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Abstract We study the minimax identity for a non-decreasing upper-semicontinuous
utility function satisfying mild growth assumption. In contrast to the classical setting,
we do not impose the assumption that the utility function is concave. By consider-
ing the concave envelope of the utility function we obtain equalities and inequalities
between the robust utility functionals of an initial utility function and its concav-
ification. Furthermore, we prove similar equalities and inequalities in the case of
implementing an upper bound on the final endowment of the initial model.
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1 Introduction

Consider a complete market model framework with unique equivalent local
martingale measure Qe. In the spirit of Reichlin [17], we consider a utility
function U on R+ which is non-decreasing upper-semicontinuous and satisfying
a mild growth condition. Schied and Wu [19] impose the assumptions below
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on the set of probability measures Q on (Ω,F); note that Q is not the set of
all measures on the measurable space (Ω,F), but just a subset satisfying these
assumptions.

Assumption 1. (i) Q is convex;

(ii) P[A] = 0 if and only if Q[A] = 0 for all Q ∈ Q;

(iii) The set Z := {dQ/dP|Q ∈ Q} is closed in L0(P).
Also, to the Assumption 1 we add

(iv) The set Ze := {dQ/dP |Q ∈ Qe} is closed in L0(P),

where Qe denotes the set of measures in Q that are equivalent to P.

In this paper we study the minimax identity for the robust non-concave
utility functional in a complete market model, i.e.

u(x) := sup
X∈X (x)

inf
Q∈Q

EQ[U(X)] = inf
Q∈Q

sup
X∈X (x)

EQ[U(X)].

while considering two possibilities for the set X (x) of admissible final endow-
ments:

• the standard budget constraint:

X (x) = {X ∈ L1
+(Q

e)|EQe [X ] ≤ x}, x > 0,

• an additional upper bound:

XW (x) = {X ∈ L1(Qe) | 0 ≤ X ≤W,EQe [X ] ≤ x}, (1)

with some random variable W : Ω → [0,+∞).

One of the key tasks of financial mathematics is proving the existence as
well as the construction of the optimal investment strategies, in other words,
finding the utility-maximizing investment strategies. Mostly, this problem was
studied under the assumption that the probability measure which accurately
describes value process development is known.

However, in reality, not only the exact probabilities are unknown, but there
are abundant aspects that can be considered in mentioned maximization prob-
lems such as the completeness of the market, the set of prior probability mea-
sures, the assumptions on investor’s utility function, the modeling of payoff and
so on. That is why instead of a single measure it is sound to consider the set of
probability measures with natural assumptions on it. Thus, the standard util-
ity maximization problem is transformed into the robust utility maximization,
i.e.

sup
X∈X (x)

inf
Q∈Q

EQ[U(X)],
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where one maximizes the expected utility under the infimum over the whole
set of probability measures, for details see Gilboa and Schmeidler [9], [10], [20],
Yaari [23], Föllmer and Schied [8, Section 2.5].

In the case of a standard utility maximization problem it is possible to
construct the optimal investment strategy given a strictly concave utility func-
tion, see Föllmer and Schied [8, Section 2.5], and for the general case of utility
functions see Bahchedjioglou and Shevchenko [4]. Both references considered
standard budget constraints as well as additional upper bound on the final
endowments. For a detailed survey of this problem in general model setup in
both complete and incomplete market models but with risk-averse agent, see
Biagini [6].

In this paper, we consider the robust maximization problem with the gen-
eral case of non-concave utility function likewise with and without budget
constraints. In the previous literature different approaches were used for ro-
bust portfolio optimization such as reducing the robust case to the standard
one through proving the existence of the “worst-case scenario measure” or “the
least favourable measure”, e.g. [15, 18], a stochastic control approach, see [11],
an approach using BSDEs, see [7] and references therein.

Besides, for solving the optimal investment problems one can make use
of the following interim finding such as minimax identity and duality theory.
Using the minimax identity for the concave functions, see [1, section 6], Schied

and Wu [19] showed the existence of optimal probability measure Q̂, in the
sense that

sup
X∈X (x)

inf
Q∈Q

EQ[U(XT )] = sup
X∈X (x)

E
Q̂
[U(XT )],

which, together with the results of the Kramkov and Schachermayer [13, 14],
were the base for proving the existence of the optimal investment strategy.
They used a general incomplete market model with rather natural assump-
tions on the set of probability measures. Backhoff Veraguas and Fontbona [3]
extended these results by implementing the assumption on the densities of
the uncertainty set instead of the usual compactness assumption. Moreover,
they have done this without relying on the existence of the worst-case measure
or on any assumption implying this. For more results concerning the robust
utility maximization problem we refer to Bartl, Kupper and Neufeld [5] and
references therein.

