate the 

variances from the observed and synthesized images. Let /.11'80)1), and Vobs  be 
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{or (rbs),  = the sample mean and variance of 	 1, 2, . , M} and let 	be 

the sample variance of 10_LC8) (Ir'n  ) , i 1, 2 	M }. Thus we have 

1 	 1 
d (0( P ) ) 	(W M  — ti (13)  f/71 	— AU°  ) — — tr(f7„b A7-1  ) 	(3.7) 2  syn 	obs syn syn 	obs 	M 	s syn 

We note that in equation 3.7, 

M 

tr(    	—  tr (E (00) obs µ (l)) 
)(e)(rbs)— 	

(-1 
obssyn m ± 	Labs 	sY 

n) 

1 (01(P ) (lobs) 	
lobs)

,Tisy1n  (o_LO) (lobs ) 	(13) 
_Lobs 

i=1 

is a measure of fluctuation in the observed images. 
The intuitive meaning of equation 3.7 is the following. The first term is 

the distance between its(f3,3,)  and ttot),„ and we call it the gain by introducing a 

new feature cp ( fi) . The second term measures the uncertainty in estimating 
Ef 100)  (1)1, and we call it the loss by adding 00). If the loss term is large, 

it means the feature is less common to the observed images; thus d' (0( M) 

is small. When iisceyn)  comes very close to µ0( b)s, d' (03) ) become negative, 
which provides a criterion for stopping the iteration in computing A in 
equation 2.10. 

3.2 Variance Estimation in Homogeneous Random Field. In previous 
sections, we assume that we have M independent observations rbs, i = 
1, 2, ... , M, and each les is of the same size as the image domain D (N x N 

pixels). A feature 00)(rbs) is computed based on the intensities of an entire 
image, and the sample mean and variance are then computed from 0(13) (rbs )  

i = 1, 2, . , M. The same is true for synthesized images. However, in many 
applications, such as texture modeling in the next section, it is assumed that 
the underlying distribution f (I) is ergodic and images I are homogeneous; 
thus, 00)(1) is often expressed as the average of local features 0- (r)c ): 

1 

FD1 „, 
ip(") w+v), 

where )// (T )  is a function defined on locally supported (filter) windows W 
centered at v E D. Therefore by ergodicity we still estimate Ef100)(I)1 and 

Varf[03) (I)] reasonably well even through only a single image is observed, 
provided that the observed image is large enough compared to the strength 
of autocorrelation. 

In particular, we adopt the method recently proposed by Sherman (1996) 
for the estimation of Varf[e) (I)]. To fix notation, suppose we observe one 

i=1 

M 
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image jobs  on an N0  x No  lattice Dobs, and we define subdomains 7),J„ C Dobs, 
j = 1, 2, . , f. For simplicity, we assume all subdomains are square image 
patches of the same size of m x m pixels; m is usually chosen at the scale of 
,/N„, and the subdomains may overlap each other. Then for each subdomain 

D,/„, we compute 03) (7)/m) = E 	vio)(il w,f ), and the sample mean 
m2 	OED,,, 

and variance are computed over the subdomains: 

„ (fi) 	 ,I,(8) ( DI 
1-.b 	— 	■ In) 

j=1 

t  
Var oC6b),(Dm ) = — 	(0(13) (1)1m) — ,()t),(7,m)) (0°)  (Dim) — 110,),(Dm))'  

j=1 

Then, according to Sherman (1996), Varf 	(I)] can be estimated by 

2 
Var(  (D ). N2 obs 

Now let us consider the feature pursuit criterion in equation 3.7. For 

featureO_LC8)  we define variance f/obs (Di ) = M2  f/obs (Drn), where 1706s (Dm ) is 

the sample variance of 01)  (Dim ), j = 1, 2, . , f. Then from the above result, 

we can approximate f/Obs  in equation 3.7 by f706, (Di )/N2- Similarly f/syr, in 

equation 3.7 is replaced by 1̂/syn(7,1)/N2. Thus we have 

	

ci (0(13) ) ;---- N2  —1  (ito) _ , (t3)  )' 17-1  ti, \r (8) 	(8) , [ 
2 	5)70 	'-- nbs' syn ■ 1 f 4,tsyn 	/lobs i 

