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We consider a semiparametric convolution model where the noise has known Fourier transform which

decays asymptotically as an exponential with unknown scale parameter; the deconvolution density is

less smooth than the noise in the sense that the tails of the Fourier transform decay more slowly,

ensuring the identifiability of the model. We construct a consistent estimation procedure for the noise

level and prove that its rate is optimal in the minimax sense. Two convergence rates are distinguished

according to different smoothness properties for the unknown density. If the tail of its Fourier

transform does not decay faster than exponentially, the asymptotic optimal rate and exact constant are

evaluated, while if it does not decay faster than polynomially, this rate is evaluated up to a constant.

Moreover, we construct a consistent estimator of the unknown density, by using a plug-in method in

the classical kernel estimation procedure. We establish that the rates of estimation of the

deconvolution density are slower than in the case of an entirely known noise distribution. In fact,

nonparametric rates of convergence are equal to the rate of estimation of the noise level, and we prove

that these rates are minimax. In a few specific cases the plug-in method converges at even slower

rates.

Keywords: analytic densities; deconvolution; L2 risk; minimax estimation; noise level; pointwise risk;

semiparametric model; Sobolev classes; supersmooth densities

1. Introduction

Let us consider the observations Yi, i ¼ 1, . . . , n, such that

Yi ¼ X i þ ��i,

where X i and �i are independent and identically distributed real-valued random variables, the

two sequences fX ig and f�ig being independent of each other. Two components are unknown

in this model: the common law of X i having probability density f (with respect to the

Lebesgue measure on R) and characteristic function �, and the scale parameter � . 0. The
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variables �i have a known s-exponential distribution, that is, a known density function f �

having a Fourier transform �� such that, for large enough juj,

be�jujs < j��(u)j < Be�jujs , (1)

for some known s . 0 and fixed constants b, B . 0.

In the more classical deconvolution problem the distribution of the noise is supposed to

be completely known (the law as well as the scale parameter). In this case, minimax rates

of convergence are described in the literature for various associations of smoothness classes

for the unknown density (Hölder, Sobolev, Besov or analytic functions) and global

behaviours of the errors’ law. Even if the noise law is entirely known, estimators behave

differently whether the characteristic function of the noise decays polynomially or

exponentially asymptotically. There has been a huge amount of literature since the paper

by Caroll and Hall (1988). For the s-exponential error distribution case, exact asymptotic

rates were computed: pointwise and L2 rates for periodic Sobolev densities by Efromovich

(1997), L2 rates for bivariate circular structural models with Sobolev and analytic estimated

densities by Goldenshluger (2002), and both pointwise and L2 (faster than usual) rates by

Butucea and Tsybakov (2004), for classes of supersmooth densities (which can be infinitely

differentiable, analytic on a strip around the real axis, or analytic on the complex plane).

Estimation of the Sobolev density with s-exponential, entirely known noise has been done

adaptively by Goldenshluger (1999).

Here, the deconvolution density and the scale parameter of the noise are unknown. In

Section 2, we are interested in recovering the scale of the noise � . 0. Indeed, the

assumption of a completely known noise distribution is rather unrealistic from a practical

point of view. Therefore, evaluating the scale parameter of the noise can help to cope with

the situation where this assumption is not satisfied. Moreover, in Section 3, we use it as a

preliminary step in the nonparametric deconvolution problem of estimating the unknown

density when the scale is unknown.

The estimation of the scale parameter and of the unknown density has already been

considered by Matias (2002) in the case of Gaussian errors and a large collection of density

functions, densities ‘without Gaussian component’. The estimators of the scale parameter

were based on Fourier or Laplace transforms and they were proven to be consistent over

certain subclasses. Lower bounds of order 1=log n were found for both estimation problems.

Matias (2002) noted that estimation of the nonparametric density is more difficult (larger

lower bounds of order 1=log n) when the scale parameter is unknown than in the classical

deconvolution problem.

The problem of noise-level estimation in a convolution model has been formulated by

Matias (2002) in relation to error-in-variables nonlinear regression. More generally, in

physics and biology error-in-variables models are widely used. Our paper allows a

convolution model to be used where the scale parameter for the noise is unknown.

A similar problem was considered by Lindsay (1986) for a mixture of exponential

families with applications to Bayesian statistics. Among other results, he considers an

infinitely divisible mixing density, with unknown parameters which are recovered via least-

squares estimation. This problem is similar to noise-level evaluation in our model where the
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deconvolution density is in a parametric exponential family. Thus, our results extend this

estimation to nonparametric main densities.

Similarly to Zhang (1990), we can regard this model as a mixing model of location

families. Zhang (1990) considers location (in Ł) families f �(� � Ł) with mixing density

f (Ł). The observations Yi, i ¼ 1, . . . , n, have density
Ð
f �(� � Ł) f (Ł)dŁ and the mixing

density f is estimated. More generally, in our model the location families f �((� � Ł)=� )=�
have an unknown scale parameter � which we estimate together with the mixing density f .

In multidimensional deconvolution problems with Gaussian errors, Koltchinskii (2000)

suggested an estimator of the covariance matrix of the Gaussian errors in order to obtain

the geometric structure of the support of the deconvolution density.

In this paper, we propose a new estimation algorithm for the scale parameter, prove its

consistency and compute the upper bounds of its mean squared error in several different

set-ups. Moreover, we prove that the rates obtained are optimal by giving the corresponding

minimax lower bounds.

We solve the problem of estimating the noise level in two possible set-ups, with

respectively the following assumptions:

Assumption A. We suppose that the unknown density belongs to the class A(Æ, r) of densities

whose Fourier transform decays asymptotically slower than some exponential

j�(u)j > ce�Æjuj r , juj large enough,

with known parameters Æ . 0 and r 2 (0, s), and some arbitrary constant c . 0.

Assumption B. The unknown density is in the class B(�) of densities having Fourier

transform decaying asymptotically slower than some polynomial

j�(u)j > cjuj��, juj large enough,

with known parameter � . 1 and an arbitrary constant c . 0.

Under either Assumption A or Assumption B, the model is identifiable. In fact,

considering Fourier transforms, we obtain

�Æjujr�s <
logj�(u)j

jujs < 0, for juj large, under Assumption A,

�� logjuj þ log c

jujs <
logj�(u)j

jujs < 0, for juj large, under Assumption B

(recall that the parameter s is defined in (1)). So that limjuj!1juj�s logj�(u)j ¼ 0. Since the

Fourier transform �Y (u) of the distribution of the observations equals the product

�(u)��(� u), and using (1), we obtain:

lim
juj!1

logj�Y (u)j
jujs ¼ lim

juj!1

logj��(� u)j
jujs ¼ �� s:
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Consequently, the distribution of the observations Yi determines uniquely the scale parameter

� and then also the density f . This establishes the identifiability of the model.

We remark that information on the nonparametric density as well as on the unknown

noise level must be retrieved from the same sample of Yis. We need to estimate first the

scale parameter of the noise. It is important that the deconvolution density be significantly

less smooth than the noise. We note that if the deconvolution density becomes smoother

than the noise the parameter is non-identifiable. Moreover, our results give faster rates when

the noise is significantly smoother than the deconvolution density and slower rates when the

noise is smooth but behaves similarly to this density.

These rates are overall slower when compared to classical parametric estimation. This is

not surprising in this semiparametric model where we distinguish a parametric component

from a nonparametric unknown function.

We then establish that the rate of convergence of our estimator is optimal with respect to

the minimax risk. This is done under the additional assumption that the noise has a stable

distribution.

Assumption S. The noise � has stable distribution denoted S(1, s, �, �), with scale parameter

fixed to 1, self-similarity index s 2 (0, 2], symmetry parameter � 2 [�1, 1] and location

� 2 R.

See Section 3.1 for more details on stable laws and Zolotarev (1986) for a complete overview

of the subject.

In fact, we only need the exact expression for the function j��j, which is very simple

under Assumption S since j��(u)j ¼ ejuj
s

. For simplicity of notation, we decide to fix the

noise so that it is exactly distributed according to a stable law which corresponds to the

parameter s belonging in the interval (0, 2]. This assumption is not very restrictive, since

most examples encountered are in this range, and could be relaxed at this point. We note

that the rates of convergence of our estimator are sharp minimax under Assumption A and

nearly sharp under Assumption B.

In Section 3, we study pointwise and L2 rates of convergence for the estimation of the

deconvolution density, in the presence of unknown noise level, regarded as a nuisance

parameter. These rates are significantly slower than the rates obtained in classical

deconvolution problems by Efromovich (1997) and Butucea and Tsybakov (2004), and are

equal to (or even slower than) the rates of estimation of the noise level. The estimators are

classical kernel estimators where we plug in the estimated value of the underlying

parameter. This implies a study of uniform empirical processes explaining the loss of

performance of this estimator. Because of this loss in the rate, lower bounds cannot be

directly deduced from the results cited above. As in the classical nonparametric minimax

theory, we construct a pair of couples (�1, f1) and (�2, f 2) so that for fixed x 2 R, the

densities f 1(x) and f 2(x) are as far apart as possible (or, when dealing with L2 risks, the

distance k f 1 � f 2k2 is the greatest possible) under the restriction that the corresponding

likelihoods f 1 � ( f �(�=�1)=�1) and f 2 � ( f �(�=�2)=�2) are close in �2-distance. Note that the

choice of the parameters is natural for our problem and quite simple (see Section 5.2). This

shows that the loss in the rate is unavoidable. Note also that these results agree with the
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lower bounds established by Matias (2002) in the case s ¼ 2 and are more precise as we

study here the rates of convergence when the unknown signal belongs to the classes A(Æ, r)

(with 0 , r , s) and B(�) (� . 1), whereas Matias’ lower bounds concern every density

with non-Gaussian component.

