Minimax estimators of a normal variance

Yuzo Maruyama

Abstract

In the estimation problem of unknown variance of a multivariate normal distribution, a new class of minimax estimators is obtained. It is noted that a sequence of estimators in our class converges to the Stein's truncated estimator.

1 Introduction

Let X and S be independent random variables where X has p-variate normal distribution $N_{p}\left(\theta, \sigma^{2} I_{p}\right)$ and S / σ^{2} has chi square distribution χ_{n}^{2} with n degrees of freedom. We deal with the problem of estimating the unknown variance σ^{2} by an estimator δ relative to the quadratic loss $\left(\delta / \sigma^{2}-1\right)^{2}$. Stein(1964) showed that the best affine equivariant estimator is $\delta_{0}=(n+2)^{-1} S$ and it can be improved by considering a class of scale equivariant estimators $\delta_{\phi}=\phi(Z) S$, for $Z=\|X\|^{2} / S$. He really found an improved estimator $\delta^{S T}=\phi^{S T}(Z) S$, where $\phi^{S T}(Z)=\min \left((n+2)^{-1},(n+p+2)^{-1}(1+Z)\right)$. Brewster and Zidek(1974) derived an improved generalized Bayes estimator $\delta^{B Z}=\phi^{B Z}(Z) S$, where

$$
\phi^{B Z}(Z)=\frac{1}{n+p+2} \frac{\int_{0}^{1} \lambda^{p / 2-1}(1+\lambda Z)^{-(n+p) / 2-1} d \lambda}{\int_{0}^{1} \lambda^{p / 2-1}(1+\lambda Z)^{-(n+p) / 2-2} d \lambda} .
$$

We note that shrinkage estimators such as Stein's procedure and Brewster-Zidek's procedure are derived by using the vague prior information that $\lambda=\|\theta\|^{2} / \sigma^{2}$ is close to 0 . It goes without saying that we would like to get significant improvement of risk when the prior information is accurate. Though $\delta^{S T}$ improves on δ_{0} at $\lambda=0$, it is not analytic and thus inadmissible. On the other hand, Brewster-Zidek's estimator does not improve on δ_{0} at $\lambda=0$ though it is admissible as shown in Proskin(1985). Therefore it is desirable to get analytic improved estimators dominating δ_{0} especially at $\lambda=0$. In this paper, we give such a class of improved estimators $\delta_{\alpha}^{V}=\phi_{\alpha}^{V}(Z) S$, where

$$
\phi_{\alpha}^{V}(Z)=\frac{1}{n+p+2} \frac{\int_{0}^{1} \lambda^{\alpha p / 2-1}(1+\lambda Z)^{-\alpha((n+p) / 2+1)} d \lambda}{\int_{0}^{1} \lambda^{\alpha p / 2-1}(1+\lambda Z)^{-\alpha((n+p) / 2+1)-1} d \lambda},
$$

for $\alpha>1$. It is noted that δ_{1}^{V} coincides with Brewster-Zidek's estimator. Further we demonstrate that δ_{α}^{V} with $\alpha>1$ improves on δ_{0} especially at $\lambda=0$ and that δ_{α}^{V} approaches Stein's estimator when α tends to infinity.

2 Main results

We first derive the estimator δ_{α}^{V}. The problem of estimating α times the variance $\alpha \sigma^{2}$ relative to the loss $\left(\delta /\left(\alpha \sigma^{2}\right)-1\right)^{2}$ is considered, which is slight different from that of the variance σ^{2}. Among many generalized Bayes estimators for this problem, by selecting a suitable prior distribution, we can propose the estimator δ_{α}^{V} with $\alpha>1$ which is not suitable for minimax estimator of $\alpha \sigma^{2}$ but that of σ^{2}. So far we have not determine whether or not δ_{α}^{V} with $\alpha>1$ is the generalize Bayes estimator of σ^{2}.

Calculation for deriving the estimator δ_{α}^{V} is following. For $\eta=1 /\left(\alpha \sigma^{2}\right)$, let the conditional distribution of θ given $\lambda, 0<\lambda<1$, be normal with mean 0 and covariance matrix $\lambda^{-1}(1-\lambda) \alpha^{-1} \eta^{-1} I_{p}$ and density functions of λ and η are proportional to $\lambda^{(\alpha-1) p / 2-1} I_{(0,1)}(\lambda)$ and $\eta^{(\alpha-1)((p+n) / 2+1)-1} I_{(0, \infty)}(\eta)$, respectively. Then the joint distribution $g(\eta, x, s)$ of η, X, S is given by