— 1
c 
—
c 

tr(f/obs (D1) f/sylo  (D1))1 , (3.8) 

where c is 17,,,b,1 minus the number of pixels around the boundary. From 
equation 3.8, we notice that d' (00)) is proportional to N2—the size of domain 
D. 

A more rigorous study is often complicated by phase transition, and we 
shall not pursue it in this article. 

4 Application to Texture Modeling 	  

This section applies the minimax entropy principle to texture modeling. 

4.1 The General Problem. Texture is an important characteristic of sur-
face property in visual scenes and a power cue in visual perception. A gen-
eral model for textures has long been sought in both computational vision 
and psychology, but such a model is still far from being achieved because 
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of the vast diversity of the physical and chemical processes that generate 
textures and the large number of attributes that need to be considered. As 
an illustration of the diversity of textures, Figure 3 displays some typical 
texture images. 

Existing models for textures can be roughly classified into three cate-
gories: (1) dynamic equations or replacement rules, which simulate specific 
physical and chemical processes to generate textures (Witkin & Kass, 1991; 
Picard, 1996), (2) the kth-order statistics model for texture perception, that 
is, the famous Julesz's conjecture (Julesz, 1962), and (3) MRF models. (For a 
discussion of previous models and methods, see Zhu et al., 1996.) 

In our method, a texture is considered an ensemble of images of sim-
ilar texture appearances governed by a probability distribution f (I). As 
discussed in section 2, we seek a model p(I; A, S) given a set of observed 

images. p(I; A, S) should be consistent with human texture perception in 
the sense that if p(I; A, S) estimates f (I) closely, the images sampled from 

p(I; A, S) should be perceptually similar to the training images. 

4.2 Choosing Features and Their Statistics. As the first step of applying 
the minimax entropy principle, we need to choose image features and their 

statistics, that is, 0(") (I) and p,0( `'b), a = 1, 2, ... , K. 
First, we limit our model to homogeneous textures; thus f (I) is stationary 

with respect to location iri. We assume that features of texture images can 
be extracted by "filters" Pa) , a = 1, 2, . . . , K, where F(a)  can be a linear or 
nonlinear function of the intensities of the image I. Let I(a )  (I)) denote the 

filter response at point f, E V. that is, I(') (5) -= F(a )  w+5) is a function 
depending on the intensities inside window W centered at v. 

Second, recent psychophysical research on human texture perception 
suggests that two homogeneous textures are often difficult to discriminate 
when they produce similar marginal distributions (histograms) of responses 
from a bank of filters (Bergen & Adelson, 1991; Chubb & Landy, 1991). Moti-
vated by the psychophysical research, we make the following assumptions 
to limit the number of filters and the window size of each filter for compu-
tational reason, though these assumptions are not necessary conditions for 
our theory to hold true: 

1. All features that concern texture perception can be captured by "lo-
cally" supported filters. By "locally" we mean that the sizes of filters 
should be much smaller than the size of the image. For example, the 
size of image is 256 x 256 pixels, and the window sizes of filters are 
limited to be less than 33 x 33 pixels. 

2. Only a finite set of filters are used. 

Given a filter F('), we compute the histogram of the filtered image I(")  
as the features of I. Therefore in texture modeling, the notation Ø(")  (I) is 
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Figure 3: Some typical texture images. 
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replaced by 

H(")  (I, z) = — 
	

3(z — I(")  (Zi)), 	a = 1, 2, 	, K. Z E R 

where E ( ) is the Dirac point mass function concentrated at 0. Correspond-

ingly the observed statistics ',tot), are defined as 

(u) 
gobs ( = M L M 1=1 

H(01) (rbS z) ,  
a = 1, 2, ... , K. 

