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MINIMAX ESTIMATION OF SHARP CHANGE POINTS

By Marc Raimondo

Australian National University

We define the sharp change point problem as an extension of earlier
problems in change point analysis related to nonparametric regression.
As particular cases, these include estimation of jump points in smooth
curves. More generally, we give a systematic treatment of the correct rate of
convergence for estimating the position of a “cusp” of an arbitrary order. We
propose a test function for the local regularity of a signal that characterizes
such a point as a global maximum. In the sample implementation of our
method, from observations of the signal at discrete time positions i/n, i =
1� � � � � n, we use a wavelet transformation to approximate the position of
the change point in the no-noise case. We study the noise effect, in the worst
case scenario over a wide class of functions having a unique irregularity
of “order α” and propose a sequence of estimators which converge at the
rate n−1/�1+2α�, as n tends to infinity. Finally we analyze the likelihood
ratio of the problem and show that this is actually the minimax rate of
convergence. Examples of thresholding empirical wavelet coefficients to
estimate the position of sharp change points are also presented.

1. Introduction. Change point estimation has often been studied in the
statistical literature; earlier works on change points analysis include those of
Hinkley (1970), Darkovski (1976), Korostelev (1987), Dümbgen (1991), Müller
(1992), Korostelev and Tsybakov (1993) and Neumann (1995). There are many
practical as well as theoretical motivations for detecting such points of abrupt
changes. An overview of recent development in this area may be found in
Carlstein, Müller and Siegmund (1994). In this paper, we consider the change
point problem in the nonparametric regression setting where observations of
an unknown smooth signal f at discrete instant times i/n� i = 1� � � � � n are
subject to additive noise perturbations. We assume that there exists a unique
point, θ, where f is “α-discontinuous” in a Hölder sense. As the number of
observations tends to infinity, we seek to estimate the position of the change
point θ and we study the influence of “α” upon the rates of convergence. The
simplest case is a single jump, α = 0, at one point of an otherwise Lipschitz
continuous function; there the minimax rate of the problem is known to be
n−1 [Korostelev (1987)]. For other positive integer values of α, where on this
occasion the change point corresponds to a jump in the derivative of order α
of f, some weakly consistent kernel type estimators are proposed and lim-
iting distributions are obtained; the corresponding rates of convergence are
typically faster than n−1/2 [Müller (1992)]. For small noninteger values of α,
0 < α < 1, Wang (1996) has proposed a sharp cusp estimation procedure us-
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ing the continuous wavelet transform; the derived rate of convergence is of
order ��log n�η/n�1/�1+2α�, where η is any number greater than one. However,
no optimal procedure for estimating such change points is known for strictly
positive values of α. The goal of this paper is to present this estimation prob-
lem in a unifying way for any positive values of α. The main result concerns
the asymptotic minimax rate for this problem, which is shown to be

rn = n−1/�1+2α��

This result is achieved in two parts; we show that (a) there exists an estimator
that converges with the rate rn; (b) no estimator can improve upon this rate.
In part (a), we follow a wavelet coefficients approach and use an analyzing
function having enough vanishing moments as well as a compact support;
we give a characterization of sharp changes in terms of conditions on some
wavelet coefficient differences. In part (b), we follow a method presented by
Korostelev and Tsybakov (1993) and use the likelihood ratio to measure the
closeness of the distributions. We construct two functions having sufficiently
spaced out cusps while keeping the corresponding likelihood ratio bounded
from below.

Some related work and alternative approaches may be found in Neumann
(1995), where an optimal procedure for inverse problems is derived. It is shown
that the minimax rate estimating change points of a function in the case of
indirect noisy observations is n−1/�β+3/2� if β ≥ 1/2, and n−1/�1+2β� if β < 1/2,
where β is the degree of ill-posing of the inverse problem.

Summary. The sharp change point problem is presented in Section 2. Sec-
tion 3 is devoted to the construction of a test function for the local regularity of
a signal. The noise effect is studied in Section 4 where we present an optimal
two-step estimation procedure for sharp changes. Some numerical examples
are presented in Section 5 and technical details are postponed to the Appendix.

2. The sharp change point problem. In this section, we extend the
change point problem in the nonparametric regression to the estimation of
sharp change of order α, where α is a properly determined “order of cusp.” We
define and give the minimax rate for this problem.

Definition 2.1. Let s� α, 0 ≤ α < s ≤ 1�0 < a < b < 1� be positive
constants and let I = �0�1	. We denote �s� α the class of functions having
a single jump or sharp cusp and being smooth otherwise. For all functions
f ∈ �s� α the following properties are required.

(i) There exists a unique point θ = θ�f� ∈ �a� b	 and a constant K > 0
such that, as h tends to zero,∣∣f�θ− h� − f�θ+ h� ∣∣ ≥K�2h�α�(1)

(ii) If α = 0, there exists a constant L > 0 such that for all x�y ∈ I2 with
θ �∈ �x�y	�

�f�x� − f�y�� ≤ L�x− y�s�
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(iii) If α > 0, we suppose that f is differentiable everywhere on I except at
point θ, where condition (1) holds.

We shall use the following extension whenever α ≥ 1.