In the rest of the paper, we first define the estimation method for the scale parameter and

study its consistency, for the defined parameters Æ . 0 and s . r . 0 under Assumption A,

or � . 1 and s . 0 under Assumption B (Section 2). We also establish the optimality with

respect to the minimax risk of our estimator under the additional Assumption S.

Then, using a plug-in method combined with the natural kernel deconvolution technique,

we construct an estimator of the deconvolution density and study its pointwise and L2 rates

of convergence, under the additional Assumption S (Sections 3.2–3.5). In order to obtain

these rates, we need to add assumptions on the largest smoothness the estimated density

may have as in classical deconvolution problem (see the definitions of the sets S(Æ9, R, L)

and W (�9, L) given by (9) and (10)). We also prove that the estimator constructed is

optimal in the minimax setting.

2. Estimation of the noise level

2.1. Noise-level evaluation algorithm

The estimator we propose is defined implicitly via the following criterion. Let us first

estimate the characteristic function of the observed variables �Y (u) ¼ Efexp(iuY )g by using

the given sample:

�̂�Y
n (u) ¼ 1

n

Xn
k¼1

eiuYk :

Remark that in the following P, E and var denote, respectively, the probability P� , f the

expectation E� , f and the variance var� , f with respect to the probability when the underlying

unknown parameters are � . 0 and f a density in the class.

Let us next consider the function

F̂Fn(�, u) ¼ �̂�Y
n (u)e(�u)s , (2)

for �, u . 0 and fixed known s . 0 (given by (1)). Our estimator �̂�n of � is defined by

�̂�n ¼ �̂�n(Y1, . . . , Yn) ¼ inff� : � . 0, jF̂Fn(�, un)j > 1g, (3)

for some positive sequence un ! 1 well chosen, as described later (see Propositions 1

and 2).

This construction is based on the observation that jF̂Fn(�, u)j is an unbiased estimator of

jF(�, u)j, where

F(�, u) ¼ �Y (u)e(�u)s : (4)
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We have jF(�, u)j ¼ O(1)j�(u)je(�s�� s)us

for large enough juj, so that this quantity converges,

when u ! 1, either to 0 when � < � or to 1 when � . � .

Note that, for the convergence of this estimation method it is sufficient to assume (1) on

the distribution of the noise, but we prove the convergence of the plug-in estimator for f

and its optimality (Section 3.2) under the additional assumption that the noise has a stable

distribution (i.e. Assumption S).

2.2. Consistency and optimality

For underlying deconvolution densities satisfying Assumption A we establish local

consistency of our procedure �̂� , that is, when � varies in a neighbourhood of some fixed

�0. Note that � . 0 is not necessarily small at this stage and that only �0 þ 2� appears in

the procedure, that is a strict upper bound of the open set where � takes values. We

consider this particular upper bound in view of local minimax results of Theorem 1, but it

is easy to see how arbitrary choices of the compact set for � and of its strict upper bound

lead to the corresponding corollary.

Proposition 1. Fix �0 . 0, � . 0 such that �0 . �, and a neighbourhood V(�0) ¼
V�(�0) ¼ (�0 � �, �0 þ �). Under Assumption A, consider the sequence of parameters

un ¼ (�0 þ 2�)�1(log n=2)1=s, the estimator �̂�n defined by (3) and the rate

jn,� ¼ Æ

s

(�0 þ 2�)1�rþs

(�0 � �)s
log n

2

� �r=s�1

:

Then, for all � 2 V(�0), for all f 2 A(Æ, r), and large enough n, we have

P(j�̂�n � � j > jn,�) < O(1)exp
2Æ

(�0 þ 2�)r
log n

2

� �r=s
( )

1

n

� �1�� s=(� 0þ2�)s

:

The next theorem gives local sharp (or exact, i.e. the asymptotic value of the risk is 1)

minimax rate of convergence. We note that the estimator of � depends on a strict upper

bound (say, �0 þ 2�) of the neighbourhood V�(�0), which tends to �0 as the neighbourhood

shrinks to f�0g.

Theorem 1. For all fixed �0 . 0, under Assumption A and for �̂�n defined as in Proposition 1,

consider the rate

jn ¼
Æ

s� r�1
0

log n

2

� �r=s�1

:

Then, for any neighbourhood V(�0),

lim
�!0

lim sup
n!1

sup
�2V(� 0)

sup
f 2A(Æ,r)

j�2
n E(j�̂�n � � j2) < 1,

and, under the additional Assumption S,
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lim
�!0

lim inf
n!1

inf
� n

sup
�2V(� 0)

sup
f 2A(Æ,r)

j�2
n E(j�n � � j2) > 1,

where the infimum is taken over arbitrary estimators �n of � .

Under Assumption B, the noise is much smoother than the deconvolution density, and

this explains the faster rate in this case. Note that the class of densities allowed here is also

much smaller than in the previous set-up.

Proposition 2. Fix �0 . 0, � . 0 such that �0 . �, and a neighbourhood V(�0) ¼
V�(�0) ¼ (�0 � �; �0 þ �). Under Assumption B, consider the sequence of parameters

un ¼ (�0 þ 2�)�1(log n=2)1=s, and the rate

łn,� ¼ 2�

s2

(�0 þ 2�)sþ1

(�0 � �)s
log log n

log n
:

Then, for all � 2 V(�0), for all f 2 B(�) and large enough n, we have

P(j�̂�n � � j > łn,�) < O(1)(log n)2�=s 1

n

� �1�� s=(� 0þ2�)s

:

Minimax lower bounds in the next theorem are exact for s ¼ 1 and nearly exact

otherwise, since js� 1j < 1 and 2� . 2.

Theorem 2. For all fixed �0 . 0, under Assumption B and for �̂�n defined as in Proposition 2,

consider the rate

łn ¼
2��0

s2

log log n

log n
:

Then, for any � . 1 and for any neighbourhood V(�0),

lim
�!0

lim sup
n!1

sup
�2V(� 0)

sup
f2B(�)

ł�2
n E(j�̂�n � � j2) < 1,

and, under the additional Assumption S,

lim
�!0

lim inf
n!1

inf
� n

sup
�2V(� 0)

sup
f 2B(�)

ł�2
n E(j�n � � j2) > 1 � js� 1j

2�

� �2

,

where the infimum is taken over arbitrary estimators �n of � .

The proofs can be found in Section 4 for the upper bounds and in Section 5 for the

lower bounds.

For the purposes of practical implementation we may use an immediate consequence of

Theorem 1 (or Theorem 2). This is a global version of the minimax upper bounds, where

the unknown parameter is supposed to belong to some compact set in R�þ and the

estimation algorithm is based only on a strict upper bound � of this set.
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Corollary 1. Suppose � is in some bounded set ¨, 0 , inf ¨ , sup¨ , �. Under

Assumption A, consider

un ¼
log n

2�s

� �r=s

and jn(�) ¼ Æ

s� s�1

log n

2�s

� �r=s�1

:

Then we have

lim sup
n!1

sup
�2¨

sup
f 2A(Æ,r)

j�2
n (�)E(j�̂�n � � j2) < 1:

Corollary 2. Suppose � is in some bounded set ¨, 0 , inf ¨ , sup¨ , �. Under

Assumption B, consider

un ¼
log n

2�s

� �r=s

and łn(�) ¼ 2��s

s2� s�1

log log n

log n
:

Then we have

lim sup
n!1

sup
�2¨

sup
f 2B(�)

ł�2
n (�)E(j�̂�n � � j2) < 1:

A simulation study was performed on the estimator of � with tuning un as defined in the

corollaries. As we might expect, the quality of estimation is improved when the upper

bound � is closer to the true underlying parameter � . Moreover, in the proof of

Propositions 1 and 2 we see that the probability that �̂�n overestimates � dominates the

probability that it underestimates it. Therefore, in practice it is useful to reiterate the

procedure and take the former �̂�n as �1 in the next step and obtain a new estimator �̂� (1)
n ,

etc. Results become robust with respect to the a priori large and difficult choice of �.

3. Estimation of the density f

Our estimator �̂�n of the noise level, defined by (3), leads to a natural estimator of the

deconvolution density, using a kernel estimator combined with a plug-in method. In this

section, we establish the rate of convergence of this estimator and prove its optimality. In

the following, C . 0 denotes a large enough constant.