H(")  (I, z) and pts(z) are, in theory, continuous functions of z.2  In practice, 

they are approximated by piecewise constant functions of a finite number L 

of bins and are denoted by H(a)  (1) and [4.0( b), as L (e.g., L = 32) dimensional 

vectors in the rest of the article. 
As the sample size M is large or the images rbs are large so that the large 

sample effect takes place by ergodicity, then pc ot),(z) will be a close estimate 

of the marginal distributions of f (I): 

f(a ) (z) = Ef [H(
")  (I, z)]. 

Another motivation for choosing /Lot (z) as feature statistics comes from 

a mathematical theorem, which states that f (I) is determined by all its 

marginal distributions f(a ) (z). Thus, if model p(I) reproduces f(a) (z) for 

all a, then p(I) = f (I) (Zhu et al., 1996). 

Substituting H(") (I) for (a) (I) in equation 2.3, we obtain 

p(I; A, S) =  1 exp 	E(x(0,H(-)(u) 1 , 
Z(A) 

ce=1 

(4.1) 

which we call the FRAME model. Here the angle brackets indicate that we 

are taking a sum over bin z: that is, (),('), H(') (I)) 	Ez  x(za)H(a)(I, z). 

The computation of the parameters A and the selection of filters F(a)  

proceed as described in the last section. For detailed analysis of the texture 
modeling algorithm, see Zhu et al. (1996). 

4.3 FRAME: A New Class of MRF Models. In this section, we derive 

a continuous form for the FRAME model in equation 4.1, and compare it 
with existing MRF models. 

2  Compared with the definitions of (p("° (I) and /..t.0( b)s, H(") (I. z) and pt,(z) are consid-

ered vectors of infinite dimensions. 
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Since the histograms of an image are continuous functions, the constraint 

in the ME optimization problem is the following: 

E
p [IDI f,,D  

(z — I(u )  (6)) = ito( 7,),(z), 	Vz R, VS) E 	, Va. 	(4.2) 

By an application of Lagrange multipliers, maximizing the entropy of p(I) 

under the above constraints gives 

p(I; A, S) = 	 
1 	 1 

Z(A) exid — 	f 
a=1 ijcD X

(a)  (z) —
ID I cD

6 — I(a)  0))dz 

1  

Z(A) ex+EE 
a=1 F)ED 

((.Y 	 (5)) I (4.3) 

Since z is a continuous variable, there is an infinite number of constraints. 

The Lagrange multipliers A = WU( ) 	),(K)  ( )) take the form as one- 

dimensional potential functions. More specifically when the filters are linear, 

I(a )  (5) = F(a )  * I(S), and we can rewrite equation 4.3 as, 

p(I; A, S) = 
 1 

exp 	EEx(a)(F(a)*I(0))1. 	 (4.4) 
Z(A) 

z7; 

Clearly, equations 4.3 and 4.4 are MRF models or, equivalently, Gibbs 

distributions. But unlike the previous MRF models, the potentials are built 

directly on the filter response instead of cliques, and the forms of the po-

tential functions ),.(a)  ( ) are learned from the training images, so they can 
incorporate high-order statistics and thus model nongaussian properties of 

images. The FRAME model has much stronger expressive power than tra-
ditional clique-based MRF models. Every filter introduces the same number 

of L parameters regardless of its window size, which enables us to explore 

structures at large scales (e.g., the 33 x 33 pixel filters in modeling the fabric 

texture in section 4.5). It is easy to show that existing MRF models for texture 
are special cases of the FRAME model with the filters and their potential 

functions specified. Detailed comparison between the FRAME model and 

the MRF models is covered in Zhu et al. (1996). 

