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Abstract

Consider the standard linear regression model Y = Xβ∗+w, where Y ∈ Rn is an observation
vector, X ∈ Rn×d is a design matrix, β∗ ∈ Rd is the unknown regression vector, and w ∼
N (0, σ2I) is additive Gaussian noise. This paper studies the minimax rates of convergence for
estimation of β∗ for #p-losses and in the #2-prediction loss, assuming that β∗ belongs to an #q-ball
Bq(Rq) for some q ∈ [0, 1]. We show that under suitable regularity conditions on the design
matrix X , the minimax error in #2-loss and #2-prediction loss scales as Rq

(
log d

n

)1− q

2 . In addition,
we provide lower bounds on minimax risks in #p-norms, for all p ∈ [1, +∞], p $= q. Our proofs
of the lower bounds are information-theoretic in nature, based on Fano’s inequality and results
on the metric entropy of the balls Bq(Rq), whereas our proofs of the upper bounds are direct
and constructive, involving direct analysis of least-squares over #q-balls. For the special case
q = 0, a comparison with #2-risks achieved by computationally efficient #1-relaxations reveals
that although such methods can achieve the minimax rates up to constant factors, they require
slightly stronger assumptions on the design matrix X than algorithms involving least-squares over
the #0-ball.

1 Introduction

The area of high-dimensional statistical inference concerns the estimation in the “large d, small n”
regime, where d refers to the ambient dimension of the problem and n refers to the sample size. Such
high-dimensional inference problems arise in various areas of science, including astrophysics, remote
sensing and geophysics, and computational biology, among others. In the absence of additional struc-
ture, it is frequently impossible to obtain consistent estimators unless the ratio d/n converges to zero.
However, many applications require solving inference problems with d ≥ n, so that consistency is
not possible without imposing additional structure. Accordingly, an active line of research in high-
dimensional inference is based on imposing various types of structural conditions, such as sparsity,
manifold structure, or graphical model structure, and then studying the performance of different esti-
mators. For instance, in the case of models with some type of sparsity constraint, a great deal of of
work has studied the behavior of #1-based relaxations.

Complementary to the understanding of computationally efficient procedures are the fundamental
or information-theoretic limitations of statistical inference, applicable to any algorithm regardless
of its computational cost. There is a rich line of statistical work on such fundamental limits, an
understanding of which can have two types of consequences. First, they can reveal gaps between the
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performance of an optimal algorithm compared to known computationally efficient methods. Second,
they can demonstrate regimes in which practical algorithms achieve the fundamental limits, which
means that there is little point in searching for a more effective algorithm. As we shall see, the results
in this paper lead to understanding of both types.

1.1 Problem set-up

The focus of this paper is a canonical instance of a high-dimensional inference problem, namely that
of linear regression in d dimensions with sparsity constraints on the regression vector β∗ ∈ Rd. In this
problem, we observe a pair (Y,X) ∈ Rn × Rn×d, where X is the design matrix and Y is a vector of
response variables. These quantities are linked by the standard linear model

Y = Xβ∗ + w, (1)

where w ∼ N(0, σ2In×n) is observation noise. The goal is to estimate the unknown vector β∗ ∈ Rd

of regression coefficients. The sparse instance of this problem, in which β∗ satisfies some type of
sparsity constraint, has been investigated extensively over the past decade. Let Xi denote the ith row
of X and Xj denote the jth column of X. A variety of practical algorithms have been proposed and
studied, many based on #1-regularization, including basis pursuit [9], the Lasso [31], and the Dantzig
selector [6]. Various authors have obtained convergence rates for different error metrics, including
#2-error [6, 4, 37], prediction loss [4, 16], as well as model selection consistency [37, 25, 33, 38].
In addition, a range of sparsity assumptions have been analyzed, including the case of hard sparsity
meaning that β∗ has exactly s ' d non-zero entries, or soft sparsity assumptions, based on imposing
a certain decay rate on the ordered entries of β∗.

Sparsity constraints These notions of sparsity can be defined more precisely in terms of the #q-
balls1 for q ∈ [0, 1], defined as

Bq(Rq) :=
{
β ∈ Rd | ‖β‖q

q =
d∑

j=1

|βj |q ≤ Rq
}
, (2)

where in the limiting case q = 0, we have the #0-ball

B0(s) :=
{
β ∈ Rd |

d∑

j=1

I[βj $= 0] ≤ s
}
, (3)

corresponding to the set of vectors β with at most s non-zero elements.

