Minimax estimators of a normal variance

Yuzo Maruyama

Abstract

In the estimation problem of unknown variance of a multivariate normal distribution, a new class of minimax estimators is obtained. It is noted that a sequence of estimators in our class converges to the Stein's truncated estimator.

1 Introduction

Let X and S be independent random variables where X has p-variate normal distribution $N_p(\theta, \sigma^2 I_p)$ and S/σ^2 has chi square distribution χ_n^2 with n degrees of freedom. We deal with the problem of estimating the unknown variance σ^2 by an estimator δ relative to the quadratic loss $(\delta/\sigma^2 - 1)^2$. Stein(1964) showed that the best affine equivariant estimator is $\delta_0 = (n+2)^{-1}S$ and it can be improved by considering a class of scale equivariant estimators $\delta_{\phi} = \phi(Z)S$, for $Z = ||X||^2/S$. He really found an improved estimator $\delta^{ST} = \phi^{ST}(Z)S$, where $\phi^{ST}(Z) = \min((n+2)^{-1}, (n+p+2)^{-1}(1+Z))$. Brewster and Zidek(1974) derived an improved generalized Bayes estimator $\delta^{BZ} = \phi^{BZ}(Z)S$, where

$$\phi^{BZ}(Z) = \frac{1}{n+p+2} \frac{\int_0^1 \lambda^{p/2-1} (1+\lambda Z)^{-(n+p)/2-1} d\lambda}{\int_0^1 \lambda^{p/2-1} (1+\lambda Z)^{-(n+p)/2-2} d\lambda}.$$

We note that shrinkage estimators such as Stein's procedure and Brewster-Zidek's procedure are derived by using the vague prior information that $\lambda = ||\theta||^2/\sigma^2$ is close to 0. It goes without saying that we would like to get significant improvement of risk when the prior information is accurate. Though δ^{ST} improves on δ_0 at $\lambda = 0$, it is not analytic and thus inadmissible. On the other hand, Brewster-Zidek's estimator does not improve on δ_0 at $\lambda = 0$ though it is admissible as shown in Proskin(1985). Therefore it is desirable to get analytic improved estimators dominating δ_0 especially at $\lambda = 0$. In this paper, we give such a class of improved estimators $\delta_{\alpha}^V = \phi_{\alpha}^V(Z)S$, where

$$\phi_{\alpha}^{V}(Z) = \frac{1}{n+p+2} \frac{\int_{0}^{1} \lambda^{\alpha p/2-1} (1+\lambda Z)^{-\alpha((n+p)/2+1)} d\lambda}{\int_{0}^{1} \lambda^{\alpha p/2-1} (1+\lambda Z)^{-\alpha((n+p)/2+1)-1} d\lambda},$$

for $\alpha > 1$. It is noted that δ_1^V coincides with Brewster-Zidek's estimator. Further we demonstrate that δ_{α}^V with $\alpha > 1$ improves on δ_0 especially at $\lambda = 0$ and that δ_{α}^V approaches Stein's estimator when α tends to infinity.

2 Main results

We first derive the estimator δ_{α}^{V} . The problem of estimating α times the variance $\alpha \sigma^{2}$ relative to the loss $(\delta/(\alpha\sigma^{2})-1)^{2}$ is considered, which is slight different from that of the variance σ^{2} . Among many generalized Bayes estimators for this problem, by selecting a suitable prior distribution, we can propose the estimator δ_{α}^{V} with $\alpha > 1$ which is not suitable for minimax estimator of $\alpha\sigma^{2}$ but that of σ^{2} . So far we have not determine whether or not δ_{α}^{V} with $\alpha > 1$ is the generalize Bayes estimator of σ^{2} .

Calculation for deriving the estimator δ_{α}^{V} is following. For $\eta = 1/(\alpha\sigma^{2})$, let the conditional distribution of θ given λ , $0 < \lambda < 1$, be normal with mean 0 and covariance matrix $\lambda^{-1}(1-\lambda)\alpha^{-1}\eta^{-1}I_{p}$ and density functions of λ and η are proportional to $\lambda^{(\alpha-1)p/2-1}I_{(0,1)}(\lambda)$ and $\eta^{(\alpha-1)((p+n)/2+1)-1}I_{(0,\infty)}(\eta)$, respectively. Then the joint distribution $g(\eta, x, s)$ of η, X, S is given by

