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Abstract Particle swarm optimization (PSO) techniques

are widely used in applied fields to solve challenging opti-

mization problems but they do not seem to have made an

impact in mainstream statistical applications hitherto. PSO

methods are popular because they are easy to implement and

use, and seem increasingly capable of solving complicated

problems without requiring any assumption on the objec-

tive function to be optimized. We modify PSO techniques

to find minimax optimal designs, which have been notori-

ously challenging to find to date even for linear models, and

show that the PSO methods can readily generate a variety

of minimax optimal designs in a novel and interesting way,

including adapting the algorithm to generate standardized

maximin optimal designs.
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1 Introduction

Particle swarm optimization (PSO) is a population based sto-

chastic optimization method inspired by social behavior of

bird flocking or fish schooling and proposed by Eberhart

and Kennedy (1995). In the last decade or so, PSO has sin-

gularly generated considerable interest in optimization cir-

cles as evident by its ever increasing applications in vari-

ous disciplines. The importance and popularity of PSO can

also be seen in the existence of many websites which pro-

vide PSO tutorials and PSO codes, track PSO development

and applications in different fields. Some exemplary web-

sites on PSO are http://www.swarmintelligence.org/index.

php, http://www.particleswarm.info/ and http://www.cis.syr.

edu/~mohan/pso/. Currently, there are at least 3 journals

which have a focus theme on swarm intelligence and appli-

cations with a few more having an emphasis on the more

general class of nature-inspired metaheuristic algorithms, of

which PSO is a member. Nature-inspired metaheuristic algo-

rithms have been rising in popularity in the optimization

literature in the last 2 decades and in the last decade have

dominated the optimization world compared with traditional

mathematical optimization tools (Whitacre 2011a,b). Of par-

ticular note is Yang (2010), who saw a need to publish a

second edition of his book on nature-inspired metaheuristic

algorithms published less than 2 years earlier. This shows

just how dynamic and rapidly expanding the field is. Clerc

(2006) seems to be the first book devoted entirely to PSO

and an updated overview of PSO methodology is available

in Poli et al. (2007).

Interestingly, PSO has yet to make an impact in the statis-

tical literature. We believe PSO methodology can be poten-

tially useful in solving many statistical problems because

ideas behind PSO are very simple and general yet requiring

minimal or no assumption on the function to be optimized.
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Our aim is to show that PSO methodology is effective in find-

ing many types of optimal designs, including minimax opti-

mal designs, which are notoriously difficult to find and study.

This is because the design criterion is non-differentiable and

there is no effective algorithm for finding such designs to

date, even for linear models. Specifically, we demonstrate

that PSO can readily generate different types of minimax

optimal designs for linear and nonlinear models which agree

with the few published results in the literature.

PSO is a stochastically iterative procedure for optimiz-

ing a function. The key advantages of this approach are that

PSO is fast and flexible, there are few tuning parameters

required of the algorithm and PSO codes can be easily writ-

ten down generically to find optimal designs for a regression

model. For more complicated problems, such as minimax

design problems, the code will have to be modified appropri-

ately. Generally, only the optimality criterion and the infor-

mation matrix in the codes have to be changed to find an

optimal design for another problem. We discuss this further

in the exemplary pseudo MATLAB codes which we provide

in Sect. 4 to generate the optimal designs.

In the next section, we provide the background. In Sect. 3,

we demonstrate that PSO methodology can efficiently gener-

ate different types of minimax optimal designs for linear and

nonlinear models. In Sect. 4, we provide computational and

implementation details for our proposed PSO-based proce-

dure. Section 5 shows that PSO methodology can be modified

to find standardized maximin optimal designs. As illustra-

tive examples, we construct such designs for enzyme kinetic

models and Sect. 6 closes with a discussion.

2 Background

We focus on continuous designs which are treated as prob-

ability measures on a given design space X . This approach

was proposed by Kiefer and his collection of voluminous

work in this area is now documented in a single collection

(Kiefer 1985). If a continuous design takes pi proportion of

the total observations at xi ∈ X, i = 1, 2, . . . , k, we denote

it by ξ with p1 + p2 + · · · + pk = 1. Given a fixed sample

size N , we implement ξ by taking roughly N pi observations

at xi , i = 1, 2, .., k subject to N p1 + N p2 +· · ·+ N pk = N .

As Kiefer had shown, one can round each of the N pi ’s to

the nearest integer so that they sum to N without losing too

much efficiency if the sample size is large. The proportion pi

is sometimes called the weight of the design at xi . Continu-

ous designs are practical to work with, along with many other

advantages widely documented in design monographs, such

as Fedorov (1972), Silvey (1980), Pázman (1986), Atkinson

et al. (2007) and in Kiefer (1985).

Our setup assumes we have a statistical model defined on

given compact design region X . The mean of the univari-

ate response is modeled by a known function g(x, θ) apart

from the values of the vector of parameters θ . We assume

errors are normally and independently distributed, all with

zero means and possibly unequal variances. The mean func-

tion g(x, θ) can be a linear or nonlinear function of θ and

the set of independent variables x . Following convention, the

value of the design ξ is measured by its Fisher information

matrix defined to be the negative of the expectation of the

matrix of second derivatives of the log-likelihood function.

For example, consider the popular Michaelis–Menten model

in the biological sciences given by

y = g(x, θ) + ε =
ax

b + x
+ ε, x > 0,

where a > 0 denotes the maximal response possible and b >

0 is the value of x for which there is a half-maximal response.

In practice, the design space is truncated to X = [0, c] where

c is a sufficiently large user-selected constant. If θ⊤ = (a, b)

and the errors ε are normally and independently distributed

with means 0 and constant variance, the Fisher information

matrix for a given design ξ is

I (θ, ξ) =
∫

∂g(x, θ)

∂θ

∂g(x, θ)

∂θT
ξ(dx)

=
∫ (

ax

b + x

)2
(

1
a2 − 1

a(b+x)

− 1
a(b+x)

1
(b+x)2

)

ξ(dx).