$$
\begin{aligned}
g(\eta, x, s) \propto & \int \eta^{p / 2} \exp \left(-\frac{\alpha \eta}{2}\|x-\theta\|^{2}\right)\left(\eta \frac{\lambda}{1-\lambda}\right)^{p / 2} \exp \left(-\frac{\lambda}{1-\lambda} \frac{\alpha \eta}{2}\|\theta\|^{2}\right) \\
& \cdot \eta^{(\alpha-1)((p+n) / 2+1)-1} \lambda^{(\alpha-1) p / 2-1} \eta^{n / 2} \exp (-\alpha \eta s / 2) d \theta d \lambda \\
\propto & \int \eta^{p / 2}\left(\eta \frac{\lambda}{1-\lambda}\right)^{p / 2} \exp \left(-\alpha \eta \frac{\|\theta-(1-\lambda) x\|^{2}}{2(1-\lambda)}-\frac{\alpha \eta\|x\|^{2} \lambda}{2}\right) \\
& \cdot \eta^{(\alpha-1)((p+n) / 2+1)-1} \lambda^{(\alpha-1) p / 2-1} \eta^{n / 2} \exp (-\alpha \eta s / 2) d \theta d \lambda \\
\propto & \eta^{\alpha((p+n) / 2+1)-2} \int_{0}^{1} \lambda^{\alpha p / 2-1} \exp \left(-\alpha \eta \frac{\|x\|^{2} \lambda+s}{2}\right) d \lambda .
\end{aligned}
$$

As the generalized Bayes estimator for the loss $\left(\delta /\left(\alpha \sigma^{2}\right)-1\right)^{2}$ is $E(\eta \mid X, S) / E\left(\eta^{2} \mid X, S\right)$, we have

$$
\begin{aligned}
\delta_{\alpha}^{V} & =\frac{\int_{0}^{1} \lambda^{\alpha p / 2-1} \int_{0}^{\infty} \eta^{\alpha((p+n) / 2+1)-1} \exp \left(-\alpha \eta\left(\|X\|^{2} \lambda+S\right) / 2\right) d \lambda}{\int_{0}^{1} \lambda^{\alpha p / 2-1} \int_{0}^{\infty} \eta^{\alpha((p+n) / 2+1)} \exp \left(-\alpha \eta\left(\|X\|^{2} \lambda+S\right) / 2\right) d \lambda} \\
& =\frac{1}{n+p+2} \frac{\int_{0}^{1} \lambda^{\alpha p / 2-1}(1+\lambda Z)^{-\alpha((n+p) / 2+1)} d \lambda}{\int_{0}^{1} \lambda^{\alpha p / 2-1}(1+\lambda Z)^{-\alpha((n+p) / 2+1)-1} d \lambda} S .
\end{aligned}
$$

Next, in the same way as Maruyama(1998), $\phi_{\alpha}^{V}(z)$ is represented through the hypergeometric function

$$
F(a, b, c, x)=1+\sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!} \quad \text { for } \quad(a)_{n}=a \cdot(a+1) \cdots(a+n-1)
$$

The following facts about $F(a, b, c, x)$, from Abramowitz and Stegun(1964), are needed;

$$
\begin{gather*}
\int_{0}^{x} t^{a-1}(1-t)^{b-1} d t=\frac{x^{a}}{a} F(a, 1-b, a+1, x) \text { for } a, b>1 \tag{2.1}\\
F(a, b, c, x)=(1-x)^{c-a-b} F(c-a, c-b, c, x) \tag{2.2}\\
(c-a-b) F(a, b, c, x)-(c-a) F(a-1, b, c, x)+b(1-x) F(a, b+1, c, x)=0 \tag{2.3}\\
(b-a)(1-x) F(a, b, c, x)-(c-a) F(a-1, b, c, x)+(c-b) F(a, b-1, c, x)=0 \tag{2.4}\\
F(a, b, c, 1)=\infty \quad \text { when } c-a-b \leq-1 \tag{2.5}
\end{gather*}
$$

Making a transformation and using (2.1) and (2.2), we have

$$
\begin{aligned}
& \int_{0}^{1} \lambda^{\alpha p / 2-1}(1+\lambda Z)^{-\alpha((n+p) / 2+1)} d \lambda / \int_{0}^{1} \lambda^{\alpha p / 2-1}(1+\lambda Z)^{-\alpha((n+p) / 2+1)-1} d \lambda \\
& \quad=\int_{0}^{\frac{z}{z+1}} t^{\alpha p / 2-1}(1-t)^{\alpha(n / 2+1)-1} d t / \int_{0}^{\frac{z}{z+1}} t^{\alpha p / 2-1}(1-t)^{\alpha(n / 2+1)} d t \\
& \quad=(z+1) \frac{F(1, \alpha(n+p+2) / 2, \alpha p / 2+1, z /(z+1))}{F(1, \alpha(n+p+2) / 2+1, \alpha p / 2+1, z /(z+1))} .
\end{aligned}
$$