Loss functions We consider estimators β̂ : Rn × Rn×d → Rd that are measurable functions of the
data (y,X). Given any such estimator of the true parameter β∗, there are many criteria for determining
the quality of the estimate. In a decision-theoretic framework, one introduces a loss function such that
L(β̂, β∗) represents the loss incurred by estimating β̂ when β∗ ∈ Bq(Rq) is the true parameter. The
associated risk R is the expected value of the loss over distributions of (Y , X)—namely, the quantity
R(β̂, β∗) = E[L(β̂, β∗)]. Finally, in the minimax formalism, one seeks to choose an estimator that
minimizes the worst-case risk given by

min
bβ

max
β∗∈Bq(Rq)

R(β̂, β∗). (4)

1Strictly speaking, these sets are not “balls” when q < 1, since they fail to be convex.
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Various choices of the loss function are possible, including (a) the model selection loss, which is
zero if supp(β̂) = supp(β∗) and one otherwise; (b) the #p-losses

Lp(β̂, β∗) := ‖β̂ − β∗‖p
p =

d∑

j=1

|β̂j − β∗
j |pp, (5)

and (c) the #2-prediction loss ‖X(β̂ − β∗)‖2
2/n. In this paper, we study the #p-losses and the #2-

prediction loss.

1.2 Our main contributions and related work

In this paper, we study minimax risks for the high-dimensional linear model (1), in which the regres-
sion vector β∗ belongs to the ball Bq(Rq) for 0 ≤ q ≤ 1. The core of the paper consists of four
main theorems, corresponding to lower bounds on minimax rate for the cases of #p losses and the
#2-prediction loss, and upper bounds for #2-norm loss and the #2-prediction loss. More specifically,
in Theorem 1, we provide lower bounds for #p-losses that involve a maximum of two quantities: a
term involving the diameter of the null-space restricted to the #q-ball, measuring the degree of non-
identifiability of the model, and a term arising from the #p-metric entropy structure for #q-balls, mea-
suring the massiveness of the parameter space. Theorem 2 is complementary in nature, devoted to
upper bounds for #2-loss. For #2-loss, the upper and lower bounds match up to factors independent of
the triple (n, d,Rq), and depend only on structural properties of the design matrix X (see Theorems 1
and 2). Finally, Theorems 3 and 4 provide upper and lower bounds for #2-prediction loss. For the
#2-prediction loss, we provide upper and lower bounds on minimax risks that are again matching up
to factors independent of (n, d,Rq), as summarized in Theorems 3 and 4. Structural properties of the
design matrix X again play a role in minimax #2-prediction risks, but enter in a rather different way
than in the case of #2-loss.

For the special case of the Gaussian sequence model (where X =
√

nIn×n), our work is closely
related to the seminal work by of Donoho and Johnstone [14], who determined minimax rates for #p-
losses over #q-balls. Our work applies to the case of general X, in which the sample size n need not
be equal to the dimension d; however, we re-capture the same scaling as Donoho and Johnstone [14]
when specialized to the case X =

√
nIn×n. In addition to our analysis of #p-loss, we also determine

minimax rates for #2-prediction loss which, as mentioned above, can behave very differently from the
#2-loss for general design matrices X. During the process of writing up our results, we became aware
of concurrent work by Zhang (see the brief report [36]) that also studies the problem of determining
minimax upper and lower bounds for #p-losses with #q-sparsity. We will be able to make a more
thorough comparison once a more detailed version of their work is publicly available.

Naturally, our work also has some connections to the vast body of work on #1-based methods for
sparse estimation, particularly for the case of hard sparsity (q = 0). Based on our results, the rates
that are achieved by #1-methods, such as the Lasso and the Dantzig selector, are minimax optimal for
#2-loss, but require somewhat stronger conditions on the design matrix than an “optimal” algorithm,
which is based on searching the #0-ball. We compare the conditions that we impose in our minimax
analysis to various conditions imposed in the analysis of #1-based methods, including the restricted
isometry property of Candes and Tao [6], the restricted eigenvalue condition imposed in Menshausen
and Yu [26], the partial Riesz condition in Zhang and Huang [37] and the restricted eigenvalue condi-
tion of Bickel et al. [4]. We find that “optimal” methods, which are based on minimizing least-squares
directly over the #0-ball, can succeed for design matrices where #1-based methods are not known to
work.
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The remainder of this paper is organized as follows. In Section 2, we begin by specifying the
assumptions on the design matrix that enter our analysis, and then state our main results. Section 3
is devoted to discussion of the consequences of our main results, including connections to the normal
sequence model, Gaussian random designs, and related results on #1-based methods. In Section 4, we
provide the proofs of our main results, with more technical aspects deferred to the appendices.

