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Abstract

In the estimation problem of unknown variance of a multivariate normal distri-
bution, a new class of minimax estimators is obtained. It is noted that a sequence
of estimators in our class converges to the Stein’s truncated estimator.

1 Introduction

Let X and S be independent random variables where X has p-variate normal distribution

Np(θ, σ
2Ip) and S/σ2 has chi square distribution χ2

n with n degrees of freedom. We deal

with the problem of estimating the unknown variance σ2 by an estimator δ relative

to the quadratic loss (δ/σ2 − 1)2. Stein(1964) showed that the best affine equivariant

estimator is δ0 = (n + 2)−1S and it can be improved by considering a class of scale

equivariant estimators δφ = φ(Z)S, for Z = ‖X‖2/S. He really found an improved

estimator δST = φST (Z)S, where φST (Z) = min((n+2)−1, (n+p+2)−1(1+Z)). Brewster

and Zidek(1974) derived an improved generalized Bayes estimator δBZ = φBZ(Z)S,

where

φBZ(Z) =
1

n + p + 2

∫ 1

0
λp/2−1(1 + λZ)−(n+p)/2−1dλ∫ 1

0
λp/2−1(1 + λZ)−(n+p)/2−2dλ

.

We note that shrinkage estimators such as Stein’s procedure and Brewster-Zidek’s pro-

cedure are derived by using the vague prior information that λ = ‖θ‖2/σ2 is close to 0.

It goes without saying that we would like to get significant improvement of risk when the

prior information is accurate. Though δST improves on δ0 at λ = 0, it is not analytic and

thus inadmissible. On the other hand, Brewster-Zidek’s estimator does not improve on

δ0 at λ = 0 though it is admissible as shown in Proskin(1985). Therefore it is desirable

to get analytic improved estimators dominating δ0 especially at λ = 0. In this paper, we

give such a class of improved estimators δV
α = φV

α (Z)S, where

φV
α (Z) =

1

n + p + 2

∫ 1

0
λαp/2−1(1 + λZ)−α((n+p)/2+1)dλ∫ 1

0
λαp/2−1(1 + λZ)−α((n+p)/2+1)−1dλ

,
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for α > 1. It is noted that δV
1 coincides with Brewster-Zidek’s estimator. Further

we demonstrate that δV
α with α > 1 improves on δ0 especially at λ = 0 and that δV

α

approaches Stein’s estimator when α tends to infinity.

2 Main results

We first derive the estimator δV
α . The problem of estimating α times the variance ασ2

relative to the loss (δ/(ασ2)− 1)2 is considered, which is slight different from that of the

variance σ2. Among many generalized Bayes estimators for this problem, by selecting

a suitable prior distribution, we can propose the estimator δV
α with α > 1 which is not

suitable for minimax estimator of ασ2 but that of σ2. So far we have not determine

whether or not δV
α with α > 1 is the generalize Bayes estimator of σ2.

Calculation for deriving the estimator δV
α is following. For η = 1/(ασ2), let the

conditional distribution of θ given λ, 0 < λ < 1, be normal with mean 0 and covari-

ance matrix λ−1(1 − λ)α−1η−1Ip and density functions of λ and η are proportional to

λ(α−1)p/2−1I(0,1)(λ) and η(α−1)((p+n)/2+1)−1I(0,∞)(η), respectively . Then the joint distribu-

tion g(η, x, s) of η, X, S is given by

g(η, x, s) ∝
∫

ηp/2 exp(−αη

2
‖x− θ‖2)

(
η

λ

1− λ

)p/2

exp

(
− λ

1− λ

αη

2
‖θ‖2

)

·η(α−1)((p+n)/2+1)−1λ(α−1)p/2−1ηn/2 exp(−αηs/2)dθdλ

∝
∫

ηp/2

(
η

λ

1− λ

)p/2

exp

(
−αη

‖θ − (1− λ)x‖2

2(1− λ)
− αη‖x‖2λ

2

)

·η(α−1)((p+n)/2+1)−1λ(α−1)p/2−1ηn/2 exp(−αηs/2)dθdλ

∝ ηα((p+n)/2+1)−2

∫ 1

0

λαp/2−1 exp

(
−αη

‖x‖2λ + s

2

)
dλ.