3.1. Preliminaries on stable distributions

We consider a noise � having a stable distribution denoted by S(1, s, �, �), with scale

parameter fixed at 1, self-similarity index s 2 (0, 2], symmetry parameter � 2 [�1, 1] and

location � 2 R (Assumption S). In our model the noise is multiplied by an unknown scale

parameter � . 0. By Zolotarev (1986), �� has also a stable law whose explicit Fourier

transform is given by
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��(� u) ¼
expf�� sjujs(1 � i� sgn(u) tan (�s=2)) þ iu� �g, s 6¼ 1

exp �� juj 1 þ i� sgn(u)
2

�
logjuj

� �
þ iu� �� �

2

�
log �

� �	 

, s ¼ 1:

8><
>: (5)

Note that j��(� u)j ¼ e�� sjujs . Moreover, a sum of independent copies of a stable law with

the same self-similarity index s is distributed as a stable law with the same parameter s.

Indeed, for �1, �2 . 0,

��(�1u)��(�2u) ¼ ��(� u)eiua,

for any values of the parameters s and �, where � s
1 þ � s

2 ¼ � s and

a ¼
�(�1 þ �2 � � ), s 6¼ 1,

2

�
�(�1 log(�1=� ) þ �2 log(�2=� )), s ¼ 1:

8<
:

Define moreover the parameter

~ss ¼
s _ 1, if � 6¼ 0,

s, if � ¼ 0:

	
(6)

This parameter will be useful since it is related to the behaviour in a neighbourhood of zero

of the function ��(� �). Its role will be clearer in the proofs of the following theorems. Note

that when the location parameter � differs from 0, we can write the model as

Y ¼ X þ � (�0 þ �), with noise �0 having stable law located at 0, which means centred if

it has finite expectation (s > 1). This expression shows that the role of the known location

parameter � cannot be neglected, as the model does not simply write Y ¼ X þ ��0 þ �.

3.2. Plug-in deconvolution density estimator

We will now describe the estimation procedure. Consider the kernel k n defined by its

Fourier transform

�k n (u) ¼ f��(h�1
n u)g�11juj<1, (7)

where hn is some positive sequence of numbers decreasing to zero. The kernel estimator of

the unknown density f is given by

f̂f n,�̂� n
(x) ¼ 1

n�̂�nhn

Xn
i¼1

k n

Yi � x

�̂�n hn

� �
: (8)

In order to obtain an upper-bound for the pointwise risk of our estimator, we need to

restrict ourselves to densities belonging to bounded function spaces: classes of supersmooth

densities or Sobolev balls. Let us denote
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S(Æ9, R, L) ¼ f ; f is a density and

ð
j�(u)j2e2Æ9jujRdu < L2

	 

, (9)

W (�9, L) ¼ f f ; f is a density and

ð
j�(u)j2(1 þ juj2�9)du < L2g, (10)

where Æ9, R, L . 0 and �9 . 1
2
.

Three cases occur, according to whether the unknown density f belongs to

A(Æ, r) \ S(Æ9, R, L), which is non-empty for R , r or fR ¼ r and Æ9 , Æg; to A(Æ, r)

\ W (�9, L); or to B(�) \ W (�9, L), which is non-empty when � . �9þ 1
2
. Note that in the

third case, we automatically obtain that � . 1. Note also that the intersection

B(�) \ S(Æ9, R, L) is always empty.

3.3. Pointwise rates and optimality

The main goal of this section is to tune the bandwidth hn in (8) and compute associated

pointwise minimax convergence rates associated with each set-up.

Theorem 3. For all fixed �0 . 0, under the assumptions and notation of Theorem 1 and

under Assumption S, consider the kernel estimator f̂f n,�̂� n
defined by (7) and (8) with

bandwidth

hn ¼
(�0 þ �)R

Æ9
1 � r

s

� �
log log n� (�0 þ �)R

Æ9

1 � R

2R
log log log n

	 
�1=R

:

Then, for any neighbourhood V(�0) of �0 and for any x in R, we have

lim sup
n!1

sup
�2V(� 0)

sup
f 2A(Æ,r)\S(Æ9,R,L)

j�2
n E(j f̂f n,�̂� n

(x) � f (x)j2) < C , 1

and

lim inf
n!1

inf
fn

sup
�2V(� 0)

sup
f 2A(Æ,r)\S(Æ9,R,L)

j�2
n E(j f n(x) � f (x)j2) > c . 0,

where the infimum is taken over arbitrary estimators f n of f .

Sobolev classes of deconvolution densities are considered in next two theorems. Note that

we obtain the same rate as for estimating � in the case �9 . ~ssþ 1
2
, where the parameter ~ss is

defined by (6). The rates of convergence can be even slower when �9 < ~ssþ 1
2
. Upper

bounds for the risks in such specific cases are discussed in the next subsection, but

corresponding lower bounds are not proven.

Theorem 4. For all fixed �0 . 0, under the assumptions and notation of Theorem 1, under

Assumption S, and assuming �9 . ~ssþ 1
2
, consider the kernel estimator f̂f n,�̂� n

defined by

(7) and (8) with bandwidth hn ¼ (log n)2(r=s�1)=(2�9�1). Then, for any neighbourhood V(�0) of

�0 and any x in R, we have
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lim sup
n!1

sup
�2V(� 0)

sup
f 2A(Æ,r)\W (�9,L)

j�2
n E(j f̂f n,�̂� n

(x) � f (x)j2) < C , 1

and

lim inf
n!1

inf
fn

sup
�2V(� 0)

sup
f 2A(Æ,r)\W (�9,L)

j�2
n E(j f n(x) � f (x)j2) > c . 0,

where the infimum is taken over arbitrary estimators f n of f .

Theorem 5. For all fixed �0 . 0, under the assumptions and notation of Theorem 2, under

Assumption S, and assuming �9 . ~ssþ 1
2
, consider the kernel estimator f̂f n,�̂� n

defined by (7)

and (8) with bandwidth hn ¼ (log logn=logn)2=(2�9�1). Then, for any neighbourhood V(�0) of

�0 and any x in R, we have

lim sup
n!1

sup
�2V(� 0)

sup
f 2B(�)\W (�9,L)

ł�2
n E(j f̂f n,�̂� n

(x) � f (x)j2) < C , 1

and

lim inf
n!1

inf
fn

sup
�2V(� 0)

sup
f 2B(�)\W (�9,L)

ł�2
n E(j f n(x) � f (x)j2) > c . 0,

where the infimum is taken over arbitrary estimators f n of f .

Here we use the same kernel estimators as in Butucea and Tsybakov (2004) and plug the

preliminary estimator �̂�n into the � -dependent bandwidth. Fortunately, the deconvolution

kernel can be made free of � , and we finally obtain a kernel estimator with data-dependent

bandwidth. Thus, we prove that the global estimation risk is at most that of the estimation

of the noise level (the slowest).

The proofs for the upper bounds can be found in Section 4. They are based on the

convergence of �̂�n to � . We evaluate the uniform risk for some parameter in a

neighbourhood of � using maximal inequalities for empirical processes in order to treat the

uniform stochastic term. Next, we prove that the probability that �̂�n is outside the

neighbourhood of � is small enough to make this part of the risk even smaller. This idea

was previously used by Butucea (2001) for a density estimator adaptive to the unknown

smoothness of the density.

3.4. Specific cases

Particular cases for the upper bounds in Theorems 4 and 5 are treated in Table 1. Indeed,

when �9 < ~ssþ 1
2
, we obtain losses which seem inevitable. The proof of these results is

given in the respective proofs of the upper bounds of Theorems 4 and 5, when �9 , ~ssþ 1
2

and when s ¼ 1 and � ¼ 0. The other proofs are immediate consequences of the expressions

appearing in the term denoted by T11 and are omitted.

Remember that the parameter ~ss ¼ s if the noise is located at � ¼ 0 but that ~ss ¼ s _ 1 if

� 6¼ 0, and that � ¼ 0 cannot be assumed without restriction.

Note also that in the borderline case of �9 ¼ ~ssþ 1
2
, optimal bandwidths are the same as
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those in Theorem 4, or Theorem 5. The rates are lowered by log(1=hn) ¼ C log log n at

some power, in these cases, where C . 0 is some constant.

3.5. Rates for L2 risk and optimality

In this subsection we consider global L2 risk for estimating the deconvolution density. In

the main cases, rates are the same as for the pointwise risk. A proof is briefly sketched at

the very end of the paper.

Theorem 6. For all fixed �0 . 0, consider the kernel estimator f̂f n,�̂� n
defined by (7) and (8)

with bandwidth hn.

(i) Under the assumptions of Theorem 3, take

hn ¼
(�0 þ �)R

Æ9
log(1=jn)

� ��1=R

and consider F ¼ A(Æ, r) \ S(Æ9, R, L) and vn ¼ jn,

(ii) Under assumptions of Theorem 4 and �9 . ~ss, take hn ¼ j1=�9
n and consider F ¼

A(Æ, r) \ W (�9, L) and vn ¼ jn,

(iii) Under assumptions of Theorem 5 and �9 . ~ss, take hn ¼ ł1=�9
n and consider F ¼

B(�) \ W (�9, L) and vn ¼ łn.

Then, for any neighbourhood V(�0) of �0, we have in each different set-up

lim sup
n!1

sup
�2V(� 0)

sup
f 2F

v�2
n E(k f̂f n,�̂� n

� f k2
2) < C , 1

and

lim inf
n!1

inf
fn

sup
�2V(� 0)

sup
f 2F

v�2
n E(k f n � f k2

2) > c . 0,

where the infimum is taken over arbitrary estimators f n of f .

