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ABSTRACT. — Let X be a real Banach space and I a function on X such
that [ = ® + ¢ with ®eCYX,R) and ¢ : X — (— o, + o] convex,
proper and lower semicontinuous. A point u€ X is said to be critical if
() # + oo and (D(u), v —u) + Y(v) — Y(u) 2 0 Vve X. The paper
contains a number of existence theorems for critical points of functions
of the above mentioned type. Critical levels of saddle type are characterized
by minimax principles. The results are applied to variational inequalities
and variational equations with single- and multivalued operators, which
arise from studying certain elliptic boundary value problems.

REsUME. — Soit X un espace de Banach et I une fonction sur X de la
forme I = ® + , ot @ est C* et  est convexe s. c. i., pouvant prendre la
valeur + 0. On définit une notion naturelle de point critique, et 'on
démontre des théorémes d’existence par des méthodes de minimax, du
type Liusternik-Schnivelman. On applique ces résultats a des équations
et inéquations variationnelles de type elliptique.
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78 A. SZULKIN

INTRODUCTION

The purpose of this paper is to generalize some minimax methods in
critical point theory to a class of functions which are not necessarily con-
tinuous. Let X be a real Banach space. Recall that for a continuously
differentiable function ® : X — R, a point ue X is said to be critical if
®’(u) = 0. The corresponding number ®(u) is called a critical value. It is
well known that local maxima and minima are critical points. If ® satisfies
some appropriate compactness conditions (usually of Palais-Smale type),
one may also find other critical points by minimaxing ® over certain
families of subsets of X. More precisely, if I' is such a family, one can give
sufficient conditions in order that the value

¢ = inf sup Ou)

Ael ueA

be critical. For an account of recent results in critical point theory for
C! functions by minimax methods the reader is referred to [20] [21] [24].

Very recently critical point theory has been generalized by Chang [§]
to locally Lipschitz continuous functions and by Struwe [26] [27] to
functions which are of class C* with respect to certain families of subspaces
of X. In this paper we present another generalization.

Let X be a real Banach space and ¥ : X — (— o0, + o] a convex
lower semicontinuous function. The set DY) = {ueX :y(u) < + o}
is called the effective domain of . Denote by X* the dual of X and by ( , )
the duality pairing between X* and X. For ue D(y) the set

QY = {w*eX* 1 yY(v) —Yu) = {u*, v —u) YoeX}

is called the subdifferential of \y at u [3, § I1.2]. We shall consider functions
I =® + y with ®e CY{(X, R) and y as above. A point u e D() is said to
be critical if — ®’(u) e Syy(u), or equivalently, if u satisfies the inequality

(D', v —u)+ yYlv) —Yyluy=0 VveX.

Inequalities of this type arise in a number of problems of physics [/2].

In [10] [11] Dias and Hernandez invoked results from critical point
theory for C! functions in order to study eigenvalue problems iu € éy(u)
for X a Hilbert space and y as above. They used the fact that the operator
id 4+ &Y has a single-valued inverse which is of gradient type. Unfortuna-
tely. this approach does not seem to give results we want to obtain.
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MINIMAX PRINCIPLES 79

It is easy to see (cf. Proposition /. /) that local minima are critical points
of I. In order to be able to obtain other critical points we need a compact-
ness condition (which is introduced in Section 1) and a deformation result.
For C! functions the required deformation is effected by moving along
integral lines of a pseudogradient vector field [2], Theorem 1.9; 24, Theo-
rem 1.1]. In the case of functions which are only lower semicontinuous
such a construction does not seem to be readily available, mainly because
a noncritical value ¢ may be « semicritical » in the sense that there may
exist a critical point @ with I(#) < ¢ and a sequence u, — u with I{i,) — «¢.
In Proposition 2.3 we obtain a result which in a sense is a weak version
of the usual deformation theorem. Qur deformation (denoted by «,) has
the inconvenient property that I(xJ(u)) may increase for some u. The proofs
of existence of nonminimum critical points (which become rather technical
because of that) are effected by combining Proposition 2.3 with Ekeland’s
variational principle. The idea of using Ekeland’s principle to obtain
critical points other than local minima (actually, to prove the Mountain
Pass Theorem), may be found in [2] [6].

The paper is organized as follows: Section 1 contains preliminary mate-
rial. In particular, we introduce a compactness condition and recall
Ekeland’s variational principle. In Section 2 we prove a deformation
result and in Section 3 we show that the Mountain Pass Theorem of Ambro-
setti and Rabinowitz [1] [2]] [24] and some related results {22] [23] [24]
remain valid for functions satisfying our assumptions. Section 4 is devoted
to generalizations of results of Clark [9] [21] [24] and Ambrosetti and
Rabinowitz /] [2]] [24] concerning the existence of multiple critical
points for even functions. In Section 5 we apply abstract results of Sections 3
and 4 to elliptic boundary value problems. Our examples include varia-
tional inequalities and variational equations with single- and multivalued
operators.

After completing this paper I have been informed by I. Ekeland that
for lower semicontinuous functions 1:X — (— oo, + oo ] having the
property that I(u) + ¢ || u|j? is convex for some ¢ = 0, there is a regulariza-
tion procedure due to J. M. Lasry [28, Lemma 7], which associates with I
a family (I,)p<,<1. Of functions such that I(u) — I(u) VvueX as ¢ - 0
and I, e C}(X, R). Furthermore, I,(u) < I(u) Yue X, I, and I have the same
critical points and I, satisfies the Palais-Smale condition whenever I satis-
fies a condition of similar type (cf. (PS)’ below). Note that for such I our
Theorem 4.3 is an easy consequence of the above-mentioned result of
Clark: I(u) < I(u), 1 satisfies the hypotheses of Clark’s theorem and has
therefore at least k pairs of nontrivial critical points; hence so does 1.
Note also that in some of the applications to boundary value problems in
Section 5 (Theorem 5.1 and Theorem 5.8 with subsequent corollaries)
Ku) + c¢|lul|> will not be convex for any ¢ = 0.
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80 A. SZULKIN

1. PRELIMINARIES

Let X be a real Banach space and I a function on X satisfying the fol-
lowing hypothesis:

H) I=0+ 1y, where e C{X,R)and y : X — (— o0, + 0] is convex,
proper (i.e., Yy # + o) and lower semicontinuous (L. s. c. in short).

A point u € X is said to be a critical point of I if u € D(y) and if it satisfies
the inequality

(1) (W), o —ud+ Yo —ywy=0 VYoeX.

Note that X can be replaced by D(¥) in (1). A number ce R such that
17 %(c) contains a critical point will be called a critical value. We shall use
the following notation:

K = {ueX:uis a critical point },
L={ueX:Iw=c}, K ={ueK:Iu)=c}.
1.1. ProposiTiON. — If I satisfies (H), each local minimum is necessarily
a critical point of L.

Proof. — Let u be a local minimum of I. Using convexity of y, it follows
that for all small ¢ > 0,

02N —u+10)— L) =D(u + tlv —u)) — O(u) + Y((1 — t )u+1v) —yr(u)
= O(u+ v —u)) — Du) + 1 (v) — Y(w).

Dividing by ¢ and letting 1 — 0 we obtain (1). 0
We shall assume that I satisfies the following compactness condition of
Palais-Smale type:

(PS) If (u,) is a sequence such that I{u,) — ceR and

(2 O v—up +¥(0) — ) 2 —&nllo —usll  YveX,

where ¢, — 0, then (u,) possesses a convergent subsequence.
Condition (PS) can also be formulated as follows:

(PS") If (u,) is a sequence such that l(u,) > ceR and

B () v —tn ) +¥(0) = Yu) 2z —u, > VoeX,

where z, — 0, then (u,) possesses a convergent subsequence.

1.2. ProrosiTION. — Conditions (PS) and (PS’) are equivalent.
Observe that (3) expresses the fact that z, — ®'(u,) € dy(u,), or equiva-
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MINIMAX PRINCIPLES 81

lently, that z, e ®'(u,) + ¢¥(u,). In this notation the similarity to (a version
of) the usual Palais-Smale condition becomes more transparent. Observe
also that if = 0, then I € C! and our definition of critical point as well as
our condition (PS) coincide with the usual ones.

In order to prove Proposition 1.2 we need an additional result. In what
follows we shall use the same symbol || || to denote the norms in X and X*.

1.3. LEMMA. — Let X be a real Banach space and y : X — (— o0, + 0]
a l.s.c. convex function with x(0) = 0. If

xx)z — x|l VxeX,

there exists a ze X* such that ||z]| £ 1 and
xx) = {z,x) VxeX.

It is well known that y is bounded below by an affine function, i.e.,
#x) 2z (z,x> — B for some zeX* and feR [3, Proposition II1.2.1].
The lemma asserts that under our assumptions we can choose z with norm
<land §=0.

Proof of lemma. — The proof was suggested to us by P. O. Lindberg.
In the space X x R define

A={(: x| < —t} and B={(x,t):y(x)Zt}.