2 Main results

This section is devoted to the statement of our main results, and discussion of some of their conse-
quences. We begin by specifying the conditions on the high-dimensional scaling and the design matrix
X that enter different parts of our analysis, before giving precise statements of our main results.

In this paper, our primary interest is the high-dimensional regime in which d - n. For technical
reasons, for q ∈ (0, 1], we require the following condition on the scaling of (n, d,Rq):

d

Rqnq/2
= Ω(dκ) for some κ > 0. (6)

In the regime d ≥ n, this assumption will be satisfied for all q ∈ (0, 1] as long as Rq = o(d
1
2−κ

′
) for

some κ′ ∈ (0, 1/2), which is a reasonable condition on the radius of the #q-ball for sparse models.
In the work of Donoho and Johnstone [14] on the normal sequence model (special case of X = I),
discussed at more length in the sequel, the effect of the scaling of the quantity d

Rqnq/2 on the rate of
convergence also requires careful treatment.

2.1 Assumptions on design matrices

Our first assumption, imposed throughout all of our analysis, is that the columns {Xj , j = 1, . . . , d}
of the design matrix X are bounded in #2-norm:

Assumption 1 (Column normalization). There exists a constant 0 < κc < +∞ such that

1√
n

max
j=1,...,d

‖Xj‖2 ≤ κc. (7)

In addition, some of our results involve the set defined by intersecting the kernel of X with the
#q-ball, which we denote Nq(X) := Ker(X)∩Bq(Rq). We define the Bq(Rq)-kernel diameter in the
#p-norm

diamp(Nq(X)) := max
θ∈Nq(X)

‖θ‖p = max
‖θ‖q

q≤Rq , Xθ=0
‖θ‖p. (8)

The significance of this diameter should be apparent: for any “perturbation” ∆ ∈ Nq(X), it follows
immediately from the linear observation model (1) that no method could ever distinguish between
β∗ = 0 and β∗ = ∆. Consequently, this Bq(Rq)-kernel diameter is a measure of the lack of identifia-
bility of the linear model (1) over Bq(Rq).

Our second assumption, which is required only for achievable results for #2-error and lower bounds
for #2-prediction error, imposes a lower bound on ‖Xθ‖2/

√
n in terms of ‖θ‖2 and a residual term:

Assumption 2 (Lower bound on restricted curvature). There exists a constant κ$ > 0 and a function
f$(Rq, n, d) such that

1√
n
‖Xθ‖2 ≥ κ$ ‖θ‖2 − f$(Rq, n, d) for all θ ∈ Bq(2Rq). (9)
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Remarks: Conditions on the scaling for f$(Rq, n, d) are provided in Theorems 2 and 3. It is useful
to recognize that the lower bound (9) is closely related to the diameter condition (8); in particular,
Assumption 2 induces an upper bound on the Bq(Rq)-kernel diameter in #2-norm, and hence the
identifiability of the model:

Lemma 1. If Assumption 2 holds for any q ∈ (0, 1], then the Bq(Rq)-kernel diameter in #2-norm is
upper bounded as

diam2(Nq(X)) ≤ f$(Rq, n, d)

κ$
.

Proof. We prove the contrapositive statement. Note that if diam2(Nq(X)) > f!(Rq ,n,d)
κ!

, then there
must exist some θ ∈ Bq(Rq) with Xθ = 0 and ‖θ‖2 > f!(Rq ,n,d)

κ!
. We then conclude that

0 =
1√
n
‖Xθ‖2 < κ$‖θ‖2 − f$(Rq, n, d),

which implies there cannot exist any κ$ for which the lower bound (9) holds.

In Section 3.3, we discuss further connections between our assumptions, and the conditions im-
posed in analysis of the Lasso and other #1-based methods [6, 25, 4]. In the case q = 0, we find that
Assumption 2 is weaker than any condition under which an #1-based method is known to succeed.
Finally, in Section 3.2, we prove that versions of both Assumptions 1 and 2 hold with high probability
for various classes of non-i.i.d. Gaussian random design matrices (see Proposition 1).