The majority of articles on utility maximization assume that the investor’s
utility function is strictly concave, strictly increasing, continuously differen-
tiable, and satisfies the Inada conditions. While the assumption of monotonic-
ity is natural, since an agent prefers more wealth to less, other assumptions
can be omitted or relaxed. There is a wide class of models in which the non-
concave and not necessarily continuously differentiable utility function maxi-
mization has been studied by reducing the problem to the concave case. One
of the most important works was done by Reichlin [16, 17]. He considered the
general framework of the non-concave utility functions for both complete and
incomplete market models. By applying the concavification technique he estab-
lished valuable relations between the maximization problems for a non-concave
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utility function U and its concavification Uc thereby reducing the task to the
concave problem. Moreover, Reichlin proved the existence of the maximizer
under certain assumptions and established its properties.

While considering two cases of admissible final endowments: the standard
budget constraint and additional upper bound (which has not been consid-
ered before in such model setup) we extend Reichlin’s results by proving new
connections in the form of equalities and inequalities of the robust utility
maximization functionals of initial non-concave utility functions and its con-
cavification. Furthermore, we proceed in proving the minimax identity for the
general case of non-concave utility functions. The crucial step for obtaining
the mentioned results with implementing an additional upper bound is the use
of the regular conditional distribution which sheds new light on the possible
approaches for solving the optimization problem.

The paper is organized as follows. In Section 2 we study the minimax iden-
tity for a non-concave utility function in the complete market model. We do
not prove nor refute the minimax identity, however, we show useful equalities
and inequalities to relate the robust utility functional of initial utility func-
tional and its concavification. Section 3 is devoted to the study of the minimax
identity under the implementation of budget constraints. The results of Sec-
tion 3 are similar to the corresponding results of Section 2, however, some of
proves differ significantly.

Throughout the paper the measurability of real-valued functions we will
understand in the Borel sense.

2 Minimax identity for non-concave utility functions in complete

market model

This problem is already solved in [12], but, since we want to expand this
problem by considering budget constraints we present the main part of the
mentioned paper omitting the proofs.

2.1 Formulation of the problem

To formulate the goal of this paper first let us remind some notations. For any
initial capital x > 0, let X (x) be the set of all possible random endowments
corresponding to x, i.e. all random variables X such that X ≥ 0, EQe [X ] ≤ x.

Moreover, we consider a utility function U which is non-decreasing, upper-
semicontinuous, defined on a domain (0,∞) and satisfying the mild growth
condition:

lim
x→∞

U(x)

x
= 0.

It follows from [2, Proposition 3.1] that U(x) has a non-decreasing and
continuous concave envelope Uc(x), or the smallest concave function such that
Uc(x) ≥ U(x) for all x ∈ R; we will call it a concavification of U .
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This section aims is to prove some equalities and inequalities, related to
the minimax identity for the robust non-concave utility functionals:

sup
X∈X (x)

inf
Q∈Q

EQ[U(X)] = inf
Q∈Q

sup
X∈X (x)

EQ[U(X)].

We will assume that the probability space (Ω,F ,P) is atomless. Introduce
the notation:

uc(x) := sup
X∈X (x)

inf
Q∈Q

EQ[Uc(X)];

uQ(x) := sup
X∈X (x)

EQ[U(X)];

ucQ(x) := sup
X∈X (x)

EQ[Uc(X)].

Also, we need the finiteness of value functions, which we can write as

Assumption 2.

For all x > 0 exists a measure Q0 ∈ Qe such that uQ0(x) <∞.

Assumption 3.

ucQ0
(x) <∞ for some, and hence for all x > 0 and some Q0 ∈ Qe.

Note, that finiteness of ucQ(x) implies finiteness of uQ(x), since uQ(x) ≤
ucQ(x).

Theorem 1. Suppose that Assumptions 1, 2, 3 hold and that the probability
space (Ω,F ,P) is atomless.

Then the following holds

sup
X∈X(x)

inf
Q∈Qe

EQ[Uc(X)]
(1⋆)
= sup

X∈X(x)

inf
Q∈Q

EQ[Uc(X)]
(2⋆)
= inf

Q∈Q
sup

X∈X(x)

EQ[Uc(X)]

≤ (4⋆) =(3⋆)
sup

X∈X(x)

inf
Q∈Qe

EQ[U(X)] inf
Q∈Qe

sup
X∈X(x)

EQ[Uc(X)]

=(6⋆) =(5⋆)

sup
X∈X(x)

inf
Q∈Q

EQ[U(X)]
(7⋆)

≤ inf
Q∈Q

sup
X∈X(x)

EQ[U(X)]
(8⋆)

≤ inf
Q∈Qe

sup
X∈X(x)

EQ[U(X)]

The proof of this theorem will be divided into several parts.