In some specific cases, the rates can be even slower and we do not prove the associated

lower bounds. In set-up (ii) of Theorem 6, with �9 , ~ss, the same estimator with bandwidth

hn ¼ j1=~ss
n attains the rate vn ¼ j�9=~ss

n . In set-up (iii) of the same theorem, with �9 , ~ss, take

Table 1. Upper bounds for the quadratic pointwise risk when f 2 A(Æ, r) \ W (�9, L), with

hn ¼ (log n)(r=s�1)=~ss, and f 2 B(�) \ W (�9, L), with hn ¼ (log log n=log n)1=~ss, respectively

�9 ¼ ~ssþ 1
2

�9 , ~ssþ 1
2

(s ¼ 1, � 6¼ 0) j2
n log3(1=hn) ł2

n log3(1=hn) j2
n log2(1=hn) ł2

n log2(1=hn)

s 6¼ 1 or (s ¼ 1, � ¼ 0) j2
n log(1=hn) ł2

n log(1=hn) j(2�9�1)=2~ss
n ł(2�9�1)=2~ss

n
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hn ¼ ł1=~ss
n to attain the rate vn ¼ ł�9=~ss

n . As in the case of pointwise risk, we have

logarithmic losses when �9 ¼ ~ss.

4. Proofs: upper bounds

Lemma 1. For any � . 0 and any density f , we have for all �, u . 0,

E(F̂Fn(�, u)) ¼ F(�, u) and var(F̂Fn(�, u)) <
e2(�u)s

n
,

where F̂Fn and F are defined by (2) and (4).

The proof of this lemma is trivial and therefore omitted.

Proof of Proposition 1 and Theorem 1 (upper bound). Consider the probability of the event

fj�̂�n � � j > jn,�g and split it into two terms:

P(j�̂�n � � j > jn,�) ¼ P(�̂�n > � þ jn,�) þ P(�̂�n < � � jn,�) ¼ T1 þ T2:

By definition of the estimator �̂�n, we bound the first term

T1 < P(jF̂Fn(� þ jn,�, un)j < 1) < P(jF(� þ jn,�, un)j < 1 þ M) þ ˜M , (11)

for some arbitrary M . 0 and ˜M defined as

˜M ¼ P(jF̂Fn(� þ jn,�, un) � F(� þ jn,�, un)j > M):

Note that

˜M <
1

M2
E(jF̂Fn(� þ jn,�, un) � F(� þ jn,�, un)j2) ¼ 1

M2
var(F̂Fn(� þ jn,�, un)):

But Lemma 1 leads to

˜M <
e2(�þjn,�)s usn

nM2
: (12)

Note also that

P(jF(� þ jn,�, un)j < 1 þ M) ¼ P(j�Y (un)j exp f(� þ jn,�)susng < 1 þ M)

¼ P(j�(un)j exp [f(� þ jn,�)s � � sgusn] < 1 þ M)

¼ P(j�(un)j exp fsjn,��
s�1usn(1 þ o(1))g < 1 þ M):

With no loss of generality, we have restricted ourselves here to the case j��(u)j ¼ e�jujs , for

large enough juj. A slight adaptation in the following choice of the parameter M is needed

in a more general context. Since Assumption A ensures that, for large enough n,

j�(un)j > c expf�Æur
ng, we obtain that

P(jF(� þ jn,�, un)j < 1 þ M) < P(c exp f�Æur
n þ sjn,��

s�1usn(1 þ o(1))g < 1 þ M):
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With our choice of the parameters un and jn,�, we have

lim
n!1

(�Æur
n þ sjn,��

s�1usn(1 þ o(1))) ¼ þ1;

then we choose

M ¼ 1
2
c expf�Æur

n þ sjn,��
s�1usng,

and obtain that P(jF(� þ jn,�, un)j < 1 þ M) is zero for large enough n. Combining this

with (11), (12) and the choice of M , we obtain that, for large enough n,

T1 <
4

nc2
expf2(� þ jn,�)susn þ 2Æur

n � 2s� s�1jn,�u
s
ng

<
4

nc2
exp f2� susn þ 2Æur

n þ o(jn,�u
s
n)g,

which converges to zero with our choice of the parameters un and jn,�.

Consider now the second term:

T2 ¼ P(�̂�n < � � jn,�) < P(jF̂Fn(� � jn,�, un)j > 1),

by definition of the estimator �̂�n. Note that

T2 < EjF̂Fn(� � jn,�, un)j2 ¼ var(F̂Fn(� � jn,�, un)) þ jF(� � jn,�, un)j2:

Since

jF(� � jn,�, un)j ¼ j�(un)j exp f�� susn þ (� � jn,�)susng < exp f�s� s�1jn,�u
s
n(1 þ o(1))g,

and using the fact that by Lemma 1,

var(F̂Fn(� � jn,�, un)) <
expf2(� � jn,�)susng

n
,

our choice of the parameters un and jn,� gives that T2 converges also to zero as n tends to

infinity and even faster than the upper bound of T1. In conclusion, the quantity

P(j�̂�n � � j > jn,�) <
4(1 þ o(1))

nc2
exp f2� susn þ 2Æur

n þ o(jn,�u
s
n)g

< O(1) exp log n �1 þ �

�0 þ 2�

� �s

þ Æ

(�0 þ 2�)r�s

log n

2

� �r=s�1
 !( )

converges to zero as n tends to infinity. Moreover, note that for all � in V(�0), and large

enough n,

322 C. Butucea and C. Matias



E(j�̂�n � � j2) ¼
ðþ1

0

P(j�̂�n � � j2 > t)dt

¼
ðj2

n,�

0

P(j�̂�n � � j2 > t)dt þ
ð2(� 0þ�)2

j2
n,�

P(j�̂�n � � j2 > t)dt

< j2
n,� þ 2(�0 þ �)2P(j�̂�n � � j > jn,�):

By the previous statement, the second term on the right-hand side is negligible compared to

j2
n,�. Finally, jn,�=jn ! 1 when � ! 0, giving the desired result. h

Proof of Proposition 2 and of Theorem 2 (upper bound). The beginning of the proof follows

the same lines and we establish that

P(j�̂�n � � j > łn,�) ¼ P(�̂�n > � þ łn,�) þ P(�̂�n < � � łn,�) ¼ T1 þ T2,

with

T1 < P(jF(� þ łn,�, un)j < 1 þ M) þ e2(�þłn,�)s usn

nM2
:

Assumption B ensures that, for large enough n,

j�(un)j > cjunj��,

leading to

P(jF(� þ łn,�, un)j < 1 þ M) < P(c exp f�� log un þ słn,��
s�1usn(1 þ o(1))g < 1 þ M):

With our choice of the parameters un and łn,�, we have

lim
n!1

� � log un þ słn,��
s�1usn(1 þ o(1)) ¼ þ1;

then we choose

M ¼ c

2
exp fsłn,��

s�1usn � � log ung,

and obtain that P(jF(� þ łn,�, un)j < 1 þ M) is null for large enough n. Combining with

the bound on T1 we obtain that, for large enough n,

T1 <
4

nc2
expf2(� þ łn,�)susn � 2s� s�1łn,�u

s
n þ 2� log ung

<
4

c2
exp f�log nþ 2� susn þ 2� log un þ o(łn,�u

s
n)g,

which converges to zero with our choice of the parameters un and łn,�. The rest of the proof

is exactly the same as in the preceding theorem. h

Proof of Theorem 3 (upper bound). Fix � in V(�0) and f in A(Æ, r) \ S(Æ9, R, L). Denote

the following neighbourhood of � by U(� ) ¼ (� � jn,�; � þ jn,�). The idea of the proof is
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that, �̂�n being convergent to � , we study separately the uniform behaviour of the kernel

estimator when �̂�n is in a neighbourhood of the true value or not. For the first part we use the

bias–variance decomposition and treat the uniform variance with maximal inequality for

empirical processes. Then we prove that the small probability of �̂�n being outside the

neighbourhood makes the global estimation risk even smaller. We split the risk of our

estimator into two terms:

E(j f̂f n,�̂� n
(x) � f (x)j2) ¼ E(j f̂f n,�̂� n

(x) � f (x)j21�̂� n2U(� ))

þ E(j f̂f n,�̂� n
(x) � f (x)j21�̂� n=2U(� )) ¼ T1 þ T2: (13)

We consider the first term:

T1 < E sup
�2U(� )

j f̂f n,�(x) � f (x)j2
 !

< 2 sup
�2U(� )

jE f̂f n,�(x) � f (x)j2 þ 2E sup
�2U(� )

j f̂f n,�(x) � E f̂f n,�(x)j2
 !

