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This article uses Minimax Probability Machine Regression (MPMR) and Extreme Learning Machine (ELM) 

for determination of Compression Index (Cc) of marine clay. MPMR is developed in a probabilistic framework. It 

maximizes the minimum probability of future predictions being within some bound of the true regression function. 

ELM is the advanced learning algorithm of single-hidden layer feed forward neural network.  Natural moisture content 

(wn), liquid limit (LL), void ratio (e) and plasticity index (PI) have been used as inputs of MPMR and ELM. The output 

of MPMR and ELM is Cc. The results of MPMR and ELM have been compared with the regression models. This study 

gives a powerful tool based on the developed MPMR for determination of Cc of marine clay.   

 

[Keywords: Minimax Probability Machine Regression; Regression; Compression Index; Marine Clay; Extreme 
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Introduction  

Compression Index (Cc) is a key parameter 

for determination of settlement of marine 

clay. There are lots of correlation are 

available for determination of Cc of marine 

clay in the literatures
1-6

.Every available 

correlation has some disadvantages. 
7
successfully used regression models for 

determination of Cc based on natural 

moisture content (wn), liquid limit(LL), dry 

density(d), void ratio(e) and plasticity 

index(PI).  The regression model uses least-

square method for prediction. Least-square 

method is sensitive to the presence of 

outliers, and it performs poorly when the 

underlying distribution of the additive noise 

has a long tail. 

This study employs Minimax Probability 

Machine Regression (MPMR) and Extreme  

 

Learning Machine (ELM) for prediction of 

Cc of marine clay based on e, wn,LL, and PI. 

MPMR is developed based on Minimax 

Probability Machine Classification 

(MPMC)
8
.It maximizes the minimum 

probability that future predicted outputs of 

the regression model will be within some 

bound of the true regression function. There 

are lots of applications of MPMR in the 

literatures
9-11

 . ELM is developed by
12

. It is a 

single hidden layer forward network 

(SLFN). It has been successfully applied to 

solve different problems in engineering
13-15

. 

MPMR and ELM have been developed 

based on the database collected from the 

work of 
7
. The dataset contains information 

about Cc, wn, e, LL, and PI. The developed 

MPMR and ELM have been compared with 

the regression models. This article is  
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organized as follows. Section 2 describes the 

methodology of MPMR. The details of ELM 

have been described in section 3. Section 4 

gives the results and discussion. Major 

conclusions have been drawn in section 5.   

This section will serve the details of  MPMR 

for prediction of Cc. In MPMR, the relation 

between input(x) and output(y) is given by 

the following relation.  
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where N is the number of datasets, K(xi,x) is 

kernel function and b and i are outputs 

from MPMR.  For prediction of Cc of 

marine clay using single marine clay 

parameter,  0erPIrLLrwx n    

and  cCy  . For prediction of Cc of marine 

clay using multiple marine clay 

parameters,  0,, eLLPIx   and  cCy  .  

 MPMR is developed by constructing a 

dichotomy classifier
16

. One data set is 

obtained by shifting all of the regression 

data + along the output variable axis. The 

other data is obtained by shifting all of the 

regression data -  along the output variable 

axis. The classification boundary between 

these two classes is defined as a regression 

surface.  

To develop the MPMR, the total dataset 

have been divided into the following two 

groups: 

Training Dataset: This is used to construct 

the MPMR. This article uses 131 datasets 

out of 186 as a training dataset.  

Testing Dataset: This is used to verify the 

developed MPMR. The remaining 55 

datasets have been used as testing dataset.   

The datasets are normalized between 0 and 
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where  is width of radial basis function) 

has been adopted as a kernel function. The 

program of MPMR has been developed by 

using MATLAB.   

Materials and Methods  

ELM is developed by modifying single 

hidden-layer feed forward neural network 

(SLFN). In SLFN, the relation between 

input(x) and output(y) is given below: 

 
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K

i
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.  ,                       

j=1,…,N                                               (2)                                                           

where wi is the weight vector connecting the 

i
th
 hidden neuron and the input neurons, βi is 

the weight vector connecting the ith hidden 

neuron and the output neurons, bi is the 

threshold of the ith hidden neuron, gi is 

activation function, K is number of hidden 

nodes and N is the number of datasets. The 

above equation can be written in the 

following way.  

TH                                               (3)                                                                                                                         

 where  
ijhH   (i=1,…,N, j=1,…,K and 

 
ijij xwgh . ) is the hidden-layer output 

matrix, β   K ,...,1  is the matrix of 

output weights, and T  TNyyyT ,...,, 21  

is the matrix of targets.The value of  is 

determined from the following expression.  