2.2 Minimax identity for the concavified objective function Uc(x)

Now we are going to show that minimax identity holds for Uc(x).
There is a lot of literature with proofs of the minimax identity for the robust

utility functionals, the most general case was considered in the [19]. However,
there the authors assume that the utility function is strictly increasing, strictly
concave, and satisfies the Inada conditions both in point 0 and in ∞.

The function Uc(·) which we are considering is no longer strictly concave
and does not satisfy the Inada conditions in 0, hence we can not use all the
previous results without changes.

The next lemma is almost the same as [19, Lemma 3.4].
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Lemma 1. Suppose that Assumption 1 and Assumption 3 hold.
Then, we have

uc(x) = sup
X∈X (x)

inf
Q∈Q

EQ[Uc(X)] = inf
Q∈Q

sup
X∈X (x)

EQ[Uc(X)]

= sup
X∈X (x)

inf
Q∈Qe

EQ[Uc(X)] = inf
Q∈Qe

sup
X∈X (x)

EQ[Uc(X)]

Remark. This lemma holds if we will consider utility function U : (0,∞) → R

instead of U : [0,∞) → R. Thus, we present the proof for a more general case.

Proof. The proof can be found in [12, Lemma 1].

2.3 Minimax identity for the objective function U(x)

In this section, we want to prove lemmas which will help us to complete the
proof of the Theorem 1.

Remark. Note, that the main argument in the proof of minimax identity for
the robust utility maximization problem is the lop sided minimax theorem by
Aubin and Ekeland, see [1, Chapter 6, p. 295], which holds if the functional
X → E[ZU(X)] is concave. Since we consider the non-concave utility function
U, we can not prove the minimax identity in this case similarly. A more general
case of the minimax identity was proved by Maurice Sion, see [22]. However,
to use Sion’s minimax theorem we still need functional X → E[ZU(X)] to be
quasi-concave, which is not true, in the general case, even for the indicator
functions multiplied by the constants.

Lemma 2. If Assumption 1 and Assumption 2 hold, then for all X ∈ X (x)

inf
Q∈Q

EQ[U(X)] = inf
Q∈Qe

EQ[U(X)]. (2)

Proof. The proof can be found in [12, Lemma 2].

Remark 1. The above lemma also holds for Uc in place of U .

The prove of equality (5⋆) is based on [17, Theorem 5.1].

Lemma 3. Suppose that (Ω,F ,P) is atomless.
Then it holds that

inf
Q∈Qe

sup
X∈X (x)

EQ[U(X)] = inf
Q∈Qe

sup
X∈X (x)

EQ[Uc(X)].

Proof. The proof can be found in [12, Lemma 3].

Proof of the Theorem 1.

• (1⋆) - (3⋆) follows from the Lemma 1;

• (4⋆) follows from the fact that Uc ≥ U ;

• (5⋆) follows from the Lemma 3;
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• To obtain (6⋆) we need to take the sup
g∈C(x)

of the both sides in the equality

(2);

• The inequality (7⋆) follows from the fact that for all Q ∈ Q and all
X ∈ X (x) holds

inf
Q∈Q

EQ[U(X)] ≤ sup
X∈X (x)

EQ[U(X)].

• Since Qe ⊆ Q, the inequality (8⋆) is clear.

3 Minimax identity for constrained case of random endowments

3.1 Formulation of the problem

This section is in general similar to Section 2, however, similarly to [8, Chapter
3] we consider a modified constrained counterpart.

Specifically, we assume that there is an upper bound on the endowment,
given by a random variable W : Ω → (0,+∞). The set of admissible payoffs is
then given by

XW := {X ∈ L0(P) | 0 ≤ X ≤W P-a.s.}

We keep all of the assumptions from Section 2 on the set of all probability
measures Q and the utility function U intact. For technical reasons we will
also assume that (Ω,F) is a standard Borel space, which in particular implies
the existence of a regular conditional distribution givenW . We will require that
this conditional distribution is atomless, in other words, that the constraint
W leaves a sufficient amount of randomness.

Assumption 4. 1. (Ω,F) is a standard Borel space.

2. There exists a regular conditional distribution given W , which is atom-
less, i.e., there exists a function P : F × (0,∞) → [0,∞) such that for
all v > 0, P (·, v) is an atomless probability measure, and for all A ∈ F ,
P (A, ·) is a measurable function satisfying P (A,W ) = P(A |W ) a.s.

As in [4] for each k > 0 denote

Uk(x) = U(x ∧ k), x ≥ 0. (3)

Note that the function Uk and its concavification Uk
c satisfy all of the

assumptions on the utility function U and its concavification Uc. Moreover,
Uk
c (x) = Uk(x), for all x ≥ k.