4.4 Designing a Filter Bank. To describe a wide variety of textures, we 
need to specify a general filter bank, which serves as the "vocabulary" by 

analogy to language. We shall not discuss the rules for constructing an opti-
mal filter bank; instead, we use the following five kinds of filters motivated 
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by the multichannel filtering mechanism discovered and generally accepted 
in neurophysiology (Silverman, Grosof, De Valois, & Elfar, 1989). 

1. The intensity filter, (1( ), for capturing the DC component. 

2. The Laplacian of gaussian filters, which are isotropic center surrounded 
and are often used to model retinal ganglion cells. The impulse re-
sponse functions are of the following form: 

LG(x, y T) = const 
02 + y2 T2)e  

	
(4.5) 

We choose eight scales with T = ,s/2/2, 1, 2, 3, 4, 5, and 6. The filter 

with scale T is denoted by LG(T). 

3. The Gabor filters, which are models for the frequency and orientation-
sensitive simple cells. The impulse response functions are of the fol-
lowing form, 

Gabor(x, y T, 0) = const oc
(4(x cos 0 +y sin 0) 2  +(—x sin 0+y cos 9) 2 ) 

z+-2 

(x cos 9-Ey sin 0) 
X e — 	 (4.6) 

where T controls the scales and 0 controls the orientations. We choose 
six scales T = 2, 4, 6, 8, 10, and 12 and six orientations 0 = 00 , 30', 60°, 
90', 120°, and 150°. Notice that these filters are not nearly orthogonal 
to each other, so there is overlap among the information cap-
tured by them. The sine and cosine components are denoted by 
G sin(T, 0) and G cos(T, 0), respectively. 

4. The nonlinear Gabor filters, which are models for the complex cells, 
and responses from which are the powers of the responses from a pair 
of Gabor filters, Gabor(x, y T, 0) * 112. This filter denoted by SP(T, 0) 

is, in fact, the local spectrum of I at (x, y) smoothed by a gaussian 
function. 

5. Some specially designed filters for texton primitives. (See section 4.5.) 

4.5 Experiments of Texture Modeling. This section describes the mod-
eling of natural textures using the algorithm studied in sections 2 and 3. 
The first texture image is described in detail to illustrate the filter pursuit 
procedure. 

Suppose we are modeling f (I) where I is of 64 x 64 pixels. Figure 4a is 
an observed image of animal fur (128 x 128 pixels). We start from the filter 
set S = 0 and p(I; A, S) a uniform distribution from which a uniform white 
noise image is sampled and is displayed in Figure 4b (128 x 128 pixels). The 
algorithm first computes d (4)(1))  according to equations 3.7 and 3.8 for each 
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Filter Size tr(0*1) ) (r(9)(2 ) d' (0(31) d'(0°) ) cr((/)*5) ) d'(0(8) ) 