Definition 2.2. Let s� α�1 ≤ �α	 ≤ α < s ≤ �α	 + 1 be positive constants.
Denote N = �α	 the largest integer which does not exceed α and f�N� the
derivative of f of order N:

f ∈ �s� α ⇔ f�N� ∈ �s−N�α−N�

Definition 2.3. Let Pnf be the law of Y1� � � � �Yn given by

Yi = f�i/n� + �i� i = 1� � � � � n�(2)

where the ��i�i=1�����n are independent identically distributed stochastic errors
with zero mean. “The sharp change point problem” consists of estimating the
sharp cusp time of f� θ = θ�f�, as a functional of f�f ∈ �s� α, from observations
Y1� � � � �Yn.

In Korostelev and Tsybakov (1993), the minimax approach is argued as one
of the correct ways to compare nonparametric regression estimators. We recall
some basic definitions borrowed from Ibragimov and Khas’minskii (1981).

Define the maximal risk of an estimator θ̂n on the set � as

r
(
θ̂n� rn�C

) = sup
f∈�

Pf

(
r−1
n

∣∣θ̂n − θ∣∣ ≥ C)�

Definition 2.4. The positive sequence rn is called a lower rate of conver-
gence for the set � if there exists C > 0 such that

lim inf
n→∞ inf

θ̂n

r
(
θ̂n� rn�C

) ≥ p0�

where p0 is a positive constant and inf θ̂n denotes the infimum over all the
estimators.

Definition 2.5. The positive sequence rn is called an upper rate of con-
vergence for the set � if there exists an estimator θ∗

n such that

lim
C→∞

lim sup
n→∞

r�θ∗
n� rn�C� = 0�

Definition 2.6. The positive sequence rn is called the minimax rate of
convergence for the set � if it is a lower and upper rate of convergence.
Any estimator θ∗

n which converges with the minimax rate is called an optimal
estimator.

Theorem 2.7. The minimax rate for “the sharp change point problem” is
rn = n−1/�1+2α�. More precisely, we prove that rn is an upper, respectively lower,
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rate if, respectively,

�Mr� E
∣∣�1

∣∣r < +∞ with r > 1/�η− α� for some η� α < η < s�

�G� �1 is a standard Gaussian random variable.

Remark 2.8. The main result on the exponent 1/�1 + 2α� shows some un-
expected features of the problem: the jump point of the curve can be estimated
with the asymptotic error O�1/n�, whereas the jump point of the curve’s first
derivative is detectable with the rate O�n−1/3� only. The decay of the rate as
α grows is very fast and strongly influences performance of the estimators for
sharp changes. Numerical examples are given in Section 5.

Remark 2.9. Another degree of difficulty for this problem arises through
the closeness of s to α, δ = s−α. Although it has no direct influence upon the
rate of convergence under the Gaussian assumption, it does affect our result
if we only assume that the distribution of the errors has some finite absolute
moment of order r. Typically, we would need r = 2 if δ∈ �1/2�1	, r = 3 if
δ∈ �1/3�1/2	 and so on. Some related issues remain unsolved: is it possible to
improve on the moment condition Mr by avoiding r to tend to infinity, as δ
approaches 0, and if not, what would be the exact rate of convergence under
restrictions like r = R < +∞ and s − α ≤ 1/R ? In the latter case, only
the first step of the method presented here is applicable, deriving exponent
1/�1 + 2α+ 2/R� in the rate of convergence.

3. Testing local regularity. The aim of this section is to construct a test
function, say T, for local regularity of a signal in the class �s� α. The following
properties are required: (a) T is a function of space parameter x� x ∈ I and
scale parameter h�h > 0; (b) for sufficiently small h,T�x�h� is small whenever
�x− θ� > h; (c) for sufficiently small h, T�x�h� is large whenever �x− θ� < h;
(d) T is easily computable. Obviously, properties (a), (b), (c) are fulfilled by the
two sides function of f,

T�x�h� = ∣∣f�N��x+ h� − f�N��x− h�∣∣�(3)

To ensure property (d), we need to find a sample analogue to (3). Several
methods may be considered for the latter purpose. One can approximate the
value of f�N� at a given point x, rescale properly and then take the differences.
This approach has been chosen by Neumann (1995); it involves a kernel func-
tion which has a discontinuity at zero. Müller (1992) uses the difference of two
continuous kernel functions. Other authors have investigated wavelet trans-
formation, since it involves rescale differences of the signal and enjoys easy
sample implementation [Wang (1996)]. Characterization of local regularity in
terms of conditions on wavelet coefficients has been investigated by Jaffard
(1989), whose results may also be found in Daubechies [(1992), page 300]. Re-
sults show that the existence of an irregularity at point θ for an otherwise
smooth function f does not imply that the wavelet coefficients of f near θ will
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be large for an arbitrarily fine scale. Our basic result, Proposition 3.1, shows
that the latter property is satisfied by wavelet coefficient differences provided
the analyzing wavelet has enough vanishing moments. It involves an appro-
priate reparametrization of the scale-space plane, introducing a “gap” in the
supports of our analyzing functions.

A wavelet coefficients approach. We now define our analyzing function, in
the sequel we say that a function " satisfies � �N�’s property and we write
" ∈ � �N�, N ≥ 1� if the following conditions are fulfilled.

1.
∫
"�x�xk dx = 0, k = 0� � � � �N− 1�

2.
∫
"�x�xN dx = CN > 0, AN = ∫ ∣∣"�x�xN∣∣dx < +∞�

3. Support " ⊆ �−N�N	�
For the case N = 0 we only suppose that " is compactly supported with a

nonzero integral

" ∈ � �0� ⇐⇒
∫
" = C0 > 0� A0 =

∫
�"� < +∞� Support " = �0�1	�

A particularly interesting class of functions that meet the requirement of
� �N�’s property, N ≥ 2, is the Daubechies compactly supported wavelet
family, D�N� for short. Taking " to be the mother wavelet in the D�N�
family, we see that conditions 1, 2, 3 are fulfilled. The Haar wavelet " =
1�0�1/2� − 1�1/2�1	 is in class � �1� and " = 1�0�1	 is in class � �0�.