For nonlinear models, such as the Michaelis–Menten model,

the information matrix depends on the model parameters. For

linear models, the information matrix does not depend on the

model parameters and we denote it simply by I (ξ).

Following convention, the optimality criterion is formu-

lated as a convex function of the design and the optimal

design is found by minimizing the criterion over all designs

on the design space X . This means that for nonlinear mod-

els, the design criterion that we want to optimize contains

unknown parameters. For example, to estimate parameters

accurately, we minimize log |I (θ, ξ)−1| over all designs ξ on

X (D-optimality). As such, a nominal value or best guess for

θ is needed before the function can be optimized. The result-

ing D-optimal design depends on the nominal value and so

it is called locally D-optimal. More generally, locally opti-

mal designs require nominal values for the model parameters

before optimal designs can be found. In addition, when the

criterion is a convex function in ξ , this means that a standard

directional derivative argument can be applied to produce an

equivalence theorem which checks whether a given design is

optimal among all designs on X . Details are available in the

above cited design monographs.

Minimax optimal designs arise naturally when we wish to

have protection against the worst case scenario. For example

if the vector of model parameters is θ and � is a user-selected

set of plausible values for θ , one may want to implement a

minimax optimal design ξ∗ defined by
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ξ∗ = arg min
ξ

max
θ∈�

log |I −1(θ, ξ)|, (1)

where the minimization is over all designs on X . The optimal

design provides some global protection against the worst case

scenario by minimizing the maximal inefficiencies of the

parameter estimates. Clearly, when � is a singleton set, the

optimal minimax design is the same as the locally optimal

design.

A common application of the minimax design criterion is

in a dose response study where the goal is to find an extrap-

olation optimal design which provides the best inference on

the mean responses over a known interval Z outside the dose

interval X . If we have a heteroscedastic linear model with

mean function g(x) and λ(x) is the assumed reciprocal vari-

ance of the response at dose x, then the variance of the fitted

response at the point z is proportional to

v(z, ξ) = gT (z)I (ξ)−1g(z),

where

I (ξ) =
∫

λ(x)g(x)gT (x)ξ(dx).

The best design for inference at the point z is the one that

minimizes v(z, ξ) among all designs ξ on X . However if we

know there are several dose levels of interest and they are all

in some pre-determined compact set Z , one may seek a design

to minimize the maximal variance of the fitted responses on

Z . Such a design criterion is also convex and one can use the

following equivalence theorem: ξ∗ is minimax optimal for

extrapolation on Z if and only if there exists a probability

measure μ∗ on A(ξ∗) such that for all x in X ,

c(x, μ∗, ξ∗) =
∫

A(ξ∗)

λ(x)r(x, u, ξ∗)μ∗(du) − v(u, ξ∗) ≤ 0

with equality at the support points of ξ∗. Here, A(ξ) =
{u ∈ Z |v(u, ξ) = maxz∈Z v(z, ξ)} and r(x, u, ξ) =
(gT (x)I (ξ)−1g(u))2. If X is one or two-dimensional, one

may visually inspect the plot of c(x, μ∗, ξ∗) versus values of

x ∈ X to confirm the optimality of ξ∗. In what is to follow,

we display such plots to verify the optimality of a design

without reporting the measure μ∗. A formal proof of this

equivalence theorem can be found in Berger et al. (2000)

and further details on minimax optimal design problems are

available in Wong (1992) and Wong and Cook (1993) with

further examples in King and Wong (1998, 2000). Extensions

to nonlinear models are straightforward if one assumes the

mean response can be adequately approximated by a linear

model via a first order Taylor Series expansion.

There are three points worth noting: (i) when Z is a sin-

gleton set, the probability measure μ∗ is necessarily degen-

erate at Z and the resulting equivalence theorem reduces to

one for checking whether a design is c-optimal, see Fedorov

(1972) or Silvey (1980); (ii) equivalence theorems for min-

imax optimality criteria all have a form similar to the one

shown above and they are more complicated because we need

to work with the subgradient μ∗. A reference for subgradi-

ent is the full chapter called “The subgradient method” in

Shor (1985). Finding the subgradient requires another set of

optimization procedures which usually is more tricky to han-

dle and this in part explains why minimax optimal designs

are much harder to find than optimal designs under a differ-

entiable criterion, and (iii) under the setup here, the convex

design criterion allows us to derive a lower bound on the effi-

ciency of any design (Pázman 1986). This implies that one

can always assess how good a design is by providing its effi-

ciency lower bound (without knowing the optimal design).

3 PSO-generated minimax optimal designs

Minimax optimal designs are notoriously difficult to find and

we know of no algorithm to date which is guaranteed to find

such optimal designs. Even for linear polynomial models

with a few factors, recent papers acknowledge the difficulty

of finding minimax optimal designs; see Rodriguez et al.

(2010) and Johnson et al. (2011), who considered finding a G-

optimal design to minimize the maximal variance of the fitted

response across the design space. Optimal minimax designs

for nonlinear models can be challenging even when there are

just two parameters in the model; earlier attempts to solve

such minimax problems have to impose constraints to sim-

plify the optimization problem. For example, Sitter (1992)

found minimax D-optimal designs for the two-parameter

logistic model among designs which allocated equal num-

bers of observations at equally spaced points placed sym-

metrically about the location parameter. Similarly, Noubiap

and Seidel (2000) found minimax optimal designs numer-

ically among symmetric and balanced designs after noting

that ”by restricting the set of regarded designs in a suitable

way, the minimax problem becomes numerically tractable in

principle; nevertheless it is still a two-level problem requiring

nested global optimization.” In the same paper on p.152, the

authors remark that “Unfortunately, the minimax procedure

is, in general, numerically intractable”.

