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Abstract
Sparse additive models are families ofd-variate functions with the additive decomposition
f ∗ = ∑ j∈S f ∗j , whereS is an unknown subset of cardinalitys≪ d. In this paper, we consider
the case where each univariate component functionf ∗j lies in a reproducing kernel Hilbert space
(RKHS), and analyze a method for estimating the unknown function f ∗ based on kernels combined
with ℓ1-type convex regularization. Working within a high-dimensional framework that allows
both the dimensiond and sparsitys to increase withn, we derive convergence rates in theL2(P)
andL2(Pn) norms over the classFd,s,H of sparse additive models with each univariate functionf ∗j
in the unit ball of a univariate RKHS with bounded kernel function. We complement our upper
bounds by deriving minimax lower bounds on theL2(P) error, thereby showing the optimality of
our method. Thus, we obtain optimal minimax rates for many interesting classes of sparse additive
models, including polynomials, splines, and Sobolev classes. We also show that if, in contrast to
our univariate conditions, thed-variate function class is assumed to be globally bounded, then much
faster estimation rates are possible for any sparsitys= Ω(

√
n), showing that global boundedness

is a significant restriction in the high-dimensional setting.

Keywords: sparsity, kernel, non-parametric, convex, minimax

1. Introduction

The past decade has witnessed a flurry of research on sparsity constraints in statistical models.
Sparsity is an attractive assumption for both practical and theoretical reasons: it leads to more
interpretable models, reduces computational cost, and allows for model identifiability even under
high-dimensional scaling, where the dimensiond exceeds the sample sizen. While a large body of
work has focused on sparse linear models, many applications call for the additional flexibility pro-
vided by non-parametric models. In the general setting, a non-parametric regression model takes the
form y= f ∗(x1, . . . ,xd)+w, wheref ∗ : Rd →R is the unknown regression function, andw is scalar
observation noise. Unfortunately, this general non-parametric model is known to suffer severely
from the so-called “curse of dimensionality”, in that for most natural function classes (e.g., twice
differentiable functions), the sample sizen required to achieve any given error grows exponentially
in the dimensiond. Given this curse of dimensionality, it is essential to further constrain the com-
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plexity of possible functionsf ∗. One attractive candidate is the class ofadditive non-parametric
models(see Hastie and Tibshirani, 1986), in which the functionf ∗ has an additive decomposition
of the form

f ∗(x1,x2, . . . ,xd) =
d

∑
j=1

f ∗j (x j), (1)

where each component functionf ∗j is univariate. Given this additive form, this function class no
longer suffers from the exponential explosion in sample size of the general non-parametric model.
Nonetheless, one still requires a sample sizen≫ d for consistent estimation; note that this is true
even for the linear model, which is a special case of Equation (1).

A natural extension of sparse linear models is the class ofsparse additive models, in which the
unknown regression function is assumed to have a decomposition of the form

f ∗(x1,x2 . . . ,xd) = ∑
j∈S

f ∗j (x j), (2)

whereS⊆ {1,2, . . . ,d} is some unknown subset of cardinality|S| = s. Of primary interest is the
case when the decomposition is genuinely sparse, so thats≪ d. To the best of our knowledge, this
model class was first introduced by Lin and Zhang (2006), and has since been studied by various
researchers (e.g., Koltchinskii and Yuan, 2010; Meier et al., 2009; Ravikumar et al., 2009; Yuan,
2007). Note that the sparse additive model (2) is a natural generalizationof the sparse linear model,
to which it reduces when each univariate function is constrained to be linear.

In past work, several groups have proposed computationally efficient methods for estimating
sparse additive models (2). Just asℓ1-based relaxations such as the Lasso have desirable properties
for sparse parametric models, more generalℓ1-based approaches have proven to be successful in
this setting. Lin and Zhang (2006) proposed the COSSO method, which extends the Lasso to cases
where the component functionsf ∗j lie in a reproducing kernel Hilbert space (RKHS); see also Yuan
(2007) for a similar extension of the non-negative garrote (Breiman, 1995). Bach (2008) analyzes
a closely related method for the RKHS setting, in which least-squares loss is penalized by anℓ1-
sum of Hilbert norms, and establishes consistency results in the classical (fixed d) setting. Other
relatedℓ1-based methods have been proposed in independent work by Koltchinskii and Yuan (2008),
Ravikumar et al. (2009) and Meier et al. (2009), and analyzed under high-dimensional scaling (d ≫
n). As we describe in more detail in Section 3.4, each of the above papers establish consistency and
convergence rates for the prediction error under certain conditions onthe covariates as well as the
sparsitys and dimensiond. However, it is not clear whether the rates obtained in these papers are
sharp for the given methods, nor whether the rates are minimax-optimal. Pastwork by Koltchinskii
and Yuan (2010) establishes rates for sparse additive models with an additional global boundedness
condition, but as will be discussed at more length in the sequel, these rates are not minimax optimal
in general.

This paper makes three main contributions to this line of research. Our first contribution is to
analyze a simple polynomial-time method for estimating sparse additive models and provide upper
bounds on the error in theL2(P) andL2(Pn) norms. The estimator1 that we analyze is based on a
combination of least-squares loss with twoℓ1-based sparsity penalty terms, one corresponding to

1. The same estimator was proposed concurrently by Koltchinskii and Yuan (2010); we discuss connections to this work
in the sequel.
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anℓ1/L2(Pn) norm and the other anℓ1/‖ · ‖H norm. Our first main result (Theorem 1) shows that
with high probability, if we assume the univariate functions are bounded andindependent, the error
of our procedure in the squaredL2(Pn) andL2(P) norms is bounded byO

( slogd
n + sν2

n

)
, where the

quantityν2
n corresponds to the optimal rate for estimating a single univariate function. Importantly,

our analysis doesnot require a global boundedness condition on the classFd,s,H of all s-sparse
models, an assumption that is often imposed in classical non-parametric analysis. Indeed, as we
discuss below, when such a condition is imposed, then significantly faster rates of estimation are
possible. The proof of Theorem 1 involves a combination of techniques for analyzingM-estimators
with decomposable regularizers (Negahban et al., 2009), combined with various techniques in em-
pirical process theory for analyzing kernel classes (e.g., Bartlett et al., 2005; Mendelson, 2002;
van de Geer, 2000). Our second contribution is complementary in nature, inthat it establishes
algorithm-independent minimax lower bounds onL2(P) error. These minimax lower bounds, stated
in Theorem 2, are specified in terms of the metric entropy of the underlying univariate function
classes. For both finite-rank kernel classes and Sobolev-type classes, these lower bounds match our
achievable results, as stated in Corollaries 1 and 2, up to constant factorsin the regime of sub-linear
sparsity (s= o(d)). Thus, for these function classes, we have a sharp characterizationof the asso-
ciated minimax rates. The lower bounds derived in this paper initially appearedin the Proceedings
of the NIPS Conference (December 2009). The proofs of Theorem 2is based on characterizing
the packing entropies of the class of sparse additive models, combined with classical information
theoretic techniques involving Fano’s inequality and variants (e.g., Has’minskii, 1978; Yang and
Barron, 1999; Yu, 1996).

Our third contribution is to determine upper bounds on minimaxL2(P) andL2(Pn) error when
we impose a global boundedness assumption on the classFd,s,H . More precisely, a global bound-
edness condition means that the quantityB(Fd,s,H ) = supf∈Fd,s,H

supx |∑d
j=1 f j(x j)| is assumed to be

bounded independently of(s,d). As mentioned earlier, our upper bound in Theorem 1 doesnot
impose a global boundedness condition, whereas in contrast, the analysisof Koltchinskii and Yuan
(2010), or KY for short, does impose such a global boundedness condition. Under global bound-
edness, their work provides rates on theL2(P) andL2(Pn) norm that are of the same order as the
results presented here. It is natural to wonder whether or not this difference is actually significant—
that is, do the minimax rates for the class of sparse additive models depend onwhether or not global
boundedness is imposed? In Section 3.5, we answer this question in the affirmative. In particular,
Theorem 3 and Corollary 3 provide upper bounds on the minimax rates, as measured in either the
L2(P) andL2(Pn)-norms, under a global boundedness condition. These rates are faster than those
of Theorem 3 in the KY paper, in particular showing that the KY rates are not optimal for problems
with s= Ω(

√
n). In this way, we see that the assumption of global boundedness, though relatively

innocuous for classical (low-dimensional) non-parametric problems, canbe quite limiting in high
dimensions.

The remainder of the paper is organized as follows. In Section 2, we provide background on
kernel spaces and the class of sparse additive models considered in thispaper. Section 3 is devoted
to the statement of our main results and discussion of their consequences; itincludes description
of our method, the upper bounds on the convergence rate that it achieves, and a matching set of
minimax lower bounds. Section 3.5 investigates the restrictiveness of the global uniform bounded-
ness assumption and in particular, Theorem 3 and Corollary 3 demonstrate that there are classes of
globally bounded functions for which faster rates are possible. Section 4is devoted to the proofs of
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our three main theorems, with the more technical details deferred to the Appendices. We conclude
with a discussion in Section 5.

2. Background and Problem Set-up

We begin with some background on reproducing kernel Hilbert spaces,before providing a precise
definition of the class of sparse additive models studied in this paper.

2.1 Reproducing Kernel Hilbert Spaces

Given a subsetX ⊂ R and a probability measureQ onX , we consider a Hilbert spaceH ⊂ L2(Q),
meaning a family of functionsg :X →R, with ‖g‖L2(Q) <∞, and an associated inner product〈·, ·〉H
under whichH is complete. The spaceH is a reproducing kernel Hilbert space (RKHS) if there
exists a symmetric functionK : X ×X → R+ such that for eachx ∈ X : (a) the functionK(·,x)
belongs to the Hilbert spaceH , and (b) we have the reproducing relationf (x) = 〈 f ,K(·,x)〉H
for all f ∈ H . Any such kernel function must be positive semidefinite; under suitable regularity
conditions, Mercer’s theorem (1909) guarantees that the kernel hasan eigen-expansion of the form

K(x,x′) =
∞

∑
k=1

µkφk(x)φℓ(x
′), (3)

whereµ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ 0 are a non-negative sequence of eigenvalues, and{φk}∞
k=1 are the

associated eigenfunctions, taken to be orthonormal inL2(Q). The decay rate of these eigenvalues
will play a crucial role in our analysis, since they ultimately determine the rateνn for the univariate
RKHS’s in our function classes.

Since the eigenfunctions{φk}∞
k=1 form an orthonormal basis, any functionf ∈ H has an ex-

pansion of thef (x) = ∑∞
k=1akφk(x), whereak = 〈 f , φk〉L2(Q) =

∫
X f (x)φk(x)dQ(x) are (gener-

alized) Fourier coefficients. Associated with any two functions inH —say f = ∑∞
k=1akφk and

g= ∑∞
k=1bkφk—are two distinct inner products. The first is the usual inner product inL2(Q),

〈 f , g〉L2(Q) :=
∫
X f (x)g(x)dQ(x). By Parseval’s theorem, it has an equivalent representation in

terms of the expansion coefficients—namely

〈 f , g〉L2(Q) =
∞

∑
k=1

akbk.

The second inner product, denoted〈 f , g〉H , is the one that defines the Hilbert space; it can be written
in terms of the kernel eigenvalues and generalized Fourier coefficients as

〈 f , g〉H =
∞

∑
k=1

akbk

µk
.

Using this definition, the Hilbert ball of unit radius for a kernel with eigenvalues{µk}∞
k=1 and eigen-

functions{φk}∞
k=1 is given by

BH (1) :=
{

f =
∞

∑
k=1

akφk |
∞

∑
k=1

a2
k

µk
≤ 1

}
.

For more background on reproducing kernel Hilbert spaces, we refer the reader to various standard
references (e.g., Aronszajn, 1950; Saitoh, 1988; Schölkopf and Smola, 2002; Wahba, 1990).
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2.2 Sparse Additive Models Over RKHS

For eachj = 1, . . . ,d, letH j ⊂ L2(Q) be a reproducing kernel Hilbert space of univariate functions
on the domainX ⊂ R. We assume that

E[ f j(x)] =
∫
X

f j(x)dQ(x) = 0 for all f j ∈H j , and for eachj = 1,2, . . . ,d.

As will be clarified momentarily, our observation model (5) allows for the possibility of a non-zero
meanf , so that there is no loss of generality in this assumption. For a given subsetS⊂ {1,2, . . . ,d},
we define

H (S) :=
{

f = ∑
j∈S

f j | f j ∈H j , and f j ∈ BH j
(1) ∀ j ∈ S

}
,

corresponding to the class of functionsf : X d → R that decompose as sums of univariate functions
on co-ordinates lying within the setS. Note thatH (S) is also (a subset of) a reproducing kernel
Hilbert space, in particular with the norm

‖ f‖2
H (S) = ∑

j∈S

‖ f j‖2
H j
,

where‖ ·‖H j
denotes the norm on the univariate Hilbert spaceH j . Finally, fors∈ {1,2, . . . ,⌊d/2⌋},

we define the function class

Fd,s,H :=
⋃

S⊂{1,2,...,d}
|S|=s

H (S). (4)

To ease notation, we frequently adopt the shorthandF = Fd,s,H , but the reader should recall that
F depends on the choice of Hilbert spaces{H j}d

j=1, and moreover, that we are actually studying a
sequence of function classesindexed by(d,s).

Now letP=Qd denote the product measure on the spaceX d ⊆ Rd. Given an arbitraryf ∗ ∈ F ,
we consider the observation model

yi = f + f ∗(xi)+wi , for i = 1,2, . . . ,n, (5)

where{wi}n
i=1 is an i.i.d. sequence of standard normal variates, and{xi}n

i=1 is a sequence of design
points inRd, sampled in an i.i.d. manner fromP.