Wavelet coefficients are discrete transformations of a so-called “mother
wavelet,” " ∈ D�N�, say. First, we generate a doubly indexed family of
wavelets, from ", by dilating and translating, "j�k�u� = 2j/2"�2ju − k�,
j ∈ N, k ∈ Z. Wavelet coefficients are functions of the space parameter
x ≡ k/2j and of the scale h ≡ 2−j; they are defined by

�f�"j�k� =
∫
f�u�"j�k�u�du�(4)

Since " has a compact support, such transformations are localized around
point x ≡ k/2j. Wavelet coefficients have nice local adaptivity features, in
the sense that they are small where the signal is smooth. Indeed, properties
(a), (b) are fulfilled by the function T�k/2j�2−j� = ��f�"j�k��, provided " is
smooth enough. From the characterization of Hölder spaces in terms of wavelet
coefficients in Daubechies [(1992), page 299], we deduce that if " ∈ D�N+ 1�
then for all f ∈ �s� α and k /∈ Sj�θ� = �k� �k/2j − θ � < 2N�, we have

∣∣�f�"j�k�∣∣ = O(
2−j�s+1/2�) for all j ≥ 0�(5)

However, there is no equivalence between the existence of an irregularity
at point θ and the violation of inequality (5) on the set Sj�θ�, for all large lev-
els j ≥ 0. As explained in Daubechies [(1992), page 300], this may be caused
by strong oscillations around points θ. To illustrate this, we have computed
wavelet coefficients, at different resolution levels, for a function whose deriva-



1384 M. RAIMONDO

Fig. 1. Integrated “Brownian-path-with-jumps.” Original signal �solid line� and its derivative
�dotted line� with jumps of size 0�5 at x = 1/π� 1/2� 2/3� sample size n = 1024.

tive is a particular realization of a “Brownian-path-with-jumps,” as Figure 1
shows. From known results for the Brownian motion, we deduce that the func-
tion whose graph (solid line) is given in Figure 1, is Hölder continuous with
exponent s < 3/2, except at points x = 1/π, 1/2, 2/3 where there is a “kink”
of size 0�5. Empirical wavelet coefficients for Daubechies wavelet family D�2�
are depicted in Figure 2.

Motivated by (3), we introduce a gap in the support of the analyzing func-
tions by investigating the properties of

+j�k = �f�"j� τ�k� � − �f�"j� τ�k+2� �(6)

where τ�k� = N + 2Nk, k = 0� � � � � �2j − 6N�/2N if N > 1 and τ�k� = k if
N ≤ 1, is a reparametrization of the scale-space plane, chosen so that supports
of "j�τ�k� and "j�τ�k+2�� k = 0�1� � � � � do not overlap and avoid edges at 0
and 1. Then, provided " has enough vanishing moments, " ∈ � �N�, the
irregularity is reflected on the +j�k, for all sufficiently large levels j. Our
construction in now complete since properties (b) and (c) are satisfied by the
function T�x�h� ≡ T�k/2j�2−j� = �+j�k�, as the following proposition shows.

Proposition 3.1. Let f ∈ �s� α and denote by N the largest integer which
does not exceed α. Take " ∈ � �N� in (6). Define k1 = k1�j� as the integer
such that θ ∈ ��τ�k1� +N�/2j� �τ�k1� + 3N�/2j� and Sj�θ� as the set of indexes
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Fig. 2. Horizontal lines depict thresholds y = 2−�3/2�j� j = 7�8�9.

�k1 − 1� k1� k1 + 1�. Then there exist two positive constants c1� c2 such that the
following hold.

(i) For all k� k �∈ Sj�θ�, �+j�k� ≤ c1 2−j�s+1/2�� for all j ≥ 0�
(ii) For all, sufficiently large, j ≥ 0, �+j�k1

� ≥ c2 2−j�α+1/2��

A nice feature of the wavelet coefficients approach is that it enjoys fast com-
putation. Mallat’s algorithm (see Section 5) may be used to compute empirical
wavelet coefficients for the Daubechies wavelet familyD�N�,N = 1�2� � � � �10.
An illustration of Proposition 3.1 is made below with s < 3/2, α = 1; the orig-
inal signal is depicted in Figure 1 (solid line).

4. Noise effect. In this section, we study the noise effect on the approx-
imation of the sharp cusp time of f, f ∈ �s� α. We follow a minimax point
of view and investigate the asymptotic behavior of the maximal risk over the
class �s� α, as defined in Section 2. First, we propose an estimator based on the
test function of proposition 3.1 and deduce an upper bound for the maximal
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risk. Then we study the likelihood ratio of two appropriately chosen elements
of �s� α and prove that our estimator is optimal. In this section, we assume that
discrete observations Y1� � � � �Yn, of the original signal are subject to additive
noise; see Definition 2.3.