We are therefore naturally interested in investigating

whether the PSO methodology provides an effective way to

find minimax optimal designs. Our examples in this section

are confined to the scattered few minimax optimal designs

reported in the literature, either numerically or analytically.

The hope is that all optimal designs found by PSO agree

with results in the literature and this would then suggest that

the algorithm should also work well for problems whose

minimax optimal designs are unknown. Of course, we can

also confirm the optimality of the design found by the PSO
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Table 1 Selected locally

E-optimal designs for the

Michaelis–Menten model found

by PSO and from theory when

the design space is

[0, x̃] = [0, 200]

Table shows the two support

points with their weights in

parentheses

a b ξP SO E-optimal designs

100 150 46.520 (0.6925) 200 (0.3075) 45.510 (0.6927) 200 (0.3073)

100 100 38.152 (0.6770) 200 (0.3230) 38.150 (0.6769) 200 (0.3231)

100 50 24.783 (0.6171) 200 (0.3829) 24.780 (0.6171) 200 (0.3829)

100 10 6.516 (0.2600) 200 (0.7400) 6.515 (0.2600) 200 (0.7400)

100 1 0.701 (0.0222) 200 (0.9778) 0.701 (0.0220) 200 (0.9778)

10 150 46.497 (0.7071) 200 (0.2929) 46.510 (0.7070) 200 (0.2931)

10 100 38.142 (0.7068) 200 (0.2932) 38.150 (0.7068) 200 (0.2933)

10 50 24.778 (0.7058) 200 (0.2942) 24.780 (0.7058) 200 (0.2942)

10 10 6.515 (0.6837) 200 (0.3163) 6.515 (0.6838) 200 (0.3162)

10 1 0.701 (0.1882) 200 (0.8118) 0.701 (0.1881) 200 (0.8119)

using an equivalence theorem. Example 3 below is one such

instance.

We selectively present three examples and briefly a fourth

with two independent variables out of many successes we

have had with PSO for finding different types of minimax

optimal designs. One of the examples has a binary response

and the rest have continuous responses. The first example

seeks to find a locally E-optimal design which minimizes

the maximum eigenvalue of the inverse of the Fisher infor-

mation matrix. Example 2 seeks a best design for estimat-

ing parameters in a two-parameter logistic model when we

have a priori a range of plausible values for each of the

two parameters. The desired design is the one which max-

imizes the smallest determinant of the information matrix

over all nominal values of the two parameters in the plausi-

ble region. Equivalently, this is the minimax optimal design

which minimizes the maximum determinant of the inverse

of the information matrix where the maximum is taken over

all nominal values in the plausible region for the parameters.

The numerically minimax optimal design for Example 2 was

found by repeated guess work followed by confirmation with

the equivalence theorem in King and Wong (2000) with the

aid of Mathematica. We will compare their designs with our

PSO-generated designs. The third example concerns a het-

eroscedastic quadratic model with a known efficiency func-

tion and we want to find a design to minimize the maximum

variance of the fitted responses across a user-specified inter-

val. The minimax optimal designs are unknown for this exam-

ple and we will check the optimality of the PSO-generated

design using an equivalence theorem.

The key tuning parameters in the PSO method are (i) flock

size, i.e. number of particles (designs) to use in the search,

(ii) the number of common support points these designs

have, and (iii) the number of iterations allowed in the search

process. Unless mentioned otherwise, we use the same val-

ues for these tuning parameters for the outer problem [e.g the

minimization problem in Eq. (1)] and the inner problem [e.g

the maximization problem in Eq. (1)]. We use default values

for all other tuning parameters in the PSO codes which we

programmed in MATLAB version R2010b. Section 4 pro-

vides information on these default values. All CPU comput-

ing times (in seconds) were from a Intel Core2 6300 computer

with 5 GB RAM and operating system Ubuntu 64bit Linux

with kernel 2.6.35-30.

Before we present our modified PSO method called

Nested PSO in Sect. 4, we present four examples, with a

bit more detail for the first example.

3.1 Example 1: E-optimal designs for the

Michaelis–Menten model

The Michaelis–Menten model is one of the simplest and most

widely used model in the biological sciences. Dette and Wong

(1999) used a geometric argument based on the celebrated

Elfving’s theorem and constructed locally E-optimal designs

for the model with two parameters θ⊤ = (a, b). Such optimal

designs are useful for making inference on θ by making the

area of the confidence ellipsoid small in terms of minimizing

the length of the longest principal axis. This is achieved by

minimizing the larger of the two eigenvalues of the inverse

of the information matrix over all designs on X . For a given

θ , they showed that if the known design space is X = [0, x̃]
and z̃ = x̃/(b+ x̃), the locally E-optimal design is supported

at x̃ and {(
√

2 − 1)bx̃}/{(2 −
√

2)x̃ + b} and the weight at

the latter support point is

w =
√

2(a/b)2(1 − z̃){
√

2 − (4 − 2
√

2)z̃}
2 + (a/b)2{

√
2 − (4 − 2

√
2)z̃}2

.

We use the Nested PSO procedure to be described in

the next section to search for the locally 2-point E-optimal

design using 128 particles and 100 iterations. Selected mini-

max optimal designs are shown in Table 1 along with the the-

oretical optimal designs reported in Dette and Wong (1999).

All the PSO-generated designs are close to the theoretical
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Fig. 1 Plot of the maximum eigenvalue of I (ξ, θ)−1 versus the itera-

tion number in the nested PSO search in Example 1

E-optimal designs and for those which show a small dis-

crepancy, the difference quickly vanishes when we increase

the flock size or the number of iterations.

It is instructive to demonstrate the search process of the

PSO method in a bit more detail for this example; similar

demonstrations can be shown for the other examples as well.