It is easy to verify that A and B are convex (in fact, B is the epigraph of )
and A is open. Moreover, A N B = ¢ because y(x) = — || x ||. Consequently,
there exists a hyperplane separating A and B, i.e., we can find o, feR
and we X* such that

Cw, x> —at— =0 VY(x,0)eA,
{w, x> —at— B0 V(x,t)eB.
Since (0,0)e A " B, f = 0. Taking t = — || x|| in the first of these inequa-

lities gives
{w, x> = —allx]| VxeX.

It follows that « = 0 and [|w]] £ a. If & = 0, then w = 0 and there is no
hyperplane. So x > 0. Set z = w/x and t = y(x) in the second of the above
inequalities. Then [|z|| = 1l and {2z, x> <t = y(x). il

Proof of Proposition 1.2. — It suffices to prove that (2) and (3) are equi-
valent and it is clear that (3) implies (2). So suppose that (2) is satisfied.
If & =<0, we may take z,=0. If ¢,>0, let x =1 — u, and
210 = ((Q(up), x ) + Ylx + uy) — Y(u,))/e,. Then (2) reads

x)Z —llx|| VxeX.

Vol. 3. n° 2-1986.



82 A. SZULKIN

According to Lemma 1.3 there is a {,eX* with [|{,||<1 and
xx) = <L, x>. Setting z, = &,{, gives

(< q)'(un)a v — un> + W(U) - l10(1'471))/‘%: g < Zn/gm v — U, > -
Hence (3) is satisfied and z, — O because ¢, — 0. O

1.4. PrRoPOSITION. — Suppose that I satisfies (H) and (PS) and let (u,)
be a sequence verifying the hypotheses of (PS). If u is an accumulation
point of (u,), then ue K,. In particular, K, is a compact set.

Proof. — We may assume that u, — u. Passing to the limit in (2) and
using the fact that lim y(u,) = ¥(u), we obtain (1). Hence u € K. Moreover,
since inequality (1) cannot be strict for v = u, lim Y(u,) = Y(u). Conse-
quently, I(u,) — I{u) = ¢ and ueK..

If (u,) = K., then I(u,) = ¢ and (2) is satisfied with &, = 0. It follows
that a subsequence of (u,) converges to some u € X. By the first part of the
proposition, u € K. Hence K, is compact. O

1.5. REMARK. — Suppose that  is the indicator function of a non-
empty closed convex sex I, i.e., Y(u) = 0 if ue K and Y(u) = + oo other-
wise. Then u is a critical point of I if and only if u € K and

{O®'w),v—u)=0 Ve K.

Furthermore, I satisfies (PS) if and only if each sequence (u,) = K such
that ®(u,) - ceR and

Dy r —u,> =Lzt — Uy VeelK,

where z, — 0, has a convergent subsequence.
We shall make repeated use of the following variational principle of
Ekeland.

1.6. PROPOSITION. [/3, p. 444 and 456]. — Let (Z, d) be a complete
metric space and I[1:Z — (— o0, + oo]a proper L. s. ¢. function bounded
below. Given , 4 > 0 and xeZ with

I(x) < 1an I1(z) + o,

there exists a point yeZ such that

(y) = I(x), dx,y) < 1/4 and
I(z) — II(y) 2 — d4d(y, 2) VzeZ.

An easy consequence of this result is the following
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MINIMAX PRINCIPLES - 83

1.7. THeoreM. — If I is bounded below and satisfies (H) and (PS), then

c= in){ I(w)
is a critical value.
Proof. — Let (w,) be a sequence satisfying I(w,) < ¢ + 1/n. By Propo-

sition 1.6 with 8 = 1/n and 4 = 1, we find another sequence, (u,), such
that I{u,) < ¢ + 1/n and

Iw) — Iu,) =2 (— 1/m)|w — u, || Ywe X,
Set w = (1 — tu,, + tv, te(0, 1). Since Y is convex,

D, + 1o = uy)) — Duy) + 1Y) — Ylu,) Z Lw) — Lu,)
Z(=1nmllw—u,ll = (= Un)tllv —u,ll.

Dividing by ¢ and letting t — 0 we obtain
CO(n), v — up > + Y(0) — Yluy) Z (= Unj |l — u, 1]

So by (PS) and Proposition 1.4, (u,) possesses a subsequence converging
touek.. O

2. EXISTENCE OF DEFORMATIONS

2.1. LemMa. — Suppose that I satisfies (H) and (PS) and let N be a
neighbourhood of K.. Then for each £ > 0 there exists an ¢ € (0, &) such that
if up¢ N and ¢ — ¢ < I(ug) < ¢ + ¢, then

4) CD(ug), vo — uo p + Ylvo) — Yluo) < — 3ellvo — uo |
for some vy e X.

Proof. — If the conclusion is false, there exists a sequence (u,) = X — N
such that I(u,) — ¢ and

CO (), v =ty > + Y1) — Yluy) 2 (— Un)lle —u, || VeeX.

So by (PS) and Proposition 1.4, a subsequence of (u,) converges to ue K..
This, however, is impossible because u, ¢ N for any n and N is a neigh-
bourhood of K,. |

2.2. LEMMA. — Suppose that I satisfies (H) and (PS). Let N be a neigh-
bourhood of K, and & a positive number such that (4) holds. Then for

Vol. 3, n® 2-1986.



84 A. SZULKIN

each upel.,, — N there exists a voeX and an open neighbourhood U,
of uy with the following properties:

) VW), vo — u)y + Ylvo) — Y(w) = |lvo —ull  VueU,,
(6) (@), vo —u)+ Ylvo) —Y(w) = —3ellvo —ull VueU,
such that I(u) = ¢ —¢.

Furthermore, if up €K, vy = u,, otherwise vy, Uy and a number 5, > 0
can be chosen so that vy ¢ Uy and

(5) (D), vo —u)y+ Ylve) —Y(u) < — dollvo —ull  VueUs.
Proof. — Assume first uy € K. Then u, satisfies (1), i.e.,
(D(uo), u — uo ) + Ylu) — Ylug) 20 VueX.
It follows that if U, is a sufficiently small neighbourhood of u,,
@), ug — uy + Yluo) — Ylu) = <P (u) — V(ug), uo — u )
S Q) — @(uo) |l lluo —ull = llup —ull  VuelU,.

So (5) with vy = ug is satisfied. By Lemma 2.1, ue N whenever ucK
and ¢ — ¢ £ I(u) £ ¢ + & Hence I{uy) < ¢ — e f I(u) < ¢ — ¢ in a neigh-
bourhood of uy, Uy may be chosen in this neighbourhood and condition (6)
is empty. If each neighbourhood of u, contains points with I{u) = ¢ — ¢,
it follows from the continuity of ® that y(u) — Y(uy) = d for some constant
d > 0 and all u sufficiently close to u, and such that I(u) = ¢ — & So if U,
is small enough,
{D(u), uo — u + Yluo) — Yw) < | Q') || lluo —ull —d
< —3¢ellug — ull Vue Uy, Iu)=c-—c.

Suppose now that ug ¢ K and I(ug) < ¢ — & Since u, is not a solution
of (1), there exists a vy € X such that
(7 {D'(uo), vo — g » + Ylvo) — Yluo) < 0.

Let wg = tvg + (1 — Hup, 0 <t < 1. By convexity of ,
{ D' (ug), wo — ug » +Y(wo) — Ylue) S t({ D'(uo), vo — o > +Y(vo) —Y(10)) <0,

so we may assume that v, is arbitrarily close to ug. As in the preceding
part of the proof, ¥(u) — Y(ug) = d > 0 for all u close enough to u, and
such that I(u) = ¢ — & Using (7), this implies that if Uy and || ve — uo ||

are sufficiently small, then (Y(vo)—(uo))+ (Wlue) —y(w) < %d —d=— %d
and

1
L), vo—up + (o) —Y) = || @ W llvo—ull — Edé —3ellvo —ull
VuelU, Iu=c—es

Annales de I Institut Henri Poincaré - Analyse non linéaire



MINIMAX PRINCIPLES 85

Thus (6) is satisfied. Since vo # uo, Wwe may assume that v, ¢ Ug. In order
to verify (5°) note that since the left-hand side of (7) is negative,

{ D' (uo), vo — g y + Y(vo) — Ylup) < — o llvo — uo ||

for some 6y > 0. Using continuity of ® and l.s.c. of y it follows that,
after shrinking U, if necessary,

(O, vo — up + Y(vo) — Yl(u) < — dollvo —ull  VuelUs.

The remaining case of ug ¢ K, I(ug) = ¢ — ¢ is easy: by Lemma 2.1 we
find v, such that (4) is satisfied. By continuity of @ and 1. s. c. of i there is
a neighbourhood Uy of ug, vo ¢ Uy, with the property that

(@), vo — u) +Ylvo) — Yw) < — 3ellvy —ull  VueU,.