< 2T11 þ 2T12: (14)

The term T11 is the maximal bias term over U(� ). Note that

E f̂f n,�(x) ¼ 1

�hn

ð
k n

u� x

�hn

� �
f Y (u)du ¼ 1

2�

ð
�k n(�hn t)e

�ixt�(t)��(� t)dt

(remember that E is shorthand for E� , f the expectation when the unknown parameters are �
and f ), so that we obtain

T11 ¼ sup
�2U(� )

���� 1

2�

ð
e�ixt�(t)(��(�t)�1��(� t)1j tj<1=(�hn) � 1)dt

����2

<
1

4�2

ð
j�(t)j2e2Æ9j tjRdt

� �
sup

�2U(� )

ð
j tj<1=(�hn)

e�2Æ9j tjR j��(�t)�1��(� t) � 1j2dt

þ sup
�2U(� )

1

4�2

ð
j tj.1=(�hn)

j�(t)jdt
 !2

:

By assumption, f belongs to S(Æ9, R, L) so that

ð
j tj.1=(�hn)

j�(t)jdt
 !2

< L2

ð
j tj.1=(�hn)

e�2Æ9j tjRdt <
L2�1�Rh1�R

n

Æ9R
exp

�2Æ9

�RhR
n

 !
(1 þ o(1)),

so that
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T11 <
L2

4�2
sup

�2U(� )

ð
j tj<1=(�hn)

e�2Æ9j tjR j��(�t)�1��(� t) � 1j2dt

þ L2� 1�R

4�2Æ9R
h1�R
n exp

�2Æ9

� RhR
n

 !
(1 þ o(1)):

According to (5),

��(�t)�1��(� t) ¼

exp f(�s � � s)jtjs(1 � i� sgn(t) tan (�s=2)) � it�(�� � )g,

if s 6¼ 1,

exp (�� � )jtj 1 þ i� sgn(t)
2

�
log jtj

� �
� it�(�� � ) þ it�

2

�
(� log �� � log � )

	 

,

if s ¼ 1:

8>>>>>>>>>>><
>>>>>>>>>>>:

Write � ¼ � þ a with jaj < jn,� and jtj < 1=(�hn) such that ajtjs ¼ o(1). We obtain that

��(�t)�1��(� t) ¼

expfsa� s�1jtjs(1 þ o(1))(1 � i� sgn(t) tan(�s=2)) � it�ag, if s 6¼ 1,

exp (ajtj 1 þ i� sgn(t)
2

�
logjtj) � it�aþ it�

2

�
a

� �
(1 þ o(1))

	 

, if s ¼ 1,

8>><
>>:

which leads to

j��(�t)�1��(� t) � 1j ¼ O(1)jn,�jtjs þ O(1)jn,��jtj ¼ O(1)jn,�jtj~ss, if s 6¼ 1:

O(1)jn,�jtj(1 þ �log jtj), if s ¼ 1:

(
(15)

Returning to the upper bound on T11, we obtain that

T11 < O(1)

ð
jtj2~ss(1 þ �log jtj)2e�2Æ9j tjRdt

� �
j2

n,� þ O(1)h1�R
n exp

�2Æ9

� RhR
n

 !
:

The bandwidth hn is the largest possible such that T11 is not larger than the inevitable (large

enough) loss of j2
n,� . We see later that all other terms in the decomposition of T1 and T2 in

(13) are much smaller, because R < r , s. Thus:

T11 < O(j2
n,�): (16)

Return now to inequality (14) and consider the second term T12. We have
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j f̂f n,�(x) � E f̂f n,�(x)j2 ¼ 1

4�2

����
ð
�k n (u�hn)e

iux(�̂�Y
n (u) ��Y (u))du

����2

<
1

4�2n
sup

juj<(�hn)�1

jGn guj
 !2 ð

juj<(�hn)�1

e�
sjujsdu

 !2

,

where G is the empirical process associated to the measure P ¼ P� , f , which means that

G(g) ¼ n�1=2
Pn

i¼1(g(Yi) � Pg) and the function gu : y 7! eiuy. Finally,

T12 <
(� hn)2(s�1)e2=hsn

4�2n
sup

juj<((��j n,�)hn)�1

jGn guj
 !2

(1 þ o(1)): (17)

We now use a maximal inequality to control the norm of the empirical process. The

following notation can be found in more detail in van der Vaart and Wellner (1996). We

consider the class of functions F n defined by fgu; juj < ((� � jn,�)hn)
�1g. The complexity

of this family lies in its entropy, defined through the bracketing numbers for this class. This

class satisfies,

8u, s, x 2 R, jgu(x) � gs(x)j < 2jxj3 ju� sj,

so that Theorem 2.7.11 in van der Vaart and Wellner (1996) applies with F(x) ¼ 2jxj and

gives that the bracketing numbers for the class F n (which means the minimal number of

brackets of size E needed to cover F n) are controlled by the covering numbers of

I n ¼ [�((� � jn,�)hn)�1, ((� � jn,�)hn)�1] (i.e the minimal number of balls of radius E
needed to cover this interval). We have

N[ ](2EkFkL2(Q); F n; L2(Q)) < N (E; I n; j � j),

where Q is any discrete probability measure such that kFkL2(Q) . 0. But it is easy to bound

the covering numbers for I n:

N (E; I n; j � j) < 2

E
((� � jn,�)hn)�1:

Using the fact that the covering number N (EkFkL2(Q); F n; L2(Q)) is bounded by the

bracketing number N[ ](2EkFkL2(Q); F n; L2(Q)), we finally obtain

N (EkFkL2(Q); F n; L2(Q)) <
2

E
((� � jn,�)hn)�1: (18)

Let us define the entropy of this class by the formula

J (1, F n) ¼ sup
Q

ð1

0

f1 þ log N (EkFkL2(Q); F n; L2(Q))g1=2dE, (19)

where the supremum is taken over all discrete probability measures Q. Then, Theorem 2.14.1

in van der Vaart and Wellner (1996) applies (since F n is a measurable class of measurable

functions with measurable envelope F) and gives that
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E sup
juj<((��jn,�)hn)�1

jGn guj
 !2

8<
:

9=
; < ckFk2

L2(P)J (1, F n)
2,

where c is an absolute constant and P ¼ P� , f . Combining the definition of the entropy (19)

with inequality (18), we obtain that there exists some constant k such that

E sup
juj<((��jn,�)hn)�1

jGn guj
 !2

8<
:

9=
; < kjlog (hn)j(1 þ o(1)):

Returning to the bound (17), we obtain

T12 ¼ O(1)

n
h2s�2
n e2=hsn jlog (hn)j: (20)

Combining inequalities (14), (16) and (20), and the definition of the rate jn,�, gives

T1 < O(j2
n,�): (21)

Return to the expression of the risk (13) and consider the second term:

T2 ¼ E(j f̂f n,�̂� n
(x) � f (x)j21�̂� n=2U(� ))

< 2Ef(k f̂f n,�̂� n
k2
1 þ k f k2

1)1�̂� n=2U(� )g

But we know that

k f̂f n,�̂� n
k2
1 <

1

j�̂�nj2
3

h2(s�1)
n e2=hsn

�2s2
(1 þ o(1)),

and that

E
1

j�̂�nj2
1�̂� n=2U(� )

� �
¼ 1

� 2
P(�̂�n =2 U(� ))(1 þ r),

where

jrj ¼ � 2P(�̂�n =2 U(� ))�1jEf(�̂��2
n � � �2)1�̂� n=2U(� )gj

< � 2Ej�̂��2
n � � �2j2

< � �2Ef�̂��4
n j�̂� 2

n � � 2j2g:

But �̂�n converges in probability to � . 0, so that �̂��4
n is bounded in probability and, finally,

jrj ¼ O(1)Ej�̂� 2
n � � 2j2 ¼ o(1):

We obtain

T2 < 2
h2(s�1)
n e2=hsn

�2s2� 2
(1 þ o(1)) þ k f k2

1

� �
P(�̂�n =2 U(� )):
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As f belongs to A(Æ, r), Proposition 1 gives that

T2 < O(1)h2(s�1)
n e2=hsn exp

2Æ

(�0 þ 2�)r
log n

2

� �r=s
( )

1

n

� �1�� s=(� 0þ2�)s

: (22)

Combining inequalities (13), (21) and (22) gives the desired result. h

Proof of Theorem 4 (upper bounds). Fix � in V(�0) and f in A(Æ, r) \ W (�9, L). We only

sketch the proof as it follows the same lines and notation as the proof of Theorem 3 (upper

bound). Here the term T11 is written as

T11 ¼ sup
�2U(� )

���� 1

2�

ð
e�ixt�(t)(��(� t)��(�t)�11j tj<1=(�hn) � 1)dt

����2

<
1

4�2

ð
j�(t)j2(1 þ jtj2�9)dt

� �
sup

�2U(� )

ð
j tj<1=(�hn)

(1 þ jtj2�9)�1j��(� t)��(�t)�1 � 1j2dt

þ sup
�2U(� )

1

4�2

ð
j tj.1=(�hn)

j�(t)jdt
 !2

:

But here f belongs to W (�9, L), so thatð
j tj.1=(�hn)

j�(t)jdt
 !2

< L2

ð
j tj>1=(�hn)

(1 þ jtj2�9)�1 dt <
2

2�9� 1
L2�2�9�1h2�9�1

n (1 þ o(1)):

In the same way as we established the bound (16) using the expressions given in equality

(15), we obtain

T11 < O(1)j2
n,�

ð
j tj<1=(�hn)

jtj2~ss(1 þ � log jtj1s¼1)2

1 þ jtj2�9 dt þ O(1)h2�9�1
n :