As an illustrative example, consider the case when a = 100

and b = 150 with 128 particles and 100 iterations. Figure 1

plots the “best” maximum eigenvalue of I (ξ, θ) over the first

10 iterations of the PSO procedure. Notice how quickly in

just 3 iterations, PSO finds the smallest value of the larger

of the two eigenvalues from information matrices generated

by the θ ’s in �. Figure 2 shows the initial positions of the

128 randomly generated particles and how they move after

the 1st, 5th and at the 10th iteration when they converged.

3.2 Example 2: a minimax D-optimal design for the

two-parameter logistic regression model when we have

plausible ranges for the two parameters

The widely used two-parameter logistic model assumes the

probability of response is p(x, θ) = 1/{1+exp(−b(x −a))}
with θ⊤ = (a, b). For a given design ξ , a direct calculation

shows the Fisher information matrix to be

I (θ, ξ)

=
∫ (

b2 p(x, θ)(1 − p(x, θ)) −b(x − a)p(x, θ)(1 − p(x, θ))

−b(x − a)p(x, θ)(1 − p(x, θ)) (x − a)2 p(x, θ)(1 − p(x, θ))

)

dξ(x).

Suppose now that instead of having nominal values for θ , we

have a priori a known set � of plausible values for the two

parameters a and b, i.e. θ ∈ � and � is known. We wish to

find a minimax D-optimal design ξ∗ such that

ξ∗ = arg min
ξ

max
θ∈�

log(|I −1(θ, ξ)|),

where the minimization is over all designs on a given compact

design set X . As mentioned above, this minimax optimal

design reduces to a locally D-optimal design when � is a

singleton set.

Following King and Wong (2000), we assume that � =
[aL , aU ]×[bL , bU ], where aL , aU , bL and bU are the known

limits of the lower and upper bounds for a and b. In King and

Wong (2000), the numerically minimax D-optimal designs

were found by first running the Fedorov-Wynn algorithm

(Fedorov 1972). Invariably, the algorithm did not converge

but provided clues on the number and locations of the sup-

port points of the optimal design. King and Wong (2000)

then used the information along with the equivalence theo-

rem to find the numerically minimax optimal design using

Mathematica. A certain amount of guesswork was still nec-

essary because not much was known of the subgradient μ∗.

The process of finding the minimax optimal design was labor

intensive and time consuming. We now use the nested PSO to

find minimax optimal designs for two exemplary cases from

King and Wong (2000) and compare results. For case (a), the

design interval was non-symmetric and the number of par-

ticles for the inner loop is 64 and the number for the outer

loop is 32. The outer iteration number was 100 and the inner

iteration number was 50. In case (b), the design interval was

symmetric and larger, and the number of inner particles is

256 and the number for the outer particles is 512. The outer

iteration number is 200 and the inner iteration is 100. In both

cases, the PSO generated designs were found quickly and a

direct calculation shows both had at least 99.4 % efficiency.

Case a � = [0, 2.5] × [1, 3] and X = [−1, 4]. The

4-point PSO-generated design ξ is supported at

−0.4230, 0.6164, 1.8836 and 2.9230 and the weig-

hts at these points are 0.2481, 0.2519, 0.2519 and

0.2481 respectively. This design is close to the one

reported in King and Wong (2000) and Fig. 3a plots

c(x, ξ, μ∗) versus x ∈ X and visually confirms the

design ξ found by PSO is nearly optimal or optimal.

Case b � = [0, 3.5] × [1, 3.5] and X = [−5, 5] (Example

3.2 in King and Wong (2000)). The 6-point PSO-

generated design is supported at −0.3504, 0.6075,

1.4146, 2.0854, 2.8925 and 3.8504 and the weights

at these points were 0.1799, 0.2151, 0.1050, 0.1050,

0.2151 and 0.1799 respectively. This design is also

close to the one reported in King and Wong (2000)

and Fig. 3b similarly confirms that the design found

by PSO is nearly optimal or optimal.
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Fig. 2 The movement of particles in the PSO search for the locally E-optimal design for the Michaelis–Menten model at various stages. The red

star in each of the last three plots indicates the current best design. (Color figure online)

3.3 Example 3: a heteroscedastic minimax design for a

quadratic polynomial model with an increasing

efficiency function

Consider heteroscedastic polynomial models on a given com-

pact design space X that have the form

y(x) = g⊤(x)β + e(x)/
√

λ(x),

where g⊤(x) = (1, x, . . . , xd), β⊤ = (β0, β1, . . . , βd) and

e(x) is a random error having mean 0 and constant variance

σ 2. The function λ(x) is a known positive real-valued con-

tinuous function defined on X and inversely proportional to

the variance of the fitted response at x . All observations are

assumed to be independent. Recalling that the variance of the

fitted response at x using design ξ is proportional tov(x, ξ) =
g⊤(x)I −1(ξ)g(x), the sought design is ξ∗ defined by

ξ∗ = arg min
ξ

max
x∈Z

v(x, ξ),

where the minimization is over all designs on X . Here Z is a

compact set and pre-selected for prediction purposes, which

may overlap with the design space X . When Z = X , this min-

imax design is called the G-optimal design (Wong and Cook
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Fig. 3 Plot of c(x, μ∗, ξ) versus x for Example 2 for case a � = [0, 2.5]×[1, 3] and X = [−1, 4]; case b � = [0, 3.5]×[1, 3.5] and X = [−5, 5]
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Fig. 4 Plot of c(x, μ∗, ξ) versus x over the design interval X = [−1, 1] for the quadratic regression model with λ(x) = 2x + 5 in Example 3 for

case a Z = [−1, 1] and case b Z = [1, 1.2]

1993). King and Wong (1998), Brown and Wong (2000)

and Chen et al. (2008) proposed algorithms and discussed

computational issues for finding such designs in simple and

quadratic models. Our experience with these proposed algo-

rithms is that they may not work well for more complex

models and a more complicated heteroscedastic structure.