Given an estimatêf , our goal is to bound the error̂f − f ∗ under two norms. The first is the
usual L2(P) normon the spaceF ; given the product structure ofP and the additive nature of any
f ∈ F , it has the additive decomposition‖ f‖2

L2(P)
= ∑d

j=1‖ f j‖2
L2(Q)

. In addition, we consider the

error in theempirical L2(Pn)-normdefined by the sample{xi}n
i=1, defined as

‖ f‖2
L2(Pn)

:=
1
n

n

∑
i=1

f 2(xi).

Unlike theL2(P) norm, this norm does not decouple across the dimensions, but part of our anal-
ysis will establish an approximate form of such decoupling. For shorthand, we frequently use the
notation‖ f‖2 = ‖ f‖L2(P) and‖ f‖n = ‖ f‖L2(Pn) for ad-variate functionf ∈ F . With a minor abuse
of notation, for a univariate functionf j ∈ H j , we also use the shorthands‖ f j‖2 = ‖ f j‖L2(Q) and
‖ f j‖n = ‖ f j‖L2(Qn).
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3. Main Results and Their Consequences

This section is devoted to the statement of our three main results, and discussion of some of their
consequences. We begin in Section 3.1 by describing a regularizedM-estimator for sparse additive
models, and we state our upper bounds for this estimator in Section 3.2. We illustrate our upper
bounds for various concrete instances of kernel classes. In Section3.3, we state minimax lower
bounds on theL2(P) error over the classFd,s,H , which establish the optimality of our procedure. In
Section 3.4, we provide a detailed comparison between our results to past work, and in Section 3.5
we discuss the effect of global boundedness conditions on optimal rates.

3.1 A Regularized M-Estimator For Sparse Additive Models

For any function of the formf = ∑d
j=1 f j , the(L2(Qn),1) and(H ,1)-norms are given by

‖ f‖n,1 :=
d

∑
j=1

‖ f j‖n, and ‖ f‖H ,1 :=
d

∑
j=1

‖ f j‖H ,

respectively. Using this notation and defining the sample mean ¯yn =
1
n ∑n

i=1yi , we define the cost
functional

L( f ) =
1
2n

n

∑
i=1

(
yi − ȳn− f (xi)

)2
+λn‖ f‖n,1+ρn‖ f‖H ,1.

The cost functionalL( f ) is least-squares loss with a sparsity penalty‖ f‖n,1 and a smoothness
penalty‖ f‖H ,1. Here(λn,ρn) are a pair of positive regularization parameters whose choice will be
specified by our theory. Given this cost functional, we then consider theM-estimator

f̂ ∈ argmin
f
L( f ) subject tof = ∑d

j=1 f j and‖ f j‖H ≤ 1 for all j = 1,2, . . . ,d. (6)

In this formulation (6), the problem is infinite-dimensional in nature, since it involves optimization
over Hilbert spaces. However, an attractive feature of thisM-estimator is that, as a consequence of
the representer theorem (Kimeldorf and Wahba, 1971), it can be reduced to an equivalent convex
program inRn×Rd. In particular, for eachj = 1,2, . . . ,d, let K j denote the kernel function for
co-ordinatej. Using the notationxi = (xi1,xi2, . . . ,xid) for the ith sample, we define the collection
of empirical kernel matricesK j ∈Rn×n, with entriesK j

iℓ =K j(xi j ,xℓ j). By the representer theorem,
any solutionf̂ to the variational problem (6) can be written in the form

f̂ (z1, . . . ,zd) =
n

∑
i=1

d

∑
j=1

α̂i jK
j(zj ,xi j ),

for a collection of weights
{

α̂ j ∈ Rn, j = 1, . . . ,d
}

. The optimal weights(α̂1, . . . , α̂d) are any
minimizer to the following convex program:

arg min
α j∈Rn

αT
j K j α j≤1

{
1
2n

‖y− ȳn−
d

∑
j=1

K jα j‖2
2+λn

d

∑
j=1

√
1
n
‖K jα j‖2

2+ρn

d

∑
j=1

√
αT

j K jα j

}
. (7)
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This problem is a second-order cone program (SOCP), and there arevarious algorithms for finding
a solution to arbitrary accuracy in time polynomial in(n,d), among them interior point methods
(e.g., see §11 in Boyd and Vandenberghe 2004).

Various combinations of sparsity and smoothness penalties have been usedin past work on
sparse additive models. For instance, the method of Ravikumar et al. (2009) is based on least-
squares loss regularized with single sparsity constraint, and separate smoothness constraints for
each univariate function. They solve the resulting optimization problem usinga back-fitting pro-
cedure. Koltchinskii and Yuan (2008) develop a method based on least-squares loss combined
with a single penalty term∑d

j=1‖ f j‖H . Their method also leads to an SOCP ifH is a repro-
ducing kernel Hilbert space, but differs from the program (7) in lacking the additional sparsity
penalties. Meier et al. (2009) analyzed least-squares regularized with apenalty term of the form

∑d
j=1

√
λ1‖ f j‖2

n+λ2‖ f j‖2
H

, whereλ1 and λ2 are a pair of regularization parameters. In their

method,λ1 controls the sparsity whileλ2 controls the smoothness. IfH is an RKHS, the method
in Meier et al. (2009) reduces to an ordinary group Lasso problem on adifferent set of variables,
which can be cast as a quadratic program. The more recent work of Koltchinskii and Yuan (2010)
is based on essentially the same estimator as problem (6), except that we allowfor a non-zero mean
for the function, and estimate it as well. In addition, the KY analysis involves a stronger condition
of global boundedness. We provide a more in-depth comparison of our analysis and results with the
past work listed above in Sections 3.4 and 3.5.

3.2 Upper Bound

We now state a result that provides upper bounds on the estimation error achieved by the estima-
tor (6), or equivalently (7). To simplify presentation, we state our result inthe special case that
the univariate Hilbert spaceH j , j = 1, . . . ,d are all identical, denoted byH . However, the analysis
and results extend in a straightforward manner to the general setting of distinct univariate Hilbert
spaces, as we discuss following the statement of Theorem 1.

Let µ1 ≥ µ2 ≥ . . . ≥ 0 denote the non-negative eigenvalues of the kernel operator definingthe
univariate Hilbert spaceH , as defined in Equation (3), and define the function

Qσ,n(t) :=
1√
n

[ ∞

∑
ℓ=1

min{t2,µℓ}
]1/2

.

Let νn > 0 be the smallest positive solution to the inequality

40ν2
n ≥ Qσ,n(νn), (8)

where the 40 is simply used for technical convenience. We refer toνn as thecritical univariate rate,
as it is the minimax-optimal rate forL2(P)-estimation of a single univariate function in the Hilbert
spaceH (e.g., Mendelson, 2002; van de Geer, 2000). This quantity will be referred to throughout
the remainder of the paper.

Our choices of regularization parameters are specified in terms of the quantity

γn := κmax
{

νn,

√
logd

n

}
, (9)
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whereκ is a fixed constant that we choose later. We assume that each function withinthe unit ball of
the univariate Hilbert space is uniformly bounded by a constant multiple of its Hilbert norm—that
is, for eachj = 1, . . . ,d and eachf j ∈H ,

‖ f j‖∞ := sup
x j

| f j(x j)| ≤ c ‖ f j‖H . (10)

This condition is satisfied for many kernel classes including Sobolev spaces, and any univariate
RKHS in which the kernel function2 bounded uniformly byc. Such a condition is routinely imposed
for proving upper bounds on rates of convergence for non-parametric least squares in the univariate
cased = 1 (see, e.g., Stone, 1985; van de Geer, 2000). Note that this univariateboundedness does
not imply that the multivariate functionsf = ∑ j∈S f j in F are uniformly bounded independently of
(d,s); rather, since such functions are the sum ofs terms, they can take on values of the order

√
s.

The following result applies to any classFd,s,H of sparse additive models based on a univariate
Hilbert space satisfying condition (10), and to the estimator (6) based onn i.i.d. samples(xi ,yi)

n
i=1

from the observation model (5).

Theorem 1 Let f̂ be any minimizer of the convex program(6) with regularization parameters
λn ≥ 16γn and ρn ≥ 16γ2

n. Then provided that nγ2
n = Ω(log(1/γn)), there are universal constants

(C,c1,c2) such that

P

[
max{‖ f̂ − f ∗‖2

2, ‖ f̂ − f ∗‖2
n} ≥C

{
sλ2

n+sρn
}]

≤ c1exp(−c2nγ2
n).

We provide the proof of Theorem 1 in Section 4.1.

3.2.1 REMARKS

First, the technical conditionnγ2
n=Ω(log(1/γn)) is quite mild, and satisfied in most cases of interest,

among them the kernels considered below in Corollaries 1 and 2.
Second, note that settingλn = cγn andρn = cγ2

n for some constantc ∈ [16,∞) yields the rate
Θ(sγ2

n+ sρn) = Θ( slogd
n + sν2

n). This rate may be interpreted as the sum of a subset selection term

( slogd
n ) and ans-dimensional estimation term (sν2

n). Note that the subset selection term (slogd
n )

is independent of the choice of Hilbert spaceH , whereas thes-dimensional estimation term is
independent of the ambient dimensiond. Depending on the scaling of the triple(n,d,s) and the
smoothness of the univariate RKHSH , either the subset selection term or function estimation term
may dominate. In general, iflogd

n = o(ν2
n), thes-dimensional estimation term dominates, and vice

versa otherwise. At the boundary, the scalings of the two terms are equivalent.
Finally, for clarity, we have stated our result in the case where the univariate Hilbert spaceH

is identical across all co-ordinates. However, our proof extends with only notational changes to the
general setting, in which each co-ordinatej is endowed with a (possibly distinct) Hilbert spaceH j .
In this case, theM-estimator returns a function̂f such that (with high probability)

max
{
‖ f̂ − f ∗‖2

n, ‖ f̂ − f ∗‖2
2

}
≤ C

{
slogd

n
+ ∑

j∈S

ν2
n, j

}
,

2. Indeed, we have

sup
x j

| f j (x j )|= sup
x j

|〈 f j (.),K(.,x j)〉H | ≤ sup
x j

√
K(x j ,x j )‖ f j‖H .
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whereνn, j is the critical univariate rate associated with the Hilbert spaceH j , andS is the subset on
which f ∗ is supported.

Theorem 1 has a number of corollaries, obtained by specifying particularchoices of kernels.
First, we discussm-rank operators, meaning that the kernel functionK can be expanded in terms
of m eigenfunctions. This class includes linear functions, polynomial functions, as well as any
function class based on finite dictionary expansions. First we present acorollary for finite-rank
kernel classes.

Corollary 1 Under the same conditions as Theorem 1, consider an univariate kernelwith finite
rank m. Then any solution̂f to the problem(6) with λn = cγn andρn = cγ2

n with 16≤ c< ∞ satisfies

P

[
max

{
‖ f̂ − f ∗‖2

n,‖ f̂ − f ∗‖2
2

}
≥C

{slogd
n

+s
m
n

}]
≤ c1exp

(
−c2(m+ logd)

)
.

Proof : It suffices to show that the critical univariate rate (8) satisfies the scaling ν2
n = O(m/n). For

a finite-rank kernel and anyt > 0, we have

Qσ,n(t) =
1√
n

√
m

∑
j=1

min{t2,µj} ≤ t

√
m
n
,

from which the claim follows by the definition (8).

Next, we present a result for the RKHS’s with infinitely many eigenvalues, but whose eigenval-
ues decay at a rateµk ≃ (1/k)2α for some parameterα > 1/2. Among other examples, this type
of scaling covers the case of Sobolev spaces, say consisting of functions with α derivatives (e.g.,
Birman and Solomjak, 1967; Gu, 2002).

Corollary 2 Under the same conditions as Theorem 1, consider an univariate kernelwith eigen-
value decay µk ≃ (1/k)2α for someα > 1/2. Then the kernel estimator defined in(6) with λn = cγn

andρn = cγ2
n with 16≤ c< ∞ satisfies

P

[
max

{
‖ f̂ − f ∗‖2

n,‖ f̂ − f ∗‖2
2

}
≥C

{slogd
n

+s
(1

n

) 2α
2α+1

}]
≤ c1exp

(
−c2(n

1
2α+1 + logd)

)
.

Proof : As in the previous corollary, we need to compute the critical univariate rateνn. Given the

assumption of polynomial eigenvalue decay, a truncation argument shows thatQσ,n(t) = O
(

t1− 1
2α√
n

)
.

Consequently, the critical univariate rate (8) satisfies the scalingν2
n ≍ ν1− 1

2α
n /

√
n, or equivalently,

ν2
n ≍ n−

2α
2α+1 .

3.3 Minimax Lower Bounds

In this section, we derive lower bounds on the minimax error in theL2(P)-norm that complement
the achievability results derived in Theorem 1. Given the function classF , we define the minimax
L2(P)-errorMP(Fd,s,H ) to be the largest quantity such that

inf
f̂n

sup
f ∗∈F

P f ∗ [‖ f̂n− f ∗‖2
2 ≥MP(Fd,s,H )]≥ 1/2, (11)
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where the infimum is taken over all measurable functions of then samples{(xi ,yi)}n
i=1, andP f ∗

denotes the data distribution when the unknown function isf ∗. Given this definition, note that
Markov’s inequality implies that

inf
f̂n

sup
f ∗∈F

E‖ f̂n− f ∗‖2
2 ≥

MP(Fd,s,H )

2
.