Our goal is to prove some equalities and inequalities, related to the minimax
identity for the robust non-concave utility functionals:

sup
X∈XW

x

inf
Q∈Q

EQ[U
W (ω)(X)] = inf

Q∈Q
sup

X∈XW
x

EQ[U
W (ω)(X)],
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where the budget set XW
x is defined by

XW
x := {X ∈ L1(Qe) | 0 ≤ X ≤W,EQe [X ] ≤ x},

where x > 0 is the initial wealth and Qe is the unique equivalent local mar-
tingale measure.

Introduce the following notation:

uWc (x) := sup
X∈XW

x

inf
Q∈Q

EQ[U
W (ω)
c (X)];

uWQ (x) := sup
X∈XW

x

EQ[U
W (ω)(X)];

uWc,Q(x) := sup
X∈XW

x

EQ[U
W (ω)
c (X)].

Remark. Since Uk(x) ≤ U(x), x ≥ 0 Assumption 2 and 3 provide the finite-
ness of the value function above.

It is natural to consider only the case where

EQe [W ] > x, (4)

as otherwise, thanks to the monotonicity of U , the optimization problem has
a trivial solution X∗ =W .

The formulation of the next theorems and lemmas are the same as in
Section 2. However, because of the boundness assumption on the endowments
the proof of the corresponding statements will be different.

Theorem 2. Under Assumptions 1, 2, 3, 4, we have the following:

sup
X∈XW

x

inf
Q∈Qe

EQ[U
W (ω)
c (X)]

(1⋆)
= sup

X∈XW
x

inf
Q∈Q

EQ[U
W (ω)
c (X)]

(2⋆)
= inf

Q∈Q
sup

X∈XW
x

EQ[U
W (ω)
c (X)]

≤ (4⋆) =(3⋆)

sup
X∈XW

x

inf
Q∈Qe

EQ[U
W (ω)(X)] inf

Q∈Qe

sup
X∈XW

x

EQ[U
W (ω)
c (X)]

=(6⋆) =(5⋆)

sup
X∈XW

x

inf
Q∈Q

EQ[U
W (ω)(X)]

(7⋆)

≤ inf
Q∈Q

sup
X∈XW

x

EQ[U
W (ω)(X)]

(8⋆)

≤ inf
Q∈Qe

sup
X∈XW

x

EQ[U
W (ω)(X)]

The proof of this theorem will be divided into several parts.

3.2 Minimax identity for the concavified objective function U
W (ω)
c (x)

Now we are going to show that minimax identity holds for U
W (ω)
c (x). First we

prove some useful properties.

Lemma 4. a) Set XW
x is convex.

b) It holds that uWc (x) = sup
X∈XW

x

inf
Q∈Q

EQ[U
W (ω)
c (X)] is concave.
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Proof. a) Consider X1 ∈ XW
x1

and X2 ∈ XW
x2

for some x1, x2 > 0 and
α ∈ (0, 1). One has that 0 ≤ αX1 +(1−α)X2 ≤W and EQe [αX1 +(1−
α)X2] ≤ αx1 + (1− α)x2. Hence, αX1 + (1− α)X2 ∈ XW

αx1+(1−α)x2
.

b) Take X1 ∈ XW
x1

and X2 ∈ XW
x2

for some x1, x2 > 0 and α ∈ (0, 1).

Then, noting that {αX1+(1−α)X2|X1 ∈ XW
x1
, X2 ∈ XW

x2
} ⊂ XW

αx1+(1−α)x2

one has

u
W
c (αx1 + (1− α)x2) = sup

X∈XW
αx1+(1−α)x2

inf
Q∈Q

EQ[U
W (ω)
c (X)]

≥ sup
αX1+(1−α)X2|X1∈XW

x1
,X2∈XW

x2

inf
Q∈Q

EQ[U
W (ω)
c (αX1 + (1− α)X2)]

≥ sup
αX1+(1−α)X2|X1∈XW

x1
,X2∈XW

x2

inf
Q∈Q

EQ[αU
W (ω)
c (X1) + (1− α)UW (ω)

c (X2)]

≥ sup
αX1+(1−α)X2|X1∈XW

x1
,X2∈XW

x2

[α inf
Q∈Q

EQ[U
W (ω)
c (X1)] + (1− α) inf

Q∈Q
EQ[U

W (ω)
c (X2)]]

= α sup
X1∈XW

x1

inf
Q∈Q

EQ[U
W (ω)
c (X1)] + (1− α) sup

X2∈XW
x2

inf
Q∈Q

EQ[U
W (ω)
c (X2)]

= αu
W
c (x1) + (1− α)uW

c (x2).