Accordingly, we applied Nested PSO and tested if it can

find the minimax optimal design for the quadratic model

with a monotonic increasing efficiency function when (a)

X = Z and (b) Z is outside of X . The first case corresponds

to G-optimality and the second case corresponds to a design

extrapolation problem where we want to make predictions

outside the design space. The optimality of PSO-generated

designs will be ascertained by equivalence theorems. In both

cases, we used 128 particles and 100 iterations to find the

minimax optimal designs.

Here we consider the quadratic model with a monotonic

increasing efficiency function λ(x) = 2x + 5. This is a more

difficult problem than the case when we have a symmetric

efficiency function because one can then exploit the sym-

metry of the design problem and reduce the dimension of

the optimization problem. Specifically, we applied PSO to

find an minimax optimal design when (a) X = Z = [−1, 1]
and (b) X = [−1, 1] and Z = [1, 1.2]. For the first case,

the PSO-generated 3-point design is supported at ±1 and

0.0777 with weight at 1 equal to 0.2126 and weight at −1

equal to 0.4928. In the second case, the PSO-generated 3-

point design is supported at ±1 and 0.0967 with weight at

1 equal to 0.6667 and weight at −1 equal to 0.0768. The

efficiency lower bounds for the PSO-generated designs are

0.9974 and 0.9975, respectively. Figure 4a is the graph of

c(x, ξ, μ∗) for case (a) and Fig. 4b is the graph of c(x, ξ, μ∗)
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for case (b). They both visually confirm the optimality of the

PSO-generated designs ξ .

We note that earlier work on optimal extrapolation designs

for polynomial models were carried out in a series of papers

by Kiefer and Wolfowitz (1964a,b, 1965) and Levine (1966),

assuming the efficiency function λ(x) was a constant. Under

the homoscedastic model, they were able to obtain analytic

results when X = [−1, 1] and Z = [e, f ] for selected values

of e and f , including results for non-polynomial regression

problems involving Chebyshev systems. Spruill (1984, 1990)

worked on similar problems where bias was factored into the

criterion as well. Interest in such design problems continues

to date, see Broniatowski and Celant (2007) for example.

PSO was able to produce optimal designs reported in the

above papers and for problems with a more general setup.

Because of space consideration, we do not report here addi-

tional results from PSO for extrapolation minimax optimal

designs.

3.4 Example 4: a linear model with two factors

Our final example shows PSO can also find minimax optimal

designs for regression models with multiple variables. Con-

sider a homoscedastic quadratic model with two variables

given by

E(y) = β0 + β1x1 + β2x2 + β12x1x2 + β11x2
1 + β22x2

2

on the design space (x1, x2)∈ X = [−1, 1]2 and we want

to know how to take independent observations to mini-

mize the maximum variance of the fitted response across

X . We used 500 outer iterations with an outer flock size of

500 and 50 inner iterations with an inner flock size of 50

in our PSO search. The PSO-generated design from Algo-

rithm 2 is supported at (−0.0296,−1), (−0.0015, 0.0099),

(0.0161, 1), (1,−0.0342), (1,−1), (−1, 1), (1, 1), (−1,−1)

and (−1,−0.0225), and the corresponding weight distribu-

tion at these points is respectively given by 0.0815, 0.0962,

0.0790, 0.0801, 0.1454, 0.1468, 0.1464, 0.1443 and 0.0804.

How close is this 9-point design to the G-optimal design?

Fig. 5 shows the plot of the directional derivative of the G-

optimality criterion evaluated at the 9-point PSO-generated

design and confirms visually that the the PSO-generated

design is optimal or near to the G-optimal design. The model

has homoscedastic errors and so the sought G-optimal design

is also the D-optimal design (Kiefer and Wolfowitz 1960),

which is always easier to find. This D or G-optimal design

was reported in Farrell et al. (1968) and has weight 0.1458 at

each of the 4 points (±1,±1), weight 0.0802 at each of the

4 points (±1, 0) and (0,±1) and weight 0.0962 at the center

point (0, 0).

The maximal variances from the D-optimal design and

the PSO-generated design are 6.000 and 6.002, respectively,

Fig. 5 Plot of the directional derivative of the G-optimality criterion

evaluated at the 9-point PSO-generated design for the quadratic model

with 2 variables

providing a G-efficiency of 0.9997 or 99.97 % for the PSO-

generated design.

In the next section, we provide computational details for

the PSO. As may have been already noticed in the above

examples, a couple of the designs found by the PSO method

appeared to be slightly numerically different from the theo-

retical optimal designs. Our experience is that the discrep-

ancy can be entirely attributed to the choices for the tuning

parameters. For simplicity, we used the same set of tuning

parameters for all cases in the same example even though

this may not be adequate for all the cases. Generally, when

more particles and more iterations are used, the discrepancy

disappears and PSO is more likely able to find the optimal

design. Interestingly, when we used 256 particles and 500

iterations in Example 1, the discrepancy persisted even when

we increased the iteration and particle numbers to the thou-

sands. Further investigation revealed that the smaller support

point of the theoretical optimal design in the first row of

Table 1 calculated from the formula was wrongly reported

and the correct value was the one found by PSO!

4 Computational and implementation details for PSO

PSO, proposed by Eberhart and Kennedy (1995), is an iter-

ative method which can be generically and readily coded to

simulate the behavior of a flock of birds in search for food.