Central to our proof of the lower bounds is the metric entropy structure of the univariate re-
producing kernel Hilbert spaces. More precisely, our lower boundsdepend on thepacking entropy,
defined as follows. Let(G ,ρ) be a totally bounded metric space, consisting of a setG and a metric
ρ : G ×G → R+. An ε-packing ofG is a collection{ f 1, . . . , f M} ⊂ G such thatρ( f i , f j) ≥ ε for
all i 6= j. Theε-packing numberM(ε;G ,ρ) is the cardinality of the largestε-packing. The packing
entropy is the simply the logarithm of the packing number, namely the quantity logM(ε;G ,ρ), to
which we also refer as the metric entropy. In this paper, we derive explicitminimax lower bounds
for two different scalings of the univariate metric entropy.

3.3.1 LOGARITHMIC METRIC ENTROPY

There exists somem> 0 such that

logM(ε;BH (1),L2(P))≃ m log(1/ε) for all ε ∈ (0,1). (12)

Function classes with metric entropy of this type include linear functions (for which m= k), uni-
variate polynomials of degreek (for which m= k+ 1), and more generally, any function space
with finite VC-dimension (van der Vaart and Wellner, 1996). This type of scaling also holds for any
RKHS based on a kernel with rankm (e.g., see Carl and Triebel, 1980), and these finite-rank kernels
include both linear and polynomial functions as special cases.

3.3.2 POLYNOMIAL METRIC ENTROPY

There exists someα > 0 such that

logM(ε;BH (1),L2(P))≃ (1/ε)1/α for all ε ∈ (0,1). (13)

Various types of Sobolev/Besov classes exhibit this type of metric entropy decay (e.g., Birman and
Solomjak, 1967; Gu, 2002). In fact, any RKHS in which the kernel eigenvalues decay at a ratek−2α

have a metric entropy with this scaling (Carl and Stephani, 1990; Carl and Triebel, 1980).
We are now equipped to state our lower bounds on the minimax risk (11):

Theorem 2 Given n i.i.d. samples from the sparse additive model(5) with sparsity s≤ d/4, there
is an universal constant C> 0 such that:

(a) For a univariate classH with logarithmic metric entropy(12) indexed by parameter m, we
have

MP(Fd,s,H ) ≥ C

{
slog(d/s)

n
+ s

m
n

}
.
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(b) For a univariate classH with polynomial metric entropy(13) indexed byα, we have

MP(Fd,s,H ) ≥ C

{
slog(d/s)

n
+ s

(1
n

) 2α
2α+1

}
.

The proof of Theorem 2 is provided in Section 4.2. The most important consequence of Theorem 2 is
in establishing the minimax-optimality of the results given in Corollary 1 and 2; in particular, in the
regime of sub-linear sparsity (i.e., for which logd = O(log(d/s))), the combination of Theorem 2
with these corollaries identifies the minimax rates up to constant factors.

3.4 Comparison With Other Estimators

It is interesting to compare these convergence rates inL2(Pn) error with those established in the past
work. Ravikumar et al. (2009) show that any solution to their back-fitting method is consistent in
terms of mean-squared error risk (see Theorem 3 in their paper), but their analysis does not allow
s→∞. The method of Koltchinskii and Yuan (2008) is based regularizing the least-squares loss with
the(H ,1)-norm penalty—that is, the regularizer∑d

j=1‖ f j‖H ; Theorem 2 in their paper provides a
rate that holds for the triple(n,d,s) tending to infinity. In quantitative terms, however, their rates are

looser than those given here; in particular, their bound includes a term ofthe orders
3 logd

n , which is
larger than the bound in Theorem 1. Meier et al. (2009) analyze a differentM-estimator to the one
we analyze in this paper. Rather than adding two separate(H ,1)-norm and an(‖.‖n,1)-norm penal-
ties, they combine the two terms into a single sparsity and smoothness penalty. Fortheir estimator,
Meier et al. (2009) establish a convergence rate of the formO(s( logd

n )
2α

2α+1
)

in the case ofα-smooth
Sobolev spaces (see Theorem 1 in their paper). Note that relative to optimal rates given here in The-
orem 2(b), this scaling is sub-optimal: more precisely, we either havelogd

n < ( logd
n )

2α
2α+1 , when the

subset selection term dominates, or(1
n)

2α
2α+1 < ( logd

n )
2α

2α+1 , when thes-dimensional estimation term
dominates. In all of the above-mentioned methods, it is unclear whether or not a sharper analysis
would yield better rates. Finally, Koltchinskii and Yuan (2010) analyze the same estimator as the
M-estimator (6), and for the case of polynomial metric entropy, establish the same rates Theorem 1,
albeit under a global boundedness condition. In the following section, westudy the implications of
this assumption.

3.5 Upper Bounds Under A Global Boundedness Assumption

As discussed previously in the introduction, the paper of Koltchinskii and Yuan (2010), referred
to as KY for short, is based on theM-estimator (6). In terms of rates obtained, they establish a
convergence rate based on two terms as in Theorem 1, but with a pre-factor that depends on the
global quantity

B= sup
f∈Fd,s,H

‖ f‖∞ = sup
f∈Fd,s,H

sup
x

| f (x)|,

assumed to be bounded independently of dimension and sparsity. Such types of global boundedness
conditions are fairly standard in classical non-parametric estimation, wherethey have no effect on
minimax rates. In sharp contrast, the analysis of this section shows that for sparse additive models in
the regimes= Ω(

√
n), such global boundedness cansubstantially speed upminimax rates, showing

that the rates proven in KY are not minimax optimal for these classes. The underlying insight is as

399



RASKUTTI , WAINWRIGHT AND YU

follows: when the sparsity grows, imposing global boundedness overs-variate functions substan-
tially reduces the effective dimension from its original sizes to a lower dimensional quantity, which
we denote bysKB(s,n), and moreover, the quantityKB(s,n) → 0 whens= Ω(

√
n) as described

below.
Recall the definition (4) of the function classFd,s,H . The model considered in the KY paper is

the smaller function class

F ∗
d,s,H (B) :=

⋃
S⊂{1,2,...,d}

|S|=s

H (S,B),

whereH (S,B) :=
{

f = ∑ j∈S f j | f j ∈H , and f j ∈ BH (1) ∀ j ∈ Sand‖ f‖∞ ≤ B
}

.
The following theorem provides sharper rates for the Sobolev case, in which each univariate

Hilbert space has eigenvalues decaying asµk ≃ k−2α for some smoothness parameterα > 1/2. Our
probabilistic bounds involve the quantity

δn := max
(
√

slog(d/s)
n

,B(
s

1
α logs

n
)1/4), (14)

and our rates are stated in terms of the function

KB(s,n) := B
√

logs(s−1/2αn1/(4α+2))2α−1,

where it should be noted thatKB(s,n)→ 0 if s= Ω(
√

n).
With this notation, we have the followingupper boundon the minimax risk over the function

classF ∗
d,s,H (B).

Theorem 3 Consider any RKHSH with eigenvalue decay k−2α, and uniformly bounded eigenfunc-
tions (i.e.,‖φk‖∞ ≤ C < ∞ for all k). Then there are universal constants(c1,c2,κ) such that with
probability greater than1−2exp

(
−c1nδ2

n

)
, we have

min
f̂

max
f ∗∈F ∗

d,s,H (B)
‖ f̂ − f ∗‖2

2 ≤ κ2(1+B)Csn−
2α

2α+1

(
KB(s,n)+n−1/(2α+1) log(d/s)

)

︸ ︷︷ ︸
MP(F

∗
d,s,H (B))

, (15)

as long as nδ2
n = Ω(log(1/δn)).

We provide the proof of Theorem 3 in Section 4.3; it is based on analyzing directly the least-
squares estimator overF ∗

d,s,H (B). The assumption that‖φk‖∞ ≤C < ∞ for all k includes the usual
Sobolev spaces in whichφk are (rescaled) Fourier basis functions. An immediate consequence of
Theorem 3 is that the minimax rates over the function classF ∗

d,s,H (B) can be strictly faster than
minimax rates for the classFd,s,H , which does not impose global boundedness. Recall that the
minimax lower bound from Theorem 2 (b) is based on the quantity

MP(Fd,s,H ) := C1
{

s
(1

n

) 2α
2α+1 +

slog(d/s)
n

}
= C1sn−

2α
2α+1

(
1+n−1/(2α+1) log(d/s)

)
,

for a universal constantC1. Note that up to constant factors, the achievable rate (15) from Theorem 3
is the same except that the term 1 is replaced by the functionKB(s,n). Consequently, for scalings of
(s,n) such thatKB(s,n)→ 0, global boundedness conditions lead to strictly faster rates.
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Corollary 3 Under the conditions of Theorem 3, we have

MP(Fd,s,H )

MP(F ∗
d,s,H (B))

≥ C1(1+n−1/(2α+1) log(d/s))

Cκ2(1+B)(KB(s,n)+n−1/(2α+1) log(d/s))
→+∞

whenever B= O(1) and KB(s,n)→ 0.

3.5.1 REMARKS

The quantityKB(s,n) is guaranteed to decay to zero as long as the sparsity indexs grows in a non-
trivial way with the sample size. For instance, if we haves= Ω(

√
n) for a problem of dimension

d = O(nβ) for any β ≥ 1/2, then it can be verified thatKB(s,n) = o(1). As an alternative view
of the differences, it can be noted that there are scalings of(n,s,d) for which the minimax rate
MP(Fd,s,H ) overFd,s,H is constant—that is, does not vanish asn→ +∞—while the minimax rate
MP(F

∗
d,s,H (B)) does vanish. As an example, consider the Sobolev class with smoothnessα = 2,

corresponding to twice-differentiable functions. For a sparsity indexs=Θ(n4/5), then Theorem 2(b)
implies thatMP(Fd,s,H ) = Ω(1), so that the minimax rate overFd,s,H is strictly bounded away from
zero for all sample sizes. In contrast, under a global boundedness condition, Theorem 3 shows that
the minimax rate is upper bounded asMP(F

∗
d,s,H (B)) = O

(
n−1/5√logn

)
, which tends to zero.

In summary, Theorem 3 and Theorem 2(b) together show that the minimax rates overFd,s,H

andF ∗
d,s,H (B) can be drastically different. Thus, global boundedness is a stringent condition in

the high-dimensional setting; in particular, the rates given in Theorem 3 of Koltchinskii and Yuan
(2010) are not minimax optimal whens= Ω(

√
n).

4. Proofs

In this section, we provide the proofs of our three main theorems. For clarityin presentation, we
split the proofs up into a series of lemmas, with the bulk of the more technical arguments deferred
to the appendices. This splitting allows our presentation in Section 4 to be relatively streamlined.

4.1 Proof of Theorem 1

At a high-level, Theorem 1 is based on an appropriate adaptation to the non-parametric setting of
various techniques that have been developed for sparse linear regression (e.g., Bickel et al., 2009;
Negahban et al., 2009). In contrast to the parametric setting where classical tail bounds are suf-
ficient, controlling the error terms in the non-parametric case requires more advanced techniques
from empirical process theory. In particular, we make use of various concentration theorems for
Gaussian and empirical processes (e.g., Ledoux, 2001; Massart, 2000; Pisier, 1989; van de Geer,
2000), as well as results on the Rademacher complexity of kernel classes(Bartlett et al., 2005;
Mendelson, 2002).

At the core of the proof are three technical lemmas. First, Lemma 1 provides an upper bound
on the Gaussian complexity of any function of the formf = ∑d

j=1 f j in terms of the norms‖ · ‖H ,1
and‖ · ‖n,1 previously defined. Lemma 2 exploits the notion of decomposability (Negahbanet al.,
2009), as applied to these norms, in order to show that the error function belongs to a particular
cone-shaped set. Finally, Lemma 3 establishes an upper bound on theL2(P) error of our estimator
in terms of theL2(Pn) error. The latter lemma can be interpreted as proving that our problem
satisfies non-parametric analog of a restricted eigenvalue condition (Bickel et al., 2009), or more
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generally, of a restricted strong convexity condition (Negahban et al., 2009). The proof of Lemma 3
involves a new approach that combines the Sudakov minoration (Pisier, 1989) with a one-sided tail
bound for non-negative random variables (Chung and Lu, 2006; Einmahl and Mason, 1996).

Throughout the proof, we useC andci , i = 1,2,3,4 to denote universal constants, independent
of (n,d,s). Note that the precise numerical values of these constants may change from line to line.
The reader should recall the definitions ofνn andγn from Equations (8) and (9) respectively. For a
subsetA⊆ {1,2, . . . ,d} and a function of the formf = ∑d

j=1 f j , we adopt the convenient notation

‖ fA‖n,1 := ∑
j∈A

‖ f j‖n, and ‖ fA‖H ,1 := ∑
j∈A

‖ f j‖H . (16)

We begin by establishing an inequality on the error function∆̂ := f̂ − f ∗. Since f̂ and f ∗ are,
respectively, optimal and feasible for the problem (6), we are guaranteed thatL( f̂ ) ≤ L( f ∗), and
hence that the error function̂∆ satisfies the bound

1
2n

n

∑
i=1

(wi + f − ȳn− ∆̂(xi))
2+λn‖ f̂‖n,1+ρn‖ f̂‖H ,1≤

1
2n

n

∑
i=1

(wi + f − ȳn)
2+λn‖ f ∗‖n,1+ρn‖ f ∗‖H ,1.

Some simple algebra yields the bound

1
2
‖∆̂‖2

n ≤
∣∣1
n

n

∑
i=1

wi∆̂(xi)
∣∣+ |ȳn− f |

∣∣1
n

n

∑
i=1

∆̂(xi)
∣∣+λn‖∆̂‖n,1+ρn‖∆̂‖H ,1. (17)

Following the terminology of van de Geer (2000), we refer to this bound as our basic inequality.