Lemma 5. Suppose that Assumption 1 and Assumption 3 hold.
Then, we have

uWc (x) = sup
X∈XW

x

inf
Q∈Q

EQ[U
W (ω)
c (X)] = inf

Q∈Q
sup

X∈XW
x

EQ[U
W (ω)
c (X)]

= sup
X∈XW

x

inf
Q∈Qe

EQ[U
W (ω)
c (X)] = inf

Q∈Qe

sup
X∈XW

x

EQ[U
W (ω)
c (X)].

Proof. Take ε > 0. Consider Y := (X+ε)∧W, for X ∈ XW
x . Then Y ∈ XW

x+ε,
since 0 ≤ Y ≤W and EQe [Y ] = EQe [(X + ε) ∧W ] ≤ EQe [X + ε] ≤ x+ ε .

Define Y W
X,ε := {Y ∈ L1(Qe) | Y = (X + ε) ∧W,X ∈ XW

x }. Then YW
X,ε ⊂

XW
x+ε. Thus, it holds

uWc (x+ ε) = sup
X̄∈XW

x+ε

inf
Q∈Q

EQ[U
W (ω)
c (X̄)]

≥ sup
Y ∈Y W

X,ε

inf
Q∈Q

EQ[U
W (ω)
c (Y )] = sup

Y ∈Y W
X,ε

inf
Q∈Q

E

[
UW (ω)
c (Y ) ·

dQ

dP

]

= sup
Y ∈Y W

X,ε

inf
Z∈Z

E[ZUW (ω)
c (Y )].

In the proof of [12, Lemma 1] is already shown that for each X ∈ X (x), the

map Z 7→ E[ZU
W (ω)
c (Y )] is a weakly lower semicontinuous affine functional

defined on the weakly compact convex set Z.
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Moreover, in the proof of [12, Lemma 1] is already shown that for each

Z ∈ Z, X → E[ZU
W (ω)
c (X + ε)] is a concave functional. Hence, one has that

for each Z ∈ Z, X → E[ZU
W (ω)
c (Y )] is a concave functional defined on the

convex set XW
x .

Noting that from the almost sure convergence follows weak convergence,
the conditions of the lop sided minimax theorem [1, Chapter 6, p. 295] are
satisfied, and so

sup
Y ∈Y W

X,ε

min
Z∈Z

E[ZUW (ω)
c (Y )] = min

Z∈Z
sup

Y ∈Y W
X,ε

E[ZUW (ω)
c (Y )].

Hence, we arrive at

uWc (x+ ε) ≥ sup
Y ∈Y W

X,ε

inf
Z∈Z

E[ZUW (ω)
c (Y )] = min

Z∈Z
sup

Y ∈Y W
X,ε

E[ZUW (ω)
c (Y )]

≥ inf
Q∈Q

sup
Y ∈Y W

X,ε

EQ[U
W (ω)
c (Y )]

Y≥X

≥ inf
Q∈Q

sup
Y ∈Y W

X,ε

EQ[U
W (ω)
c (X)] ≥ sup

X∈XW
x

inf
Q∈Q

EQ[U
W (ω)
c (X)] = uWc (x).

The last inequality follows from the fact that for all Q ∈ Q and X ∈ XW
x

sup
X∈XW

x

EQ[U
W (ω)
c (X)] ≥ inf

Q∈Q
EQ[U

W (ω)
c (X)].

Sending ε ↓ 0 and using the continuity of uWc , as a concave function on set
(0,+∞), we obtain the first part of the lemma.

From Assumption 3 and [19, Lemma 3.3] follows that uWc (x) = inf
Q∈Qe

uWc,Q(x).

(the proof is similar to the proof of [12, Lemma 2]).
Hence,

uWc (x) = inf
Q∈Qe

uWc,Q(x) = inf
Q∈Qe

sup
X∈XW

x

EQ[U
W (ω)
c (X)]

≥ sup
X∈XW

x

inf
Q∈Qe

EQ[U
W (ω)
c (X)] ≥ sup

X∈XW
x

inf
Q∈Q

EQ[U
W (ω)
c (X)] = uWc (x).

Which concludes the proof.

3.3 Minimax identity for the objective function U(x)

In this section, we will establish auxiliary results which will allow us to com-
plete the proof of Theorem 2.