S 1 x 1 1018.2 42.2 50.8 20.0 26.4 *-1.8 

LG( .../ 	) 3 x 3 4205.9 466.0 107.4 172.9 41.6 22.6 

LG(1)  5 x 5 4492.3 - *-1.4 

LG(2)  9 x 9 20.2 465.7 159.3 24.5 6.3 18.5 

G cos(2, 0°) 5 x 5 3140.8 188.3 140.4 137.0 135.4 *-3.2 

G cos(2, 30°) 5 x 5 4240.3 668.0 307.6 317.8 *-1.9 

G cos(2. 60°) 5 x 5 3548.8 124.6 25.1 21.9 14.2 7.5 

G cos(2, 90°) 5 x 5 1063.3 62.1 38.1 90.3 40.7 1.1 

G cos(2, 120 ') 5 x 5 1910.7 26.2 2.0 2.5 47.6 16.4 

G cos(2, 150°) 5 x 5 3717.2 220.7 189.2 161.7 9.3 -0.8 

Gcos(4, 0°) 7 x 7 958.2 25.7 17.9 5.3 8.2 6.4 

G cos (4, 30°) 7 x 7 2205.8 125.5 61.0 75.2 35.0 0.9 

G cos(4, 600 ) 7 x 7 1199.5 32.7 35.4 12.2 10.9 6.9 

G cos (4, 90°) 7 x 7 108.8 229.6 130.6 20.2 31.9 30.2 

Gcos(4, 120°) 7 x 7 19.2 1146.4 - *-2.7 

Gcos(4, 150°) 7 x 7 157.5 247.1 10.4 101.9 56.0 3.9 

G cos(6, 0°) 11 x 11 102.1 12.8 4.3 -1.2 19.0 1.8 

G cos(6, 30") 11 x 11 217.3 54.8 8.4 32.9 11.5 -1.7 

Gcos(6, 60°) 11 x 11 85.6 4.7 0.1 4.5 3.8 6.0 

G cos(6, 90°) 11 x 11 13.6 134.8 192.4 -0.4 7.9 1.6 

G cos (6. 120°) 11 x 11 321.7 706.8 640.3 *-2.8 

G cos(6, 150°) 11 x 11 3.8 100.1 12.7 98.6 75.1 *-1.4 

G cos(8, 0') 15 x 15 -1.6 11.0 -0.2 4.6 9.7 14.3 

G cos(8, 30-) 15 x 15 2.4 33.0 2.1 13.8 12.7 -0.1 

G cos(8. 60 ) 15 x 15 10.7 5.5 -1.2 4.1 6.8 1.3 

G cos(8, 90°) 15 x 15 203.0 51.9 71.7 3.9 12.3 6.8 

G cos(8, 120" ) 15 x 15 586.8 276.6 361.8 58.2 58.2 3.7 

G cos(8, 1500 ) 15 x 15 140.1 44.6 1.3 45.5 42.5 38.0 

Notes: *This filter has been chosen. Value computed using feature 0(13) , not or. The 

boldface numbers are the largest in each column and are thus chosen in the algorithm. 

filter, and cl (W U) for some filters are listed in Table 1. Filter LG(1) has the 
largest entropy decrease and thus is chosen as the first filter, S = {LG(1)}. 
Then a model p(I; A, S) is computed, and a synthesized image is shown in 
Figure 4c. 

Comparing Figure 4c with Figure 4b, it is evident that this filter cap-
tures local smoothness features of the observed texture image. Continuing 
the algorithm, six more filters are sequentially added: (2) G cos(4, 120°); (3) 

G cos(6, 1200); (4) G cos(2, 30°); (5) G cos(2, 00 ); (6) G cos(6, 150°); and (7) in-
tensity 6( ). The texture images synthesized using 3, 4, and 7 filters are 
displayed in Figures 4d-f. Obviously, with more filters added, the synthe-
sized texture image gets closer to the observed one. After choosing seven 
filters, the entropy decrease for all filters becomes very small; some are neg-
ative. Similar results are observed for those filters not listed in Table 1. This 
confirms our early assumption that the marginal distributions of a small 
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(a) 
	

(b) 

(c) 
	

(d) 

(e) 
	

(0 

Figure 4: Synthesis of the fur texture. (a) The observed image. (b—f) The synthe-
sized images using 0, 1, 3, 4, 7 filters, respectively. 
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(a) 
	

(b) 

Figure 5: (a) The observed texture: mud. (b) The synthesized one using five 
filters. 

(a) 
	

(b) 

Figure 6: (a) The observed texture image: cheetah blob. (b) The synthesized one 
using six filters. 

number of filtered images should be adequate for capturing the essential 
features of the underlying probability distribution f (I) .3  

Figure 5a is the scene of mud ground with scattered animal footprints, 
which are filled with water and thus get brighter. This texture image shows 
sparse features. Figure 5b is the synthesized texture image using five filters. 