Before presenting our modified PSO algorithm for finding

optimal minimax designs, we first describe how PSO works

in its most basic for solving a minimization problem:

min
x∈X

f (x), (2)
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where X is a given compact domain and f (x) is the objective

function. We initialize PSO using a user-specified number,

say n, randomly generated particles to search for the optimum

over the search space. In our context, X is the design space,

f (x) is the design criterion formulated as a convex function

of the information matrix and the particles are the flock of

birds or search designs defined by their mass distributions and

support points. If the model has k parameters in the mean

function, it is typical to choose the initial flock of search

designs to be those with k support points.

The two basic equations that drive movement for the i th

particle in the PSO algorithm in its search to optimize an

objective function f (x) is as follows. At times t and t + 1,

the movement of particle i is governed by

wt+1
i = θt w

t
i + γ1α1(pi − xt

i ) + γ2α2(pg − xt
i ), (3)

and

xt+1
i = xt

i + wt+1
i . (4)

Here, wt
i and xt

i are, respectively, the velocity and the current

position for the i th particle at time t . The initial velocity w0
i is

set to be zero. The inertia weight θt modulates the influence

of the former velocity and can be a constant or a decreasing

function with values between 0 and 1. For example, Eberhart

and Shi (2000) used a linearly decreasing function over the

specified time range with an initial value 0.9 and end value

of 0.4. The vector pi is the personal best (optimal) position

attained by the i th particle up to time t and the vector pg is

the global best (optimal) position attained among all parti-

cles up to time t . This means that up to time t , the personal

best for particle i is pbesti = f (pi ) and gbest = f (pg).

The two random vectors in the PSO algorithm are α1 and

α2 and their components are usually taken to be indepen-

dent random variables from U (0, 1). Note that in Eq. (3), the

product in the last two terms is Hadamard product. The con-

stant γ1 is the cognitive learning factor and γ2 is the social

learning factor. These two constants determine how each par-

ticle moves toward its own personal best position or overall

global best position. The default values for these two con-

stants in the PSO codes are γ1 = γ2 = 2 and they really

seem to work well in practice for nearly all problems which

we have investigated so far. Further details are in Chatter-

jee and Siarry (2006), Fan and Chang (2007) and Shi and

Eberhart (1998a,b).

The particles’ movements along various paths are clamped

to a user-specified maximum velocity wmax . After updating

the velocity wi via (3), if a certain component of wi exceeds

the corresponding component of wmax , the component veloc-

ity will be limited to the corresponding component value of

wmax . In our implementation, we set wmax = 100 · 1, where

1 is the unit vector.

Algorithm 1 PSO for the minimization problem (2)

(A1a) Initialize particles

(A1a.1) Choose initial position xi and

velocity wi for particle i, for i =
1, . . . , n.

(A1a.2) Calculate fitness values f (xi ).

(A1a.3) Determine local and global best

positions pi and pg .

(A1b) Repeat until stopping criteria are satisfied.

(A1b.1) Calculate each particle velocity

using equation (3).

(A1b.2) Update each particle position

using equation (4).

(A1b.3) Calculate fitness values f (xi ).

(A1b.4) Update best positions pi and pg

and best values pbesti and gbest.

(A1c) Output pg and gbest.

To find minimax optimal designs, we modified Algo-

rithm 1 and call the modified PSO method nested PSO

because it involves double optimization, one after the other.

More generally, let g(u, v) be a given function defined on

two compact spaces U and V . Minimax optimization prob-

lems have the form:

min
u∈U

max
v∈V

g(u, v) ≡ min
u∈U

fouter (u) ≡ min
u∈U

[

max
v∈V

finner (v)

]

,

(5)

where

fouter (u) = max
v∈V

finner (v), (6)

and, for fixed u,

finner (v) = g(u, v). (7)

We call functions fouter (u) and finner (v) the outer and inner

objective functions respectively. Note that the maximization

problem (6) is equivalent to the minimization problem

min
v∈V

[− finner (v)] ,

which can be solved by Algorithm 1. For our design prob-

lems, we set g(u, v), U and V appropriately. For instance,

for G-optimality, we let U be the set of all designs defined

on X, let V = X and let g(u, v) be the variance of the fit-

ted response at v for design u. The same setup is used for

Example 3, except that we now replace V = X by V = Z .

The minimax design problem is now formulated as a nested
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(or double) minimization problem and solved using Algo-

rithm 2, which in essence is Algorithm 1 applied twice, once

to the outer function and another to the inner function.

Algorithm 2 Nested PSO for the minimax problem (5)

(A2a) Initialize particles

(A2a.1) Choose initial position xi and

velocity wi for particle i, for i =
1, . . . , n.

(A2a.2) Calculate fitness values

fouter (xi ) by solving (6) via

Algorithm 1.

(A2a.3) Determine local and global best

positions pi and pg .

(A2b) Repeat until stopping criteria are satisfied.

(A2b.1) Calculate each particle velocity

using equation (3).

(A2b.2) Update each particle position

using equation (4).

(A2b.3) Calculate fitness values

fouter (xi ) by solving (6) via

Algorithm 1.

(A2b.4) Update best positions pi and pg

and best values pbesti and gbest.

(A2c) Output pg and gbest.

To apply the Nested PSO to solve minimax design prob-

lems we use Example 3 as an illustrative example and set

fouter (ξ) = maxz∈Z v(z, ξ) which is first computed via PSO

for each fixed ξ . The optimal design is then found by another

PSO by treating each particle as a design ξ represented as

(x1, . . . , xk, p1, . . . , pk)
⊤, where xi , i = 1, . . . , k are the

support points in the design space and pi , i = 1, . . . , k are the

corresponding weights with 1 > pi > 0 and
∑k

i=1 pi = 1.

All minimax optimal designs in Sect. 3 were found using

Algorithm 2. In the supplementary material, we provide open

PSO codes which implement Algorithm 2 and demonstrate

how to use a MATLAB toolbox to obtain a G-optimal design

for an illustrative case when we have a simple linear model

and the efficiency function is λ(x) = x + 5 defined on X =
[−1, 1]. We also show how the codes can be readily amended

to find different optimal designs under various setups.