Lemma 6. If Assumption 1 and Assumption 2 hold, then for all X ∈ XW
x

inf
Q∈Q

EQ[U
W (X)] = inf

Q∈Qe

EQ[U
W (X)]. (5)

Proof. The proof is the same as in a non-constrained case. See [12, Lemma
2].
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Lemma 7. Let {Pv, v ∈ (0,∞)} be a family of atomless probability measures
on a standard Borel space (Ω,F), such that for any A ∈ F , P·(A) is mea-
surable. Then, for all Q ∈ Qe, for all X ∈ XW

x there exists X⋆ ∈ XW
x such

that

EQ[U
W (X⋆)] = EQ[U

W
c (X⋆)] = EQ[U

W
c (X)] ≥ EQ[U

W (X)]. (6)

Proof. The main idea of the proof is to utilize the ideas of [17, Proposition
5.3] in our conditional setting.

Fix Q ∈ Qe and define ψ = dQe/dP, ϕ = dQe/dQ. First of all, note that
for any Q ∈ Qe, there exists a corresponding regular conditional probability
given W . Indeed, since ψ is positive, M(v) :=

∫
Ω ψ P (dω, v) is positive as well

so

PQ(A, v) =

∫
A
ψ P (dω, v)

M(v)
, A ∈ F ,

is a probability measure. It is easy to see that it is measurable in v and
PQ(A,W ) = Q(A |W ) Q-a.s.

By Lemma 13 applied to Y (x, ω) = X(ω), φ(v, ω) = ϕ(ω) and Pv(A) =
PQ(A, v), there exists a jointly measurable function Y ⋆(v, ω) such that for all
v > 0, EPQ(·,v)[Y

⋆(v, ω)ϕ(ω)] ≤ EPQ(·,v)[X(ω)ϕ(ω)] and

EPQ(·,v)[U
v
(
Y ⋆(v, ω)

)
] = EPQ(·,v)[U

v
c

(
Y ⋆(v, ω)

)
] = EPQ(·,v)[U

v
c

(
X(ω)

)
].

Set X⋆(ω) = Y ⋆(W (ω), ω). Then

EQe [X⋆] = EQ

[
Y ⋆

(
W (ω), ω

)
ϕ
]
= EQ

[
EQ

[
Y ⋆

(
W (ω), ω

)
ϕ |W

]]

= EQ

[
EPQ(·,v)[Y

⋆(v, ω)ϕ(ω)]
∣∣
v=W

]
≤ EQ

[
EPQ(·,v)[X(ω)ϕ(ω)]

∣∣
v=W

]

= EQ [EQ [X(ω)ϕ |W ]] = EQ [X(ω)ϕ] = EQe [X ] ≤ x,

so X⋆ ∈ XW
x . Further,

EQ

[
UW
c (X⋆)

]
= EQ

[
UW (ω)
c

(
Y ⋆(W (ω), ω)

)]

= EQ

[
EQ

[
UW (ω)
c

(
Y ⋆(W (ω), ω)

)
|W

]]

= EQ

[
EPQ(·,v)[U

v
c

(
Y ⋆(v, ω)

)
]
∣∣
v=W

]
= EQ

[
EPQ(·,v)[U

v
c

(
X(ω)

)
]
∣∣
v=W

]

= EQ

[
EQ

[
Uv
c

(
X(ω)

)
|W

]]
= EQ

[
Uv
c

(
X(ω)

)]
.

The equality EQ[U
W (X⋆)] = EQ[U

W
c (X⋆)] is proved similarly, and the in-

equality EQ[U
W
c (X)] ≥ EQ[U

W (X)] is obvious, since UW
c ≥ UW . The proof

is now complete.

Lemma 8. If Assumption 4 holds, then for all Q ∈ Qe it holds that

sup
X∈XW

x

EQ[U
W (ω)(X)] = sup

X∈XW
x

EQ[U
W (ω)
c (X)], for all x > 0.
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Proof. Apply the sup
X∈XW

x

to the all parts of (6). Then one has

sup
X∈XW

x

EQ[U
W (ω)(X⋆)] = sup

X∈XW
x

EQ[U
W (ω)
c (X⋆)]

= sup
X∈XW

x

EQ[U
W (ω)
c (X)] ≥ sup

X∈XW
x

EQ[U
W (ω)(X)]. (7)

Since Q ∈ Qe is arbitrary, X ∈ XW
x is arbitrary and X⋆ ∈ XW

x it follows that
the inequality in (7) is an equality and, hence, the statement of the lemma is
proven.

Lemma 9. Under the Assumption 4,

inf
Q∈Qe

sup
X∈XW

x

EQ[U
W (ω)(X)] = inf

Q∈Qe

sup
X∈XW

x

EQ[U
W (ω)
c (X)].

Proof. Follows immediately from the Lemma 8.

Proof of the Theorem 2.