Hence (5’) and (6). O
A family of mappings «(.,s) =a(.): W - X, 0<s<5, 5> 0, is said
to be a deformation if o € C(W x [0, 5], X) and og = idw (the identity on W).

2.3. ProprOSITION. — Suppose that I satisfies (H) and (PS). Let N be a
neighbourhood of K, and ¢ a positive number. Then there exists an ¢€(0, &)
such that for each compact subset A of X — N with

cEZsupllw)Z=c+ e
ueA
we can find a closed set W containing A in its interior and a deformation
a: W = X, 0 < s <5, having the following properties:

(8) lu — )l = Vue W,
9) Tog) — ) < 2s VueWw,
(10) I(ot(n)) — Hu) £ — 2es Yue W with l(u) = ¢ — ¢
and
(11) sup I(agw)) — sup () = — 2es.
ucA ueA

Furthermore, if W, is a closed set and Wy " K = ¢, W and «, can be
constructed so that

(12) o) — ) <0 YueWnW,.

Proof. — Choose ¢ € (0, &) so that Lemma 2.2 can be applied. For each
ug € A, let U, be the set constructed in that lemma. If u, € K, we may assume
U, is so small that Uy n W, = ¢. The sets U, cover A. Let (U;),,; be a
finite subcovering. Denote by u; and ¢; the points corresponding to U; in
the same way as u, and v, correspond to U,. We may assume that the
subcovering has the property that if i, €J and u;, € K, then the distance
from u,, to each U; with i # i, is positive. Indeed, if this is not the case

Vol. 3, n° 2-1986.



86 A. SZULKIN

for some u;,, we choose a closed neighbourhood D of u;, such that D < U,
u;¢ D for i # iy, and obtain a new covering by deleting D from all U,
with i # i, (strictly speaking, we obtain a refinement of the subcovering
(Ui)isl)-

Let p; be a continuous function such that p;(u) > 0 Vue U; and pfu) =0
otherwise. Let o,(u) = pi(u)/ij(u) YueV = UU"' Define the map-
iel

jel
pings o, as follows. If u;;e AnK and ueU; — U U,

i#ig
+ s(u;, — o — for 0=s<|lu,—
(13) ) = { u + s(u, — )/ |l ug, — ull lug, — ul)
U, for s=1uy, —ull.

For all other ueV,

(14) au) = u + SZGi(u)(vi —w/llv; —ull.

ie)
It is immediately seen that o, = id and (8) is satisfied. Note that if
uelU; — UUi and u # u,,, then for all s < {|u — u;, ||, a5(u) will be the

i#ig
same regardless which one of the formulas (13) and (14} we use. Conse-
quently, o, is well defined and continuous for sufficiently small positive s.
Suppose that «y(u) is given by (14) and set afu) = u + sw. By Taylor’s
formula,

(15) Iow) = I(u + sw) = @) + s Q'(w), w> + r(s) + Y(u + sw),
where
[rs)| = s sup Q" (u + tw) — () ||

=t<s

Let 6 be a given number such that
0<30<min{1l,¢d;}
(6; correspond to U; in (5%)). Since A is compact, there exists a closed set W
containing A in its interior and an § > 0 such that
| r(s)| < 8s Vs < 5,ueWand we X with ||w]| < 1.
By (14),

a(u) = u + sw = <1 - Szai(u) loi —u ||_1>u + SZUi(u) lo: —ull™ e

icJ ie)
If s is sufficiently small, 0 < sZai(u) lo; — ul]™* £ 1 for all u such that
iel
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MINIMAX PRINCIPLES 87

a(u) is given by (14). Using convexity of y and (15} it follows that

o)) = Ou) + SZGi(u) o —ull ™' @), v; — u) + 8s

iel

+ (1 - SZG.-(M) lo: —u H_1>l//(u) + SZO’i(u) v — ull ™ (o))

ie} ie)
= I(w) + SZm(u) o = ull" (K@), v — ud + Y(o) — Y(w) + Ss.
iel
By (5), each term under the last summation sign is less than or equal to o;(u).
Hence

(16) I(o(w)) < L(u) + s + Os.

So (9) is satisfied for all small s. In the same way we see from (6) and (5')
that

(17) I(og(v)) < I(u) — 3es + Os YueW with l(u) = ¢ — ¢
and
(18) I(afw) < I(u) — 36s + Os Yue Wn W,

(recall that U; n W, = ¢ whenever u; € K). This gives (10) and (12).
Suppose now that ayu) is given by (13). Then

o) = u+sw=(1—sllu, —ull™Du+ sllu, — ull u,

whenever s < || u;; — u|| = so. So for such s (9) and (10) follow as in the
preceding case. H s=sq, Ilog(u))= ot (1)) S T(u)+ 50 + 030 S I(u)+2s and
I(x ()} = lu;,)) < ¢ —e. So (9) and (10) are satisfied for small s. (Note
that not only (9) and (10) but also (16) and (17) hold ; this will be useful in
the proof of Corollary 2.4.) To verify (12) recall that if ay(u) is given by (13),
then ue U;, with u; e K. Hence U;) n' W, =¢and u¢ Wn W,.

1
It remains to prove (11). If sup oy w) < ¢ — 58, (11) is satisfied for all
usA 1
s < 1/4 because sup I(u) = ¢. Suppose that sup I(afw)) > ¢ — 58' Set
ucA ucA
B={ueA:lu>c—c¢}.
By (9), sup I{a(u)) = sup I(ay (1)) whenever s is small (s < ¢/4). Using this
ucA ucB
and (10) it follows that
(19) sup I(ayu)) — sup Hu) = sup I(x(u)) — sup Ku)
usA usA ucB ucB
Ssup(llxu) —lw) = —2es. O
ucB
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88 A. SZULKIN

2.4. COROLLARY. — Assume that @ and  are even. If A is symmetric
(i.e, — A = A), o, may be chosen to be odd.

Proof. — We may assume that W is symmetric. Let
1
Bu) = 5 (o) — (= u)).
Then £, is odd and satisfies (8). Write afu) = u + hju). By Taylor’s formula,

1
1(fw) = D) + S <P, hw) — h(—w) > + r1(5)

¥ w(%(u ) + = R u))).
Since @ is even and ¥ even and convex,
1
L(Bu) = 3 (@) + < D'(u), hfu) > + Ylu + hyu)

+ %((D(— ) + {D'(—u), h{—w)> + Y(— u + h{— u) + os.
Hence by Taylor’s formula again,
1) S 5 1ot + 3 Moo~ ) + 265,

Using this and (16), 1(8w) < I(u) + s + 36s < I{u) + 25 for s small
So B, satisfies (9). In the same way one sees that (17) and (18) imply (10)
and (12). Finally, (11) follows upon observing that (19) remains true when-
ever (9) and (10) hold. O

3. MOUNTAIN PASS THEOREM

Let Z be a topological space and X a real Banach space. A mapping
S Z — X is said to be bounded if the set f(Z) is bounded in X. Denote
by C(Z, X) the set of all continuous bounded mappings from Z to X, metrized
by

d(f,g) = sup Il f(z) — g2l

It is well known that C(Z, X) is a Banach space. Let 1 : X — (— o0, + ]
be a given function and define a new function IT : C(Z, X) — (— o0, + 0]
by setting

H(f) = sup I(f(2))-

zel
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3.1. LemMa. — Suppose that I:X — (— oo, + ] is Ls.c. Then
also the function IT is L s. c.

Proof. — Suppose that f, — f. Since I is I s. ¢, I( f{2)) < lim inf I( £(2))
VzeZ. Hence

TI(f) = sup I{ f(z)) < lim inf sup I( f,(z))=1im inf [1( f,). O
zeZ zeZ

Denote by B,(u) the open ball of radius p centered at u, by 6B,(«) the
boundary of B,(u) and let B, = B,(0), /B, = 0B ,0).

3.2. THEOREM (Mountain Pass Theorem). — Suppose that
1:X - (— 2, + 0] is a function satisfying (H), (PS) and
i) 1(0) = 0 and there exist «, p > 0 such that I, = 2,
ii) I(e) = 0 for some e¢ B,
Then I has a critical value ¢ = o which may be characterized by
¢ = inf sup I(f(2)),

fel te[0,1]
where ' = { f e C([0,1], X): f(0) =0, f(1) =e}.

Proof. — Since f([0,1])néB, # ¢ Vf eI, ¢ =z a. Suppose that ¢ is
not a critical value of I. Then N = ¢ is a neighbourhood of K. We may
therefore use Proposition 2.3, with N = ¢ and € = ¢, to obtain a number
¢ €(0, &). By the definition of ¢, I, is not path connected and 0 and e lie
in different path components, W, and W..

We shall need an auxiliary family of mappings from [0, 1] to X (I" is not
suitable for our purposes because ;o f may not be in I when [ is). Let

l—‘1 = {fEC([O, l]a X) : f(O)EWO m Ic—e/Z’ f(l)EWeﬂ Ic*a/Z}

¢, = inf sup I(f(£)).