In the case �9 . ~ssþ 1
2
, we bound

Ð
j tj<1=(�hn)

jtj2~ss(1 þ �logjtj)2=(1 þ jtj2�9)dt by the constant

limit. The choice of the bandwidth hn ¼ (logn)2(r=s�1)=(2�9�1) is the largest such that

T11 < O(j2
n,�) ¼ O(1)(log n)2(r=s�1):

In the case �9 , ~ssþ 1
2
, and when s ¼ 1 and � ¼ 0, we evaluate the rate of divergence of

the integral in the bound of T11 and obtain a global slower rate of convergence. Here,

T11 < O(1)h2�9�2~ss�1
n j2

n,� þ O(1)h2�9�1
n :

This bound is optimized for hn ¼ (logn)(r=s�1)=~ss, giving the global rate of order

T11 < O(1)(jn,�)(2�9�1)=~ss ¼ O(1)(log n)(r=s�1)(2�9�1)=~ss:

More generally, when �9 < ~ssþ 1
2
, we can evaluate the rate of divergence of the remaining

integral in every case, which gives the more precise results presented in Section 3.4. The

rates obtained differ from the previous ones only by powers of log log n.
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The controls of the terms T12 and T2 remain valid and they are much smaller than T11

giving the global rate, and we automatically obtain different results. h

Proof of Theorem 5 (upper bounds). Fix � in V(�0) and f in B(�) \ W (�9, L). The first

part of the proof of Theorem 4 (upper bounds) applies and we just replace jn,� by łn,�:

T11 < O(1)ł2
n,�

ð
j tj<1=(�hn)

jtj2~ss(1 þ � log jtj1s¼1)2

1 þ jtj2�9 dt þ O(1)h2�9�1
n :

In a similar manner, in the case �9 . ~ssþ 1
2
, we bound the previous integral by its

constant limit and choose hn ¼ (log log n=log n)2=(2�9�1) as large as possible such that

T11 < O(ł2
n,�) ¼ O(1)

log log n

log n

� �2

:

In the other cases, a loss in rate is inevitable. When �9 , ~ssþ 1
2

and if s ¼ 1 and � ¼ 0,

we obtain

T11 < O(1)h2�9�2~ss�1
n ł2

n,� þ O(1)h2�9�1
n :

The optimal bandwidth is hn ¼ (log log n=log n)1=~ss, giving a slower risk rate of order

T11 < O((łn,�)(2�9�1)=~ss) ¼ O(1)
log log n

log n

� �(2�9�1)=~ss

:

More generally, evaluating the rate of divergence of the integral appearing in the bound of

T11 gives the remaining cases.

The control of the term T12 remains valid. The control of the last term, T2, follows the

same lines, leading to

T2 < 2 k f k2
1 þ h2(s�1)

n e2=hsn

�2s2� 2
(1 þ o(1))

� �
P(�̂�n =2 U(� )):

As f belongs to B(�), Theorem 2 gives that

T2 < O(1)h2(s�1)
n e2=hsn (log n)2�=s 1

n

� �1�� s=(� 0þ2�)s

,

and we obtain the desired results. Indeed, under the respective hypotheses with chosen

bandwidths, T12 and T2 converge to 0 faster than T11. h

5. Proofs: lower bounds

5.1. Prerequisites

The proofs of the lower bounds in all these theorems are based on suitable choices of two

models with convenient parameters being as far from each other as possible, such that the

convolution models are close in �2-distance.
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The following proposition is the main tool in the proof of our lower bounds and can be

found in Butucea and Tsybakov (2004). The notation �2(P, Q) denotes the �2-distance

between the probabilities P and Q:

�2(P, Q) ¼

ð
dP

dQ
� 1

� �2

dQ, if P 
 Q,

þ1, otherwise:

8><
>:

Proposition 3. Let P¨ ¼ fPŁ; Ł 2 ¨g be a family of models. Assume that there exist Ł1 and

Ł2 in ¨ with jŁ2 � Ł1j > 2sn . 0 such that the probability measures P1 ¼ PŁ1
and P2 ¼ PŁ2

satisfy

P1 
 P2 and �2(P�n
1 , P�n

2 ) < K2 , 1:

Then we have

lim inf
n!1

inf
Ł̂Łn

s�2
n maxfE1(jŁ̂Łn � Ł1j2), E2(jŁ̂Łn � Ł2j2)g > (1 � K)2(1 �

ffiffiffiffi
K

p
)2,

where the infimum is over any estimator Ł̂Łn of the underlying parameter and this bound is

actually arbitrary close to 1 for K small enough.

Now, the previous lower bounds are established by the construction, in each different case

(density in A(Æ, r) or B(�)), of two particular models P1 ¼ P� 1, f1
and P2 ¼ P� 2, f2, with �2

distance converging to zero. Note that

sup
�

sup
f

s�2
n E(j�̂�n � � j2) > s�2

n maxfE1(j�̂�n � �1j2), E2(j�̂�n � �2j2)g,

sup
�

sup
f

s�2
n E(d2( f̂f n, f )) > s�2

n maxfE1(d2( f̂f n, f 1)), E2(d2( f̂f n, f 2)g,

where d( f , g) denotes pointwise absolute difference j f (x0) � g(x0)j or L2 norm k f � gk2 of

two arbitrary functions f and g, respectively. Proposition 3 for the particular models

constructed in the proof entails the results. Note that the different rates of convergence sn
correspond to half of the distance between the parameters �1 and �2, when estimating the

scale; and to d( f 1, f 2)=2, when estimating the unknown density.

5.2. Construction

We construct two models which are close in �2-distance but come from parameters which

are far enough from each other. They are used throughout the proofs of the lower bounds

with suitable choices of densities and scale parameters, under Assumptions A and B,

respectively.

Let us fix the scale parameter �0 and a symmetric density f 1 in the class we consider,

having Fourier transform �1. The first model has deconvolution density f 1 and scale

parameter �1 ¼ (1 þ t)1=s�0. In this model, observations Y1, . . . , Yn have density f Y1 (x) ¼
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f 1 � f f �(�=�1)=�1g(x) and Fourier transform �Y
1 (u) ¼ �1(u)��(�1u). Recall that the noise

has stable density S(1, s, �, �).

Consider next a perturbation of this model, having scale parameter �2 ¼ (1 � t)1=s�0 and

a deconvolution density f 2 defined by its Fourier transform,

�2(u) ¼ �1(u) ��((2t)1=s�0u)e�iua t k� u

M

� �
þ 1 � k� u

M

� �n o
, (23)

where the auxiliary function k has Fourier transform k�, M ¼ Mn is some sequence of

positive numbers, and the real-valued function at is defined by the relations

at ¼
�(�2 þ (2t)1=s�0 � �1), if s 6¼ 1,

���0

2

�
(1 � t)log

1 � t

2

� �
þ (1 þ t)log

1 þ t

2

� �	 

, if s ¼ 1:

8><
>: (24)

Indeed, by (5) and a simple computation,

��(�2u)��((2t)1=s�0u) ¼ ��(�1u)eiua t :

We denote in this case f Y2 (x) ¼ f 2 � f f �(�=�2)=�2g(x) and �Y
2 (u) ¼ �2(u)��(�2u).

This construction is actually based on Fourier transforms �1, �2 which have the same

behaviour for large values of u, so that they belong to the same class of densities.

Moreover, the resulting models �Y
1 , �Y

2 coincide (in absolute value) on a large interval

around 0 in order to obtain models close together in �2-distance. By Proposition 3, the rate

of convergence is given, for small t, by

j�1 � �2j ¼
2�0

s
t(1 þ o(1)),

when we estimate the scale parameter � , and by the differences

j f 1(x) � f 2(x)j ¼ 1

2�

����
ð

e�ixu(�1 ��2)(u)du

���� or k f 1 � f 2k2 ¼ (2�)�1=2k�1 ��2k2

when we are interested in pointwise or L2 estimation of f .

Let us proceed to the proof of the lower bounds via an auxiliary result.

Lemma 2. Let g and h be two non-negative functions such that g has a unique mode andÐ
h(x)dx ¼ c . 0. Then the convolution product g � h satisfies

g � h(x) >
c

2
minfg(xþ A), g(x� A)g,

for some large enough A . 0. If g is symmetric the lower bound becomes g(jxj þ A)c=2.

Proof. It is obvious that for some A . 0 large enough,
Ð A
�A

h(u)du > c=2 and

g � h(x) >

ðA
�A

g(x� u)h(u)du > minfg(xþ A), g(x� A)g
ðA
�A

h(u)du,

which concludes the proof. h
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Throughout the following sections, C denotes some positive constant.

5.3. Deconvolution densities in the class A (Æ, r)

We now particularize the choice of the function f 1 to deal with the case of deconvolution

densities belonging to A(Æ, r).

Lemma 3. Consider the function �1(u) ¼ e�Æjuj r which is the Fourier transform of a

symmetric stable density f 1 in the class A(Æ, r). There exists a kernel k such that:

(a) k is an even function;

(b) the Fourier transform k� has a support included in [�2, 2];

(c) for all u in [�1, 1], k�(u) ¼ 1;

(d) k� is four times continuously differentiable on R (i.e. C4).