$$\begin{split} g(\eta, x, s) &\propto \int \eta^{p/2} \exp(-\frac{\alpha \eta}{2} \|x - \theta\|^2) \left(\eta \frac{\lambda}{1 - \lambda} \right)^{p/2} \exp\left(-\frac{\lambda}{1 - \lambda} \frac{\alpha \eta}{2} \|\theta\|^2 \right) \\ &\cdot \eta^{(\alpha - 1)((p+n)/2 + 1) - 1} \lambda^{(\alpha - 1)p/2 - 1} \eta^{n/2} \exp(-\alpha \eta s/2) d\theta d\lambda \\ &\propto \int \eta^{p/2} \left(\eta \frac{\lambda}{1 - \lambda} \right)^{p/2} \exp\left(-\alpha \eta \frac{\|\theta - (1 - \lambda)x\|^2}{2(1 - \lambda)} - \frac{\alpha \eta \|x\|^2 \lambda}{2} \right) \\ &\cdot \eta^{(\alpha - 1)((p+n)/2 + 1) - 1} \lambda^{(\alpha - 1)p/2 - 1} \eta^{n/2} \exp(-\alpha \eta s/2) d\theta d\lambda \\ &\propto \eta^{\alpha((p+n)/2 + 1) - 2} \int_0^1 \lambda^{\alpha p/2 - 1} \exp\left(-\alpha \eta \frac{\|x\|^2 \lambda + s}{2} \right) d\lambda. \end{split}$$

As the generalized Bayes estimator for the loss $(\delta/(\alpha\sigma^2)-1)^2$ is $E(\eta \mid X, S)/E(\eta^2 \mid X, S)$, we have

$$\begin{split} \delta_{\alpha}^{V} &= \frac{\int_{0}^{1} \lambda^{\alpha p/2 - 1} \int_{0}^{\infty} \eta^{\alpha((p+n)/2 + 1) - 1} \exp\left(-\alpha \eta(\|X\|^{2} \lambda + S)/2\right) d\lambda}{\int_{0}^{1} \lambda^{\alpha p/2 - 1} \int_{0}^{\infty} \eta^{\alpha((p+n)/2 + 1)} \exp\left(-\alpha \eta(\|X\|^{2} \lambda + S)/2\right) d\lambda} \\ &= \frac{1}{n + p + 2} \frac{\int_{0}^{1} \lambda^{\alpha p/2 - 1} (1 + \lambda Z)^{-\alpha((n+p)/2 + 1)} d\lambda}{\int_{0}^{1} \lambda^{\alpha p/2 - 1} (1 + \lambda Z)^{-\alpha((n+p)/2 + 1) - 1} d\lambda} S. \end{split}$$

Next, in the same way as Maruyama (1998), $\phi_{\alpha}^{V}(z)$ is represented through the hypergeometric function

$$F(a,b,c,x) = 1 + \sum_{n=1}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{x^n}{n!} \quad \text{for} \quad (a)_n = a \cdot (a+1) \cdots (a+n-1).$$

The following facts about F(a, b, c, x), from Abramowitz and Stegun(1964), are needed;

$$\int_0^x t^{a-1} (1-t)^{b-1} dt = \frac{x^a}{a} F(a, 1-b, a+1, x) \quad \text{for} \quad a, b > 1,$$
(2.1)

$$F(a, b, c, x) = (1 - x)^{c - a - b} F(c - a, c - b, c, x),$$
(2.2)

$$(c-a-b)F(a,b,c,x) - (c-a)F(a-1,b,c,x) + b(1-x)F(a,b+1,c,x) = 0, \quad (2.3)$$

$$(b-a)(1-x)F(a,b,c,x) - (c-a)F(a-1,b,c,x) + (c-b)F(a,b-1,c,x) = 0, \quad (2.4)$$

 $F(a, b, c, 1) = \infty \qquad \text{when } c - a - b \le -1.$ (2.5)

Making a transformation and using (2.1) and (2.2), we have

$$\int_{0}^{1} \lambda^{\alpha p/2-1} (1+\lambda Z)^{-\alpha((n+p)/2+1)} d\lambda / \int_{0}^{1} \lambda^{\alpha p/2-1} (1+\lambda Z)^{-\alpha((n+p)/2+1)-1} d\lambda$$

= $\int_{0}^{\frac{z}{z+1}} t^{\alpha p/2-1} (1-t)^{\alpha(n/2+1)-1} dt / \int_{0}^{\frac{z}{z+1}} t^{\alpha p/2-1} (1-t)^{\alpha(n/2+1)} dt$
= $(z+1) \frac{F(1,\alpha(n+p+2)/2,\alpha p/2+1,z/(z+1))}{F(1,\alpha(n+p+2)/2+1,\alpha p/2+1,z/(z+1))}.$