Sfel'y tef0,11]

and

Since TeTly, ¢;<¢c. If ¢; <c there exists an feI; such that
sup I{f(t)) < c. Since f(0) can be joined to 0 and f(1) to e by paths

lymg in I, 4, there is a ge T such that sup I(g(?)) < ¢, contradicting the
definition of ¢. Hence ¢ = c¢;.

We claim that T’} is a closed subset of C([0, 1], X) (and in particular,
I') is a complete metric space). To prove this, let (f,) be a sequence in
Il such that f, — f. Denote f(0)=u, f{0)=u, By lLs.c of I
I(u) < lim inf I(4,) £ ¢ — &/2. Since y is convex and ® continuous, there
exist positive numbers 6, — O such that Vre {0,1],

Yltu, + (1 — Du) < t(u,) + (1 — Y(u)
Dty + (1 — 1) < D) + 5, < 1tu,) + (1 — )Du) + 25,.
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Therefore,
(20) Itu,+(d - <tlw,)+ (1 —0)l(w)+20,<c—¢&/2+28,=c—¢/4

for all large n. So for such » the segment joining u, to u lies in Wy. In par-
ticular, ueW,. Since also I(u) <c — &2, ueWy;nIl._,2 Likewise,
fWeW,n1,_,, Hence fel.
Since T is a complete metric space and TI(f) = sup I(f(?)) is Ls.c.
t

(according to Lemma 3.1), we may use Proposition 1.6 with Z =T,
d = eand A = 1 in order to obtain an f eI such that II(f) < ¢ + ¢ and

(21 (g) - TI(f) 2 —&d(f,g)  Vgely.

Let A= f(]0, 1]) and let o be the deformation given by Proposition 2.3 (note
that TI(f) = ¢; = ¢). Set g = o, f. For sufficiently small s, a,- fel}.
Indeed, if I(f(0)e(c — & ¢ — &2], then I(aze f(0) < Hf(0) < c—¢2
by (10) and if I( f(0)) < ¢ — ¢, I{otz o £(0)) = I(f(0) + 25 < ¢ — &/2 accord-
ing to (9). Hence a;o f(0)e Wy n1,_, . Likewise, azo f(1})e W, n1._,p
Soa,o fely. Sinced(f, g) £ saccording to (8);it follows from (11) and (21)
that
~2es21l(g) —I(f) 2 —ed(f.g) =2 — es.

This contradiction shows that K, # ¢. O

3.3. COorROLLARY. — Suppose that [: X — (— w0, + o] satisfies (H)
and (PS). If 0 is a local minimum of I and if I{e) <1(0) for some e #0, then I has
a critical point different from O and e. In particular, if I has two local
minima, then it has at least three critical points.

Proof. — We may assume without loss of generality that I(0) = 0. If
one can find «, p > 0 such that p < ||e| and I|;z, = o, the existence of a
critical point different from 0 and e follows from Theorem 3.2. Suppose
that such «, p do not exist. Let » < || e|| be a positive number such that
I|g, = 0 and let 0 < p < r. We shall use Proposition 1.6 with Z = B,
IM=1lg, 6 =1/n* and A = n. Since inf I(u) = 0, there exist w, € éB,,

u, € B, such that neeBe

0 é I(un) é I(Wn) _—<_ l/nz’ “ U, — wy “ é l/n
and
(22) Iz) — Yu,) = (- 1/n)|lz —u,|| VzeB,.

Choosing n large enough we may assume that u,eB,. Let veX and
z = (1 — tju, + tv. If t is small positive, z € B,. By (22) and the fact that y is
convex,
(= Ynpllv —u,ll = (1 — u, + tv) — Iu,)
< Du, + v — us)) — Ou,) + 1Y) — Ylu)) -
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Dividing by t and letting t — 0 we obtain

(D (Un), U — Un y + (1) — Yluy) Z (= I/l 0 — ua ]

Since ¢ is arbitrary, it follows from (PS) that after passing to a subsequence,
u, - uedB,. So uis a critical point and 0 # u # e. A similar argument
using Proposition 1.6 can be found in [I4, Proposition 5 and 19, Theo-
rem 4.

If I has two local minima, u, and u,, we may assume without loss of
generality that uy = 0 and I(u,) £ I{ug) = 0. By the first part of the corol-
lary, there exists a critical point u different from u, and u,. Since also u,
and u, are critical (by Proposition 1.1), the proof is complete. O

3.4. TueoreM (Generalized Mountain Pass Theorem). -—— Suppose
that 1:X — (— o0, + oo ] satisfies (H) and (PS). Let X = X; @& X,
where dim X, < co, and suppose that

i) there are constants o, p > 0 such that I |5,~x, 2 %

ii) there is a constant R > p and an ee X, |lell = 1, such that the
restriction of I to the boundary éQ of Q = BrnX)@®{re:0=<r=<R}
is nonpositive. Then I has a critical value ¢ = a which may be characterized
by

¢ = inf sup I(f(x)),
Jel' xeQ

where I' = { f e C(Q, X) : f |ag = idag }-

Proof. — Assume for the moment that ¢ = a. Suppose ¢ is not a critical
value and apply Proposition 2.3 with N = ¢ and & = ¢ to obtain an
£e(0, ). Denote by ~ the homotopy relation and le:

I ={feCQ.X): floxidgin L_,s. T-floq=Zc—22}

and

¢, = inf sup I(f(x)).
fel'y xeQ

SinceT’ = T,¢; £ e.lfcy < ¢, wefindan f eI such that sup I{ f(x)) < c.
xeQ
Since f s ® idsg in I,_,.4 and Q is homeomorphic to a closed finite

dimensional Euclidean ball, id, can be extended to a mapping g : Q — X
such that sup I(g(x)) < ¢ (the existence of such an extension follows from

xeQ
general results in homotopy theory [16, Proposition 1.9.2]; one can also
construct g explicitly—see the proof of Lemma 4.5). This contradicts the
definition of ¢ because geI. So ¢, = c.
We claim that I’} is a closed subset of C(Q, X). Let (f,) be a sequence
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in Iy such that f, - f. Since I is Ls.c, Io f lag = ¢ — &/2. Using the
argument of the proof of Theorem 3.2 (cf. (20)) and the fact that f(¢Q) is
compact, one shows that for » large,

Itfx)+ (1 —0f(x)Sc—e4 VxedQ, te[0,1].

Hence fl:q x fuleo ® idsq in I,_, 4. So feT,.

The remaining part of the proof follows the last paragraph of the proof
of Theorem 3.2 (with some obvious changes: we set A = f(Q) instead of
S([0, 1]) and observe that ;o f €T, because oo f ~ f in | S}

We still have to show that ¢ = o. The argument can be found in [24, proof
of Theorem 4.1] but for the sake of completeness we include it here. Since
Ilsm,nx, 2 o, it suffices to prove that for each f eI, f(Q) N dB, N X, # ¢.
In other words, we must find an x € Q such that f(x)e dB, n X,. Denote
by P; and P, the projections from X to X; and X, associated with the
decomposition X=X, ®X,. For xeY=X,®span{e} write x=x,+re
with x; € X; and re R. Define a mapping h: Y — Y by the formula

hix; +re) =Py f(xy+re) + || Pof(xy + 1e)]| €.

Since h |aq = idyg, it follows from the properties of Brouwer’s degree [25]
that

<

deg (h, Q, pe) = deg (id, Q, pe) = 1

((C) denotes the interior of Q in Y). Consequently, there exists an xeQ
such that P, f(x) = 0 and || P, f(x)|| = p. So f(x)e B, n X, as required.
0

3.5. THEOREM (Saddle Point Theorem). — Suppose that
I:X - (= o0, + o]

satisfies (H) and (PS). Let X = X; @ X,, dim X, < oo, and suppose that

i} there exist constants p > 0 and «, such that Lieg,nx, < oy,
ii) there is a constant o, > «; such that 1|y, = «,.

Then I has a critical point ¢ = x, which may be characterized by

¢ = inf sup I(f(x)),
feI' xeD
where D=B,nX, and I' = { feC(D,X): f |;p = idzp }.

Proof (outline). — It follows from a degree-theoretic argument [22, proof
of Theorem 1.2; 24, proof of Theorem 3.1] that f(D)n X, #¢. So c=2,.
By repeating the reasoning used in the proof of Theorem 3.4 (with D and éD
replacing Q and ¢Q) it can be shown that K, # ¢. ]
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4. CRITICAL POINTS OF EVEN FUNCTIONS

Let X be a real Banach space and X the collection of all symmetric subsets
of X — {0} which are closed in X. A nonempty set A € X is said to have
genus k (denoted y(A) = k) if k is the smallest integer with the property
that there exists an odd continuous mapping h: A — R¥ — {0 }. If such
an integer does not exist, y(A) = oc. For the empty set ¢ we define y(¢p) = 0.
Properties of genus are summarized below. Denote by d(u, A) the distance
from u to the set A and let

NyA) = {ueX:du,A)<8}.