Moreover by (2.3) and (2.4), $\phi_{\alpha}^{V}(z)$ is expressed as

$$
\begin{align*}
\phi_{\alpha}^{V}(z) & =\frac{1}{n+2}\left[1-\frac{p}{p+n+2} \frac{z+1}{F(1, \alpha(p+n+2) / 2+1, \alpha p / 2+1, z /(z+1))}\right] \\
& =\frac{1}{n+2}\left[1-\frac{p}{(n+2) F(1, \alpha(p+n+2) / 2, \alpha p / 2+1, z /(z+1))+p}\right] \tag{2.6}
\end{align*}
$$

Making use of (2.6), we can easily prove the theorem.
Theorem 2.1. The estimator δ_{α}^{V} with $\alpha \geq 1$ is minimax.
Proof. We shall verify that $\phi_{\alpha}^{V}(z)$ with $\alpha \geq 1$ satisfies the condition for minimaxity proposed by Brewster and $\operatorname{Zidek}(1974)$: for $\delta^{I M}=\phi^{I M}(z) S$, where $\phi_{I M}(z)$ is nondecreasing and $\phi^{B Z}(z) \leq \phi^{I M}(z) \leq 1 /(n+2)$. Since $F(1, \alpha(p+n+2) / 2, \alpha p / 2+1, z /(z+1))$ is increasing in $z, \phi_{\alpha}^{V}(z)$ is increasing in z. By (2.5), it is clear that $\lim _{z \rightarrow \infty} \phi_{\alpha}^{V}(z)=$ $1 /(n+2)$. In order to show that $\phi_{\alpha}^{V}(z) \geq \phi_{1}^{V}(z)$ for $\alpha \geq 1$, we have only to check that $F(1, \alpha(p+n+2) / 2, \alpha p / 2+1, z /(z+1))$ is increasing in α, which is easily verified because the coefficient of each term of the r.h.s. of the equation

$$
\begin{align*}
& F(1, \alpha(p+n+2) / 2, \alpha p / 2+1, z /(z+1)) \\
& \quad=1+\frac{p+n+2}{p+2 / \alpha} \frac{z}{1+z}+\frac{(p+n+2)(p+n+2+2 / \alpha)}{(p+2 / \alpha)(p+4 / \alpha)}\left(\frac{z}{1+z}\right)^{2}+\cdots \tag{2.7}
\end{align*}
$$

is increasing in α. We have thus proved the theorem.

Now we investigate the nature of the risk of δ_{α}^{V} with $\alpha>1$. By using Kubokawa(1994) 's method, the risk difference between δ_{0} and δ_{α}^{V} at $\lambda=0$ is written as

$$
R\left(0, \delta_{0}\right)-R\left(0, \delta_{\alpha}^{V}\right)=2 \int_{0}^{\infty} \frac{d}{d z} \phi_{\alpha}^{V}(z)\left(\phi_{\alpha}^{V}(z)-\phi_{1}^{V}(z)\right) \int_{0}^{\infty} t^{2} F_{p}(z t) f_{n}(t) d t d z
$$

where $f_{k}(t)$ and $F_{k}(t)$ designate the density and the distribution functions of χ_{k}^{2}. Therefore we see that Brewster-Zidek's estimator (δ_{α}^{V} with $\alpha=1$) does not improve upon the best equivariant estimator at $\lambda=0$. See also Rukhin(1991). On the other hand, since $\phi_{\alpha}^{V}(z)$ is strictly increasing in $\alpha, \delta_{\alpha}^{V}$ with $\alpha>1$ improves on the best equivariant estimator especially at $\lambda=0$. Figure 1 gives a comparison of the respective risks of the best equivariant estimator, Stein's estimator, Brewster-Zidek's estimator, δ_{α}^{V} with $\alpha=2,4$ and 10 for $p=10$ and $n=4$. This figure reveals that the risk behavior of δ_{α}^{V} with $\alpha=10$ is similar to that of Stein's truncated estimator. In fact, we have the following result.