Consider the function �2 defined by (23). Then �2 is the Fourier transform of a density

f 2 included in A(Æ, r) for all large enough M and small enough t . 0.

Proof. Without loss of generality, we assume that �0 ¼ 1.

Let us construct a function k with the desired properties. Consider the function

g(x) ¼ sin x=(�x), with g�(u) ¼ 1juj<1. Next, consider successive convolutions of g� with

itself, say g�32 having support on [�32, 32] and being four-times continuously

differentiable, corresponding to a positive density function g32(x). Let us rescale this

function G�(u) ¼ g�32(u=32)=32 and finally integrate G� as follows:

k�(u) ¼
ðuþ3=2

u�3=2

2G�(2v)dv:

Remember that f 2 denotes the function f2(x) ¼ (2�)�1
Ð

exp(�iux)�2(u)du. Since �2(0)

¼ 1, we know that
Ð
f 2(x)dx ¼ 1: Our purpose is to establish that f 2 is a positive function

(and then a density function). The fact that f 2 belongs to the class A(Æ, r) is a direct

consequence of the construction of �2 (see equation (23)), since the kernel k has a Fourier

transform boundedly supported.

The argument for the positivity of f2 consists of two steps. First, we prove that the

uniform distance k f2 � f 1k1 converges to zero as t tends to zero and M tends to infinity,

and then ( f 1 being strictly positive; see Zolotarev 1986, Remark 4 after Theorem 2.2.3), for

all fixed compact K in R, small enough t and large enough M , we obtain f 2(x) . 0 for all

x in K . The second step is to establish that, for large enough jxj, we have

f 2(x) >
C

jxjrþ1
þ O(1)

jxj3 , (25)

for some constant C . 0, and since r , s < 2, we conclude that, for large enough jxj, the

function f 2 is positive.

Let us establish the first step. Note that
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�2(u) ¼ �1(u)��((2t)1=su)e�iua t þ�1(u) 1 � k� u

M

� �n o
(1 ���((2t)1=su)e�iua t ),

and consequently

f 2(x) ¼ f 1 �
1

(2t)1=s
f � �

(2t)1=s

� �	 
 �
(xþ at)

þ 1

2�

ð
e�iux�1(u) 1 � k� u

M

� �n o
(1 ���((2t)1=su)e�iua t )du: (26)

Using the fact that the kernel k satisfies����1 � k� u

M

� ����� < 1juj>M ,

the second term on the right-hand side of (26) is bounded by���� 1

2�

ð
e�iux�1(u) 1 � k� u

M

� �n o
(1 ���((2t)1=su)e�iua t )du

���� < 1

�

ð
juj>M

e�Æjuj rdu,

which is O(M1�re�ÆM r

), uniformly in x, and then converges to zero as M tends to infinity.

Now let us denote by f �t the scale-transformed function (2t)�1=s f �((2t)�1=s�), so that the first

term in (26) is the convolution of the continuous and bounded function f 1 with f �t , combined

with a translation by at. We obtain that

k f 1 � f �t(� þ at) � f 1k1 < k f 1 � f �t � f 1k1 þ k f1 � f �t � f 1 � f �t(� þ at)k1

¼ o(1) þ k f 1 � f �t � f 1 � f �t(� þ at)k1,

as t tends to zero, by properties of approximate convolution identities. Now using the fact

that at ! 0 (see (24)) and that f �t (and thus also the convolution product) is continuously

differentiable, with uniformly bounded derivative, we have

k f 1 � f �t � f 1 � f �t(� þ at)k1 ¼ O(at) ¼ o(1),

as t tends to zero. Returning to (26), we obtain that

k f 2 � f1k1 ¼ o(1), as M ! 1 and t ! 0:

Denote by � the function

�(u) ¼ �1(u) 1 � k� u

M

� �n o
(1 ���((2t)1=su)e�iua t ),

in such a way, that according to (26),

f2(x) ¼ ( f1 � f �t)(xþ at) þ
1

2�

ð
e�iux�(u)du:

Using the fact that � is three times continuously differentiable, identically equal to zero on

[�2M , 2M] and vanishes at infinity in the same way as its derivatives, integration by parts

establishes that
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����
ð

e�iux�(u)du

���� ¼
����
ð

e�iux �
(3)(u)

(�ix)3
du

���� ¼ O(1)

jxj3 ,

since we have k�(3)k1 , 1. This means that

f 2(x) ¼ ( f 1 � f �t)(xþ at) þ
O(1)

jxj3 :

We now apply Lemma 2 with the densities f1 and f �t, the former being a symmetric function

with unique mode at zero, which gives

f 2(x) >
1

2
f 1(jxj þ A) þ O(1)

jxj3 ,

for some large enough A . 0. Since �1(u) ¼ e�Æjuj r with r , 2, we know that the asymptotic

behaviour of f1(x) is C=jxjrþ1 for some positive constant C (if r ¼ 1, this is the Cauchy

distribution; for r 6¼ 1, see Zolotarev 1986, equations (2.4.8) and (2.5.4)). Finally, we obtain

equality (25) and conclude the proof. h

Proof of Theorem 1 (lower bound). Consider, for arbitrary small � . 0, the sequences of

positive numbers

t ¼ tn ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 � �

p Æ

� r
0

log n

2

� �r=s�1

� 7 � s

s

log log n

log n

( )
and M ¼ Mn ¼

log n

2� s
0

� �1=s

: (27)

Note that, for n large enough, �1, �2 2 V(�0). Now the densities f 1 and f 2 constructed in

Lemma 3 with the preceding choice of parameters belong to the class A(Æ, r) (for large

enough n). Then, applying Proposition 3, we need to control the distance �2(P�n
1 , P�n

2 ) ¼
n�2( f Y1 , f Y2 ). Write

n�2( f Y1 , f Y2 ) ¼ n

ð j f Y1 (y) � f Y2 (y)j2

f Y1 (y)
dy,

and use Lemma 2 and the relation f Y1 (x) ¼ f 1 � [ f �(�=�1)=�1](x) to bound this expression:

n�2( f Y1 , f Y2 ) < n

ð j f Y1 (y) � f Y2 (y)j2
f 1(jyj þ A)

dy,

for some large enough A. Now split this integral into two terms and use the fact that f 1 is a

strictly positive function, with behaviour O(1=jxjrþ1) at infinity, to obtain

n�2( f Y1 , f Y2 ) < nC1

ð
j yj<A

j f Y1 (y) � f Y2 (y)j2 dyþ nC2

ð
j yj.A

jyjrþ1j f Y1 (y) � f Y2 (y)j2 dy (28)

for some positive constants C1 and C2.

Consider the first term on the right-hand side:

T1 ¼ nC1

ð
j yj<A

j f Y1 (y) � f Y2 (y)j2 dy < nC1

ð
j f Y1 (y) � f Y2 (y)j2 dy ¼ nC1

2�
k�Y

1 ��Y
2 k

2
2:
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By definition,

�Y
2 (u) ¼ �2(u)��(�2u) ¼ �1(u) ��((2t)1=s�0u)e�iua t k� u

M

� �
þ 1 � k� u

M

� �n o
��(�2u)

and

�Y
1 (u) ¼ �1(u)��(�1u) ¼ �1(u)��((2t)1=s�0u)��(�2u)e�iua t ,

so that

j�Y
1 (u) ��Y

2 (u)j ¼ j�1(u)��(�2u) 1 � k� u

M

� �n o
(1 ���((2t)1=s�0u)e�iua t )j (29)

< 2e�Æjuj r�(1� t)� s
0
jujs1juj.M :

Then

T1 <
2nC1

�

ð
juj.M

e�2Æjuj r�2(1� t)� s
0
jujsdu ¼ O(nM1�se�2ÆM r�2(1� t)� s

0
Ms

):

But M ¼ (log n=2� s
0)1=s and, by our choice of t, given in (27), we have T1 ¼ o(1).

Let us deal with the second term appearing on the right-hand side in (28):

T2 ¼ nC2

ð
j yj.A

jyjrþ1j f Y1 (y) � f Y2 (y)j2 dy < nC2

ð
jyj4j f Y1 (y) � f Y2 (y)j2 dy:

By Parseval’s equality and since (�Y
1 ��Y

2 )(u) is C4 on its support fjuj > Mg,

T2 <
nC2

2�

ð
j(�Y

1 ��Y
2 ) 0(u)j2du,

and according to the expression (29) for the difference �Y
1 ��Y

2 , we bound this term by

T2 < nC92

ð
juj>M

juj6e�2Æjuj r�2(1� t)� s
0
jujsdu ¼ O(nM7�se�2ÆM r�2(1� t)� s

0
Ms

),

and conclude in exactly the same way that T2 ¼ o(1).

Then, using Proposition 3,

inf
�̂� n

sup
f ,�

j�2
n Efj�̂�n � � j2g > (1 � �)

inf
�̂� n

max
i¼1,2

Efj�̂�n � � ij2g

(�0 t=s)2
> 1 � �,

for arbitrary small � . 0, hence the theorem. h

Proof of Theorem 3 (lower bound). The proof uses the same construction as for the Theorem

1 (lower bound). We therefore use the notation and reasoning introduced in Lemma 3. We

again apply Proposition 3 for functions f 1 and f 2. Indeed, �1(u) ¼ exp (�Æjujr) and thus f 1

belongs to A(Æ, r) \ S(Æ9, R, L) if R , r or if R ¼ r and Æ9 , Æ. We have already seen that

f 2 is in A(Æ, r). Let us remark that j�2(u)j < j�1(u)j and then f 2 belongs to S(Æ9, R, L),

too.