In the next section, we show the flexibility of the

PSO methodology by finding standardized maximin optimal

designs for a class of nonlinear models. Maximin optimal

designs are similar in spirit to minimax optimal designs in

terms of interpretation and construction via PSO. Standard-

ized maximin or minimax optimal designs were proposed

by Dette and Biedermann (2003) to make locally optimal

designs more robust against mis-specification of the set of

nominal values for the model parameters.

5 Standardized maximin optimal designs for enzyme

inhibition kinetic models

The two-parameter Michaelis–Menten model in Example 1

is commonly used enzyme kinetics studies. There are four

popular extensions of the Michaelis–Menten model used to

further identify the types of inhibition process involved in

the enzyme-inhibitor system. These nonlinear models have

three or four parameters and their mean velocity functions

are

Competitive inhibition model:

υ =
V S

Km(1 + I
Kic

) + S
; (8)

Noncompetitive inhibition model:

υ =
V S

(Km + S)(1 + I
Kic

)
; (9)

Uncompetitive inhibition model:

υ =
V S

Km + S(1 + I
Kiu

)
; (10)

Mixed inhibition model:

υ =
V S

Km(1 + I
Kic

) + S(1 + I
Kiu

)
. (11)

Here S and I are the two design variables denoting the con-

centration of the substrate and the inhibitor concentration

respectively. The model parameters are V, Km , Kic, Kiu , and

Bogacka et al. (2011) found locally D-optimal designs for

these four enzyme inhibition kinetic models. The locally D-

optimal designs do not depend on V because this parameter

enters the four models linearly. Thus we only consider the

parameter vector θ = (Km, Kic, Kiu)⊤.

We now use the nested PSO algorithm to find standardized

maximin D-optimal designs for these models. Let ξ∗
θ be the

locally D-optimal design with respect to the parameter θ and

let � be a known set containing plausible values of θ . The

goal here is to seek an optimal design which maximizes the

design criterion 
(ξ), where


(ξ) = min
θ∈�

|I (ξ, θ)|
|I (ξ∗

θ , θ)|
.

We follow the set up in Bogacka et al. (2011) where

the design space for the two variables x = (S, I ) is X =
[0, 30] × [0, 60] and the range set � of possible values

for θ = (Km, Kic, Kiu)⊤ is [4, 5] × [2, 3] × [4, 5], which

includes the nominal values used in their study for an appli-

cation using the Competitive Inhibition model.
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Table 2 The nested

PSO-generated standardized

maximin D-optimal designs for

the four inhibition models using

the following PSO parameters:

number of particles in the outer

(inner) loop = 256 (128),

number of iterations in the outer

(inner) loop = 200 (100) and

γ1 = γ2 = 2

Type ξP SO Lower bound

of efficiency

(%)

Competitive inhibition model

(

3.4445

0.0000

) (

30.0000

0.0000

) (

30.0000

18.8982

)

99.99

0.3333 0.3333 0.3334

Noncompetitive inhibition model

(

3.4429

0.0000

) (

30.0000

0.0000

) (

30.0000

2.4495

)

99.99

0.3333 0.3333 0.3334

Uncompetitive inhibition model

(

3.4461

0.0000

) (

30.0000

0.0000

) (

30.0000

5.1383

)

99.99

0.3333 0.3334 0.3333

Mixed inhibition model

(

3.4406

0.0000

) (

4.2835

3.1445

) (

30.0000

0.0000

) (

30.0000

4.0191

)

99.92

0.2503 0.2498 0.2501 0.2498

Table 3 Standardized maximin

D-optimal designs for the four

kinds of inhibition models

Type ξ∗
ci

Competitive inhibition model

(

3.4429

0

) (

30

0

) (

30

18.8944

)

1/3 1/3 1/3

Noncompetitive inhibition model

(

3.4429

0

) (

30

0

) (

30

2.4495

)

1/3 1/3 1/3

Uncompetitive inhibition model

(

3.4429

0

) (

30

0

) (

30

5.1424

)

1/3 1/3 1/3

Mixed inhibition model

(

3.4429

0

) (

4.2943

3.1231

) (

30

0

) (

30

4.0199

)

1/4 1/4 1/4 1/4

The nested PSO-generated standardized maximin optimal

designs are shown in Table 2 along with their efficiency lower

bounds. For each of these design ξ , the bound is given by

p

maxx∈X

∫

A(ξ)
∂g(x,θ)⊤

∂θ
I (ξ, θ)−1 ∂g(x,θ)

∂θ
μ(dθ)

,

where p is the number of the parameters in the mean function,

A(ξ)= {θ ∈ �|
(ξ)= effθ (ξ)2}, effθ (ξ)= (|I (ξ, θ)|/|I (ξ∗
θ , θ)|)1/2

and μ is the probability measure defined on A(ξ) which

minimizes the denominator; see Wong and Cook (1993)

or Dette and Biedermann (2003) for details. For instance,

for the mixed inhibition model we have g(x, θ) = υ =
V S/(Km(1 + I

Kic
) + S(1 + I

Kiu
)) and p = 4. Table 2 shows

that all the designs found by the nested PSO are at least

99.9 % efficient and so they are all very close to the theoret-

ical standardized maximin optimal designs.

To find the maximin optimal designs, one notes that the

maximin criterion is a concave function on the space of

designs on X and so conditions from an equivalence theorem

can be applied. For example, consider the competitive inhi-

bition (ci) model where Table 2 suggests the optimal design

ξ∗
ci should be an equally weighted design with the following

structure:

ξ∗
ci =

⎛

⎝

(

S1

0

) (

30

0

) (

30

I3

)

1/3 1/3 1/3

⎞

⎠ .