Moreover by (2.3) and (2.4), $\phi_{\alpha}^{V}(z)$ is expressed as

$$\phi_{\alpha}^{V}(z) = \frac{1}{n+2} \left[1 - \frac{p}{p+n+2} \frac{z+1}{F(1,\alpha(p+n+2)/2+1,\alpha p/2+1,z/(z+1))} \right]$$
$$= \frac{1}{n+2} \left[1 - \frac{p}{(n+2)F(1,\alpha(p+n+2)/2,\alpha p/2+1,z/(z+1))+p} \right]. (2.6)$$

Making use of (2.6), we can easily prove the theorem.

Theorem 2.1. The estimator δ_{α}^{V} with $\alpha \geq 1$ is minimax.

Proof. We shall verify that $\phi_{\alpha}^{V}(z)$ with $\alpha \geq 1$ satisfies the condition for minimaxity proposed by Brewster and Zidek(1974): for $\delta^{IM} = \phi^{IM}(z)S$, where $\phi_{IM}(z)$ is nondecreasing and $\phi^{BZ}(z) \leq \phi^{IM}(z) \leq 1/(n+2)$. Since $F(1, \alpha(p+n+2)/2, \alpha p/2 + 1, z/(z+1))$ is increasing in z, $\phi_{\alpha}^{V}(z)$ is increasing in z. By (2.5), it is clear that $\lim_{z\to\infty} \phi_{\alpha}^{V}(z) = 1/(n+2)$. In order to show that $\phi_{\alpha}^{V}(z) \geq \phi_{1}^{V}(z)$ for $\alpha \geq 1$, we have only to check that $F(1, \alpha(p+n+2)/2, \alpha p/2+1, z/(z+1))$ is increasing in α , which is easily verified because the coefficient of each term of the r.h.s. of the equation

$$F(1,\alpha(p+n+2)/2,\alpha p/2+1,z/(z+1)) = 1 + \frac{p+n+2}{p+2/\alpha} \frac{z}{1+z} + \frac{(p+n+2)(p+n+2+2/\alpha)}{(p+2/\alpha)(p+4/\alpha)} \left(\frac{z}{1+z}\right)^2 + \cdots \quad (2.7)$$

is increasing in α . We have thus proved the theorem.

Now we investigate the nature of the risk of δ_{α}^{V} with $\alpha > 1$. By using Kubokawa(1994) 's method, the risk difference between δ_{0} and δ_{α}^{V} at $\lambda = 0$ is written as

$$R(0,\delta_0) - R(0,\delta_{\alpha}^V) = 2\int_0^{\infty} \frac{d}{dz} \phi_{\alpha}^V(z) \left(\phi_{\alpha}^V(z) - \phi_1^V(z)\right) \int_0^{\infty} t^2 F_p(zt) f_n(t) dt dz,$$

where $f_k(t)$ and $F_k(t)$ designate the density and the distribution functions of χ_k^2 . Therefore we see that Brewster-Zidek's estimator (δ_{α}^V with $\alpha = 1$) does not improve upon the best equivariant estimator at $\lambda = 0$. See also Rukhin(1991). On the other hand, since $\phi_{\alpha}^V(z)$ is strictly increasing in α , δ_{α}^V with $\alpha > 1$ improves on the best equivariant estimator especially at $\lambda = 0$. Figure 1 gives a comparison of the respective risks of the best equivariant estimator, Stein's estimator, Brewster-Zidek's estimator, δ_{α}^V with $\alpha = 2, 4$ and 10 for p = 10 and n = 4. This figure reveals that the risk behavior of δ_{α}^V with $\alpha = 10$ is similar to that of Stein's truncated estimator. In fact, we have the following result.

Proposition 2.1. δ_{α}^{V} approaches Stein's estimator when α tends to infinity.

Proof. Since $F(1, \alpha(p+n+2)/2, \alpha p/2+1, z/(z+1))$ is increasing in α , by the monotone convergence theorem this function converges to $\sum_{i=0}^{\infty} \{(p(z+1))^{-1}(n+p+2)z\}^i$ when α tends to infinity. Considering two cases: $(n+p+2)z < (\geq)p(z+1)$, we obtain $\lim_{\alpha\to\infty} \phi_{\alpha}^V(z) = (1+z)/(n+p+2)$ if z < p/(n+2); = 1/(n+2) otherwise. This completes the proof.