4.1. Upper bound and estimator. As in Korostelev (1987), we propose a
two-step procedure; we compute a “rough” estimator θ̂n and then enhance
its properties. To do so, we first use our test function globally on the unit
interval and then locally around θ̂n. To define our estimator we use series
approximations to the integral,

+lj�k�Y� = n−1
�l�∑
"lj�k�i/n�Yi� l = 1�2�(7)

where
∑�l� l = 1�2 denotes the sum over all odd, respectively even, indexes

i = 1� � � � � n, and

"1
j� k = "j�τ�k� −"j�τ�k+2�� τ�k� =

{
2Nk+N� if N > 1
k� if N ≤ 1(8)

"2
j� k = "j�m−τ�k� −"j�m+τ�k� for some integer m�(9)

Note that (7) contains wavelet coefficients in their empirical forms. The
integer m used in the definition of +2

j� k�Y� will be specified below; it involves
calculations with +1

j� k�Y�. To avoid stochastic dependence between the two
steps of the procedure, we split the initial sample into two subsamples (odd,
even).

Step 1 (Preliminary estimator). Our approach is based on the maximiza-
tion of the absolute value of the +1

j� k�Y� at a sufficiently large level j1 = j1�α�.
Write θ̂n for the point k̂n/2j1 , where k̂n maximizes �+1

j1� k
�Y� � over �k� 0 ≤

k ≤ �2j1 −6N�/2N�. Level j1 is chosen so that the signal dominates the noise
in (7).

Step 2 (Enhanced estimator). We sharpen the value of θ̂n, introducing a
narrower grid in the neighborhood of this point and estimating the position of
the change point on this new grid.

(a) Zooming and thresholding. Let j2 be a level greater than j1. At resolu-
tion level j2 the localization near θ̂n is achieved through the reparametrization
(9), taking m to be the largest integer which does not exceed 2j2 θ̂n − 6N2−j1 .
Denote Uk�Uk+1 the endpoints of the support of "j�τ�k�+m and N0 = 12N ×
2j2−j1 . The main argument consists in observing that the estimated differ-
ences +2

j2� k
�Y� on the grid U0� � � � �Uk� � � � �UN0

, will be smaller or larger
than some known threshold if precisely k is smaller or larger than k0, where
k0 is the index which satisfies θ ∈ �Uk0

�Uk0+1�. This leads directly to a
thresholding procedure from which we construct independent Bernoulli ran-
dom variables η1� � � � � ηN0

such that P�ηk = 1� < 1/3, k = 0�1� � � � � k0 − 1 and
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P�ηk = 0� < 1/3, k = k0+1� � � � �N0−1. A slight modification of Proposition 3.1
is used to prove that for an appropriate choice of levels j1� j2 and of constant
C1, random variables

ηk = 1
{∣∣+2

j2� k
�Y� ∣∣ > C1 n

−1/2}� k = 0� � � � �N0 − 1(10)

are independent Bernoulli’s having an abrupt change of parameter at time
k = k0.

(b) Estimating the disorder time. We have reduced the problem of estimating
k0 to the problem of estimating the disorder time in the binomial scheme which
has a known solution k̂0 determined by minimization of the expression

l∑
k=0

ηk +
N0∑
k=l+1

�1 − ηk�(11)

among the integer values l = 0� � � � �N0 − 1. The final estimator is then given
by θ∗

n = Uk̂0
.

Theorem 4.1. In the construction of θ̂n� θ
∗
n, take j1� j2 to solve equations

2−j1 � n−1/�1+2η�� 2−j2 = C2n
−1/1+2α�(12)

where η is any real number such that α < η < s. Assume condition (Mr) with
r > 1/�η − α� and let rn = n−1/1+2α. Then there exists a threshold C1 in (10),
which only depends on the noise distribution, such that for sufficiently large
choice of C2 in (12), we have for all C ≥ C2,

lim
n→∞ sup

f∈�s� α
Pf

(
n1/1+2α�θ∗

n − θ� ≥ C) = 0�

Remark 4.2 (On-line diagnostic). Properties of θ∗
n do not depend very

much on the performance of the first step of the estimation. One needs only to
find a consistent estimator with a not too much specified rate of convergence,
as the assumption of Theorem 4.1 reveals. Therefore, in our method a sharp
choice of the resolution j1 is not necessary and an examination of the proof
shows that only 2j1 = o�n1/�1+2s�� is needed to derive the optimal rate for θ∗

n.

Remark 4.3 (Tuning parameters). Asymptotic results show that it is pos-
sible to choose j2 and C1 so that θ∗

n achieves an optimal rate of convergence.
For convenience, it would be good to have some guidelines for how to tune these
parameters in practice. For the first one, we propose to use a modified version
of the universal threshold of Donoho and Johnstone (1994) that will keep only
large coefficients between level j1 and j2. We take C1 = σ

√�j2 − j1� log�2�
where σ2 is an estimate of the variance of the noise. Now, the second step of
the procedure may be applied to any resolution level j2 greater than j1; by
doing so, one can find the largest level j2 for which the method works. This
is done for examples of Section 5.

4.2. Lower bound. We prove that the sequence rn = n−1/�1+2α� is a lower
rate for “the sharp change point problem.” Achievement of lower bounds in a
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nonparametric regression setting has been addressed at length by Korostelev
and Tsybakov (1993), where the reader can found a detailed account of differ-
ent basic tools for this purpose. Here we shall focus on a particular criterion
involving only one likelihood ratio. The general idea in a lower bound calcu-
lation is to find a finite set F ⊂ � which contains the main difficulties of
the problem. The simplest case is to consider a subset containing only two
elements, then

sup
f∈�

Pf

(
r−1
n � θ̂n − θ � > C) ≥ max

f1� f2

Pf

(
r−1
n � θ̂n − θ � > C)�

Now, it is sufficient to bound the right-hand side of the previous inequal-
ity from below. We shall use a result from Korostelev and Tsybakov [(1993),
page 53]. Let

4�f1� f2� = 4�f1� f2�Y
�n�� = dPnf1

dPnf2

�Y�n��

be the ratio of the likelihood.