One could also conjecture that when we have the maximin

optimal design ξ∗, the measure μ∗ is equally supported at

(4, 3)⊤ and (5, 2)⊤ in the parameter space. This conjecture

comes from the best design found by the nested PSO. The

requirements of the equivalence theorem then provide us with

equations to solve for S1 and I3. In this case, the solutions are

S1 = 3.4429 and I3 = 18.8944. Both values are close to the

design points shown in Table 2 and the design displayed in

Table 3 for this model is the standardized maximin optimal

design. Similarly, the other designs found using hints from

the generated designs shown in Table 3 are also standardized

maximin optimal for the other 3 models. The plots of the

directional derivatives for the maximin criterion for these 4

designs in Fig. 6 confirm their optimality.
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Fig. 6 Plots of the directional derivatives of the standardized maximin D-optimality criterion evaluated at the PSO-generated designs for the four

inhibition models

6 Discussion

Given rapidly rising costs of experimentation, optimal design

ideas take on an increasingly important role. A well designed

study is able to answer scientific questions accurately and

with minimum cost. It is therefore not surprising that opti-

mal experimental designs continue to find increasingly more

applications in different fields and novel applications are

continually seen in traditional areas, see Berger (2005), for

example.

Computer algorithms have played and will continue to

play an important role in our search of optimal designs. They

are usually sequential in nature and typically involve the addi-

tion of a carefully selected new design point to the current

design by mixing them appropriately to form a new design.

The generated design accumulates many points or clusters

of points as the algorithm proceeds and judicious rules for

collapsing points into distinct points is required. The weights

typically used in popular algorithms such as Fedorov’s algo-

rithm for finding optimal designs to combine designs from

each successive iterations are between 0 and 1 and have the

following properties: (a) their sum is infinity and (b) the sum

of squares of each term is finite. One common choice for the

weight at the kth iteration is 1/k, where
∑∞

l=1 1/k = ∞ and
∑∞

l=1 1/k2 < ∞. Both conditions help ensure successful

termination of the algorithm.

Stopping rules are employed to decide when to terminate

the search; they typically require either a maximum num-

ber of iterations allowed or when the change in the value

of the optimality criterion in successive searches is negligi-

ble according to a user-selected tolerance level. An example

of such an algorithm is the noted Fedorov-Wynn algorithm

which is still popular after more than 3 decades of use. Details

and exemplary codes for generating D- and c-optimal designs

can be found in design monographs like Silvey (1980) and

Fedorov (1972). Several modified versions of the Fedorov-
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Wynn algorithm have been proposed and we refer to them as

the Fedorov-Wynn types of algorithms.

A main difference between PSO and the popular Fedorov-

Wynn types of algorithms is that PSO uses many particles

(designs) right from the start to cover the design space before

searching for the optimum, whereas the Fedorov-Wynn types

of algorithms use only one starting design. This means that a

poor choice of the starting design in the Fedorov-Wynn algo-

rithm may require a relatively long time for it to get near the

optimum. In contrast, PSO’s uses many particles to search for

the optimum at any one time by sharing information among

the search particles. In addition, PSO is flexible and easy to

implement; our experience is that only the number of itera-

tions and flock size seem to affect PSO’s ability to find the

optimal design.; all other tuning parameters in the PSO do

not seem to matter, and so we set them all equal to their

default values. In this sense, PSO compares favorably with

other algorithms like genetic algorithms which can depend

sensitively on the tuning parameters. In sum, our experience

with PSO agrees with findings reported in the literature.

To get a sense of computing time which nested PSO

required to run through a search, we revisit Example 1 for

the Michaelis–Menten model. For brevity, we consider an

illustrative case when the model parameters are (a, b)⊤ =
(100, 150) and we use different numbers of particles and

iterations. When the iteration number is fixed at 100, and

the number of particles is 128, 256, 512, 1024 and 2048, the

search took 0.87, 1.65, 3.16, 6.32 and 12.58 s respectively.

When the number of particles is fixed at 128, and the iter-

ation number is 200, 500 and 1,000, the PSO search time

is 1.68, 4.13 and 8.05 s respectively. In all cases, the gener-

ated designs agree up to 5 decimal places in terms of both

weights and design points. Clearly larger flock size requires

more time to partake in the sharing of information and larger

numbers of iterations require longer time.

In summary, PSO is a novel and powerful method to gen-

erate different types of optimal experimental designs. We

continue to have other successes not all reported here when

we applied PSO to find A, c or D-optimal designs for non-

linear models with 3 or more parameters. Each time PSO

would find and confirm the results in the literature usually in

a few seconds of CPU time. We have also verified that PSO

is able to generate D-optimal designs for Scheffe’s quadratic

polynomial mixture models up to 8 factors with a hundred

or more variables to be optimized.

PSO methodology has potential for finding other types of

optimal designs. We have two areas for future work. The first

is to apply PSO to find multiple-objective optimal designs.

Such designs are more attractive because studies typically

have several goals and not all of them may be of equal inter-

est. Multiple-objective optimal designs are discussed exten-

sively with examples in Cook and Wong (1994), Huang and

Wong (1998), Zhu and Wong (2000, 2001). The second area

for future work is to apply PSO to find optimal designs under

a non-convex criterion, where we no longer have an equiv-

alence theorem to confirm whether a design is optimal or

not. Our latest results include modifying PSO in a novel

way to find balanced optimal supersaturated designs, which

have a very different setup than the one considered here. The

design space is discrete and because we allow more factors

than have been considered in the literature, the optimiza-

tion problem is high dimensional. Other examples of opti-

mal designs under non-convex objective functions are exact

optimal designs, replication free optimal designs, minimum

bias designs or designs which minimize the mean square

error. We plan to apply PSO methodology to find these types

of optimal designs and hope to report results in the near

future.
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