• (1⋆) - (3⋆) follows from the Lemma 5;

• (4⋆) follows from the fact that U
W (ω)
c ≥ UW (ω);

• (5⋆) follows from the Lemma 9;

• To obtain (6⋆) we need to take the sup
X∈XW

x

of the both sides in the equality

(5);

• The inequality (7⋆) follows from the fact that for all Q ∈ Q and all
X ∈ XW

x holds

inf
Q∈Q

EQ[U
W (ω)(X)] ≤ sup

X∈XW
x

EQ[U
W (ω)(X)].

• Since Qe ⊆ Q, the inequality (8⋆) is clear.

A Auxiliary statements

In what follows U : R+ → R+ is a non-decreasing upper-semicontinuous func-
tion satisfying a mild growth condition, Uv(y) = U(y ∧ v), v > 0, and Uv

c is
the concavification of Uv. For v > y > 0, let

a(v, y) =

{
inf{z ≤ y : Uv

c (x) > Uv(x) on [z, y]}, Uv(y) < Uv
c (y),

y, Uv(y) = Uv
c (y)
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and

b(v, y) =

{
sup{z ≤ y : Uv

c (x) > Uv(x) on [y, z]}, Uv(y) < Uv
c (y),

y, Uv(y) = Uv
c (y)

be the left and right endpoints of the interval around y, in which where Uv <
Uv
c (or just y in the case where Uv(y) = Uv

c (y)). Observe that Uv(a(v, y)) =
Uv
c (a(v, y)) and Uv(b(v, y)) = Uv

c (b(v, y)): in the case of inequality we would
have it in some open interval, contradicting the definition of infimum or supre-
mum.

Lemma 10. The functions a and b defined above are measurable.

Proof. We will show only measurability of a, that of b can be shown similarly.
Note that a is obviosly non-decreasing in y. It is also right-continuous in

y. Indeed, let yn ≥ y0, yn → y0, n → ∞. If Uv(y0) < Uv
c (y0), then, thanks to

continuity of Uv
c and upper-semicontinuity of Uv, this inequality holds in an

open interval around y0, which means that a(v, yn) = a(v, y0) for all n large
enough. Otherwise, if Uv(y0) = Uv

c (y0), then a(v, yn) ∈ (y0, yn] for all n ≥ 1,
whence a(v, yn) → y0 = a(v, y0), n→ ∞.

Further, since for v1 < v2, U
v2
c dominates Uv1 on [0, v1], we have that

Uv2
c ≥ Uv1

c . Consequently, a is non-increasing in v. Now the proof follows from
the following lemma.

Lemma 11. Let a function f : (0,∞)2 → R be such that for each x > 0,
f(x, ·) is non-decreasing and right-continuous, and for each y > 0, f(·, y) is
non-decreasing. Then, f is measurable.

Proof. For arbitrary t ∈ R consider the set At = f−1((−∞, t)). Thanks to
monotonicity, (x, y) ∈ At ⇒ (x′, y′) ∈ At for all x′ ≤ x, y′ ≤ y. Moreover,
thanks to right-continuity in y, the x-sections At,x = {y > 0 : (x, y) ∈ At} are
open intervals.

Define At,x+ =
⋃

z>xAt,z. We claim that the set Ao
t := {(x, y) ∈ (0,∞)2 :

y ∈ At,x+} is open (it is actually the interior of At). Indeed, if (x, y) ∈ At
0, then

y ∈ At,z for some z > x. Since At,z is open, for some ε > 0, (y−ε, y+ε) ⊂ At,z.
Then, thanks to monotonicity, (0, z)× (y − ε, y + ε) ⊂ A0

t .
By the definition of Ao

t ,

At \A
o
t =

⋃

x>0

{x} × (At,x \At,x+).

For any x > 0, At,x \ At,x+ is a difference of two open intervals, so it’s either
a half-open interval or empty. Since the half-open intervals for different x are
disjoint, there are at most countable number of then. Therefore, At \ A

o
t is

Borel as a countable union of Borel sets, which finishes the proof.
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Lemma 12. Let {Pv, v ∈ (0,∞)} be a family of atomless probability mea-
sures on a standard Borel space (Ω,F), such that for any A ∈ F , P·(A) is
a measurable, and ξ : (0,∞) × Ω → R be measurable. Then, there exist mea-
surable functions ζ : (0,∞) × Ω → R and q : (0,∞) × R → R such that for
all v ∈ (0,∞), ζ(v, ·) has a uniform distribution on (0, 1) with respect to Pv,
q(v, ·) is non-decreasing, and q(v, ζ(v, ω)) = ξ(v, ω) Pv-a.s.

Proof. Since (Ω,F) carries an atomless measure, it is uncountable. Then it
is well known that it is isomorphic to (R,B(R)), i.e. there exists a measurable
bijection τ : Ω → R such that τ−1 is measurable as well. Therefore we can
assume without loss of generality that (Ω,F) =

(
(0, 1),B((0, 1))

)
.