Proposition 4.4. Let f1� f2� θ1 = θ�f1�, θ2 = θ�f2�, λ > 0 be such that

Pf2
�4�f1� f2� > exp�−λ�� ≥ p > 0(13)

for some positive constant p and∣∣θ1 − θ2

∣∣ ≥ 2 sn�(14)

Then for any estimator θ̂n, sn is a lower bound; moreover, we have

max
f1� f2

Pf

(� θ̂n − θ � > sn
) ≥ p exp −λ/2�

In this way we reduce the problem of proving the minimax lower bound
to the problem of choosing two elements f1� f2 ∈ � satisfying (13) with the
largest sn satisfying (14). The choice of such pairs very much depends on the
underlying statistical model, some examples are discussed in Korostelev and
Tsybakov (1993). In view of applying Proposition 4.4, we construct f1� f2 ∈
�s� α, having sharp changes of order α at points θ1� θ2, respectively, and such
that the corresponding likelihood ratio is bounded below, keeping in mind that
the distance which separates both change points has to be maximal. To do so,
we introduce a basic function for the class �s� α.

Definition 4.5. A function 6 is called a basic function for the class �s� α if
6�x� = f�x− θ� for some f ∈ �s� α and θ = θ�f� is the sharp cusp time of f.

Note that for any basic function 6 for the class �s� α, 6 has a sharp change
at the origin. We are now able to construct functions that have a sharp change
at some given point by rescaling and translating 6:

f1�x� = hα6��x− θ1�/h�� f2�x� = hα6��x− θ2�/h��(15)
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where h = hn tends to zero as n tends to infinity, and θ1� θ2 are two points in
�a� b	. We first show that the normalization hα has been chosen so that f1� f2
have sharp changes at points θ1� θ2, respectively. Let N be the largest integer
which does not exceed α, then

f
�N�
i �θi + x� − f�N�

i �θi − x� = hα−N
(
6�N�

(
x

h

)
−6�N�

(−x
h

))
� i = 1�2�

By property of 6, for sufficiently small x we have∣∣f�N�
i �θi + x� − f�N�

i �θi − x�∣∣ ≥K�x�α−N� i = 1�2�

Theorem 4.6. In the construction of f1� f2, take h = hn to be a positive
constant multiple of rn = n−1/�1+2α� and choose θ1� θ2 such that, rn/2 < �θ1 −
θ2� < rn. Assume condition (G), then

lim inf
n→∞ inf

θ̂n

max
f1� f2

Pf

(
r−1
n �θ̂n − θ� ≥ C) ≥ p0�

for some positive constants C�p0 > 0�

Remark 4.7 (One step procedure). The achievement of lower bounds un-
der restrictions for the class of estimates is delicate and requires more
elaborate techniques than those presented in the present paper. We refer to
Korostelev (1987) where the case α = 0 is treated; see also Freidlin and
Korostelev (1995) for the case α = 1.

5. Numerical examples. To illustrate the finite sample behavior of our
estimator as well as the strong effect of α upon the rates of convergence, we
perform a simulation study for two different values of α and check the perfor-
mance of the procedure through different signal-to-noise ratios. To compute
our estimator, one needs to compute the wavelet transformations (4). This
may be done using Mallat’s pyramid algorithm [Mallat (1989)] which is im-
plemented in the wavelet package wavetresh of Nason and Silverman (1994)
and gives an empirical version of the wavelet coefficients for the Daubechies
wavelet family D�N��N = 1� � � � �10. Quantities from which one can deduce
reparametrized differences are indicated at (7). To construct random variables
(10) we use a modified version of the universal threshold of Donoho and John-
stone (1994) (see Remark 4.3),

C1 = σ
√

�j2 − j1� log�2��(16)

We have used two different regression functions f; we modified Example 1
of Wang (1995) and Example (c) of Donoho and Johnstone (1994) so that the
original signals have, respectively, an unbalanced cusp and a jump in the first-
order derivative. These functions are depicted in Figure 3; for both examples
we took the sample size n = 1024.

For the noisy polynomial, we increased σ from 0�1 to 1 in steps of 0�1. Pre-
liminary estimation using (7) with l = 1 works quite well up to the resolution
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Fig. 3. Original signals. (a) f1�x� = 2 − 2�x− 0�56�1/51�x ≤ 0�56� − 2�x− 0�56�3/5 × 1�x > 0�56�.
(b) f2�x� = 2 sin�4πx� + 15�x− 0�4�. Noisy signals. (c) Data simulated from model yi = f1�i/n� +
�i� n = 1024� �i ∼ � �0� σ2�� with σ = 0�5. (d) Data simulated from model yi = f2�i/n�+�i� n =
1024� �i ∼ � �0� σ2�� with σ = 0�1.
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level j1 = 6 as illustrated Figure 4(a) with σ = 0�5. For higher resolution
levels, the noise effect in (7) with l = 1 becomes too important and it is no
longer possible to estimate θ. However, we improve on the result by using the
second step of estimation described in Section 4. To do so, we zoom around
our preliminary estimator and compute differences (7) with l = 2 at higher
resolution levels. Then, we construct random variables (10) using threshold
(16); finally we estimate θ, minimizing diagnostic (11). Results show that the
method works up to j2 = 10 as illustrated in Figure 4(a).