4.1.1 CONTROLLING DEVIATION FROM THE MEAN

Our next step is to control the error due to estimating the mean|ȳn − f |. We begin by observ-
ing that this error term can be written as ¯yn− f = 1

n ∑n
i=1(yi − f ). Next we observe thatyi − f =

∑ j∈S f ∗j (xi j )+wi is the sum of thes independent random variablesf ∗j (xi j ), each bounded in ab-
solute value by one, along with the independent sub-Gaussian noise termwi ; consequently, the
variableyi − f is sub-Gaussian with parameter at most

√
s+1. (See, for instance, Lemma 1.4

in Buldygin and Kozachenko 2000). By applying standard sub-Gaussian tail bounds, we have
P(|ȳn − f | > t) ≤ 2exp(− nt2

2(s+1)), and hence, if we define the eventC (γn) = {|ȳn − f | ≤ √
sγn},

we are guaranteed

P[C (γn)]≥ 1−2exp(−nγ2
n

4
).

For the remainder of the proof, we condition on the eventC (γn). Under this conditioning, the
bound (17) simplifies to:

1
2
‖∆̂‖2

n ≤
∣∣1
n

n

∑
i=1

wi∆̂(xi)
∣∣+

√
sγn‖∆̂‖n+λn‖∆̂‖n,1+ρn‖∆̂‖H ,1,

where we have applied the Cauchy-Schwarz inequality to write
∣∣1

n ∑n
i=1 ∆̂(xi)

∣∣≤ ‖∆̂‖n.
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4.1.2 CONTROLLING THE GAUSSIAN COMPLEXITY TERM

The following lemma provides control the Gaussian complexity term on the right-hand side of
inequality (17) by bounding the Gaussian complexity for the univariate functions∆̂ j , j = 1,2, . . . ,d

in terms of their‖ · ‖n and‖ · ‖H norms. In particular, recalling thatγn = κmax{
√

logd
n , νn}, we

have the following lemma.

Lemma 1 Define the event

T (γn) :=

{
∀ j = 1,2, . . . ,d,

∣∣1
n

n

∑
i=1

wi∆̂ j(xi j )
∣∣≤ 8γ2

n ‖∆̂ j‖H +8γn ‖∆̂ j‖n

}
.

Then under the condition nγ2
n = Ω(log(1/γn)), we have

P(T (γn))≥ 1−c1exp(−c2nγ2
n).

The proof of this lemma, provided in Appendix B, uses concentration of measure for Lipschitz
functions of Gaussian random variables (e.g., Ledoux, 2001), combined with peeling and weighting
arguments from empirical process theory (Alexander, 1987; van de Geer, 2000). In particular, the
subset selection term( slogd

n ) in Theorem 1 arises from taking the maximum over alld components.
The remainder of our analysis involves conditioning on the eventT (γn)∩C (γn). Using Lemma 1,

when conditioned on the eventT (γn)∩C (γn) we have:

‖∆̂‖2
n ≤ 2

√
sγn‖∆̂‖n+(16γn+2λn)‖∆̂‖n,1+(16γ2

n+2ρn)‖∆̂‖H ,1. (18)

4.1.3 EXPLOITING DECOMPOSABILITY

Recall thatSdenotes the true support of the unknown functionf ∗. By the definition (16), we can
write ‖∆̂‖n,1 = ‖∆̂S‖n,1+‖∆̂Sc‖n,1, where∆̂S := ∑ j∈S∆̂ j and∆̂Sc := ∑ j∈Sc ∆̂ j . Similarly, we have an

analogous representation for‖∆̂‖H ,1. The next lemma shows that conditioned on the eventT (γn),

the quantities‖∆̂‖H ,1 and‖∆̂‖n,1 are not significantly larger than the corresponding norms as applied

to the function̂∆S.

Lemma 2 Conditioned on the eventsT (γn) andC (γn), and with the choicesλn ≥ 16γn and ρn ≥
16γ2

n, we have

λn‖∆̂‖n,1+ρn‖∆̂‖H ,1 ≤ 4λn‖∆̂S‖n,1+4ρn‖∆̂S‖H ,1+
1
2

sγ2
n. (19)

The proof of this lemma, provided in Appendix C, is based on the decomposability (see Negahban
et al. 2009) of the‖·‖H ,1 and‖·‖n,1 norms. This lemma allows us to exploit the sparsity assumption,
since in conjunction with Lemma 1, we have now bounded the right-hand side ofthe inequality (18)
by terms involving onlŷ∆S.

For the remainder of the proof of Theorem 1, we assumeλn ≥ 16γn andρn ≥ 16γ2
n. In particular,

still conditioning onC (γn)∩T (γn) and applying Lemma 2 to inequality (18), we obtain

‖∆̂‖2
n ≤ 2

√
sγn‖∆̂‖n+3λn‖∆̂‖n,1+3ρn‖∆̂‖H ,1

≤ 2
√

sλn‖∆̂‖n+12λn‖∆̂S‖n,1+12ρn‖∆̂S‖H ,1+
3
32

sρn,
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Finally, since botĥf j and f ∗j belong toBH (1), we have‖∆̂ j‖H ≤‖ f̂ j‖H +‖ f ∗j ‖H ≤ 2, which implies

that‖∆̂S‖H ,1 ≤ 2s, and hence

‖∆̂‖2
n ≤ 2

√
sλn‖∆̂‖n+12λn‖∆̂S‖n,1+25sρn. (20)

4.1.4 UPPERBOUNDING ‖∆̂S‖n,1

The next step is to control the term‖∆̂S‖n,1 = ∑ j∈S‖∆̂ j‖n that appears in the upper bound (20).

Ideally, we would like to upper bound it by a quantity of the order
√

s‖∆̂S‖2 =
√

s
√

∑ j∈S‖∆̂ j‖2
2.

Such an upper bound would follow immediately if it were phrased in terms of the population‖ · ‖2-
norm rather than the empirical-‖ · ‖n norm, but there are additional cross-terms with the empirical
norm. Accordingly, a somewhat more delicate argument is required, which we provide here. First
define the events

A j(λn) := {‖∆̂ j‖n ≤ 2‖∆̂ j‖2+λn},

andA(λn)=∩d
j=1A j(λn). By applying Lemma 7 from Appendix A witht = λn≥16γn andb=2, we

conclude that‖∆̂ j‖n ≤ 2‖∆̂ j‖2+λn with probability greater than 1−c1exp(−c2nλ2
n). Consequently,

if we define the eventA(λn) = ∩ j∈SA j(λn), then this tail bound together with the union bound
implies that

P[Ac(λn)]≤ s c1exp(−c2nλ2
n) ≤ c1exp(−c′2nλ2

n), (21)

where we have used the fact thatλn = Ω(
√

logs
n ). Now, conditioned on the eventA(λn), we have

‖∆̂S‖n,1 = ∑
j∈S

‖∆̂ j‖n ≤ 2∑
j∈S

‖∆̂ j‖2+sλn (22)

≤ 2
√

s‖∆̂S‖2+sλn ≤ 2
√

s‖∆̂‖2+sλn.

Substituting this upper bound (22) on‖∆̂S‖n,1 into our earlier inequality (20) yields

‖∆̂‖2
n ≤ 2

√
sλn‖∆̂‖n+24

√
sλn‖∆̂‖2+12sλ2

n+25sρn. (23)

At this point, we encounter a challenge due to the unbounded nature of ourfunction class. In
particular, if‖∆̂‖2 were upper bounded byCmax(‖∆̂‖n,

√
sλn,

√
sρn), then the upper bound (23)

would immediately imply the claim of Theorem 1. If one were to assume global boundedness of
the multivariate functionŝf and f ∗, as done in past work of Koltchinskii and Yuan (2010), then an
upper bound on‖∆̂‖2 of this form would directly follow from known results (e.g., Theorem 2.1 in
Bartlett et al. 2005.) However, since we do not impose global boundedness, we need to develop a
novel approach to this final hurdle.

4.1.5 CONTROLLING ‖∆̂‖2 FOR UNBOUNDED CLASSES

For the remainder of the proof, we condition on the eventA(λn)∩ T (γn)∩ C (γn). We split our
analysis into three cases. Throughout the proof, we make use of the quantity

δ̃n := Bmax(
√

sλn,
√

sρn), (24)
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whereB∈ (1,∞) is a constant to be chosen later in the argument.
Case 1:If ‖∆̂‖2 < ‖∆̂‖n, then combined with inequality (23), we conclude that

‖∆̂‖2
n ≤ 2

√
sλn‖∆̂‖n+24

√
sλn‖∆̂‖n+12sλ2

n+25sρn.

This is a quadratic inequality in terms of the quantity‖∆̂‖n, and some algebra shows that it implies
the bound‖∆̂‖n ≤ 15max(

√
sλn,

√
sρn). By assumption, we then have‖∆̂‖2 ≤ 15max(

√
sλn,

√
sρn)

as well, thereby completing the proof of Theorem 1.
Case 2:If ‖∆̂‖2 < δ̃n, then together with the bound (23), we conclude that

‖∆̂‖2
n ≤ 2

√
sλn‖∆̂‖n+24

√
sλnδ̃n+12sλ2

n+25sρn.

This inequality is again a quadratic in‖∆̂‖n; moreover, note that by definition (24) ofδ̃n, we have
sλ2

n+sρn =O(δ̃2
n). Consequently, this inequality implies that‖∆̂‖n ≤Cδ̃n for some constantC. Our

starting assumption implies that‖∆̂‖2 ≤ δ̃n, so that the claim of Theorem 1 follows in this case.
Case 3:Otherwise, we may assume that‖∆̂‖2 ≥ δ̃n and‖∆̂‖2 ≥ ‖∆̂‖n. In this case, the inequal-

ity (23) together with the bound‖∆̂‖2 ≥ ‖∆̂‖n implies that

‖∆̂‖2
n ≤ 2

√
sλn‖∆̂‖2+24

√
sλn‖∆̂‖2+12sλ2

n+25sρn. (25)

Our goal is to establish a lower bound on the left-hand-side—namely, the quantity ‖∆̂‖2
n—in terms

of ‖∆̂‖2
2. In order to do so, we consider the function classG(λn,ρn) defined by functions of the form

g= ∑d
j=1g j , and such that

λn‖g‖n,1+ρn‖g‖H ,1 ≤ 4λn‖gS‖n,1+4ρn‖gS‖H ,1+
1
32

sρn, (26)

‖gS‖1,n ≤ 2
√

s‖gS‖2+sλn and (27)

‖g‖n ≤ ‖g‖2. (28)

Conditioned on the eventsA(γn), T (γn) andC (γn), and with our choices of regularization parameter,
we are guaranteed that the error function∆̂ satisfies all three of these constraints, and hence that
∆̂ ∈ G(λn,ρn). Consequently, it suffices to establish a lower bound on‖g‖n that holds uniformly
over the classG(λn,ρn). In particular, define the event

B(λn,ρn) :=

{
‖g‖2

n ≥ ‖g‖2
2/2 for all g∈ G(λn,ρn) such that ‖g‖2 ≥ δ̃n

}
.

The following lemma shows that this event holds with high probability.

Lemma 3 Under the conditions of Theorem 1, there are universal constants ci such that

P[B(λn,ρn)]≥ 1−c1exp(−c2nγ2
n).

We note that this lemma can be interpreted as guaranteeing a version of restricted strong convex-
ity (see Negahban et al., 2009) for the least-squares loss function, suitably adapted to the non-
parametric setting. Since we do not assume global boundedness, the proof of this lemma requires
a novel technical argument, one which combines a one-sided tail bound for non-negative random
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variables (Chung and Lu, 2006; Einmahl and Mason, 1996) with the Sudakov minoration (Pisier,
1989) for the Gaussian complexity. We refer the reader to Appendix D forthe details of the proof.

Using Lemma 3 and conditioning on the eventB(λn,ρn), we are guaranteed that‖∆̂‖2
n≥‖∆̂‖2

2/2,
and hence, combined with our earlier bound (25), we conclude that

‖∆̂‖2
2 ≤ 4

√
sλn‖∆̂‖2+48

√
sλn‖∆̂‖2+24sλ2

n+50sρn.

Hence‖∆̂‖n ≤ ‖∆̂‖2 ≤Cmax(
√

sλn,
√

sρn), completing the proof of the claim in the third case.

In summary, the entire proof is based on conditioning on the three eventsT (γn), A(λn) and
B(λn,ρn). From the bound (21) as well as Lemmas 1 and 3, we have

P
[
T (γn)∩A(λn)∩B(λn,ρn)∩C (γn)

]
≥ 1−c1exp

(
−c2nγ2

n

)
,

thereby showing that max{‖ f̂ − f ∗‖2
n,‖ f̂ − f ∗‖2

2} ≤ Cmax(sλ2
n,sρn) with the claimed probability.

This completes the proof of Theorem 1.

4.2 Proof of Theorem 2

We now turn to the proof of the minimax lower bounds stated in Theorem 2. For both parts (a) and
(b), the first step is to follow a standard reduction to testing (see, e.g., Has’minskii, 1978; Yang and
Barron, 1999; Yu, 1996) so as to obtain a lower bound on the minimax errorMP(Fd,s,H ) in terms of
the probability of error in a multi-way hypothesis testing. We then apply different forms of the Fano
inequality (see Yang and Barron, 1999; Yu, 1996) in order to lower bound the probability of error
in this testing problem. Obtaining useful bounds requires a precise characterization of the metric
entropy structure ofFd,s,H , as stated in Lemma 4.