Assume first that the distribution of ξ(v, ω) is continuous for all v ∈ (0,∞).
The cumulative distribution function Fξ(v, x) = Pv({ξ(v, ω) ≤ x}) is jointly
measurable (see e. g. [21, Lemma 4.1]), so the quantile function qξ(v, r) =
inf{x ∈ R : Fξ(v, x) ≥ r} is jointly measurable as well. So in this case we can set
ζ(v, ω) = Fξ(v, ξ(v, ω)) and q(v, r) = qξ(v, r); by the quantile transformation
theorem, ζ and q are as required.

For general ξ, define

κ(v, x) = Pv({ω : ξ(v, ω) < x}) + Pv({ω ≤ x : ξ(v, ω) = ξ(v, x)}), x ∈ (0, 1),

which is jointly measurable thanks to [21, Lemma 4.1]. It is easy to see that
for any v ∈ (0,∞), κ has continuous distribution under Pv, and

qξ(v, κ(v, ω)) = ξ(v, ω),

where, as above, qξ is the quantile function of ξ. Then we can set ζ(v, ω) =
Fκ(v, κ(v, ω)) and q(v, r) = qξ(v, qκ(v, r)), arriving at the desired statement.

Lemma 13. Let {Pv, v ∈ (0,∞)} be a family of atomless probability mea-
sures on a standard Borel space (Ω,F), such that for any A ∈ F , P·(A) is
measurable. Also let Y, φ : (0,∞) × Ω → [0,∞) be jointly measurable func-
tions such that Y (v, ω) ≤ v for all v > 0, ω ∈ Ω.Then, there exists a jointly
measurable function Y ⋆(v, ω) such that for all v > 0, EPv

[Y ⋆(v, ω)φ(v, ω)] ≤
EPv

[Y (v, ω)φ(v, ω)] and

EPv
[Uv

(
Y ⋆(v, ω)

)
] = EPv

[Uv
c

(
Y ⋆(v, ω)

)
] = EPv

[Uv
c

(
Y (v, ω)

)
].

Proof. We will adapt the construction used in the proof of [17, Proposition
5.3] so that it has the desired measurability property.

Define

S = {(v, ω) ∈ (0,∞)× Ω : Uv(Y (v, ω)) < Uv
c (Y (v, ω))}

and for (v, ω) ∈ S, let

α(v, ω) := inf{z : Uv(x) < Uv
c (x) on (z,X(ω)]},

β(v, ω) := sup{z : Uv(x) < Uv
c (x) on [X(ω), z)}.
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be the left and the right ends of the interval where Uv < Uv
c . These functions

are measurable thanks to Lemma 10.
For (v, ω) ∈ S, define

λ(v, ω) =
β(v, ω) −X(ω)

β(v, ω)− α(v, ω)

so that X(v, ω) = λ(v, ω)α(v, ω) + (1 − λ(v, ω))β(v, ω). Due to Lemma 12,
there exist measurable functions ζ, q : (0,∞)× Ω → R such that for all v > 0,
φ(v, ω) = q(v, ζ(v, ω)) Pv-a.s. and ζ(v, ω) is uniformly distributed on (0, 1)
under Pv. For s ∈ [0, 1], v > 0 and ω, ω′ ∈ Ω, define

h(s, v, ω, ω′) = I(v,X(ω))∈S,(v,X(ω′))∈S,a(v,X(ω))=a(v,X(ω′))

(
Iζ(v,ω′)<s − λ(v, ω′)

)

and

f(s, v, ω) =

∫

Ω

h(v, ω, ω′, s)Pv(dω
′).

Since λ(v, ω) ∈ (0, 1) and ζ has continuous distribution under Pv, we have that
for all (v, ω) ∈ S, f is continuous in s and f(0, v, ω) < 0 < f(1, v, ω). Denoting
σ(v, ω) = inf{s ∈ (0, 1) : f(s, v, ω) ≥ 0}, we have f(σ(v, ω), v, ω) = 0. Also for
any s ∈ (0, 1), {(v, ω) : σ(v, ω) ≤ s} = {(v, ω) : f(s, v, ω) ≥ 0}, so σ(v, ω) is
measurable.

Now set

Y ⋆(v, ω) =





Y (v, ω), (v, ω) /∈ S;

α(v, ω), (v, ω) ∈ S ∩ {ζ(v, ω) < σ(v, ω)};

β(v, ω), (v, ω) ∈ S ∩ {ζ(v, ω) ≥ σ(v, ω)}.

Since for any fixed v > 0, the construction coincides with that given in [17,
Proposition 5.3], the rest of the proof follows.
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