For the noisy heavisine, the kink usually goes undetected if σ > 0�2. Pre-
liminary estimation using (7) with l = 1 works up to resolution level j1 = 5
as illustrated in Figure 4(b) with σ = 0�1. As previously, we improve on the
result using the second step procedure up to resolution level j2 = 8.

Of course, more work would be necessary to study the performance of the
method through other values of α and s. However, these initial attempts

Fig. 4. Sharp change point estimation by wavelets. (a) Preliminary estimation at level j1 =
6� θ̂n = 0�53125. Zooming and thresholding between levels j1 = 6� j2 = 10 with C1 = 0�83255.
Enhanced estimator θ∗

n = 0�55273. (b) Preliminary estimation at level j1 = 5� θ̂n = 0�37500. Zoom-
ing and thresholding between levels j1 = 5� j2 = 8 with C1 = 0�1442027. Enhanced estimator
θ∗
n = 0�40625.
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are quite promising because they clearly show that it is possible to improve
considerably upon the On-line rate of convergence for estimating the position
of sharp change points. In these examples, the experiments showed that the
division of the original sample as indicated in (7) is not a particularly sensitive
issue; it requires a larger sample size and does not improve in the results. The
method presented here enjoys fast computation [Mallat’s pyramidal algorithm
requires only O�n� operations to compute empirical wavelet coefficients] and
has a small amount of fine tuning.

APPENDIX

Proof of Proposition 3.1. Using definition (6) and changing variables
v = 2ju− τ�k�, we have

+j�k = 2−j/2
∫ N

−N
"�v�f

(
v+ τ�k�

2j

)
dv− 2−j/2

∫ N
−N
"�v�f

(
v+ τ�k+2�

2j

)
dv�

We add and subtract f�τ�k�/2j� − f�τ�k+2�/2j� inside the integrals and then
use the properties of " ∈ � �N�.

If α < 1, then " has a nonzero integral, so one can write

+j�k = 2−j/2C0

(
f

(
τ�k�
2j

)
− f

(
τ�k+2�

2j

))

+ 2−j/2
∫ 1

−1
"�v�

(
f

(
τ�k� + v

2j

)
− f

(
τ�k�
2j

))
dv

(17)

− 2−j/2
∫ 1

−1
"�v�

(
f

(
τ�k+2� + v

2j

)
− f

(
τ�k+2�

2j

))
dv�(18)

If α ≥ 1� we get a similar decomposition of +j�k using a Taylor expansion
up to orderN− 1 in (17), (18) and theN− 1 vanishing moment property of ":

+j�k = 2−j/2
∫ N

−N
"�v�

(
v

2j

)N ∫ 1

0
f�N�

(
τ�k�
2j

+ u
(
v

2j

))�1 − u�N−1

�N− 1�! dudv

− 2−j/2
∫ N

−N
"�v�

(
v

2j

)N ∫ 1

0
f�N�

(
τ�k+2�

2j
+ u

(
v

2j

))�1 − u�N−1

�N− 1�! dudv�

We add and subtract f�N��τ�k�/2j�−f�N��τ�k+2�/2j� inside the double integrals
and it follows that

+j�k = 2−j�1/2+N� CN
N!

(
f�N�

(
τ�k�
2j

)
− f�N�

(
τ�k+2�

2j

))

+ 2−j�1/2+N�
∫ N

−N
"�v�vN

∫ 1

0

(
f�N�

(
τ�k�
2j

+u
(
v

2j

))
−f�N�

(
τ�k�
2j

))

× �1 − u�N−1

�N− 1�! dudv
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− 2−j�1/2+N�
∫ N

−N
"�v�vN

∫ 1

0

(
f�N�

(
τ�k+2�

2j
+u

(
v

2j

))
−f�N�

(
τ�k+2�

2j

))

× �1 − u�N−1

�N− 1�! dudv�

+j�k = Dj�k +R1
j� k −R2

j� k�(19)

With the obvious notations for Dj�k, R
l
j�k� l = 1�2. We first derive an upper

bound for the last two terms using the Hölder continuity of f�N� on the inter-
vals ��τ�k� −N�/2j� �τ�k� +N�/2j	� ��τ�k+2� −N�/2j� �τ�k+2� +N�/2j	. We recall
that f ∈ �s� α and that θ lies in ��τ�k1� +N�/2j� �τ�k1� + 3N�/2j�. Hence, for all
indexes k such that k �= k1 ± 1, the Hölder continuity with exponent s−N of
f�N� and triangular inequalities are used to prove that

∣∣Rlj�k∣∣ ≤ 2−j�1/2+N�L
∫ N

−N

∣∣"�v�vN∣∣ ∫ 1

0

∣∣∣∣u
(
v

2j

)∣∣∣∣
s−N

× �1 − u�N−1

�N− 1�! dudv� l = 1�2�

∣∣R1
j� k −R2

j� k

∣∣ ≤ 2
LAN

�N− 1�!2
−j�s+1/2�� k �= k1 ± 1�

(20)

Now, we bound Dj�k.