4.1. PROPOSITION. — Let A, BeX.

i) If there exists an odd continuous mapping f :A — B, then
#(A) £ «(B).

iiy If A = B, then y(A) < y(B).

i) YA U B) < 9(A) + y(B).

iv) If y(B) < o0, YA — B) = %(A) — »(B).

) If A is homeomorphic to S¥7! by an odd homeomorphism, y(A) = k.

vi) If A is compact, then p(A) < oc and yp(N4A)) = y(A) for all suffi-
ciently small § > 0.

vii) If U = R* is an open, bounded and symmetric neighbourhood of 0,
then y(0U) = k.
Proofs and a more detailed discussion of the notion of genus can be found
e.g.in [2]] [24].

Let & be the collection of all nonempty closed and bounded subsets
of X. In & we introduce the Hausdorff metric dist {18, § 15, VII], given by
dist (A, B) = max { sup d(a, B), sup d(b, A) } .

=B

acA b

The space (&, dist) is complete [18,§ 29, IV . Denote by I" the subcollection
of & consisting of all nonempty compact symmetric subsets of X and let

I=cl{AcT:0¢A, 9 A) =/}
(cl is the closure in I'). It is easy to verify that I is closed in &, so (T, dist)
and (I';, dist) are complete metric spaces.
4.2. Lemma. — If Ael; and O¢ A, (A) = ).

Proof. — Let (A,) be a sequence in I; such that A, — A, 0¢A, and
A, 2. By (vi) of Proposition 4. 1, there is a >0 such that 3(A)=~(N4A)).
Since A, — A, A, = NjA) for almost all n. So j<y(A,) < NA))=7(A).

O
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Observe that if I = @ +  satisfies (H) and ®, ¥ are even, then @'(0) =0
and y(0) is a (global) minimum of ¥. So u = 0 is necessarily a critical point
of L

4.3, THEOREM. — Suppose that I1:X — (— o0, + oc] satisfies (H)
and (PS), I(0) = 0 and @, i are even. Define

c; = inf sup I(u).

Ael; ueA
If —o<c;<O0forj=1,...,k then I has at least k distinct pairs of
nontrivial critical points.
Proof. — Given j, 1 £j <k, suppose that ¢;= ... =¢;, =c for

some p = 0. Note that 0¢K, because ¢ < 0. We shall show that
7K. = p + 1. Arguing indirectly, assume (K. < p. Let p > 0 be such
that y(N,,(K.)) = y(K,). Define
IT(A) = sup I(u).
ucA

Then IT is a function on I; and Il is 1. s. ¢. by an argument similar to that
of Lemma 3.1 (note that Yue A there is a sequence u, — u with u,€A,).
Let N=N,K,) and e¢=min {1, p, — ¢}. Apply Proposition 2.3 to
obtain an & <& Choose A;el;., such that TI(A,) < c + ¢* Since
c+e?<c+e<0, 0¢A, and it follows from Lemma 4.2 that y(A)=j+p.
Let A, = A; — N,,(K,). Then I(A,) < ¢ + &2 and, according to (iv) of
Proposition 4.1, (A;) 2 (A1) — "Nz (K.) 2 j + p — p = j. By Propo-
sition 1.6 with 6 =¢* and 2 = 1/e, there is an A eI with

MA) < c+¢* dist(A,A) < ¢
and

(23) T(B) — TI(A) = — s dist(A,B)  VBeT,.

Sincee < pand Ael;, A n NyK,) = ¢ and II(A) = ¢. A satisfies therefore
the hypotheses of Proposition 2.3 and Corollary 2.4 and we obtain an
odd deformation «,: A — X. Since ¢ + &2 < 0, 0¢ A and y(A) = /. Let
B = a(A) with s small. Then y(B) = y(A) = j according to (i) of Propo-
sition 4.1. So BeTI;. By (8), dist (A, B) < s. It follows therefore from (23)
and (11) that

— 2es 2 II(B) — II{A) = — ¢ dist(A, B) = — e¢s.

This is the desired contradiction.

We have shown that (K.} = p + 1. In particular, y(K ) = 1, so each K,
has at least two points, u; and — u;. This gives the required number of
critical points if all ¢; are distinct. If they are not, p > 0 for some j. Hence
»K,) = 2 and K, is an infinite set. O
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4.4. THEOREM. — Suppose that 1:X — (— oo, + oc] satisfies (H)
and (PS), I(0) = 0 and ®, y are even. Assume also that

i) there exists a subspace X; of X of finite codimension and numbers «,
p > 0 such that Iz, ~x, = %

ii) there is a finite dimensional subspace X, of X, dim X, > codim X,,
such that I(u) - — o0 as ||u]| - oo, ueX,.
Then I has at least dim X, — codim X, distinct pairs of nontrivial critical
points.

Proof. — Assume that I has no critical points in 1_, for some d > 0
(otherwise there are infinitely many critical points and there is nothing to
prove). Set m = codim X,;, k = dim X,, Q = Bg n X,, where R > p is
chosen so that I|,q < — d. Define for 1 £ <k
F={feCQX): fis odd and f|aq=*idsq in I-, by an odd homotopy },
AN;={ f(Q—-V):fe#, Visopenin Q and symmetric, VN 0Q = ¢

and for each Y < Vsuch that Ye X, p(Y) < k —j },
A; = { A < X :A is compact, symmetric and for each open set U = A
there is an Ap e Aj such that A, < U }

and
¢; = inf sup I(u).
AeAj ueA
Since idge #, Qe A;and A; # ¢ for j =1, ..., k. It is easy to see that

A;is a closed subset of & (and therefore a complete metric space). Indeed,
suppose A,€ Ajand A, — A.Let U be an arbitrary open set containing A.
Then U o A, for almost all n and, since A,e A}, there exists an Age A}
such that Ao = U. Hence A€ A,

In order to continue the proof we need two results which we state sepa-
rately.

4.5. LeMMa. — Form+ 1 <<k ¢;Z o

Proof. — Suppose ¢; < a. Then AnX; néB, = ¢ for some A€A,;
Since X — (X; n ¢B,) is an open set containing A, we can first find an
Ay = f(Q — V)e A’ which does not intersect X; " 6B, and thena Y = V
such that Ye Z, y(Y) < k —jand f(Q - Y)nX; néB, = ¢. Let F(y, 1),
yecQ,0 =t < 1, be an odd homotopy joining f |s t0 idaq in I_,. Define

1
Y1 = 5Y and

f(y,2s) for O
fily, s) = 1
F(v,2s/R — 1) for 3

Vol. 3. n° 2-1986.



96 A. SZULKIN

where (y, s)€ 6Q x [0, R]are polar coordinates of x € Q. Since fi(y, sjel_,

1 —— -
for s = ER and Ilep,~x, =« >0, f1i(Q — Y,) "X, N IB, = ¢. Now we

use a standard argument (see e.g. [24, Proposition 6.117]). Let W be the
component of f;"'(B,) containing the origin. For x€0Q, fi(x) = x¢B,
SoW n 0Q = ¢ and consequently, W is open and bounded in X,. According
to (vii) of Proposition 4.1, p(W)=k. Set C= f;~ '(¢B,). Then C > ¢W and
(C) = k. Furthermore, by (iv) of Proposition 4.1,

HWC—=Y) 29O —yY)zk—(k—j)=
Let X = X, @ X, and denote by P the projection from X to X, along X,.
Since f,(Q = Y;)n X, n 3B, = ¢ and £,(C — Yy) < @B,
Z=PfiC=Y)cX,—{0}.
Hence Ze X and by (i) of Proposition 4.1, yZ) Z yC — Y;)= j. On the
other hand, dim X; = m < j, so y(Z) < j. |
Denote by Ny(Z) the interior of NyZ) in X.