As the generalized Bayes estimator for the loss (δ/(ασ2)−1)2 is E(η | X, S)/E(η2 | X,S),

we have

δV
α =

∫ 1

0
λαp/2−1

∫∞
0

ηα((p+n)/2+1)−1 exp (−αη(‖X‖2λ + S)/2) dλ∫ 1

0
λαp/2−1

∫∞
0

ηα((p+n)/2+1) exp (−αη(‖X‖2λ + S)/2) dλ

=
1

n + p + 2

∫ 1

0
λαp/2−1(1 + λZ)−α((n+p)/2+1)dλ∫ 1

0
λαp/2−1(1 + λZ)−α((n+p)/2+1)−1dλ

S.

Next, in the same way as Maruyama(1998), φV
α (z) is represented through the hypergeo-

metric function

F (a, b, c, x) = 1 +
∞∑

n=1

(a)n(b)n

(c)n

xn

n!
for (a)n = a · (a + 1) · · · (a + n− 1).
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The following facts about F (a, b, c, x), from Abramowitz and Stegun(1964), are needed;
∫ x

0

ta−1(1− t)b−1dt =
xa

a
F (a, 1− b, a + 1, x) for a, b > 1, (2.1)

F (a, b, c, x) = (1− x)c−a−bF (c− a, c− b, c, x), (2.2)

(c− a− b)F (a, b, c, x)− (c− a)F (a− 1, b, c, x) + b(1− x)F (a, b + 1, c, x) = 0, (2.3)

(b− a)(1− x)F (a, b, c, x)− (c− a)F (a− 1, b, c, x) + (c− b)F (a, b− 1, c, x) = 0, (2.4)

F (a, b, c, 1) = ∞ when c− a− b ≤ −1. (2.5)

Making a transformation and using (2.1) and (2.2), we have
∫ 1

0

λαp/2−1(1 + λZ)−α((n+p)/2+1)dλ/

∫ 1

0

λαp/2−1(1 + λZ)−α((n+p)/2+1)−1dλ

=

∫ z
z+1

0

tαp/2−1(1− t)α(n/2+1)−1dt/

∫ z
z+1

0

tαp/2−1(1− t)α(n/2+1)dt

= (z + 1)
F (1, α(n + p + 2)/2, αp/2 + 1, z/(z + 1))

F (1, α(n + p + 2)/2 + 1, αp/2 + 1, z/(z + 1))
.

Moreover by (2.3) and (2.4), φV
α (z) is expressed as

φV
α (z) =

1

n + 2

[
1− p

p + n + 2

z + 1

F (1, α(p + n + 2)/2 + 1, αp/2 + 1, z/(z + 1))

]

=
1

n + 2

[
1− p

(n + 2)F (1, α(p + n + 2)/2, αp/2 + 1, z/(z + 1)) + p

]
. (2.6)

Making use of (2.6), we can easily prove the theorem.

Theorem 2.1. The estimator δV
α with α ≥ 1 is minimax.

Proof. We shall verify that φV
α (z) with α ≥ 1 satisfies the condition for minimaxity pro-

posed by Brewster and Zidek(1974): for δIM = φIM(z)S, where φIM(z) is nondecreasing

and φBZ(z) ≤ φIM(z) ≤ 1/(n + 2). Since F (1, α(p + n + 2)/2, αp/2 + 1, z/(z + 1))

is increasing in z, φV
α (z) is increasing in z. By (2.5), it is clear that limz→∞ φV

α (z) =

1/(n + 2). In order to show that φV
α (z) ≥ φV

1 (z) for α ≥ 1, we have only to check that

F (1, α(p+n+2)/2, αp/2+1, z/(z+1)) is increasing in α, which is easily verified because

the coefficient of each term of the r.h.s. of the equation

F (1, α(p + n + 2)/2, αp/2 + 1, z/(z + 1))

= 1 +
p + n + 2

p + 2/α

z

1 + z
+

(p + n + 2)(p + n + 2 + 2/α)

(p + 2/α)(p + 4/α)