Figure 6a is an image taken from the skin of a cheetah, and Figure 6b 
displays the synthesized texture using six filters. Notice that the original 

3  The synthetic fur texture in these figures is better than that in Zhu et al. (1996) since the 
L1  criterion used here for filter pursuit has been replaced by the criterion of equation 3.7. 
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(a) 

(c) 

(b) 

(d) 

Figure 7: (a) The input image of fabric. (b) The synthesized image with two pairs 
of Gabor filters plus the Laplacian of gaussian filter. (c, d) Two more images 
sampled at different steps of the Gibbs sampler. 

observed texture image is not homogeneous, since the shapes of the blobs 
vary systematically with spatial locations, and the left upper corner is darker 
than the right lower one. The synthesized texture, shown in Figure 6b, also 
has elongated blobs introduced by different filters, but the bright pixels 
seem to spread uniformly across the image due to the effect of entropy 
maximization. 

Figure 7a shows a texture of fabric that has clear periods along both hor-
izontal and vertical directions. We choose two nonlinear filters: spectrum 
analyzers SP(17, 0°) and SP(17, 90°) , with their periods T tuned to the pe-
riods of the texture, and the window sizes of the filters are 33 x 33 pixels. 
We also use the intensity filter 8( ) and filter LG(/2) to take care of the 
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Figure 8: Two typical texton images of 256 x 256 pixels: (a) circle and (b) cross. 

(c, d) The two synthesized images of 128 x 128 pixels. 

intensity histogram and the smoothness features. Three synthesized texture 

images are displayed in Figures 7b—d at different sampling steps. This ex-

periment shows that once the Markov chain becomes stationary or gets close 

to stationary, the sampled images from p(I) will always have perceptually 

similar appearances but with different details. 

Figures 8a and 8b show two special binary texture images formed from 

identical textons (circles and crosses), which are studied extensively by psy-

chologists for the purpose of understanding human texture perception. Our 

interest here is to see whether this class of textures can still be modeled by 

FRAME. We use the linear filter whose impulse response function is a mask 

with the corresponding texton at the center. With this filter selected, Fig-

ure lb plots the histograms of the filtered image F * I, with I being the 

texton image observed in Figure 8a (solid curve) and a uniform noise image 

(dotted curve). Observe that there are many isolated peaks in the observed 

histogram, which stand for important image features. The computation of 

the model is complicated by the nature of such isolated peaks, and we pro-

posed an annealing approach for computing A (for details see Zhu et al., 
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1996). Figures 8c and 8d show two synthesized images. 

5 Discussion 	  

This article proposes a minimax entropy principle for building probability 
models in a variety of applications. Our theory answers two major ques-
tions. The first is feature binding or feature fusion: how to integrate image 
features and their statistics into a single joint probability distribution with-
out limiting the forms of the features. The second is feature selection: how 
to choose a set of features to characterize best the observed images. Algo-
rithms are proposed for parameter estimation and stochastic simulation. A 
greedy algorithm is developed for feature pursuit, and the minimax entropy 
principle is corrected for the presence of sample variations. 

As an example of applications, we apply the minimax entropy principle 
to modeling textures. There are various artificial categories for textures with 
respect to various attributes, such as Fourier and non-Fourier, deterministic 
and stochastic, and macro- and microtextures. FRAME erases these artifi-
cial boundaries and characterizes them in a unified model with different 
filters and parameter values. It has been well recognized that the traditional 
MRF models, as special cases of FRAME, can be used to model stochastic, 
non-Fourier microtextures. From the textures we synthesized, it is evident 
that FRAME is also capable of modeling periodic and deterministic tex-
tures (fabric), textures with large-scale elements (fur and cheetah blob), and 
textures with distinguishable textons (circles and cross bars). 