4.6. Lemma. — The sets A; have the following properties:

D) Ajer A

i) If Ae A;, Wis a closed and symmetric set containing A in its interior
and x : W — X an odd mapping such that a|w.r_,~idw~;_,inI_, by anodd
homotopy, then o(A)e A;.

iii) If ZeX is compact, (Z) < p and oI |z > — d, then there exists a
6 > 0 such that for each AeAj.,, A — NyZ)eA,

Proof. — i) Let Ae A;., and choose an open set U > A. There exists
an Ap = f(Q — V)e A’+; such that A, = U. For each Y < V such that
YeZ, yY)=k—-(G+ 1) <k—j SoAjeAjand AeA;

ii) Let U o ofA) be open. Let W, be an open set such that A <« W, = W
and %(W;) < U. Since A€ A;, there is an Ay = f(Q — V)€ A} such that
Ay = W,. Extend o to an odd mapping @ : f(Q)UW — X. Since
fEQ e WnI_ 43¢ flo=x flo=xidyginl_, Consequently, x> f €.
Furthermore, & < f(Q — V) = a2 f(Q — V) = o(Ag) = «(W,) = U, s0
HAg)e A; and a(A)e A,

iii) By vi) of Proposmon 4.1, we may choose a 6 >0 such that

P(Ns(2)) = y(Z). Denote Z, = Ny(Z) and Zy = N5(Z) Let U A — ZO
be open and set Uy = U u ZO Then A < Ug. Since Ae A there is an
Ay = f(Q — V)eAl,, Ay < U, Note that

24 Ag—Zo=fQ—-V)—Zy = f(Q = V) (Q — £~ (Zo)
—fQ—-(Vuf!

Since I|,> —d and X—1_,is an open set, I |z, > —d provided ¢ is sufficiently

jtp
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small. It follows that f~ 1(20) N 6Q=1¢ because I {;zq < —d. Consequently,
the set VU f ‘1(20) is open in Q, symmetric and does not intersect ¢Q.
Furthermore, if Y =« VU f”(io) and YeZ, there exist Y;, Y,eX
suchthat Y=Y, uY,and Y, =V, Y, c f }Zo) (e.g, Y, = {xeY:
d(x,Q—V)=d(x,Q— f~1(Z,)) } and Y, is obtained by reversing the inequa-
lity). Since Age A}, YY) £k —(j+ p). By i)-iii) of Proposition 4.1,
AV S f T (Zo)EAZo)Sp and V) YY)+ H(Yo)Sk—(i+p)+p=k—j
Now it follows from (24) that Ao — Zoe Aj. Since Ao —Zo = U and
U was chosen arbitrarily, A — Zoe A} O

Proof of Theorem 4.4 continued. — By Lemma 4.5 and i) of Lemma 4.6,

A

& é Cm+1 . é Cy -

Suppose that ¢c; = ... =c¢;; ,=cforsomejm+1<j<k and p 2 0.
Since ¢ >0, 0¢K,. We complete the proof by demonstrating that
WK,) = p+ 1. To obtain a contradiction, assume (K, =< p. Choose
p >0 so that y(N,,(K,) = yK,). Let N=N,K,) and e=min {1, p}.
Let ¢ < € be the number given by Proposition 2.3. Recall that A; is a
complete metric space and IT(A) = sup I(u). There exists an A; € A;, , such

ucA

that ITIA) = c + 2. Let A, = A, — &ZP(KC). If p is sufficiently small, it
follows from iii) of Lemma 4.6 that A, € A;. According to Proposition 1.6
(with 6 = &% and 2 = 1/g), we can find an A € A; such that

II(A) < ¢ + €%, dist (A, Ay)) < ¢
and

(25) II(B) — TI(A) = — ¢ dist(A, B)  VBeA,.

Since ¢ < p, AN N,K,) = ¢. Moreover, c STIA) < c+ &2 Zc+ e So
according to Proposition 2.3 and Corollary 2.4, there exists an odd defor-
mation «,: W — X satisfying (8)-(12). Let B = o(A) with s small. It
follows from (12) (with W, = 1_,) that « satisfies the hypotheses of ii)
of Lemma 4.6. Hence B e A;. Using (8), (11) and (25) we obtain

— 2es =2 TI(B) — TI(A) = — e dist (A, B) = — es,
a contradiction. O

4.7. REMARK. — The minimax characterization of critical values
obtained in the proof of Theorem 4.4 is not fully satisfactory because it
depends on the a priori assumption that the function I does not have
critical values below a certain level.
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4.8. COROLLARY. — Suppose that the hypotheses of Theorem 4.4 are
satisfied with ii) replaced by

ii") for any positive integer k there is a k-dimensional subspace X, of X
such that I(u) - — oo as |Ju|| - oo, ueX,.

Then I has infinitely many distinct pairs of nontrivial critical points.

Proof. — Obvious. O

5. APPLICATIONS

Throughout this section we assume that Q = RN is a bounded domain
with smooth boundary I H*Q) = H™ and H{(Q2) = Hj are the usual
Sobolev spaces of real-valued functions in Q. In H™ we shall use the inner

product {u,v) = f (V™'u. V™0 + uv)dx, and in HY, (u,v) = JV"‘u.V'"vdx.
Q Q

The corresponding norm will be denoted by || |. Standard results in
Sobolev spaces, in a form suitable for our purposes, can be found in [27] [24]
and in references given there. Let p* be the critical exponent for the Sobolev
embedding H™ ¢, L”. Recall that

. 2N/(N — 2m) if 2m <N
R otherwise

and the embedding is compact if p < p*.

We shall employ some results from the theory of maximal monotone
operators [3] [4]. A mapping A from X to X* is said to be a multivalued
operator if it maps each u € X onto an element Au e 2X*. The domain of A
is defined by D(A) = {ueX :Au # ¢ }. A is called monotone if

oy —vg,up —uy; > 20 Yu;, uy € D(A), vy € Auy, v, € A,y

and maximal monotone if it admits no proper monotone extension, i.e.,
if there is no monotone operator B such the graph of B properly contains
the graph of A. The subdifferential 0y of a proper convex L s. c. function
Y :X — (— oo, + o] is maximal monotone [3, Theorem II.2.1].
Below we shall show in a number of examples how the results of Sec-
tions 3 and 4 can be applied to boundary value problems for semilinear
elliptic operators. For simplicity, we choose the linear part of the operator
to be — A + const. or (— A)" + const. It will, however, be clear from the
proofs that other uniformly elliptic operators which induce symmetric
bilinear forms and have reasonably smooth coefficients could be chosen
as well. We also prefer to work with nonlinearities not explicitly depending
on x € Q, although more general results could easily be obtained. In Theo-
rems 5.1, 5.8 and Corollaries 5.9, 5.10 we could also replace |u [P~
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by a more general odd function satisfying suitable superlinearity conditions
at 0 and 2 [/, (p3) — (ps) on p. 362-363, see also 21, 24].

Our first example is concerned with a variational inequality on a convex
set K < H}.

5.1. THEOREM. — Let 2eR, gel? g < 0a.e.in Q, 2 < p < p* and
K={ueHj:uz20aeinQ}.

Then the variational inequality

uelK :JVu.V(v — uydx — /".f
Q

Wy — wdx — Ju"_l(v — wydx
o

Q

> J. g(v — wydx YvelK
Q

has a nontrivial solution (in addition to the trivial one u = 0).

Proof. — Let I = ® + ¢ with

1 1,
D(u) =§||uHZ _Eﬁjuzdx —p_lju”dx — fgudx
Q o o

and y the indicator function of K. It is easy to verify that ® ¢ C! with @’
given by

(®'(u), v) = (u, v) — iJv uvdx — Ju”‘lvdx - ngdx .
Q2 Q Q
So I satisfies (H) and u is a solution of the variational inequality if and
only if u is a critical point of I, i.e, if ue K and
@@, 0 —u)=0 Voek.
1

We shall show that I satisfies (PS). Choose a constant d e <p‘1, 5) Let
(u,) be a sequence in I such that ®(u,) - ceR, ¢, — 0 and
(26) (q)/(un)a v — un) g — & ” U — Uy ” YoelK.

Set v = 2u,. Then (®'(u,), u,) = — &, || u, ||. Since M(u,) < ¢ + 1 for almost
all n,

c+1+ ” Uy, ” g (D(un) - d(q),(un)’ un)

1 1
= <— — d)ll u |I* + f {(d — p~ Nl + /".(d - —)uf +(d - l)gu,,}dx.
2 A 2
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Sinced > p~ %, p>2and (d — 1)gu, = 0 a.e. in Q, there exists an R >0
such that the integrand is positive for u, > R. Hence

ct1+ ||un||;(%—d>nu,.n2 _c,

where C is a constant. So the sequence (u,) is bounded. Denote
1
O (u) = D(u) — 5” u||2. Using standard results in Sobolev spaces we see

that after passing to a subsequence, u, — u weakly, ||u,|| — a and
D (u,) — Di(u) strongly (because @) is compact as p < p*). It follows
from (26) with v = u that

(um u— un) + ((D,l(un)ﬁ u— un) g — & ||ﬁ — Uy ” .

Passing to the limit we obtain || %> — a®> = 0,i. e, lim || u, || < || u]. Thus
u, — u strongly.

In order to obtain a nontrivial critical point we shall use Theorem 3.2
Let ue I — {0 }. It is easy to see that I(fu) > — oo ast — oo. So hypo-
thesis ii) is satisfied. To verify i), suppose that no o, p > 0 with Iz, 2«
exist. This implies that we can find a sequence (u,) in K such that u, - 0
and ®(u,) < |l u, ||*/n. Let z, = u,/ || u,||. Then

1 1
D) ||ty 2= 5 ~ = J zadx—p~ HlullP 2 sz.’dx— Hunll’ljgzndxg/n
2 2 Q Q Q

Assume after passing to a subsequence that z, — z weakly in H} and

1
strongly in L2 If z =0, lim inf ®(u,) || u,]| 2 = > So z # 0. But then

=2

gzdx < 0 and consequently, Ou,) || u, — + oo. This contradiction

Q
shows that i) is satisfied for some «, p > 0. O
Consider now a functional I = ® + ¢ : H§ — (— o0, + oc] with

p) j wldx,
o

1 1
lﬂ(“):*f IVulzdx—I-f |Vu|dx-=——|]u||2+J | Vuldx.
2 Q Q 2 o)

N[ =

D) = —

Observe that D(¢y) = H{. Denote by 4; the j-th eigenvalue of — A in H}
(counted according to its multiplicity) and by e; a corresponding eigen-
function chosen so that (e, e;) = &;; (Kronecker’s ).