As we have already verified that n�2( f Y1 , f Y2 ) ¼ o(1), when n ! 1, for t and M given
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by (27), it is enough (by Proposition 3) to obtain a lower bound of j f 1(x) � f2(x)j. Without

loss of generality we can evaluate:

j f 1(0) � f 2(0)j ¼ 1

2�

����
ð

(�1(u) ��2(u))du

����
¼ 1

2�

����
ð
�1(u)k� u

M

� �
(1 ���((2t)1=s�0u)e�iua t )du

����:
Using the definition of the characteristic functions of stable laws, we get that the real part

Re(��((2t)1=s�0u)e�iua t ) ¼ e�2 t� s
0
jujs cos (R(t, u)),

for some function R(t, u). This leads to the lower bound

j f 1(0) � f 2(0)j > 1

2�

����
ð

e�Æjuj r k� u

M

� �
f1 � e�2 t� s

0
jujs cos (R(t, u))gdu

����
>

1

2�

ð
e�Æjuj r k� u

M

� �
(1 � e�2 t� s

0
jujs )du

>
1

2�

ð
juj<1

e�Æjuj r (1 � e�2 t� s
0
jujs )duþ

ð
1,juj<M

e�Æjuj r (1 � e�2 t� s
0 )du

 !
,

as k� is a positive function and for large enough M . Finally, both terms above are of order

O(t):

j f 1(0) � f 2(0)j > 1

2�

ð
juj<1

e�Æjuj r2t� s
0jujsdu(1 þ o(1)) þ 2t� s

0

2�

ð
1,juj<M

e�Æjuj rdu

> Ct > C(log n)r=s�1,

and the proof is complete. h

Proof of Theorem 4 (lower bounds). The same construction of functions f 1 and f 2 remains

valid for the model. Indeed, the deconvolution densities are supersmooth so that they belong

to the Sobolev class W (�9, L) as well. Thus we obtain the lower rate of convergence jn

whatever the value of �9. But this rate is nearly optimal (because of a logarithmic loss) in the

case �9 ¼ ~ssþ 1
2

and too small (this bound is too low) in the case �9 , ~ssþ 1
2
, where the rate of

our estimator is j(2�9�1)=2~ss
n . h

5.4. Deconvolution densities in the class B(�)

Those proofs will follow the same lines as the ones concerning deconvolution densities in

A(Æ, r). We choose a new function f1 belonging to the class B(�) such that the resulting
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function f2 (defined via its Fourier transform �2 and equation (23)) also belongs to the set

B(�).

Lemma 4. Let �1(u) ¼ 1
2
(1 þ u2)��=2 þ 1

2
e�juj=2, with � . 1. This function is the Fourier

transform of some density f 1 in the class B(�). Use the kernel k constructed in Lemma 3 and

define the function �2 by equation (23). Then �2 is the Fourier transform of a density f 2

included in B(�) for small enough t . 0 and large enough M.

Proof. First, let us prove that the function f 1 defined by

f 1(x) ¼ 1

2�

ð
e�iux�1(u)du ¼ 1

2
(g1(x) þ g2(x))

where

g1(x) ¼ 1

2�

ð
e�iux

(1 þ u2)�=2
du and g2(x) ¼ 1

�(1 þ x2)
,

is a positive and integrable function, and thus is a density, as by Parseval’s equalityÐ
f 1(x)dx ¼ �1(0) ¼ 1. Indeed, g2 is the density of the Cauchy law, and we have

g1(x) ¼ 1

�

ðþ1

0

cos(ux)

(1 þ u2)�=2
du:

Using formulae 3.771.2, 8.432.3 and 8.334.3 in Gradshteyn and Ryzhik (2000), we obtain

that, for any x > 0, g1 is given by

g1(x) ¼ (ˆ(�=2))�2 x

2

� ���1
ðþ1

1

e�xt(t2 � 1)�=2�1dt,

and thus is a positive function on Rþ, which is also an even function. Moreover, according to

formulae 3.771.2 and 8.451.6 in Gradshteyn and Ryzhik (2000), we have

g1(x) �
þ1

Cx�=2�1e�x,

for some positive constant C, and thus an integrable function. This establishes that f1 is a

density function on R.

The rest of the proof follows the same lines as the one for Lemma 3. Establishing the

positivity of f 2, the first step involves a bound on the quantity���� 1

2�

ð
e�iux�1(u) 1 � k� u

M

� �� �
(1 ���((2t)1=su)e�iua t )du

����
<

1

2�

ð
juj>M

(1 þ u2)��=2duþ 1

2�

ð
juj>M

e�juj=2 du

which is O(M��þ1) and converges to zero, uniformly in x, as M tends to infinity (and for

� . 1). The second step is proved exactly in the same way, as the asymptotic behaviour of f 1

is given by the Cauchy density g2 and it is of order ��1x�2. h
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Proof of Theorem 2 (lower bound). Here, the notation is the same as used in Lemma 4, and

the proof follows the same lines as the proof of Theorem 1 (lower bound). Indeed, for

arbitrary small � . 0, consider the parameters

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 � �

p 2�� js� 1j
s

log log n

log n
and M ¼ log n

2� s
0

� �1=s

, (30)

and the functions f 1 and f2 corresponding to this choice, in Lemma 4.

According to this lemma, the functions f 1 and f 2 belong to B(�) (for large enough n).

The control of the �2-distance between the laws induced by f1 and f2 is established exactly

in the same way as in Theorem 1 (lower bound), where now the asymptotic behaviour of

the function f 1 is O(x�2). The first term T1 is controlled by O(n)k�Y
1 ��Y

2 k
2
2 and

j(�Y
1 ��Y

2 )(u)j < O(1)
1juj.M

(1 þ u2)�=2
exp (�(1 � t)� s

0jujs):

This gives

T1 ¼ O(n)M�2�þ1�se�2� s
0
Msþ2 t� s

0
Ms

: (31)

On the other hand,

T2 ¼ O(n)

ð
j yj.A

jyj2j f Y1 (y) � f Y2 (y)j2dy ¼ O(n)k(�Y
1 ��Y

2 )9k2
2:

We write first

(�Y
1 ��Y

2 )(u) ¼ �1(u)(��(�1u) ���(�2u)) 1 � k� u

M

� �� �
,

to see that the function is continuously differentiable on its support fjuj . Mg. Now,

j(�Y
1 ��Y

2 )9(u)j < O(1)j�1(u)jj(��(�1u) ���(�2u))9j 1 � k� u

M

� �� �
< O(1)juj��þ(s�1)þe�(1� t)� s

0
jujs1juj.M ,

where aþ denotes the positive part of a real a. Then

T2 ¼ O(n)

ð
juj.M

juj�2�þ2(s�1)þe�2(1� t)� s
0
jujsdu ¼ O(M�2�þ2(s�1)þþ1�se�2(1� t)� s

0
Ms

): (32)

From (31) and (32) we deduce that

n�2( f Y1 , f Y2 ) < O(n)M�2�þjs�1je�2(1� t)� s
0
Ms

:

Finally, the �2-distance goes to 0 when n ! 1, for M and t in (30). Thus

inf
�̂� n

sup
f ,�

ł�2
n Efj�̂�n � � j2g > (1 � �) 1 � js� 1j

2�

� �2

,

for arbitrary small � . 0, and this concludes the proof. h

338 C. Butucea and C. Matias



Proof of Theorem 5 (lower bound). We use the construction given in the proof of Theorem 2

(lower bound). As in this proof, n�2( f Y1 , f Y2 ) goes to 0 when n ! 1, for M and t in (30).

Then we need to bound the difference j f 1(0) � f 2(0)j from below:

j f 1(0) � f 2(0)j ¼ 1

2�

����
ð
�1(u)k� u

M

� �
(1 ���((2t)1=su)e�iua t )du

����
> Ct

ð
juj<1

jujs
(1 þ u2)�=2

duþ C

ð
1,juj<M

tdu

(1 þ u2)�=2

> Ct > C
log log n

log n

and the integrals are convergent whenever � . �9þ 1
2
. h

Sketch of proof of Theorem 6. In the upper bounds, the L2 bias changes (see, for example,

T11 in the proof of Theorem 3), since

sup
�2V(� 0)

sup
f 2S(Æ9,R,L)

sup
�2U(� )

1

2�

ð
j tj.1=(�hn)

j�(t)j2dt < L exp � 2Æ

(�0 þ �)RhR
n

 !
,

and

sup
�2V(� 0)

sup
f 2W (�9,L)

sup
�2U(� )

1

2�

ð
j tj.1=(�hn)

j�(t)j2dt < L(�0 þ �)2�9h2�9
n ,

thus giving slightly different bandwidths hn and rates for the case �9 < ~ss.
As for the lower bounds, precisely the same constructions provide the lower bounds since

the rate is now given by k f 1 � f 2k2 ¼ (2�)�1=2k�1 ��2k2. h
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