Our method for texture modeling was inspired by and bears some simi-
larities to the recent work by Heeger and Bergen (1995) on texture synthesis, 
where many natural-looking texture images are successfully synthesized by 
matching the histograms of filter responses organized in the form of a pyra-
mid. Compared with Heeger and Bergen's algorithm, the FRAME model 
is distinctive in the following aspects. First, we obtain a probability model 
p(I; A, S) instead of merely synthesizing texture images. Second, the Monte 
Carlo Markov chain for model estimation and texture sampling is guaran-
teed to converge to a stationary process that follows the estimated distribu-
tion p(I; A, S) (Geman & Geman, 1984), and the observed histograms can 
be matched closely. However, the FRAME model is computationally expen-
sive, and approaches for further facilitating the computation are yet to be 
developed. For more discussion on this aspect, see Zhu et al. (1996). 

Many textures seem still difficult to model, such as the two human syn-
thesized cloth textures shown in Figure 9. It appears that synthesizing such 
textures requires far more sophisticated features than those we have used in 
the texture modeling experiments, and these features may correspond to a 
high-level visual process, such as the geometrical properties of object shape. 
In this article, we choose filters from a fixed set of filters, but in general it 
is not understood how to design such set of features or structures for an 
arbitrary applications. 
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(a) (b) 

Figure 9: Two challenging texture images. 

An important issue is whether the minimax entropy principle for model 
inference is "biologically plausible" and might be considered a model for 
the method used by natural intelligences in constructing models of classes 
of images. From a computational standpoint, the maximum entropy phase 
of the algorithm consists mainly of approximating the values of the La-
grange multipliers, which we have done by hill climbing with respect to 
log likelihood. Specifically, we have used Monte Carlo methods to sample 
our distributions and plugged the sampled statistics into the gradient of log 
likelihood. One of the authors has conjectured that feedback pathways in 
the cortex may serve the function of forming mental images on the basis of 
learned models of the distribution on images (Mumford, 1992). Such a mech-
anism might well sample by Monte Carlo as in the algorithm in this article. 
That theory further postulated that the cortex seeks out the "residuals," the 
features of the observed image different from those of the mental image. The 
algorithm shows how such residuals can be used to drive a learning pro-
cess in which the Lagrange multipliers are gradually improved to increase 
the log likelihood. We would conjecture that these Lagrange multipliers 
are stored as suitable synaptic weights in the higher visual area or in the 
top-down pathway. Given the massively parallel architecture, the apparent 
stochastic component in neural firing, and the huge amount of observed 
images processed every day, the computational load of our algorithm may 
not be excessive for cortical implementation. 

The minimum entropy phase of our algorithm has some direct experi-
mental evidence in its favor. There has been extensive psychophysical ex-
perimentation on the phenomenon of preattentive texture discrimination. 
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We propose that textures that can be preattentively discriminated are ex-
actly those for which suitable filters have been incorporated into a mini-
mum entropy cortical model and that the process by which subjects can 
train themselves to discriminate new sets of textures preattentively is ex-
actly that of incorporating a new filter feature into the model. Evidence that 
texture pairs that are not preattentively segmentable by naive subjects be-
come segmentable after practice has been reported by many groups, most 
notably by Karni and Sagi (1991). The remarkable specificity of the reported 
texture discrimination learning suggests that very specific new filters are 
incorporated into the cortical texture model, as in our theory. 

Appendix: Mathematical Details 	  

	

Proof of Theorem 1. Let A* = P*(1) , ),*(2) , 	, .*(1() ) be the parameter. By 

definition we have Ep(I.A.,$)[45(')  (I)] = E40(a) (I)], a = 1, ... , K. 

Ef [log p(I; A*, ,5)] = -Ef [log Z(A*)] - E Ef kx-(0), 0(-) (i)) i, 
a=1. 

= — log Z(A*) Ew(a), Ef[0(a) (N) , 

= — log Z(A*) Ew(a) Ep(I.A* .5)[0(a) (I)1), 
a=1 

= Ep(I.A.,S)[10gp(I; A*, S)] = -entropy(p(I; A*, S)). 

and the result follows. 

Proof of Proposition 3. Let c = (q)(1) (I), 	, OK)  (I)), (D.+  = ((DM, 03) (1)). 