Proposition 2.1. δ_{α}^{V} approaches Stein's estimator when α tends to infinity.
Proof. Since $F(1, \alpha(p+n+2) / 2, \alpha p / 2+1, z /(z+1))$ is increasing in α, by the monotone convergence theorem this function converges to $\sum_{i=0}^{\infty}\left\{(p(z+1))^{-1}(n+p+2) z\right\}^{i}$ when α tends to infinity. Considering two cases: $(n+p+2) z<(\geq) p(z+1)$, we obtain $\lim _{\alpha \rightarrow \infty} \phi_{\alpha}^{V}(z)=(1+z) /(n+p+2)$ if $z<p /(n+2) ;=1 /(n+2)$ otherwise. This completes the proof.

Figure 1: Comparison of the risks of the estimators $\delta_{0}, \delta^{S T}, \delta^{B Z}, \delta_{\alpha}^{V}$ with $\alpha=2,4,10$. 'noncentrality parameter' denotes $\|\theta\| / \sigma$. V α denotes the risk of δ_{α}^{V}.

Remark 2.1 Ghosh(1994) proposed the minimax generalized Bayes estimator $\delta_{k}^{G H}=$ $\phi_{k}^{G H}(Z) S$, where

$$
\phi_{k}^{G H}(Z)=\frac{1}{n+p+2(k+2)} \frac{\int_{0}^{1} \lambda^{p / 2+k}(1+\lambda Z)^{-(n+p) / 2-(k+2)} d \lambda}{\int_{0}^{1} \lambda^{p / 2+k}(1+\lambda Z)^{-(n+p) / 2-(k+3)} d \lambda}
$$

for $-1-p / 2<k \leq-1$. Clearly $\delta_{k}^{G H}$ with $k=-1$ coincide with Brewster-Zidek's estimator and we can see that $\delta_{k}^{G H}$ with $-1-p / 2<k<-1$ improves on the best equivariant estimator especially at $\lambda=0$. It is noted that without the troublesome calculation in Ghosh(1994), the minimaxity of Ghosh's estimators is easily proved in the same way as Theorem 2.1 because $\phi_{k}^{G H}$ with $-1-p / 2<k \leq-1$ satisfies BrewsterZidek's condition.

Remark 2.2 For the entropy loss function $\delta / \sigma^{2}-\log \left(\delta / \sigma^{2}\right)-1$, the discussions in this paper are directly applied. In this case, the best equivariant estimator is the unbiased estimator $\delta_{0}=S / n$ and Stein's truncated estimator is $\delta^{S T}=\phi^{S T}(Z) S$, where $\phi^{S T}(Z)=$ $\min \left(1 / n,(n+p)^{-1}(1+Z)\right)$. Moreover Brewster-Zidek's estimator is $\delta^{B Z}=\phi^{B Z}(Z) S$, where

$$
\phi^{B Z}(Z)=\frac{1}{n+p} \frac{\int_{0}^{1} \lambda^{p / 2-1}(1+\lambda Z)^{-(n+p) / 2} d \lambda}{\int_{0}^{1} \lambda^{p / 2-1}(1+\lambda Z)^{-(n+p) / 2-1} d \lambda} .
$$

Then the proposed minimax estimator is $\delta_{\alpha}^{V}=\phi_{\alpha}^{V}(Z) S$, where

$$
\phi_{\alpha}^{V}(Z)=\frac{1}{n+p} \frac{\int_{0}^{1} \lambda^{\alpha p / 2-1}(1+\lambda Z)^{-\alpha(n+p) / 2} d \lambda}{\int_{0}^{1} \lambda^{\alpha p / 2-1}(1+\lambda Z)^{-\alpha(n+p) / 2-1} d \lambda},
$$

for $\alpha>1$.

References

[1] Abramowitz M, Stegun, IA (1964) Handbook of Mathematical Functions, Dover Publications, New York
[2] Brewster JF, Zidek JV (1974) Improving on equivariant estimators. Ann Statist 2: 21-38
[3] Ghosh M (1994) On some Bayesian solutions of the Neyman-Scott problem. In Statistical Decision Theory and Related Topics V, Springer-Verlag, New York pp 267-276
[4] Kubokawa T (1994) An unified approach to improving equivariant estimators. Ann Statist 22: 290-299
[5] Maruyama Y (1998) Improving on the James-Stein estimator. Unpublished manuscript
[6] Proskin HM (1985) An admissibility theorem with applications to the estimation of variance of the normal distribution. Ph.D dissertation, Dept Statist, Rutgers University
[7] Rukhin AL (1992) Asymptotic risk behavior of mean vector and variance estimators and the problem of positive mean. Ann Inst Statist Math 44: 299-311
[8] Stein C (1964) Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Ann Inst Statist Math 16: 155-160