2.2 Risks in !p-norm

Having described our assumptions on the design matrix, we now turn to the main results that provide
upper and lower bounds on minimax risks. In all of the statements to follow, we use the quantities
cq,p, c′q,2, c̃q,2 etc. to denote numerical constants, independent of n, d, Rq, σ2 and the design matrix
X. We begin with lower bounds on the #p-risk.

Theorem 1 (Lower bounds on #p-risk). Consider the linear model (1) for a fixed design matrix X ∈
Rn×d.

(a) Conditions for q ∈ (0, 1]: Suppose thatX is column-normalized (Assumption 1 with κc < ∞).
For any p ∈ [1,∞), the minimax #p-risk over the #q ball is lower bounded as

min
bβ

max
β∗∈Bq(Rq)

E‖β̂ − β∗‖p
p ≥ cq,p max

{

diamp
p(Nq(X)), Rq

[
σ2

κ2
c

log d

n

] p−q
2

}

. (10)

(b) Conditions for q = 0: Suppose that ‖Xθ‖2√
n‖θ‖2

≤ κu for all θ ∈ B0(2s). Then for any p ∈ [1,∞),
the minimax #p-risk over the #0-ball with radius s = R0 is lower bounded as

min
bβ

max
β∗∈B0(s)

E‖β̂ − β∗‖p
p ≥ c0,p max

{

diamp
p(N0(X)), s

p
2
[σ2

κ2
u

log(d/s)

n

] p
2

}

. (11)
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Note that both lower bounds consist of two terms. The first term is simply the diameter of the set
Nq(X) = Ker(X) ∩ Bq(Rq), which reflects the extent which the linear model (1) is unidentifiable.
Clearly, one cannot estimate β∗ any more accurately than the diameter of this set. In both lower
bounds, the ratios σ2/κ2

c (or σ2/κ2
u) correspond to the inverse of the signal-to-noise ratio, comparing

the noise variance σ2 to the magnitude of the design matrix measured by κu. As the proof will clarify,
the term [log d]

p−q
2 in the lower bound (10), and similarly the term log(d

s ) in the bound (11), are
reflections of the complexity of the #q-ball, as measured by its metric entropy. For many classes of
design matrices, the second term is of larger order than the diameter term, and hence determines the
rate. (In particular, see Section 3.2 for an in-depth discussion of the case of random Gaussian designs.)

We now state upper bounds on the #2-norm minimax risk over #q balls. For these results, we require
both the column normalization condition (Assumption 1) and the curvature condition (Assumption 2).

Theorem 2 (Upper bounds on #2-risk). Consider the model (1) with a fixed design matrix X ∈ Rn×d

that is column-normalized (Assumption 1 with κc < ∞).

(a) Conditions for q ∈ (0, 1]: IfX satisfies Assumption 2 with f$(Rq, n, d) = o(Rq
1/2( log d

n )1/2−q/4)
and κ$ > 0, then there exist constants c1 and c2 such that the minimax #2-risk is upper bounded
as

min
bβ

max
β∗∈Bq(Rq)

‖β̂ − β∗‖2
2 ≤ 24Rq

[κ2
c

κ2
$

σ2

κ2
$

log d

n

]1−q/2
, (12)

with probability greater than 1 − c1 exp (−c2n).

(b) Conditions for q = 0: If X satisfies Assumption 2 with f$(s, n, d) = 0 and κ$ > 0, then there
exists constants c1 and c2 such that the minimax #2-risk is upper bounded as

min
bβ

max
β∗∈B0(s)

‖β̂ − β∗‖2
2 ≤ 6

κ2
c

κ2
$

σ2

κ2
$

s log d

n
, (13)

with probability greater than 1 − c1 exp (−c2n). If, in addition, the design matrix satisfies
‖Xθ‖2√
n‖θ‖2

≤ κu for all θ ∈ B0(2s), then the minimax #2-risk is upper bounded as

min
bβ

max
β∗∈B0(s)

‖β̂ − β∗‖2
2 ≤ 144

κ2
u

κ2
$

σ2

κ2
$

s log(d/s)

n
, (14)

with probability greater than 1 − c1 exp (−c2s log(d − s)).