4.2.1 REDUCTION TO TESTING

We begin with the reduction to a testing problem. Let{ f 1, . . . , f M} be aδn-packing ofF in the‖·‖2-
norm, and letΘ be a random variable uniformly distributed over the index set[M] := {1,2, . . . ,M}.
Note that we are usingM as a shorthand for the packing numberM(δn;F ,‖ · ‖2). A standard
argument (e.g., Has’minskii, 1978; Yang and Barron, 1999; Yu, 1996)then yields the lower bound

inf
f̂

sup
f ∗∈F

P
[
‖ f̂ − f ∗‖2

2 ≥ δ2
n/2

]
≥ inf

Θ̂
P[Θ̂ 6= Θ],

where the infimum on the right-hand side is taken over all estimatorsΘ̂ that are measurable functions
of the data, and take values in the index set[M].

Note thatP[Θ̂ 6= Θ] corresponds to the error probability in a multi-way hypothesis test, where
the probability is taken over the random choice ofΘ, the randomness of the design pointsXn

1 :=
{xi}n

i=1, and the randomness of the observationsYn
1 := {yi}n

i=1. Our initial analysis is performed
conditionally on the design points, so that the only remaining randomness in the observationsYn

1
comes from the observation noise{wi}n

i=1. From Fano’s inequality (Cover and Thomas, 1991), for

any estimator̂Θ, we haveP
[
Θ̂ 6= Θ | Xn

1

]
≥ 1−

IXn
1
(Θ;Yn

1 )+log2

logM , whereIXn
1
(Θ;Yn

1 ) denotes the mutual
information betweenΘ andYn

1 with Xn
1 fixed. Taking expectations overXn

1 , we obtain the lower
bound

P
[
Θ̂ 6= Θ

]
≥ 1−

EXn
1

[
IXn

1
(Θ;Yn

1 )
]
+ log2

logM
. (29)
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The remainder of the proof consists of constructing appropriate packingsets ofF , and obtaining
good upper bounds on the mutual information term in the lower bound (29).

4.2.2 CONSTRUCTINGAPPROPRIATEPACKINGS

We begin with results on packing numbers. Recall that logM(δ;F ,‖ · ‖2) denotes theδ-packing
entropy ofF in the‖ · ‖2 norm.

Lemma 4 (a) For all δ ∈ (0,1) and s≤ d/4, we have

logM(δ;F ,‖ · ‖2) = O
(
s logM(

δ√
s
;BH (1),‖ · ‖2)+slog

d
s

)
.

(b) For a Hilbert class with logarithmic metric entropy(12) and such that‖ f‖2 ≤ ‖ f‖H , there
exists set{ f 1, . . . , f M} with logM ≥ C

{
slog(d/s)+sm

}
, and

δ ≤ ‖ f k− f ℓ‖2 ≤ 8δ for all k 6= ℓ ∈ {1,2, . . . ,M}.

The proof, provided in Appendix E, is combinatorial in nature. We now turnto the proofs of parts
(a) and (b) of Theorem 2.

4.2.3 PROOF OFTHEOREM 2(A)

In order to prove this claim, it remains to exploit Lemma 4 in an appropriate way, and to upper
bound the resulting mutual information. For the latter step, we make use of the generalized Fano
approach (e.g., Yu, 1996).

From Lemma 4, we can find a set{ f 1, . . . , f M} that is aδ-packing ofF in ℓ2-norm, and such
that‖ f k− f ℓ‖2 ≤ 8δ for all k, ℓ ∈ [M]. Fork = 1, . . . ,M, letQk denote the conditional distribution
of Yn

1 conditioned onXn
1 and the event{Θ = k}, and letD(Qk‖Qℓ) denote the Kullback-Leibler

divergence. From the convexity of mutual information (Cover and Thomas, 1991), we have the
upper boundIXn

1
(Θ;Yn

1 )≤ 1
(M

2)
∑M

k,ℓ=1D(Qk‖Qℓ). Given our linear observation model (5), we have

D(Qk‖Qℓ) =
1

2σ2

n

∑
i=1

(
f k(xi)− f ℓ(xi)

)2
=

n ‖ f k− f ℓ‖2
n

2
,

and hence

EXn
1

[
IXn

1
(Yn

1 ;Θ)
]
≤ n

2
1(M
2

) ∑
k6=ℓ

EXn
1
[‖ f k− f ℓ‖2

n] =
n
2

1(M
2

) ∑
k6=ℓ

‖ f k− f ℓ‖2
2.

Since our packing satisfies‖ f k− f ℓ‖2
2 ≤ 64δ2, we conclude that

EXn
1

[
IXn

1
(Yn

1 ;Θ)
]
≤ 32nδ2.

From the Fano bound (29), for anyδ > 0 such that32nδ2+log2
logM < 1

4, then we are guaranteed that

P[Θ̂ 6= Θ]≥ 3
4. From Lemma 4(b), our packing set satisfies logM ≥C

{
sm+slog(d/s)

}
, so that so

that the choiceδ2 = C′{ sm
n + slog(d/s)

n

}
, for a suitably smallC′ > 0, can be used to guarantee the

error boundP[Θ̂ 6= Θ]≥ 3
4.
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4.2.4 PROOF OFTHEOREM 2(B)

In this case, we use an upper bounding technique due to Yang and Barron (1999) in order to upper
bound the mutual information. Although the argument is essentially the same, it does not fol-
low verbatim from their claims—in particular, there are some slight differences due to our initial
conditioning—so that we provide the details here. By definition of the mutual information, we have

IXn
1
(Θ;Yn

1 ) =
1
M

M

∑
k=1

D(Qk‖PY),

whereQk denotes the conditional distribution ofYn
1 givenΘ = k and still withXn

1 fixed, whereasPY

denotes the marginal distribution ofPY.
Let us define the notion of a covering number, in particular for a totally bounded metric space

(G ,ρ), consisting of a setG and a metricρ : G ×G → R+. An ε-covering set ofG is a collection
{ f 1, . . . , f N} of functions such that for allf ∈G there existsk∈ {1,2, ...,N} such thatρ( f , f k)≤ ε.
Theε-covering numberN(ε;G ,ρ) is the cardinality of the smallestε-covering set.

Now let {g1, . . . ,gN} be anε-cover ofF in the‖ · ‖2 norm, for a toleranceε to be chosen. As
argued in Yang and Barron (1999), we have

IXn
1
(Θ;Yn

1 ) =
1
M

M

∑
j=1

D(Q j ‖PY)≤ D(Qk‖ 1
N

N

∑
k=1

Pk),

wherePℓ denotes the conditional distribution ofYn
1 givengℓ andXn

1 . For eachℓ, let us choosegℓ
∗(k)

as follows:ℓ∗(k) ∈ argminℓ=1,...,N ‖gℓ− f k‖2. We then have the upper bound

IXn
1
(Θ;Yn

1 )≤
1
M

M

∑
k=1

{
logN+

n
2
‖gℓ

∗(k)− f k‖2
n

}
.

Taking expectations overXn
1 , we obtain

EXn
1
[IXn

1
(Θ;Yn

1 )]≤
1
M

M

∑
k=1

{
logN+

n
2
EXn

1
[‖gℓ

∗(k)− f k‖2
n]
}

≤ logN+
n
2

ε2,

where the final inequality follows from the choice of our covering set.
From this point, we can follow the same steps as Yang and Barron (1999). The polynomial

scaling (13) of the metric entropy guarantees that their conditions are satisfied, and we conclude
that the minimax error is lower bounded by anyδn > 0 such thatnδ2

n ≥ C logN(δn;F ,‖ ·‖2). From
Lemma 4 and the assumed scaling (13), it is equivalent to solve the equation

nδ2
n ≥ C

{
slog(d/s)+s(

√
s/δn)

1/α
}
,

from which some algebra yieldsδ2
n =C

{ slog(d/s)
n +s

(
1
n

) 2α
2α+1

}
as a suitable choice.
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4.3 Proof of Theorem 3

Recall the definition ofF ∗
d,s,H (B) andH (S,B) from Section 3.5; note that it guarantees that‖ f ∗‖∞ ≤

B. In order to establish upper bounds on the minimax rate inL2(P)-error overF ∗
d,s,H (B), we ana-

lyze a least-squares estimator—albeitnot the same as the original M-estimator (6)—constrained to
F ∗

d,s,H (B), namely

f̂ ∈ arg min
f∈F ∗

d,s,H (B)

n

∑
i=1

(yi − ȳn− f (xi))
2. (30)

Since our goal is to upper bound the minimax rate inL2(P) error, it is sufficient to upper bound
theL2(P)-norm of f̂ − f ∗ where f̂ is any solution to (30). The proof shares many steps with the
proof of Theorem 1. First, the same reasoning shows that the error∆̂ := f̂ − f ∗ satisfies the basic
inequality

1
n

n

∑
i=1

∆̂2(xi)≤
2
n
|

n

∑
i=1

wi∆̂(xi)|+ |ȳn− f |
∣∣1
n

n

∑
i=1

∆̂(xi)
∣∣.

Recall the definition (14) of the critical rateδn. Once again, we first control the term error due
to estimating the mean|ȳn− f | = |1

n ∑n
i=1(yi − f )|. Since| f ∗(xi)| is at mostB andwi is standard

Gaussian and independent, the random variableyi − f = f ∗(xi)+wi is sub-Gaussian with parameter√
B2+1. The samples are all i.i.d., so that by standard sub-Gaussian tail bounds,we have

P[|ȳn− f |> t]≤ 2exp(− nt2

2(B2+1)
).

SettingA(δn) = {|ȳn− f | ≤ Bδn}, it is clear that

P[A(δn)]≥ 1−2exp(−nδ2
n

4
).

For the remainder of the proof, we condition on the eventA(δn), in which case Equation (17)
simplifies to

1
2
‖∆̂‖2

n ≤
∣∣1
n

n

∑
i=1

wi∆̂(xi)
∣∣+Bδn‖∆̂‖n. (31)

Here we have used the fact that
∣∣1

n ∑n
i=1 ∆̂(xi)

∣∣≤ ‖∆̂‖n, by the Cauchy-Schwartz inequality.

Now we control the Gaussian complexity term
∣∣1

n ∑n
i=1wi∆̂(xi)

∣∣. For any fixed subsetS, define
the random variable

Ẑn(w, t;H (S,2B)) := sup
∆∈H (S,2B)
‖∆‖n≤t

∣∣1
n

n

∑
i=1

wi∆(xi)
∣∣. (32)

We first bound this random variable for a fixed subsetSof size 2s, and then take the union bound
over all

( d
2s

)
possible subsets.
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Lemma 5 Assume that the RKHSH has eigenvalues(µk)
∞
k=1 that satisfy µk ≃ k−2α and eigenfunc-

tions such that‖φk‖∞ ≤C. Then we have

P
[
∃t > 0 such that̂Zn(w, t;H (S,2B))≥ 16BC

√
s1/α logs

n
+3tδn

]
≤ c1exp(−9nδ2

n).

The proof of Lemma 5 is provided Appendix F.1. Returning to inequality (31),we note that by
definition,

2
n
|

n

∑
i=1

wi∆̂(xi)| ≤ max
|S|=2s

Ẑn(w,‖∆̂‖n;H (S,2B)).

Lemma 5 combined with the union bound implies that

max
|S|=2s

Ẑn(w,‖∆̂‖n;H (S,2B))≤ 16BC

√
s1/α logs

n
+3δn‖∆̂‖n

with probability at least 1−c1
( d

2s

)
exp(−3nδ2

n). Our choice (14) ofδn ensures that this probability
is at least 1−c1exp(−c2nδ2

n). Combined with the basic inequality (31), we conclude that

‖∆̂‖2
n ≤ 32BC

√
s1/α logs

n
+7Bδn‖∆̂‖n (33)

with probability 1−c1exp(−c2nδ2
n).

By definition (14) ofδn, the bound (33) implies that‖∆̂‖n = O(δn) with high probability. In
order to translate this claim into a bound on‖∆̂‖2, we require the following result:

Lemma 6 There exist universal constants(c,c1,c2) such that for all t≥ cδn, we have

‖g‖2

2
≤ ‖g‖n ≤ 3

2
‖g‖2 for all g ∈H (S,2B) with ‖g‖2 ≥ t (34)

with probability at least1−c1exp(−c2nt2).

Proof The bound (34) follows by applying Lemma 7 in Appendix A withG =H (S,2B) andb= 2B.

The critical radius from equation (35) needs to satisfy the relationQw,n(εn;H (S,2B)) ≤ ε2
n

40. From

Lemma 11, the choiceε2
n = 320BC

√
s1/α logs

n satisfies this relation. By definition (14) ofδn, we have
δn ≥ cεn for some universal constantc, which completes the proof.

This lemma implies that with probability at least 1−c1exp(−c2Bnδ2
n), we have‖∆̂‖2 ≤ 2‖∆̂‖n+

Cδn. Combined with our earlier upper bound on‖∆̂‖n, this completes the proof of Theorem 3.

5. Discussion

In this paper, we have studied estimation in the class of sparse additive modelsin which each uni-
variate function lies within a reproducing kernel Hilbert space. In conjunction, Theorems 1 and 2
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provide a precise characterization of the minimax-optimal rates for estimatingf ∗ in theL2(P)-norm
for various kernel classes with bounded univariate functions. Theseclasses include finite-rank ker-
nels (with logarithmic metric entropy), as well as kernels with polynomially decaying eigenvalues
(and hence polynomial metric entropy). In order to establish achievable rates, we analyzed a sim-
pleM-estimator based on regularizing the least-squares loss with two kinds ofℓ1-based norms, one
defined by the univariate Hilbert norm and the other by the univariate empirical norm. On the other
hand, we obtained our lower bounds by a combination of approximation-theoretic and information-
theoretic techniques.