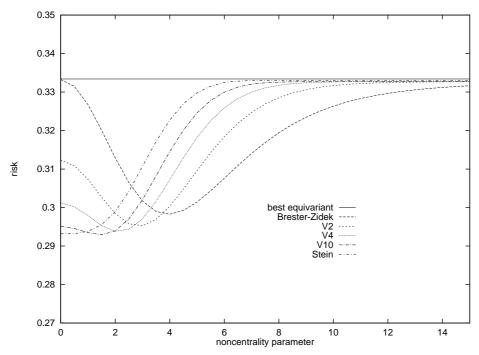


Figure 1: Comparison of the risks of the estimators δ_0 , δ^{ST} , δ^{BZ} , δ^V_{α} with $\alpha = 2, 4, 10$. 'noncentrality parameter' denotes $\|\theta\|/\sigma$. V α denotes the risk of δ^V_{α} .

Remark 2.1 Ghosh(1994) proposed the minimax generalized Bayes estimator $\delta_k^{GH} = \phi_k^{GH}(Z)S$, where

$$\phi_k^{GH}(Z) = \frac{1}{n+p+2(k+2)} \frac{\int_0^1 \lambda^{p/2+k} (1+\lambda Z)^{-(n+p)/2-(k+2)} d\lambda}{\int_0^1 \lambda^{p/2+k} (1+\lambda Z)^{-(n+p)/2-(k+3)} d\lambda},$$

for $-1 - p/2 < k \leq -1$. Clearly δ_k^{GH} with k = -1 coincide with Brewster-Zidek's estimator and we can see that δ_k^{GH} with -1 - p/2 < k < -1 improves on the best equivariant estimator especially at $\lambda = 0$. It is noted that without the troublesome calculation in Ghosh(1994), the minimaxity of Ghosh's estimators is easily proved in the same way as Theorem 2.1 because ϕ_k^{GH} with $-1 - p/2 < k \leq -1$ satisfies Brewster-Zidek's condition.

Remark 2.2 For the entropy loss function $\delta/\sigma^2 - \log(\delta/\sigma^2) - 1$, the discussions in this paper are directly applied. In this case, the best equivariant estimator is the unbiased estimator $\delta_0 = S/n$ and Stein's truncated estimator is $\delta^{ST} = \phi^{ST}(Z)S$, where $\phi^{ST}(Z) = \min(1/n, (n+p)^{-1}(1+Z))$. Moreover Brewster-Zidek's estimator is $\delta^{BZ} = \phi^{BZ}(Z)S$, where

$$\phi^{BZ}(Z) = \frac{1}{n+p} \frac{\int_0^1 \lambda^{p/2-1} (1+\lambda Z)^{-(n+p)/2} d\lambda}{\int_0^1 \lambda^{p/2-1} (1+\lambda Z)^{-(n+p)/2-1} d\lambda}.$$

Then the proposed minimax estimator is $\delta^V_{\alpha} = \phi^V_{\alpha}(Z)S$, where

$$\phi_{\alpha}^{V}(Z) = \frac{1}{n+p} \frac{\int_{0}^{1} \lambda^{\alpha p/2 - 1} (1 + \lambda Z)^{-\alpha(n+p)/2} d\lambda}{\int_{0}^{1} \lambda^{\alpha p/2 - 1} (1 + \lambda Z)^{-\alpha(n+p)/2 - 1} d\lambda},$$

for $\alpha > 1$.

References

- Abramowitz M, Stegun, IA (1964) Handbook of Mathematical Functions, Dover Publications, New York
- [2] Brewster JF, Zidek JV (1974) Improving on equivariant estimators. Ann Statist 2: 21-38
- [3] Ghosh M (1994) On some Bayesian solutions of the Neyman-Scott problem. In Statistical Decision Theory and Related Topics V, Springer-Verlag, New York pp 267-276
- [4] Kubokawa T (1994) An unified approach to improving equivariant estimators. Ann Statist 22: 290-299

- [5] Maruyama Y (1998) Improving on the James-Stein estimator. Unpublished manuscript
- [6] Proskin HM (1985) An admissibility theorem with applications to the estimation of variance of the normal distribution. Ph.D dissertation, Dept Statist, Rutgers University
- [7] Rukhin AL (1992) Asymptotic risk behavior of mean vector and variance estimators and the problem of positive mean. Ann Inst Statist Math 44: 299-311
- [8] Stein C (1964) Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Ann Inst Statist Math 16: 155-160