5.2. THEOREM. — Suppose that 4, < 4 < 4;+;. Then I has at least &
distinct pairs of nontrivial critical points.
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Proof. — It is easy to see that I satisfies (H). To verify (PS), let I(u,) — ¢,
& — 0and

Q7)) (@(un), vt — up) + Yl(v) — Ylu) = — &, llv — u, ] VreH}.

First we show that the sequence (u,) is bounded. Suppose || u,|| — =,

let =, = u,/ll u, || and assume after passing to a subsequence that z, — z
weakly in H{ and strongly in L2. Since

1 1
M) lu, 7% == + nunll“j lenldx“f‘fodx -0,
2 Q 2 Q
Z# 0. Take v = u, + @ in (27). Then
1 , . )
Sl + . @) + juwunwn — qunndx—/.junsodx > —gllell.
Q Q

After dividing by |j u,|| and taking limits we obtain

J Vz.Vepdx — /lj zepdx =2 0.
Q Q

Since ¢ was chosen arbitrarily, the left-hand side is equal to zero for all
¢ € H}. This contradicts the fact that Z # 0 and A is not an eigenvalue. So
the sequence (u,) 1S bounded. We may therefore assume that u, — u
weakly in H{, strongly in L? and ||u,|] — a. Set v = & in (27). Then

1 1
“liall? = <lluali* + J |Vuldx — J qunldx—iJ ufu—udx= —ellu—u,l|.
2 2 Q [ o)

Letting n — 20 and using the fact that lim inf f IVu,,Idxgj |Vi|dx, we
Q Q

obtain a = lim || u,|] £ || u!|. Hence u, — u strongly in HJ.

We shall show that i) and ii) of Theorem 4.4 are satisfied. Suppose that
no %, p > 0 such that I|,;5, = « exist. We may then find a sequence (u,)
such that u, — 0 and I(u,) < || u, |*/n. Let z, = u,/|| u, ||. It follows that

1
Luy) fu, |72 = ! + llunll_lj | Vz,|dx ——).J ZHdx < 1/n.
2 o 2 Jo

After passing to a subsequence, z, — z weakly in H§, strongly in L2

if Z=0 and

Mo =

Now it is easy to see that lim infl(w,) | u,] % =
lim Iu,) || u, |72 = + < if T # 0. So i) is satisfied with X, = Hj.
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To wverify i), let X, =span{e;,...,e} and u=oe; + ... + g8

Since | e?dx = ;7' | | Ve;|*dx = i1,
Q {¢]
k

I(w) = % 2(1 — AA)eE + J | V(e + ... + oger)|dx
Q

i=1

1 .1 .
< 5(1—).//"vk)(cx§+ coe )+ Cai+ . )= 5(1 — A ull?+Cllull

where C is a constant. Since /4 > A, l(u) - — oc as ||ul] — oo, ueX,
Now it follows from Theorem 4.4 that I has at least dim X, —codim X; =k
pairs of nontrivial critical points. O

5.3. CoROLLARY. — If J, < A < A4+, there exist at least k distinct pairs
of nontrivial solutions of the inequality

(28) ueHzr\H},:J(—Au)(v—u)dx—l-J |Vv|dx—f | Vu | dx
o o Q
> )Lf uv — uwdx  VveHj.
Q

Proof. — Extend y to a functional IZ: L? - (— oo, + oo] by setting

Y(u) = Y(u) for ueHY and Y(u) = + oo otherwise. Since D(¥) = D(y),
ue Hy is a critical point of I if and only if

(o) — Y(u) = ZJ‘ u(v — wdx Yoel?,
Q
or equivalently, if Ju eafb(u). On the other hand, according to [5, Theo-
rem 15], u € dy(u) if and only if u satisfies (28). So the result follows from
Theorem 5.2. d
Let F and G be two functions satisfying the following assumptions.
F:R — [0, + o] is even, Ls.c, convex and F0) =0; G:R — R is
even, of class C!, G(0) = 0, G'(t) = g(t) and | g(t)| S ¢y + co |77 VeeR,
where 2 < p < p* and ¢, ¢, are positive constants. Let I be a functional
on HF such that I = @ + ¢ and

D(u) = —j Glu)dx,
Q

1
f | V"u [2dx + J‘ Fwdx if Fu)elL!
2 Ja Q

+ oo otherwise .
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Denote by 4; the j-th eigenvalue of (— A)™ in Hf (counted according to
its multiplicity) and by e; a corresponding eigenfunction satisfying
(ei €) = 0y

5.4. THEOREM. — Suppose that liﬁl inf (F() — G(t))/12 > — %)‘1 and

1
lim sup (F(t) — G())/t* < — Eﬂ,k. Then I has at least k distinct pairs of
t~0
nontrivial critical points.

Proof. — We employ Theorem 4. 3. It follows from the growth restriction
on g that @ is of class C' and from [3, Proposition I1.2.8] that  is L. s. c.
and convex. So (H) is satisfied. Now we proceed to verify (PS). Choose

1
R >0 and 4 < 4; such that (F(t) — G@t)/t* = — 5/1 for |t| > R. Then

1
M) =S llu I + fl | R(F(u) — Gw)dx + j I<R(F(u) — G(u)dx

1 1. 1 ,
EEIIHH2 —EﬂLuzdx—Czi(l — Mi)lul? = C.

Since A < A1, I(u) - + oo as|u|| - oo. It follows that if I(y,) — ceR,
(u,) is a bounded sequence. We may therefore assume that u, — u weakly,
a.e. in Q, ®'(u,) — ®'(@) strongly and ||u,|| — a. Set v = u in (2). Then

1Hﬁll2 - 1Hunll2 + JF(H)dx— j Flu)dx +(D'(uy), t—tt,) 2 —&nllu—usl.
2 2 o 0

Passing to the limit and using Fatou’s lemma, we see as in the proof of
Theorem 5.2 that u, — u strongly.
We complete the proof by demonstrating that

¢; = inf sup I(u)
Ael; ueA

satisfies — oo <c; <0 for 1 £j=<k Since ® is weakly continuous,
Yy 2 0andl(u) - + ccasl|ull - oo,lisbounded below. Thusc; > — <.
Let

A={u=ae, + ... +oe;:|lulP=0al+ ... +af =p*}.

Then A €I; because y(A) = j according to v) of Proposition 4.1. Choose

1
r>0and / > 4 so that (F(t) — G@))/t2 £ — ;}. as |[t] < r. Let p in the
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definition of A be so small that || u|| .~ < r whenever ue A. Then

I(u) = 1Ilull2 + | (Fw) — Gu)dx < 1Hull2 — Lo | e
2 e} 2 2 Q

J
1
=_ 1 — iAol <
ZZ( /Ao =
i=1

It follows that ¢; < 0. O

(1~ #/a) |l ull> < 0.

N | =

5.5. CoroLLARY . — Let F be as above and let m = 1. Denote the sub-
. 1
differential of F by f and let 4 e R. Suppose that liﬁl inf F(1)/% > 5(/1 — Ay
and 1in& F(t)/t* = 0. If . > J,, the boundary value problem

{ —Au+ fwsiu nQ
ue H}

has at least k distinct pairs of nontrivial solutions u € H? n H§.

1 .
Proof. — Let G(t) = Eitz. Then F and G satisfy the hypotheses of

Theorem 5.4, so that I has k pairs of nontrivial critical points. Extend y to
a functional l/~/ :L? - (— oo, + oo] by setting y(u) = Y(u) if ueD(),
zZ(u) = + oo otherwise. Then u is a critical point of I if and only if lueé:/;(u).
Since Au € dy(u) is equivalent to ue H> n H} and Aue — Au + f(u) a.e

in Q [3, Proposition II.3.8], the result follows. O

5.6. COROLLARY. — Let f(t) and g(t) be two odd C' functions on R
such that f(0) = ¢(0) = 0, f is nondecreasing. | g(t)| < ¢, + ¢, | [P~ for
‘'some pe [2, p*) and ligln_'iolgf(f'([)-—g'([))> —/ I f10)—g(0)< — 24, the

boundary value problem

{ (— A™ + flu) =g inQ

ue HE

has at least k distinct pairs of nontrivial solutions u such that uf(u)e L%

i1

t
Proof. — Setting F(t) = J f(s)ds and G(r) = fg(s)ds it is easy to see
0

0
that F and G satisfy the hypotheses o~f Theorem 5.4. So I has k distinct

pairs of nontrivial critical points. Let ¢ : L? — (— oc, + 0] be given by
() = Y(u) if ueD() and Y(u) = + oo otherwise. Set g = p/(p ~ 1).
Since g(u)e L? whenever u€L? u is a critical point of T if and only if
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g(u)e&vjb(u). Define an operator A : D(A) < L? - L? by Au=(—A)"u+ f(u)
with
DA) = {ueH? (= A)"u + fwelluf(u)el' }.