An important feature of our analysis is we assume only that each univariatefunction is bounded,
but do not assume that the multivariate function class is bounded. As discussed in Section 3.5,
imposing a global boundedness condition in the high-dimensional setting can lead to a substantially
smaller function classes; for instance, for Sobolev classes and sparsitys=Ω(

√
n), Theorem 3 shows

that it is possible to obtain much faster rates than the optimal rates for the class of sparse additive
models with univariate functions bounded. Theorem 3 in our paper showsthat the rates obtained
under global boundedness conditions are not minimax optimal for Sobolev spaces in the regime
s= Ω(

√
n).

There are a number of ways in which this work could be extended. Our work considered only
a hard sparsity model, in which at mosts co-ordinate functions were non-zero, whereas it could
be realistic to use a “soft” sparsity model involvingℓq-norms. Some recent work by Suzuki and
Sugiyama (2012) has studied some extensions of this type. In addition, the analysis here was based
on assuming independence of the covariatesx j , j = 1,2, . . .d; it would be interesting to investigate
the case when the random variables are endowed with some correlation structure. One might expect
some changes in the optimal rates, particularly if many of the variables are strongly dependent.
Finally, this work considered only the function class consisting of sums of co-ordinate functions,
whereas a natural extension would be to consider nested non-parametricclasses formed of sums
over hierarchies of subsets of variables.
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Appendix A. A General Result On Equivalence Of L2(P) And L2(Pn) Norms

Since it is required in a number of our proofs, we begin by stating and proving a general result that
provides uniform control on the difference between the empirical‖ · ‖n and population‖ · ‖2 norms
over a uniformly bounded function classG . We impose two conditions on this class:

(a) it is uniformly bounded, meaning that there is someb≥ 1 such that‖g‖∞ ≤ b for all g∈ G .

(b) it is star-shaped, meaning that ifg∈ G , thenλg∈ G for all λ ∈ [0,1].
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For each co-ordinate, the Hilbert ballBH (2) satisfies both of these conditions; we useG = BH (2).
(To be clear, we cannot apply this result to the multivariate function classFd,s,H , since it is not
uniformly bounded.)

Let {σi}n
i=1 be an i.i.d. sequence of Rademacher variables, and let{xi}n

i=1 be an i.i.d. sequence
of variables fromX , drawn according to some distributionQ. For eacht > 0, we define the local
Rademacher complexity

Qσ,n(t,G) := Ex,σ
[

sup
‖g‖2≤t
g∈G

1
n

n

∑
i=1

σig(xi)
]

We letεn denote the smallest solution (of size at least 1/
√

n) to the inequality

Qσ,n(εn,G) =
ε2

n

40
, (35)

where our scaling by the constant 40 is for later theoretical convenience. Such anεn exists, because
the star-shaped property implies that the functionQσ,n(t,G)/t is non-increasing int. This quantity
corresponds to the critical rate associated with the population Rademacher complexity. For any
t ≥ εn, we define the eventE(t) :=

{
sup g∈G

‖g‖2≤t

∣∣‖g‖n−‖g‖2
∣∣≥ bt

2

}
.

Lemma 7 Suppose that‖g‖∞ ≤ b for all g∈ G . Then there exist universal constants(c1,c2) such
that for any t≥ εn,

P
[
E(t)

]
≤ c1exp(−c2nt2).

In addition, for any g∈G with ‖g‖2 ≥ t, we have‖g‖n ≤ ‖g‖2(1+ b
2), and moreover, for all g∈G

with ‖g‖2 ≥ bt, we have
1
2
‖g‖2 ≤ ‖g‖n ≤ 3

2
‖g‖2, (36)

both with probability at least1−c1exp(−c2nt2).

Lemma 7 follows from a relatively straightforward adaptation of known results (e.g., Lemma 5.16
in van de Geer, 2000 and Theorem 2.1 in Bartlett et al., 2005), so we omit theproof details here.

Appendix B. Proof of Lemma 1

The proof of this lemma is based on peeling and weighting techniques from empirical process theory
(Alexander, 1987; van de Geer, 2000) combined with results on the localRademacher and Gaussian
complexities of kernel classes (Bartlett et al., 2005; Mendelson, 2002).For each univariate Hilbert
spaceH j =H , let us introduce the random variables

Ẑn(w, t;H ) := sup
‖g j‖H≤1
‖g j‖n≤t

∣∣1
n

n

∑
i=1

wig j(xi j )
∣∣, and Zn(w, t;H ) := Ex

[
sup

‖g j‖H≤1
‖g j‖2≤t

∣∣1
n

n

∑
i=1

wig j(xi j )
∣∣
]
,

(37)
wherewi ∼ N(0,1) are i.i.d. standard normal. The empirical and population Gaussian complexities
are given by

Q̂w,n(t,H ) := Ew
[
Ẑn(w; t,H )

]
and Qw,n(t,H ) := Ew

[
Zn(w; t,H )

]
.
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For future reference, we note that in the case of a univariate Hilbert spaceH with eigenvalues
{µk}∞

k=1, results in Mendelson (2002) imply that there are universal constantscℓ ≤ cu such that for
all t2 ≥ 1/n, we have

cℓ√
n

[ ∞

∑
k=1

min{t2,µk}
]1/2 ≤ Qw,n(t,H ) ≤ cu√

n

[ ∞

∑
k=1

min{t2,µk}
]1/2

, (38)

for all j. The same bounds hold for the local Rademacher complexity in our special case of repro-
ducing kernel Hilbert spaces.

Let ν̂n, j > 0 denote the smallest positive solutionr of the inequality

Q̂w,n(r,H )≤ 4r2. (39)

The functionQ̂w,n(r,H ) defines the local Gaussian complexity of the kernel class in co-ordinate
j. Recall the bounds (38) that apply to both the empirical and population Gaussian complexities.
Recall that the critical univariate rateνn is defined in terms of the population Gaussian complexity
(see Equation (8)).

B.1 Some Auxiliary Results

In order to prove Lemma 1, we also need some auxiliary results, stated below as Lemmas 8 and 9.

Lemma 8 For any function classG and all δ ≥ 0, we have

P
[
|Ẑn(w, t,G)− Q̂w,n(t,G)| ≥ δt

]
≤ 2exp

(
− nδ2

2

)
, and (40)

P
[
|Zn(w, t,G)−Qw,n(t,G)| ≥ δt

]
≤ 2exp

(
− nδ2

2

)
. (41)

Proof We have

|Ẑn(w, t,G)− Ẑn(w
′, t,G)| ≤ sup

g∈G
‖g‖n≤t

1
n
|

n

∑
i=1

(wi −w′
i)g(xi)| ≤

t√
n
‖w−w′‖2,

showing that̂Zn(w, t,G) is t√
n-Lipschitz with respect to theℓ2 norm. Consequently, concentration

for Lipschitz functions of Gaussian random variables (see Ledoux, 2001) yields the tail bound (40).
Turning to the quantityZn(w, t,H ), a similar argument yields that

|Zn(w, t,G)−Zn(w
′, t,G)| ≤ Ex

[
sup
g∈G

‖g‖2≤t

1
n
|

n

∑
i=1

(wi −w′
i)g(xi)|

]

≤ sup
g∈G

‖g‖2≤t

Ex
[(1

n

n

∑
i=1

g2(xi))
1/2] ‖w−w′‖2 ≤ t√

n
‖w−w′‖2,

where the final step uses Jensen’s inequality and the fact thatEx[g2(xi)]≤ t2 for all i = 1, . . . ,n. The
same reasoning then yields the tail bound (41).
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Our second lemma involves the eventD(γn) :=
{

ν̂n, j ≤ γn, for all j = 1,2, . . . ,d
}

, where we

recall the definition (39) of̂νn, j , and thatγn := κmax
{

νn,
√

logd
n

}
.

Lemma 9 For all 1≤ j ≤ d, we have

P
[
ν̂n, j ≤ γn

]
≥ 1−c1exp(−c2nγ2

n).

Proof
We first bound the probability of the event{ν̂n, j > γn} for a fixedH j . Let g ∈ BH j

(1) be any
function such that‖g‖2 > t ≥ νn. Then conditioned on the sandwich relation (36) withb= 1, we are
guaranteed that‖g‖n >

t
2. Taking the contrapositive, we conclude that‖g‖n ≤ t

2 implies‖g‖2 ≤ t,
and hence that̂Zn(w, t/2,H )≤ Zn(w, t,H ) for all t ≥ νn, under the stated conditioning.

For any t ≥ νn, the inequalities (36), (40) and (41) hold with probability at least
1−c1exp(−c2nt2). Conditioning on these inequalities, we can sett = γn > νn, and thereby obtain

Q̂w,n(γn,H )
(a)
≤ Ẑn(w,γn,H )+ γ2

n

(b)
≤ Zn(w,2γn,H )+ γ2

n

(c)
≤ Qw,n(2γn,H )+2γ2

n

(d)
≤ 4γ2

n,

where inequality (a) follows from the bound (40), inequality (b) follows theinitial argument, in-
equality (c) follows from the bound (41), and inequality (d) follows since 2γn > εn and the definition
of εn.

By the definition ofν̂n, j as the minimalt such thatQ̂w,n(t,H ) ≤ 4t2, we conclude that for
each fixedj = 1, . . . ,n, we havêνn, j ≤ γn with probability at least 1−c1exp(−c2nγ2

n). Finally, the

uniformity over j = 1,2, . . . ,d follows from the union bound and our choice ofγn ≥ κ
√

logd
n .

B.2 Main Argument To Prove Lemma 1

We can now proceed with the proof of Lemma 1. Combining Lemma 9 with the union bound over
j = 1,2, . . . ,d, we conclude that that

P[D(γn)]≥ 1−c1exp(−c2nγ2
n),

as long asc2 ≥ 1. For the remainder of our proofs, we condition on the eventD(γn). In particular,
our goal is to prove that

∣∣1
n

n

∑
i=1

wi f j(xi j )
∣∣≤C

{
γ2

n ‖ f j‖H + γn ‖ f j‖n
}

for all f j ∈H (42)
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with probability greater than 1− c1exp(−c2nγ2
n). By combining this result with our choice ofγn

and the union bound, the claimed bound then follows onP[T (γn)].
If f j = 0, then the claim (42) is trivial. Otherwise we renormalizef j by definingg j := f j/‖ f j‖H ,

and we write

1
n

n

∑
i=1

wi f j(xi j ) = ‖ f j‖H
1
n

n

∑
i=1

wig j(xi j ) ≤ ‖ f j‖H Ẑn
(
w;‖g j‖n,H

)
,

where the final inequality uses the definition (37), and the fact that‖g j‖H = 1. We now split the
analysis into two cases: (1)‖g j‖n ≤ γn, and (2)‖g j‖n > γn.

Case 1:‖g j‖n ≤ γn. In this case, it suffices to upper bound the quantityẐn(w;γn,H ). Note that
‖g j‖H = 1 and recall definition (37) of the random variableẐn. On one hand, sinceγn ≥ ν̂n, j by
Lemma 9, the definition of̂νn, j implies thatQ̂w,n(γn,H ) ≤ 4γ2

n, and hence

E[Ẑn(w;γn;H )] = Q̂w,n(γn;H )≤ 4γ2
n.

Applying the bound (40) from Lemma 8 withδ = γn = t, we conclude that̂Zn(w;γn;H )≤C γ2
n with

probability at least 1−c1exp
{
−c2nγ2

n

}
, which completes the proof in the case where‖g‖n ≤ γn.

Case 2:‖g j‖n > γn. In this case, we study the random variableẐn(w; r j ;H ) for somer j > γn.
Our intermediate goal is to prove the bound

P

[
Ẑn(w; r j ;H )≥Cr j γn

]
≤ c1exp

{
−c2nγ2

n

}
. (43)

Applying the bound (40) witht = r j andδ = γn, we are guaranteed an upper bound of the form
Ẑn(w; r j ;H )≤ Q̂w,n(r j ,H )+ r j γn with probability at least 1− c1exp

(
− c2nγ2

n). In order to com-

plete the proof, we need to show thatQ̂w,n(r j ,H )≤ r j γn. Sincer j > γn > ν̂n, j , we have

Q̂w,n(r j ,H ) =
r j

ν̂n, j
Ew

[
sup

‖g j‖n≤ν̂n, j

‖g j‖H≤ ν̂n, j
r j

∣∣1
n

n

∑
i=1

wig j(xi j )
∣∣] ≤ r j

ν̂n, j
Q̂w,n(ν̂n, j ,H ) ≤ 4r j ν̂n, j ,

where the final inequality uses the fact thatQ̂w,n(ν̂n, j ,H )≤ 4ν̂2
n, j . On the eventD(γn) from Lemma 9,

we havêνn, j ≤ γn, from which the claim (43) follows.
We now use the bound (43) to prove the bound (42), in particular via a “peeling” operation

over all choices ofr j = ‖ f j‖n/‖ f j‖H . (See van de Geer, 2000 for more details on these peeling
arguments.) We claim that it suffices to considerr j ≤ 1. It is equivalent to show that‖g j‖n ≤ 1 for
anyg j ∈ BH (1). Since‖g j‖∞ ≤ ‖g j‖H ≤ 1, we have‖g j‖2

n =
1
n ∑n

i=1g2
j (xi j ) ≤ 1, as required. Now

define the event

T j(γn) :=

{
∃ f j ∈ BH (1) |

∣∣1
n

n

∑
i=1

wi f j(xi j )
∣∣> 8 ‖ f j‖H γn

‖ f j‖n

‖ f j‖H
, and

‖ f j‖n

‖ f j‖H
∈ (γn,1]

}
.

and the setsSm :=
{

2m−1γn ≤ ‖ f j‖n

‖ f j‖H ≤ 2mγn
}

for m= 1,2, . . . ,M. By choosingM = 2log2(1/γn),

we ensure that 2Mγn ≥ 1, and hence that if the eventT j(γn) occurs, then it must occur for function
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f j belonging to someSm, so that we have a functionf j such that‖ f j‖n

‖ f j‖H ≤ tm := 2mγn, and

∣∣1
n

n

∑
i=1

wi f j(xi j )
∣∣> 8 ‖ f j‖H γn

‖ f j‖n

‖ f j‖H
≥C ‖ f j‖H tm,

which implies that̂Zn(w; tm,H ) ≥ 4tm. Consequently, by union bound and the tail bound (43), we
have

P[T j(γn)]≤ M c1exp
{
−c2nγ2

n

}
≤ c1exp

{
−c′2nγ2

n

}

by the conditionnγ2
n = Ω(log(1/γn)), which completes the proof.