(
z

1 + z

)2

+ · · · (2.7)

is increasing in α. We have thus proved the theorem.
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Now we investigate the nature of the risk of δV
α with α > 1. By using Kubokawa(1994)

’s method, the risk difference between δ0 and δV
α at λ = 0 is written as

R(0, δ0)−R(0, δV
α ) = 2

∫ ∞

0

d

dz
φV

α (z)
(
φV

α (z)− φV
1 (z)

) ∫ ∞

0

t2Fp(zt)fn(t)dtdz,

where fk(t) and Fk(t) designate the density and the distribution functions of χ2
k. There-

fore we see that Brewster-Zidek’s estimator (δV
α with α = 1) does not improve upon

the best equivariant estimator at λ = 0. See also Rukhin(1991). On the other hand,

since φV
α (z) is strictly increasing in α, δV

α with α > 1 improves on the best equivariant

estimator especially at λ = 0. Figure 1 gives a comparison of the respective risks of

the best equivariant estimator, Stein’s estimator, Brewster-Zidek’s estimator, δV
α with

α = 2, 4 and 10 for p = 10 and n = 4. This figure reveals that the risk behavior of

δV
α with α = 10 is similar to that of Stein’s truncated estimator. In fact, we have the

following result.

Proposition 2.1. δV
α approaches Stein’s estimator when α tends to infinity.

Proof. Since F (1, α(p+n+2)/2, αp/2+1, z/(z +1)) is increasing in α, by the monotone

convergence theorem this function converges to
∑∞

i=0{(p(z + 1))−1(n + p + 2)z}i when

α tends to infinity. Considering two cases: (n + p + 2)z < (≥)p(z + 1), we obtain

limα→∞ φV
α (z) = (1 + z)/(n + p + 2) if z < p/(n + 2); = 1/(n + 2) otherwise. This

completes the proof.

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0 2 4 6 8 10 12 14

ris
k�

noncentrality parameter

best equivariant
Brester-Zidek

V2
V4

V10
Stein

Figure 1 : Comparison of the risks of the estimators δ0, δST , δBZ , δV
α with α = 2, 4, 10.

’noncentrality parameter’ denotes ‖θ‖/σ. Vα denotes the risk of δV
α .
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Remark 2.1 Ghosh(1994) proposed the minimax generalized Bayes estimator δGH
k =

φGH
k (Z)S, where

φGH
k (Z) =

1

n + p + 2(k + 2)

∫ 1

0
λp/2+k(1 + λZ)−(n+p)/2−(k+2)dλ∫ 1

0
λp/2+k(1 + λZ)−(n+p)/2−(k+3)dλ

,

for −1 − p/2 < k ≤ −1. Clearly δGH
k with k = −1 coincide with Brewster-Zidek’s

estimator and we can see that δGH
k with −1 − p/2 < k < −1 improves on the best

equivariant estimator especially at λ = 0. It is noted that without the troublesome

calculation in Ghosh(1994), the minimaxity of Ghosh’s estimators is easily proved in the

same way as Theorem 2.1 because φGH
k with −1 − p/2 < k ≤ −1 satisfies Brewster-

Zidek’s condition.

Remark 2.2 For the entropy loss function δ/σ2 − log(δ/σ2)− 1, the discussions in this

paper are directly applied. In this case, the best equivariant estimator is the unbiased

estimator δ0 = S/n and Stein’s truncated estimator is δST = φST (Z)S, where φST (Z) =

min(1/n, (n + p)−1(1 + Z)). Moreover Brewster-Zidek’s estimator is δBZ = φBZ(Z)S,

where

φBZ(Z) =
1

n + p

∫ 1

0
λp/2−1(1 + λZ)−(n+p)/2dλ∫ 1

0
λp/2−1(1 + λZ)−(n+p)/2−1dλ

.

Then the proposed minimax estimator is δV
α = φV

α (Z)S, where

φV
α (Z) =

1

n + p

∫ 1

0
λαp/2−1(1 + λZ)−α(n+p)/2dλ∫ 1

0
λαp/2−1(1 + λZ)−α(n+p)/2−1dλ

,

for α > 1.
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