It is easy to see from the definitions that A is monotone (cf. the proof of
Corollary IV.3 in [7]) and A = 017/ (in the sense of graph inclusion). We
complete the proof by showing that A is maximal monotone. It will then
follow that A = 6::0, so for each critical point u, g(u) = Auand, since u € D(A),
uf(u)eL?.

The equation Au + u = h has a solution u € D(A) for each he L? [7, Pro-
position IV.2 and Remark IV.1]. Note that L? — L7 because p = 2. We
shall use an argument similar to that of [4, Proposition 2.2]. If A< B
with B monotone and if he By, then Av + v = h + u for some ve D(A)
(because h + ue L9). Consequently, # + u — v = Ave By and by mono-
tonocity of B, {(h+u —v) — h,v —u) =0, where { , > denotes the
duality pairing between L2 and L”. Hence {u —v,u —v> <0, s0 u =1
and & = Au. Since u was chosen arbitrarily, A = B and A is maximal
monotone. O

5.7. ReMark. — If m = 1, the conclusion of Corollary 5.6 is essentially
contained in [2/, Theorem 3.4 and 24, Theorem 5.23]. The proof given
there uses a truncation argument based on the maximum principle, so
it does not extend to the case of m > 1.

Let B:R — [0, + o] be an even, l.s.c. and convex function with
subdifferential ¢B = § and let p e (2, p*). Suppose that B(0) =0 and
and B satisfy the following growth restrictions: there is a constant ¢ > 0
such that

(29) B(21) £ ¢B(1) VieR,
and for some ge(2, p),
(30) st < ¢gB(?) Vse (), teR.

Consider the functional I = ® + ¢ : HY — (— 20, + o] with

1
D) = — ~ (i + I)Juzdx - p_lj | u|Pdx
2 o

Q

s %L(|Vu!2+u2)dx+J;B(u)daE %nu||2+ Jr Bwds if B(u)eLY(T)
+ X otherwise.

It follows from (29) that D(B) = R and if u € D(¥), then also ku e D(Y) for
any ke R. Note that B(t) = r 1|t {, 1 £ r < p, satisfies the restrictions (29)
and (30).
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5.8. THEOREM. — The functional I has infinitely many distinct pairs
of nontrivial critical points.

Proof. — It is easy to see that I satisfies (H) (cf. [3, p. 63]). Let (u,) bea
sequence such that I(u,) — c and (O'(u,), v— )+ Y(v) —Ylu) = — el v—u,
Yoe HY. Set v = u, + tu,, t > 0, divide by ¢ and let ¢ — 0. This gives

||u,,||2+]imf B(un+tun)—B(un))t_1da—lj uﬁdx—f [ u, Pdx= —e, || uy |l
20 jr Q Q

By Lebesgue’s monotone convergence theorem, we can take the limit
under the integral sign. It follows that

(31) H Uy “2 + Jv Wnundo- - /:'J\ ur%d-x - J Iun Ide g — &g || Uy “~

r Q Q
where w,(x) € B(u,(x)) a. e. on . Multiplying (31) by — ¢~ ' and adding it
to the inequality I(u,) < ¢ + 1 (which holds for almost all n) gives

1
C+1+HmHé(i—q”)WNZ+J®WJ—q”mmﬂa
T

1
+ L{(q“l —p ) | ualP + }.(q_l - 5)%?}(1)&

Note that the first integral is nonnegative according to (30). Since
g~ !> p ' and p > 2, the second integrand is positive for large | u,|. We
can therefore find a constant C such that

1 -1 2
ctl+flumliz{;—a Jluml”-C.

It follows that the sequence (,) is bounded. Using Fatou’s lemma in the
same way we did before we deduce that (u,) possesses a convergent sub-
sequence. Hence 1 satisfies (PS).

We complete the proof by showing that the hypotheses i) and ii’) of
Corollary 4 8 are satisfied. Suppose 1< 4,, and let X, =span {e;, ..., e, "

1
If ueX,, —H ull> - 5 J‘ w?dx = oy ||ul]® for some constant «; > 0. It
o
follows from a well known argument [/, proof of Lemma 3.3; 2/, proof of
Theorem 3.19] that | |u|Pdx = o(||u||*) as u — 0. Hence we can find

Q
%, p > 0 such that I}, ~x, = . Finally, let k be an arbitrary positive

integer, ¢, ..., @, hnearly independent functions in C§(Q) and

X, = span { ¢y, ..., ¢, }. Note that fB(u)do- = 0 VueX,. Since ¢B, nX,
r
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is compact, there is a constant a, > 0 such that p‘lf |vPdx = a,
o

VreéB; n X, Let u = tv, where r > 0 and ve¢B; n X,. Then
1 1
Iw) < -[|ull? —p"lj lulPdx < —t* — ayt?.
2 o 2

Hence I(u) > — oo as ||u]|| — oo, ueX,. O
Denote by ¢/0n the outward normal derivative.

5.9. CorOLLARY. — In addition to the above hypotheses, suppose that
2<pE (2N —-2)/(N —-2)if N> 2 and 2 < p < oo otherwise. Then the
boundary value problem

{—Au——iu—[ulp“zu=0 in Q
— ¢u/dn e f(u) onT

has infinitely many distinct pairs of nontrivial solutions u e H?.

Proof. — Let 1} be the extension of  to L? defined by 17/(u) = Y(u) if
ue DY), ¥(u) = + oo otherwise. By Sobolev’s embedding theorem, each
element of H' isin L7*. Soifue H!, |u|P " ?ueL?"®~ Y Since p— 1 EN/(N -2),
p¥(p ~ 1) = 2. Hence |u|? 2ueL? It follows that u is a critical point
oflifand onlyifiu + |u P ?ue &y(u). By [3, Proposition I1.2.9 or 5, Theo-
rem 12), dY(u) = — Au with D)) = {ue H? : — du/éne fw)a.e.on T }.
So each critical point of I is a solution of the boundary value problem.
Now the result follows from Theorem 5.8. O

Observe that the growth restrictions (29) and (30) were used only in
order to verify (PS). So if one removes them, the conclusions of Theo-
rem 5.8 and Corollary 5.9 remain true as long as (PS) is satisfied.

5.10. CororLLARY. — Suppose that the hypotheses of Theorem 5.8 and
Corollary 5.9, with possible exception of (29) and (30), are satisfied. If
the domain of B, D(B), is a proper subset of R, the conclusions remain
true.

Proof. — As we have already observed, we need only verify (PS). An
argument similar to that of [/5, p. 75] shows that if

D= {veH': — Av + v = 0 in Q in the sense of distributions },

then H' = Hj @ D and D is orthogonal to H}. (Given u e H', let v be the
minimizer of [|w||*> on the closed convex set {weH!® :u—weH{}. Then
(t,9) =0 VoeHi Thus veD, u—veH} and (v,u — v) = 0. Since
D(B} is properly contained in R and B is even, there exists a constant «
such that [{u|li<q) < o whenever ue D(¥). Let u = v’ + u” with v’ € H},
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u” e D. It follows from the maximum principle [/7, Theorem II.5.5] that
(32) | u” ||L°°(Q) < lw” HLw(r) =|lu ”L°°(I‘) Sa
(we have used the fact that sup |u]| = || u|lL=q) for I' smooth).

T

Let now (u,) be a sequence satisfying the hypotheses of (PS). Write
u, = u, + u? with u,eH}, u/eD and set v =u, + ru), > 0. Then
HD' (1), ul) + Wlu, + tuy) — Ylu,) 2 — &t || uy || Divide by rand let t — 0.

’

Since jB(u,, + tul)de = | B(u,)do and (u;, uy) = 0,
T

r
llunll* — ifunuﬁ,dx - J L P 2uudx = — &, [l up -
Q Q

Let de<p‘1, ), multiply the above inequality by —d and add

to I(u,) £ c+

+ 1+l 2 : dH’H“rlll " 117
=z — u =
c un = 2 n 2un

1
+ j {dlun P~ 2uul — d”p~ tu,) + iu,,(du{, — 5u,,>}dx.
o .

Since |u, — u,| < « according to (32) and d™!'p~! < 1, the integrand is
positive if |u,] = R and R is sufficiently large. Hence

1 1
c+1 +Ilu;l|2(§—d>llu2|lz+illu${!l2—C-

So the sequence (u,) is bounded and a familiar argument shows that it
possesses a strongly convergent subsequence. O

Note that Corollaries 5.9 and 5. 10 partially generalize a result of Ambro-
setti and Rabinowitz [/, Theorem 3.32, see also 21, 24].
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