Appendix C. Proof of Lemma 2

Define the function

L̃(∆) :=
1
2n

n

∑
i=1

(
wi + f + ȳn−∆(xi)

)2
+λn‖ f ∗+∆‖n,1+ρn‖ f ∗+∆‖H ,1

and note that by definition of ourM-estimator, the error function̂∆ := f̂ − f ∗ minimizesL̃ . From
the inequalityL̃(∆̂)≤ L̃(0), we obtain the upper bound12‖∆̂‖2

n ≤ T1+T2, where

T1 :=
∣∣1
n

n

∑
i=1

wi∆̂(xi)
∣∣+ |ȳn− f |

∣∣1
n

n

∑
i=1

∆̂(xi)
∣∣, and

T2 := λn

d

∑
j=1

{
‖ f ∗j ‖n−‖ f ∗j + ∆̂ j‖n

}
+ρn

d

∑
j=1

{
‖ f ∗j ‖H −‖ f ∗j + ∆̂ j‖H

}
.

Conditioned on the eventC (γn), we have the bound|ȳn− f |
∣∣1

n ∑n
i=1 ∆̂(xi)

∣∣ ≤√
sγn‖∆̂‖n, and hence

1
2‖∆̂‖2

n ≤ T2+
∣∣1

n ∑n
i=1wi∆̂(xi)

∣∣+√
sγn‖∆̂‖n, or equivalently

0 ≤ 1
2

(
‖∆̂‖n−

√
sγn

)2 ≤ T2+
∣∣1
n

n

∑
i=1

wi∆̂(xi)
∣∣+ 1

2
sγ2

n. (44)

It remains to control the termT2. On one hand, for anyj ∈ Sc, we have

‖ f ∗j ‖n−‖ f ∗j + ∆̂ j‖n = −‖∆̂ j‖n, and ‖ f ∗j ‖H −‖ f ∗j + ∆̂ j‖H = −‖∆̂ j‖H .

On the other hand, for anyj ∈ S, the triangle inequality yields‖ f ∗j ‖n−‖ f ∗j + ∆̂ j‖n ≤ ‖∆̂ j‖n, with a
similar inequality for the terms involving‖ · ‖H . Combined with the bound (44), we conclude that

0≤ 1
n

n

∑
i=1

wi∆̂(xi)+λn
{
‖∆̂S‖n,1−‖∆̂Sc‖n,1

}
+ρn

{
‖∆̂S‖H ,1−‖∆̂Sc‖H ,1

}
+

1
2

sγ2
n. (45)

Recalling our conditioning on the eventT (γn), by Lemma 1, we have the upper bound

∣∣1
n

n

∑
i=1

wi∆̂(xi)| ≤ 8
{

γn‖∆̂‖n,1+ γ2
n‖∆̂‖H ,1

}
.
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Combining with the inequality (45) yields

0≤ 8
{

γn‖∆̂‖n,1+ γ2
n‖∆̂‖H ,1

}
+λn

{
‖∆̂S‖n,1−‖∆̂Sc‖n,1

}
+ρn

{
‖∆̂S‖H ,1−‖∆̂Sc‖H ,1

}
+

1
2

sγ2
n

≤ λn

2
‖∆̂‖n,1+

ρn

2
‖∆̂‖H ,1+λn

{
‖∆̂S‖n,1−‖∆̂Sc‖n,1

}
+ρn

{
‖∆̂S‖H ,1−‖∆̂Sc‖H ,1

}
+

1
2

sγ2
n,

where we have recalled our choices of(λn,ρn). Finally, re-arranging terms yields the claim (19).

Appendix D. Proof of Lemma 3

Recalling the definitions (26), (27) and (28) of the function classG(λn,ρn) and the critical radius
δ̃n from Equation (24), we define the function classG ′(λn,ρn, δ̃n) :=

{
h∈ G(λn,ρn) | ‖h‖2 = δ̃n

}
,

and the alternative event

B ′(λn,ρn) :=
{
‖h‖2

n ≥ δ̃2
n/2 for all h∈ G ′(λn,ρn, δ̃n)

}
.

We claim that it suffices to show thatB ′(λn,ρn) holds with probability at least 1−c1exp(−c2nγ2
n).

Indeed, given an arbitrary non-zero functiong∈G(λn,ρn), consider the rescaled functionh= δ̃n
‖g‖2

g.

Sinceg ∈ G(λn,ρn) andG(λn,ρn) is star-shaped, we haveh ∈ G(λn,ρn), and also‖h‖2 = δ̃n by
construction. Consequently, when the eventB ′(λn,ρn) holds, we have‖h‖2

n ≥ δ̃2
n/2, or equivalently

‖g‖2
n ≥ ‖g‖2

2/2, showing thatB(λn,ρn) holds. Accordingly, the remainder of the proof is devoted
to showing thatB ′(λn,ρn) holds with probability greater than 1−c1exp(−c2nγ2

n). Alternatively, if
we define the random variableZn(G ′) := supf∈G ′

{
δ̃2

n− 1
n ∑n

i=1 f 2(xi)
}

, then it suffices to show that

Zn(G ′)≤ δ̃2
n/2 with high probability.

Recall from Section 4.2.4 the definition of a covering set; here we use the notion of a proper
covering, which restricts the covering to use only members of the setG . LettingNpr(ε;G ,ρ) denote
the propert covering number, it can be shown thatNpr(ε;G ,ρ)≤ N(ε;G ,ρ)≤ Npr(ε/2;G ,ρ). Now
let g1, . . . ,gN be a minimalδ̃n/8-proper covering ofG ′ in theL2(Pn)-norm, so that for allf ∈ G ′,
there existsg= gk ∈ G ′ such that‖ f −g‖n ≤ δ̃n/8. We can then write

δ̃2
n−

1
n

n

∑
i=1

f 2(xi) =
{

δ̃2
n−

1
n

n

∑
i=1

g2(xi)
}
+
{1

n

n

∑
i=1

(g2(xi)− f 2(xi))
}
.

By the Cauchy-Schwartz inequality, we have

1
n

n

∑
i=1

(g2(xi)− f 2(xi)) =
1
n

n

∑
i=1

(g(xi)− f (xi))(g(xi)+ f (xi))

≤
√

1
n

n

∑
i=1

(g(xi)− f (xi))2

√
1
n

n

∑
i=1

( f (xi)+g(xi))2

= ‖g− f‖n

√
1
n

n

∑
i=1

( f (xi)+g(xi))2.

By our choice of the covering, we have‖g− f‖n ≤ δ̃n/8. On the other hand, we have
√

1
n

n

∑
i=1

( f (xi)+g(xi))2 ≤
√

2‖ f‖2
n+2‖g‖2

n ≤
√

4δ̃2
n = 2δ̃n,
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where the final inequality follows since‖ f‖n = ‖g‖n = δ̃n. Overall, we have established the upper

bound1
n ∑n

i=1(g
2(xi)− f 2(xi))≤ δ̃2

n
4 , and hence shown that

Zn(G
′)≤ max

g1,g2,...,gN

{
δ̃2

n−
1
n

n

∑
i=1

(gk(xi))
}
+

δ̃2
n

4
,

whereN = Npr(δ̃n/8,G ′,‖ · ‖n). For anyg in our covering set, sinceg2(xi) ≥ 0, we may apply a
one-sided tail bound (e.g., Theorem 3.5 from Chung and Lu, 2006, or Lemma 2.1 in Einmahl and
Mason, 1996) witht = δ̃2

n/4 to obtain the one-sided tail bound

P[δ̃2
n−

1
n

n

∑
i=1

g2(xi)≥
δ̃2

n

4
]≤ exp

(
− nδ̃4

n

32E[g4(x)]

)
, (46)

where we used the upper bound var(g2(x)) ≤ E[g4(x)]. Next using the fact that the variables
{g j(x j)}d

j=1 are independent and zero-mean, we have

E[g4(x)] =
d

∑
j=1

E[g4
j (x j)]+

(
4
2

)
∑
j 6=k

E[[g2
j (x j)]E[g

2
k(xk)]

≤ 4
d

∑
j=1

E[g2
j (x j)]+6

d

∑
j=1

E[g2
j (x j)]

d

∑
k=1

E[g2
k(xk)]

≤ 4δ̃2
n+6δ̃4

n

≤ 10δ̃2
n,

where the second inequality follows since‖g j‖∞ ≤ ‖g j‖H ≤ 2 for each j. Combining this upper
bound onE[g4(x)] with the earlier tail bound (46) and applying union bound yields

P[ max
k=1,2,...,N

{
δ̃2

n−
1
n

n

∑
i=1

g2(xi)
}
≥ δ̃2

n

4
]≤ exp

(
logNpr(δ̃n/8,G ′,‖ · ‖n)−

nδ̃2
n

320

)
. (47)

It remains to bound the covering entropy logNpr(δ̃n/8,G ′,‖ ·‖n). Since the proper covering en-
tropy logNpr(δ̃n/8,G ′,‖ · ‖n) is at most logN(δ̃n/16,G ′,‖ · ‖n), it suffices to upper bound the usual
covering entropy. Viewing the samples(x1,x2, ...,xn) as fixed, let us define the zero-mean Gaus-
sian process{Wg,g∈ G ′} via Wg := 1√

n ∑n
i=1 εig(xi), where the variables{εi}n

i=1 are i.i.d. standard

Gaussian variates. By construction, we have var[(Wg−Wf ))] = ‖g− f‖2
n. Consequently, by the Su-

dakov minoration (see Pisier, 1989), for allε > 0, we haveε
√

logN(ε;G ′,‖ · ‖n)≤ 4Eε[supg∈G ′ Wg].

Settingε = δ̃n/16 and performing some algebra, we obtain the upper bound

1√
n

√
logN(δ̃n/16;G ′,‖ · ‖n)≤

64

δ̃n
Eε[sup

g∈G ′

1
n

n

∑
i=1

εig(xi)]. (48)

The final step is to upper bound the Gaussian complexityEε[sup
g∈G ′

1
n ∑n

i=1 εig(xi)]. In the proof of

Lemma 1, we showed that for any co-ordinatej ∈ {1,2, . . . ,d}, the univariate Gaussian complexity
is upper bounded as

E
[

sup
‖g j‖n≤r j
‖g j‖H≤Rj

1
n

n

∑
i=1

εig j(xi j )
]
≤ C

{
γn r j + γ2

nRj
}
.
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Summing across co-ordinates and recalling the fact that the constantC may change from line to
line, we obtain the upper bound

Eε[sup
g∈G ′

1
n

n

∑
i=1

εig(xi)]≤C sup
g∈G ′

{
γn ‖g‖1,n+ γ2

n‖g‖1,H

}

(a)
≤ C sup

g∈G ′

{
4γn ‖gS‖1,n+4γ2

n‖gS‖1,H +
1
32

sρn
}

(b)
≤ C sup

g∈G ′

{
γn ‖gS‖1,n+sρn

}

(c)
≤ C sup

g∈G ′

{
γn [2

√
s‖g‖2+sγn]+sρn

}
,

where step (a) uses inequality (26) in the definition ofG ′; step (b) uses the inequality‖g j‖H ≤ 2 for
each co-ordinate and hence‖gS‖1,H ≤ 2s, and our choice of regularization parameterρn ≥ γ2

n; and

step (c) uses inequality (27) in the definition ofG ′. Since‖g‖2 = δ̃n for all g∈ G ′, we have shown
that

Eε[sup
g∈G ′

1
n

n

∑
i=1

εig(xi)]≤C
{

sγ2
n+

√
sγnδ̃n+sρn

} (d)
≤ C

{ δ̃2
n

B2 +
δ̃2

n

B

}
, (49)

where inequality (d) follows from our choice (24) ofδ̃n, and the constantB can be chosen as large
as we please. In particular, by choosingB sufficiently large, and combining the bound (49) with the
Sudakov bound (48), we can ensure that

1
n

logN(δ̃n/16;G ′,‖ · ‖n)≤
δ̃2

n

640
.

Combined with the earlier tail bound (47), we conclude that

P[ max
k=1,2,...,N

{
δ̃2

n−
1
n

n

∑
i=1

g2(xi)
}
≥ δ̃2

n

4
]≤ exp

(
− nδ̃2

n

640

)
,

which completes the proof of Lemma 3.

Appendix E. Proof of Lemma 4

In this section, we present the proofs of Lemma 4 (a) and (b).