TH 1                                             (4)                                                                                                                      

Where H
-1

 is the Moore–Penrose generalized 

inverse
17

  of H. The learning speed of ELM 

is increase by using Moore–Penrose 

generalized inverse method.  

ELM adopts the same inputs, output, 

training dataset, testing dataset and 

normalization technique as used by the 

MPMR model.  The program of ELM has 

been developed by using MATLAB.  

 

Results and discussion  

The performance of MPMR depends on the 

choice of proper value of and. The 

design values of  and  have been 

determined by trial and error approach. 

Table 1 shows the value of  and  for the 

different input variable. 
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Fig.1- Performance of the MPMR model by 

using LL. 

  

Fig.3- Performance of the MPMR by using e 

 

The performance of training and testing 

dataset has been determined by trial and 

error approach. Coefficient of 

Correlation(R) has been adopted to asses the 

performance of MPMR. For a good model, 

the value of R should be close to one. The 

performances of training and testing dataset 

have been shown in figures 1,2,3,4, and 5. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1-Performance of the developed MPMR models. 

Input Variables Design value of  Design value of  Training 

Performance(R) 

Testing 

Performance(R) 

LL 0.01 0.01 0.970 0.862 

wn 0.02 0.07 0.944 0.912 

e 0.06 0.02 0.996 0.831 

PI 0.04 0.08 0.953 0.898 

e,LL,PI 0.05 0.03 0.989 0.980 

Fig.2- Performance of the MPMR model by 

using wn. 

 

Fig. 4- Performance of the MPMR by using PI  
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It is clear from figures that the value R is 

close to one for training as well as testing 

dataset. Therefore, the developed MPMR 

predicts Cc reasonably well.  

For developing ELM, radial basis function 

has been adopted as activation function. The 

performance of ELM depends on the 

number of hidden nodes. Table 2 shows the 

number of hidden nodes for the different 

models. 

The performance of ELM by considering 

different inputs has been depicted in figures 

6,7,8,9 and 10.   

 

 

 

 

 

 
 

 

 
 

      

 
 

 

Table 2. Number of hidden nodes for the different input variables. 

  

Input Variables Number of Hidden Nodes 

LL 4 

wn 6 

E 3 

PI 4 

e,LL,PI 7 

Fig.6- Performance of the ELM model by using 

LL. 

 

Fig.7-Performance of the ELM model by using wn. 

 

Fig. 8-  Performance of the ELM by using e. 

 

Fig.9- Performance of the ELM by using PI. 

 

 

Fig. 5- Performance of the MPMR by using 

e,LL, and PI. 
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It is clear from figures 6,7,8,9 and 10 that 

the value of R is close to one. So, the 

developed ELM proves his capability for 

prediction of Cc. The developed MPMR has 

been compared with the regression models 

developed by 
7
.  Figure 11 shows the bar 

chart of R values of the different models. It 

is observed from figure 11 that the 

performance of MPMR is better than the 

regression and ELM models. 

 

 

 

The performance of ELM and MPMR has 

been assessed by using Root Mean Square 

Error (RMSE), Mean Absolute Error 

(MAE), Coefficient of Efficiency (E), Root 

Mean Square Error to Observation’s 

Standard Deviation Ratio (RSR), 

Normalized Mean Bias Error (NMBE), 

Performance Index () and Variance 

Account Factor (VAF). The expression of 

RMSE, MAE, E, RSR, NMBE,  and VAF 

is given below
18-19
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Where Cca is actual Cc, Ccp is predicted Cc, 

caC  is the mean of Cca, var is variance and 

N is number of dataset. For an accurate 

model, the value of E and  should be close 

to one and zero respectively. The value of 

RSR should be low for a good model. For an 

over prediction model, the value of NMBE 

will be positive.  For perfect association 

between the actual and predicted values, the 

value of VAF  is 100. Table 3 and 4 shows 

the values the above parameters of the 

MPMR and ELM respectively. All MPMR 

models are over prediction. Only one ELM 

model is under-prediction.  The developed 

MPMR has control over future prediction. 

However, the ELM and regression models 

have no control over future prediction. 

 

Fig.10- Performance of the ELM by using e,LL, and 

PI. 

 

Figure 11. Bar chart of R values of the different 

models  
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Conclusion 

This article uses MPMR and ELM for 

prediction of Cc of marine clay based on 

e,wn,LL and PI. The datasets have been 

collected from the different points at east 

coast of South Korea. The developed 

MPMR proves his capability for prediction 

of Cc. It outperforms the regression and 

ELM models. The developed MPMR can be 

used as a quick tool for determination of Cc 

of marine clay. This study shows that 

developed MPMR is a reliable model for 

determination of Cc of marine clay.        
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