We have the entropy decrease 

d(q)(13) ) = KL(p+; p) 

= 
2 
-(E

P 
 [c13+(I)] - Ep,_[(13+(I)Di Varp, [4>+  (U ]-i  

	

x (Ep[0±(I)] - E p± [13+(I)]) 	 (A.1) 

1 
= -2  (Ep  [O(Th (I)] - Eng5(13) (I)1)V-, 1  

	

x (Ep[e)  (I)] — Ef [0(13)  (I)1). 	 (A.2) 

Equation A.1 follows a second-order Taylor expansion argument (corol-

lary 4.4 of Kullback, 1959, p. 48), where p' is a distribution whose expected 

feature statistics are between those of p and p+, and 

Varp,  [OW] 	Covp,  [OW, 00)  (I)] 
Varp,  [cD±  (I)] = 

	

Covp,  [00)(1), (13. (I)] 	Var , [05)  (I)] 
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(
V11 V12 

V21 V22 

Equation A.2 results from the fact that Ee  [0(1)] = Ep [(1)(I)], and by the 

Schur formula, it is well known that Vp,  = V22 — V21 Vill  V12. 

Proof of Proposition 4. From the proof of Theorem 1, we know Ef [log p 

(I; A*, S)] = Ep(i.A-,$)ilogp(I; A*, S)], and by similar derivation we have 

Ef [logp(I; A, S)] = Ep(I, A*.S) [10g p(I; A, S)] for any A. 

KL(f, p(I; A, S)) 

= Ef [log f (I)] — Ef [logp(I; A, S)] 

= Efllog f (I)] — Ep(i; A.,$) flog p(I; A, 5)] 

= Ef[log f (I)] — Ef[log p(I; A*, S)] + Ep(I. A*,S) [log p(I: A*, SA 

— Ep(i, A-,$)[log p(I; A, S)] 

= KL(f, p(I; A*, S)) KL(p(I; A*, S), p(I; A, S)). 

The result follows by setting A = A. 

Proof of Proposition 5. By Proposition 2 we have L(A, S) = —entropy 

(p(I; A, 5)). By similar derivation, we can prove that Eobs[L(A*, SA 

—entropy(p(I; A*, S)) and 

L(A, S) — L(A*, S) = KL(p(I; A, S), p(I; A*, S)). 	 (A.3) 

Applying Lobs  to both sides of equation A.3, we have 

— Eobs [entropy(p(I; A, S))] + entropy(p(I; A*, 5)) 

= Eobs [KL(p(I; A, S), p(I; A*, 5))], 

and the result follows. 

Proof of Equation 3.6. To simplify the notation, we denote 

Varp  [(1'+(I)] = 
Varp, [0(I)] 	Covp  VI) 	cb(P) (I)] 

Covr [0(13) (I), 1 (I)] 	Varr [00)  (I)1 

A= 

)
X11 X12 

(I1 	0 

)— X21X111  12 

x21 X22 
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and 

(Varp!,[(ID (I)] 	0 

B= 
0 	Varpl [0r (1)]) 

where Il ,12 are identity matrices, and 0(i_fi)  (I) is uncorrelated with t (I) under 

v",_. So we have 71(1)±  (I) = ((l) (I), .e) (I))' and AVarp.±  [4>+ 	= B. 

Thus Var-, 
P+ 

1 [13 +(I)] = 13-1  A, and since Varp.±  [c (I)] = Varp. (I)], there- 

fore 

tr(Varf[(1)±(1)]VariT.+1 [(1)+(1)]) = tr(Varf[4)±(I)](A')B-1A) 

= trI(AVarf[c13±(1)]A)B-1) 

= tr(Varf[(13 (1)War 1 [(13 (I)]) 

tr (Var f [0(13)  (1)1Var 17).! [0(13)  (I)]) 

and equation 3.6 follows. 
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