E.1 Proof of Part (a)

Let N = M( δ√
s;BH (1),‖ · ‖2)−1, and defineI = {0,1, . . . ,N}. Consider the set

S :=
{

u∈ I d | ‖u‖0 :=
d

∑
j=1

I[u j 6= 0] = s
}
. (50)
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Note that this set has cardinality|S| =
(d

s

)
Ns, since any element is defined by first choosings co-

ordinates are non-zero, and then for each co-ordinate, choosing non-zero entry from a total ofN
possible symbols.

For each j = 1, . . . ,d, let {0, f 1
j , f 2

j , . . . , f N
j } be aδ/

√
s-packing ofBH (1). Based on these

packings of the univariate function classes, we can useS to index a collection of functions contained
insideF . In particular, anyu∈S uniquely defines a functiongu = ∑d

j=1g
u j
j ∈ F , with elements

g
u j
j =

{
f

u j
j if u j 6= 0

0 otherwise.

Since‖u‖0 = s, we are guaranteed that at mostsco-ordinates ofg are non-zero, so thatg∈ F .
Now consider two functionsgu andhv contained within the class{gu,u∈S}. By definition, we

have

‖gu−hv‖2
2 =

d

∑
j=1

‖ f
u j
j − f

v j
j ‖2

2 ≥ δ2

s

d

∑
j=1

I[u j 6= v j ], (51)

Consequently, it suffices to establish the existence of a “large” subsetA ⊂ S such that the
Hamming metricρH(u,v) := ∑d

j=1I[u j 6= v j ] is at leasts/2 for all pairsu,v∈ A , in which case we
are guaranteed that‖g−h‖2

2 ≥ δ2. For anyu∈S, we observe that
∣∣∣∣
{

v∈S | ρH(u,v)≤
s
2

}∣∣∣∣≤
(

d
s
2

)
(N+1)

s
2 .

This bound follows because we simply need to choose a subset of sizes/2 whereu andv agree, and
the remainings/2 co-ordinates can be chosen arbitrarily in(N+1)

s
2 ways. For a given setA , we

write ρH(u,A)≤ s
2 if there exists somev∈ A such thatρH(u,v)≤ s

2. Using this notation, we have
∣∣∣∣
{

u∈S | ρH(u,A)≤ s
2

}∣∣∣∣≤ |A |
(

d
s
2

)
(N+1)

s
2

(a)
< |S|,

where inequality (a) follows as long as

|A | ≤ N∗ :=
1
2

(d
s

)
(d

s
2

) Ns

(N+1)s/2
.

Thus, as long as|A | ≤ N∗, there must exist some elementu∈S such thatρH(u,A)> s
2, in which

case we can form the augmented setA ∪{u}. Iterating this procedure, we can form a set withN∗

elements such thatρH(u,v)≥ s
2 for all u,v∈ A .

Finally, we lower boundN∗. We have

N∗ (i)
≥ 1

2

(d−s
s/2

) s
2

(N)s

(N+1)s/2

=
1
2

(d−s
s/2

) s
2 Ns/2( N

N+1

)s/2

≥ 1
2

(d−s
s/2

) s
2 Ns/2,
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where inequality (i) follows by elementary combinatorics (see Lemma 5 in Raskuttiet al., 2011 for
details). We conclude that fors≤ d/4, we have

logN∗ = Ω
(
slog

d
s
+slogM(

δ√
s
;BH (1),‖ · ‖2)

)
,

thereby completing the proof of Lemma 4(a).

E.2 Proof of Part (b)

In order to prove part (b), we instead letN=M(1
2;BH (1),‖·‖2)−1, and then follow the same steps.

Since logN = Ω(m), we have the modified lower bound

logN∗ = Ω
(
slog

d
s
+sm

)
,

Moreover, instead of the lower bound (51), we have

‖gu−hv‖2
2 =

d

∑
j=1

‖ f
u j
j − f

v j
j ‖2

2 ≥ 1
4

d

∑
j=1

I[u j 6= v j ] ≥
s
8
,

using our previous result on the Hamming separation. Furthermore, since‖ f j‖2 ≤ ‖ f j‖H for any
univariate function, we have the upper bound

‖gu−hv‖2
2 =

d

∑
j=1

‖ f
u j
j − f

v j
j ‖2

2 ≤
d

∑
j=1

‖ f
u j
j − f

v j
j ‖2

H .

By the definition (50) ofS, at most 2s of the terms f
u j
j − f

v j
j can be non-zero. Moreover, by

construction we have‖ f
u j
j − f

v j
j ‖H ≤ 2, and hence

‖gu−hv‖2
2 ≤ 8s.

Finally, by rescaling the functions by
√

8δ/
√

s, we obtain a class ofN∗ rescaled functions{g̃u,u∈
I} such that

‖g̃u− h̃v‖2
2 ≥ δ2, and ‖g̃u− h̃v‖2

2 ≤ 64δ2,

as claimed.

Appendix F. Results For Proof Of Theorem 3

The reader should recall from Section 3.5 the definitions of the function classesF ∗
d,s,H (B) and

H (S,B). The function classH (S,B) can be parameterized by the two-dimensional sequence
(a j,k) j∈S,k∈N of co-efficients, and expressed in terms of two-dimensional sequence of basis func-
tions(φ j,k) j∈S,k∈N and the sequence of eigenvalues(µk)k∈N for the univariate RKHSH as follows:

H (S,B) :=
{

f = ∑
j∈S

∞

∑
k=1

a j,kφ j,k |
∞

∑
k=1

a2
j,k

µk
≤ 1 ∀ j ∈ Sand‖ f‖∞ ≤ B

}
.

For any integerM ≥ 1, we also consider the truncated function class

H (S,B,M) :=
{

f = ∑
j∈S

M

∑
k=1

a j,kφ j,k |
∞

∑
k=1

a2
j,k

µk
≤ 1 ∀ j ∈ Sand‖ f‖∞ ≤ B

}
.
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Lemma 10 We have the inclusionH (S,B,M)⊆
{

f ∈H (S) | ∑ j∈S∑M
k=1 |a j,k| ≤ B

√
M
}

.

Proof Without loss of generality, let us assume thatS= {1,2, ...,s}, and consider a functionf =
∑s

j=1 f j ∈H (S,B,M). Since eachf j acts on a different co-ordinate, we are guaranteed that‖ f‖∞ =

∑s
j=1‖ f j‖∞. Consider any univariate functionf j = ∑M

k=1a j,kφ j,k. We have

M

∑
k=1

|a j,k| ≤
√

M

( M

∑
k=1

a2
j,k

)1/2 (a)
≤

√
M

[
E[ f 2

j (Xj)]
]1/2 ≤

√
M‖ f j‖∞,

where step (a) uses the fact thatE[ f 2
j (Xj)] = ∑∞

k=1a2
j,k ≥ ∑M

k=1a2
j,k for anyM ≥ 1. Adding up the

bounds over all co-ordinates, we obtain

‖a‖1 =
s

∑
j=1

M

∑
k=1

|a j,k| ≤
√

M
s

∑
j=1

‖ f j‖∞ =
√

M‖ f‖∞ ≤
√

MB,

where the final step uses the uniform boundedness condition.

F.1 Proof of Lemma 5

Recalling the definition of̂Zn(w; t,H (S,2B)) stated from (32), let us view it as a function of the
standard Gaussian random vector(w1, . . . ,wn). It is straightforward to verify that this variable is
Lipschitz (with respect to the Euclidean norm) with parameter at mostt/

√
n. Consequently, by

concentration for Lipschitz functions (see Ledoux, 2001), we have

P
[
Ẑn(w; t,H (S,2B))≥ E[Ẑn(w; t,H (S,2B))]+3tδn

]
≤ exp

(
− 9nδ2

n

2

)
.

Next we prove an upper bound on the expectations

Q̂w,n(t;H (S,2B)) := Ew
[

sup
g∈H (S,2B)
‖g‖n≤t

1
n

n

∑
i=1

wig(xi)
]
, and

Qw,n(t;H (S,2B)) := Ex,w
[

sup
g∈H (S,2B)
‖g‖2≤t

1
n

n

∑
i=1

wig(xi)
]
.

Lemma 11 Under the conditions of Theorem 3, we have

max
{
Q̂w,n(t;H (S,2B)), Qw,n(t;H (S,2B))

}
≤ 8BC

√
s1/α logs

n
.

Proof By definition, any functiong∈ H (S,2B) has support at most 2s, and without loss of gener-
ality (re-indexing as necessary), we assume thatS= {1,2, ...,2s}. We can thus view functions in
H (S,2B) as having domainR2s, and we can an operatorΦ that maps fromR2s to [ℓ2(N)]2s, via

x 7→ Φ j,k(x) = φ j,k(x j), for j = 1, . . . ,2s, andk∈ N.
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Any function ing∈H (S,2B) can be expressed in terms of two-dimensional sequence(a j,k) and the
functions(Φ j,k) asg(x) = g(x1,x2, . . . ,x2s) = ∑2s

j=1 ∑∞
k=1 Φ j,k(x)a j,k = 〈〈Φ(x), a〉〉, where〈〈·, ·〉〉 is

a convenient shorthand for the inner product between the two arrays.
For any functiong∈H (S,2B), triangle inequality yields the upper bound

sup
g∈2H (S,2B)

1
n
|

n

∑
i=1

wi〈〈Φ(xi), a〉〉| ≤ sup
g∈2H (S,2B)

1
n
|

n

∑
i=1

wi〈〈Φ·,1:M(xi), a·,1:M〉〉
︸ ︷︷ ︸

A1

+A2 (52)

whereA2 := supg∈2H (S,2B)
1
n|∑n

i=1wi〈〈Φ·,M+1:∞(xi), a·,M+1:∞〉〉|.

F.1.1 BOUNDING THE QUANTITIES Ex,w[A1] AND Ew[A1]

By Hölder’s inequality and Lemma 10, we have

A1 ≤
1√
n

sup
g∈2H (S,2B)

‖a·,1:M‖1,1max
j,k

|
n

∑
i=1

wi√
n

Φ j,k(xi)| ≤
2 B

√
M√

n
max

j,k
|

n

∑
i=1

wi√
n

Φ j,k(xi)|.

By assumption, we have|Φ j,k(xi)| ≤C for all indices(i, j,k), implying that∑n
i=1

wi√
nΦ j,k(xi) is zero-

mean with sub-Gaussian parameter bounded byC and we are taking the maximum of 2s×M such
terms. Consequently, we conclude that

Ew[A1]≤ 4BC

√
M log(2Ms)

n
. (53)

Note that the same bound holds forEx,w[A1].

F.1.2 BOUNDING THE QUANTITIES Ex,w[A2] AND Ew[A2]

In order to control this term, we simply recognize that it corresponds to the usual Gaussian com-
plexity of the sum of 2s univariate Hilbert spaces, each of which is an RKHS truncated to the
eigenfunctions{µk}k≥M+1. In particular, we have

1
n
|

n

∑
i=1

wi〈〈Φ·,M+1:∞(xi), a·,M+1:∞〉〉| ≤
1√
n

2s

∑
j=1

| ∑
k≥M+1

a j,k

n

∑
i=1

Φ j,k(xi)
wi√

n
︸ ︷︷ ︸

b j,k

|

=
1√
n

2s

∑
j=1

| ∑
k≥M+1

a j,k√
µk

√
µkb j,k|

(i)
≤ 1√

n

2s

∑
j=1

√√√√ ∑
k≥M+1

a2
j,k

µk

√
∑

k≥M+1

µkb2
j,k

(ii)
≤ 1√

n

2s

∑
j=1

√
∑

k≥M+1

µkb2
j,k,

where step (i) follows by applying the Cauchy-Schwarz inequality, and step (ii) exploits the fact that

∑k≥M+1
a2

j,k

µk
≤ 1 for all j.
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This bound no longer depends on the coefficientsa (or equivalently, the functiong), so that we
have shown that

Ew[A2]≤
1√
n

2s

∑
j=1

Ew
[√

∑
k≥M+1

µkb2
j,k

]
≤ 1√

n

2s

∑
j=1

√
∑

k≥M+1

µkEw[b2
j,k],

where the second step uses Jensen’s inequality to move the expectation inside the square root. Re-
calling thatb2

j,k =
(

∑n
i=1 Φ j,k(xi)

wi√
n

)2
and using the independence of the noise variable{wi}n

i=1, we
have

Ew[b
2
j,k] =

1
n

n

∑
i=1

Φ2
j,k(xi)Ew[w

2
i ] ≤ C2.

Putting together the pieces, we conclude that

Ew[A2]≤
C√
n

2s

∑
j=1

√
∑

k≥M+1

µk =
2Cs√

n

√
∑

k≥M+1

µk. (54)

Once again, a similar bound holds forEx,w[A2].
Substituting the bounds (53) and (54) into the inequality (52), we conclude that

Qw,n(2H (S,2B))≤ 4BC

√
M log(2Ms)

n
+2Cs

√
∑k≥M+1µk

n

≤ 4BC

√
M log(2Ms)

n
+2Cs

√
M1−2α

n
,

where the second inequality follows from the relationµk ≃ k−2α. Finally, settingM = s
1
α yields the

claim. Note that the same argument works for the Rademacher complexity, sincewe only exploited
the sub-Gaussianity of the variableswi . This completes the proof of Lemma 11.

Returning to the proof of Lemma 5, combining Lemma 11 with the bound (40) in Lemma 8:

P
[
Ẑn(w; t,H (S,2B))≥ 8BC

√
s1/α logs

n
+3tδn

]
≤ exp

(
− 9nδ2

n

2

)
.

Since‖g‖n ≤ 2B for any functiong∈ H (S,2B), the proof Lemma 5 is completed using a peeling
argument over the radius, analogous to the proof of Lemma 1 (see Appendix B).
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