1. k �∈ �k1 − 1� k1� k1 + 1�� For k < k1 − 1� we have τ�k+2� < τ�k1� +N whereas
for k > k1 + 1, τ�k� > τ�k1� + 3N� From the Hölder continuity with exponent
s−N of f�N� we deduce

∣∣Dj�k∣∣ ≤ 4LCN
�N− 1�!2

−j�s+1/2��(21)

2. k = k1, θ ∈ ��τ�k1� +N�/2j� �τ�k1� +3N�/2j� ⊂ �τ�k1�/2j� τ�k1+2�/2j	; the sharp
cusp hypothesis (1) of f�N� is used to prove that, for all sufficiently large
levels j ≥ 0,

∣∣Dj�k1

∣∣ ≥ 2−j�1/2+α� CN
N!
�(22)

We conclude using triangular inequalities in (19) with (20), (21), (22).

Proof of Theorem 4.1. Using expansion (2) of Yi, we decompose diag-
nostics (7) into the sum of a deterministic component and of a stochastic com-
ponent, respectively, given by

+lj�k�f� = n−1
�l�∑
"lj�k�i/n�f�i/n�� l = 1�2�(23)

+lj�k�� � = n−1
�l�∑
"lj�k�i/n��i� l = 1�2�(24)

where
∑�l�l = 1�2 denotes the sum over all odd, respectively, even indexes

i = 1� � � � � n, and "lj�k� l = 1�2 are defined in (8) and (9).



1394 M. RAIMONDO

Step 1 (Preliminary estimator). Here θ̂n needs only to converge to θ a lit-
tle faster than n−1/1+2s [to see this, compare (27) and (28)]. Let sn = n−1/�1+2η�

with α < η < s; we prove that

lim
n→∞ sup

f∈�s� α
Pf

(
s−1
n

∣∣θ− θ̂n
∣∣ < B) = 1�(25)

(Here and below, B denotes a generic constant whose value may change from
line to line.)

Deterministic contribution. Let Sj�θ� be the set of indexes �k1−1� k1� k1+1�
where k1 = k1�j� is the integer such that θ ∈ ��τ�k1� +N�/2j� �τ�k1� + 3N�/2j�.
We note that results of Proposition 3.1 apply to the empirical diagnostic (23)
with l = 1, that is, �+1

j� k�f� � ≤ B2−j�s+1/2� whenever k �∈ Sj�θ�, whereas
for sufficiently large j, �+1

j� k1
�f� � ≥ B2−j�α+1/2�. To appreciate this, series

approximations to the integral are used to prove that, for s ≥ 1, +1
j� k�f� =

+1
j� k + O�n−1�, whereas for s < 1 a version of Proposition 3.1 with +1

j� k�f�
instead of +1

j� k may be established substituting integrals (17) and (18) with
series approximations.

Stochastic contribution. Let �j�n denote the event that the maximum of
the �n1/2+1

j� k�� ��� k = 0�1� � � � � �2j − 6N�/2N is less than 2j/r. We prove
that, for all j = j�n� → +∞, with 2j = O�n� the probability of the event
�j�n tends to one as n tends to infinity. Define the normalized sequence
ξn�k = σ−1

n�k n
1/2 +1

j� k�� �� so that for all k, ξn�k has the same distribution as

�1. Under the choice of "1
j� k in (7), we have σn�k ≤ √

2 and we note that the
sequence +1

j� k�� �� k = 0�1�2� � � � � can be split into two sequences of indepen-
dent random variables corresponding, respectively, to the values k ∈ �1 =
�0�1�4�5�8�9� � � � �2j − 4�2j − 3� and k ∈ �2 = �2�3�6�7�10�11� � � � �2j −
2�2j−1�. LetMl denote the maximum of �n1/2+1

j� k�� �� over the set of indexes
�l, l = 1�2. Clearly P��j�n� ≥ P�M1 ≤ 2j/r� + P�M2 ≤ 2j/r� − 1, which proves
the claim, since under �Mr�,

P
(
Ml ≤ 2j/r

) = ∏
�l

(
1 − P

(�ξn� k� > σn�k2j/r
)) ≥ (

1 − P
(��1� >

√
2n1/r))n�

P
(
Ml ≤ 2j/r

) ≥ (
1 − 2−r/2

E��i�r/n
)n →n→+∞ 1�

Properties of θ̂n. Let j1 = j1�n� satisfy the assumption of Theorem 4.1.
Denote k1 = k1�j1� the integer such that θ ∈ ��τ�k1� +N�/2j1� �τ�k1� + 3N�/2j1�
[recall that Sj1

�θ� is the set of indexes �k1 − 1� k1� k1 + 1�]. Using both our
analysis of the deterministic contribution and of the stochastic contribution in
(7) with l = 1, we deduce that for any ω ∈ �j1� n

, �+1
j1� k

�Y�ω�� � ≤ Bn−δ1

whenever k �∈ Sj1
�θ�, whereas �+1

j1� k
�Y�ω�� � ≥ Bn−δ2 with δ1 > δ2 pro-

vided r > 1/�η − α�. Under �Mr�, the maximum of the �+1
j1� k

�Y�ω�� �, k =
0�1� � � � � �2j1 − 6N�/2N will be achieved at some k ∈ Sj1

�θ�, as soon as n is
sufficiently large, which proves (25) with B = 6N.
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Step 2 (Enhanced estimator). In view of Step 1, the theorem will follow if
we prove that conditionally on �j1� n

, θ∗
n has convergence rate rn = n−1/1+2α,

that is,

lim
C→∞

lim
n→∞ sup

f∈�s� α
Pf

(
r−1
n

∣∣θ∗
n − θ∣∣ ≥ C � �j1� n

) = 0�(26)

We begin with a lemma deducible from Proposition 3.1.

Lemma A.1. Let j1� j2 be positive levels such that j2 > j1. Let θ1 be a
point such that �θ − θ1� ≤ 6N/2j1 . In (23), let "2

j� k be defined with m =
�2j2θ1 − 6N/2j1	. Denote N0 = 12N2j2−j1 , let k0 be the index for which θ ∈
Supp�"j2� τ�k�+m�. Then there exists two positive constants c1� c2 such that for

any sufficiently large j1, we have the following for all j2 > j1.

(i) For all indexes k such that 0 ≤ k ≤ k0 − 1 �+2
j2� k

�f� � ≤ c1 2−j1�s+1/2�.
(ii) For all indexes k such that k0+1 ≤ k ≤N0−1 �+2

j2� k
�f� � ≥ c2 2−j2�α+1/2��

Let j1� j2 satisfy the assumption of Theorem 4.1, put N0 = 12N2j2−j1 .
Suppose the event �j1� n

occurs, then the integer m = �2j2 θ̂n − 6N/2j1	 in the
definition of "2

j2� k
in (23) is fixed.

Deterministic contribution. From properties of θ̂n, we deduce that, condi-
tionally on �j1� n

, there exists a unique integer k0, 0 ≤ k0 ≤N0 − 1 such that
θ ∈ Supp�"j2� τ�k�+m�. Applying Lemma A.1,

0 ≤ k ≤ k0 − 1�
∣∣+2
j2� k

�f� ∣∣ ≤ c1 n
−�1/2���1+2s�/�1+2η���(27)

k0 + 1 ≤ k ≤N0 − 1�
∣∣+2
j2� k

�f� ∣∣ ≥ c2C2 n
−1/2�(28)

Stochastic contribution. By construction, stochastic components +2
j� k�� ��

k = 1�2� � � � are independent of �j1� n
. Under the choice of "2

j� k in (7), random
variables Xk = n1/2+2

j2� k
�� �, k = 0�1�2� � � � are independent with bounded

variance. Consequently, there exists a positive constant C3 such that for all
indexes k = 0�1�2� � � � �

P
(∣∣+2

j2� k
�� � ∣∣ > C3 n

−1/2 � �j1� n

)
< 1/3�(29)

Properties of θ∗
n. Using triangular inequalities in (7) with l = 2 and (27), (28)

and (29), we deduce that, conditionally on �j1� n
, it is possible to choose C2 in

(12) large enough so that the events ��+2
j2� k

�Y� � ≤ 2C3 n
−1/2�� for k < k0 and

��+2
j2� k

�Y� � ≥ 2C3 n
−1/2�� for k > k0, both have probability greater than 2/3.

From these results we deduce that, conditionally on �j1� n
, random variables

ηk, k = 0� � � � �N0−1, defined by (10) withC1 = 2C3, coincide with independent
Bernoulli random variables ξk� for which P�ξk = 1� < 1/3, k = 0�1� � � � � k0 −1,
and P�ξk = 0� < 1/3, k = k0 +1� � � � �N0 −1. Here k0 is the disorder time in the
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binomial scheme determined by the condition θ ∈ Supp�"j2� τ�k0�+m�, which by
minimization with respect to l of

l∑
k=0

ξk +
N0∑
k=l+1

�1 − ξk�

is estimated with accuracy O�1� as N0 → ∞; (26) is now proved. ✷

Proof of Theorem 4.6. We show that it is possible to choose θ1� θ2� h in
the construction (15) of f1� f2 so that properties (13) and (14) of Proposition 4.4
hold. Under �G�,

4�f1� f2�Y
�n�� = exp

( n∑
1

Yi�f1�i/n� − f2�i/n�� − 1
2

n∑
1

�f2
1�i/n� − f2

2�i/n��
)
�

which in this case equals

exp
(

2
( n∑

1

Yih
α

(
6

(
i/n− θ1

h

)
−6

(
i/n− θ2

h

)))

− 1
2
h2α

n∑
1

(
62

(
i/n− θ1

h

)
−62

(
i/n− θ2

h

)))
�

Since 6 is bounded, log4�f1� f2� is bounded below as n tends to infinity if
and only if

Sn = h2α
n∑
1

(
6

(
i/n− θ1

h

)
−6

(
i/n− θ2

h

))

is bounded. Using series approximation to the integral, we have
n∑
1

(
6

(
i/n− θ1

h

)
−6

(
i/n− θ2

h

))

= n
∫ 1

0

(
6

(
u− θ1

h

)
−6

(
u− θ2

h

))
du

(
O�1� +O�n− inf �1�s��)�

so that

Sn = O
(
nh2α+1

∫ h−1

0

(
6

(
v− θ1

h

)
−6

(
v− θ2

h

))
dv

)
�

Note that because 6 has a sharp change at the origin, the latter integral may
diverge as h tends to zero. However, we choose θ1� θ2 close enough to avoid
this. Since ∫ h−1

0

(
6

(
v− θ1

h

)
−6

(
v− θ2

h

))
dv = O(�θ1 − θ2�/h)�

conditions �θ2 − θ1� = O�h�, h2α+1 = O�n−1� insure Sn to be bounded and
condition (13) to be satisfied. We conclude applying Proposition 4.4; to get
the larger lower bound we choose θ1� θ2 optimizing upon the constraints, as
assumptions of the theorem show. ✷
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