In the case of #2-risk and design matrices X that satisfy the assumptions of both Theorems 1 and 2,
then these results identify the minimax risk up to constant factors. In particular, for q ∈ (0, 1], the
minimax #2-risk scales as

min
bβ

max
β∗∈Bq(Rq)

E‖β̂ − β∗‖2
2 = Θ

(
Rq

[σ2 log d

n

]1−q/2)
, (15)

whereas for q = 0, the minimax #2-risk scales as

min
bβ

max
β∗∈B0(s)

E‖β̂ − β∗‖2
2 = Θ

(σ2 s log(d/s)

n

)
. (16)

Note that the bounds with high probability can be converted to bound in expectation by a standard
integration over the tail probability.
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2.3 Risks in prediction norm

In this section, we investigate minimax risks in terms of the #2-prediction loss ‖X(β̂ − β∗)‖2
2/n, and

provide both lower and upper bounds on it.

Theorem 3 (Lower bounds on prediction risk). Consider the model (1) with a fixed design matrix
X ∈ Rn×d that is column-normalized (Assumption 1 with κc < ∞).

(a) Conditions for q ∈ (0, 1]: If the design matrix X satisfies Assumption 2 with κ$ > 0 and
f$(Rq, n, d) = o(Rq

1/2( log d
n )1/2−q/4), then the minimax prediction risk is lower bounded as

min
bβ

max
β∈Bq(Rq)

E
‖X (β̂ − β)‖2

2

n
≥ c′2,q Rq κ2

$

[σ2

κ2
c

log d

n

]1−q/2
. (17)

(b) Conditions for q = 0: Suppose that X satisfies Assumption 2 with κ$ > 0 and f$(s, n, d) = 0,
and moreover that ‖Xθ‖2√

n‖θ‖2
≤ κu for all θ ∈ B0(2s). Then the minimax prediction risk is lower

bounded as

min
bβ

max
β∈B0(s)

E
‖X(β̂ − β)‖2

2

n
≥ c′0,q κ2

$
σ2

κ2
u

s log(d/s)

n
. (18)

In the other direction, we have the following result:

Theorem 4 (Upper bounds on prediction risk). Consider the model (1) with a fixed design matrix
X ∈ Rn×d.

(a) Conditions for q ∈ (0, 1]: If X satisfies the column normalization condition, then for some
constant c2,q, there exist c1 and c2 such that the minimax prediction risk is upper bounded as

min
bβ

max
β∗∈Bq(Rq)

1

n
‖X(β̂ − β∗)‖2

2 ≤ c2,q κ2
c Rq

[σ2

κ2
c

log d

n

]1− q
2
, (19)

with probability greater than 1 − c1 exp (−c2Rq(log d)1−q/2nq/2).

(b) Conditions for q = 0: For any X, with probability greater than 1 − exp (−10s log(d/s)) the
minimax prediction risk is upper bounded as

min
bβ

max
β∗∈B0(s)

1

n
‖X(β̂ − β∗)‖2

2 ≤ 81
σ2 s log(d/s)

n
. (20)

2.4 Some intuition

In order to provide the reader with some intuition, let us make some comments about the scalings that
appear in our results.

First, as a basic check of our results, it can be verified that Lemma 1 ensures that the lower bounds
on minimax rates stated in Theorem 1 for p = 2 are always less than or equal to the achievable
rates stated in Theorem 2. In particular, since f$(Rq, n, d) = o(Rq

1/2( log d
n )1/2−q/4) for q ∈ (0, 1],

Lemma 1 implies that diam2
2(Nq(X)) = o(Rq(

log d
n )1−q/2), meaning that the achievable rates are

always at least as large as the lower bounds in the case q ∈ (0, 1]. In the case of hard sparsity (q = 0),
the upper and lower bounds are clearly consistent since f$(s, n, d) = 0 implies the diameter of N0(X)
is 0.
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Second, for the case q = 0, there is a concrete interpretation of the rate s log(d/s)
n , which appears in

Theorems 1(b), 2(b), 3(b) and 4(b)). Note that there are
(d
s

)
subsets of size s within {1, 2, . . . , d}, and

by standard bounds on binomial coefficients [11], we have log
(d
s

)
= Θ(s log(d/s)). Consquently, the

rate s log(d/s)
n corresponds to the log number of models divided by the sample size n. Note that unless

s/d = Θ(1), this rate is equivalent (up to constant factors) to s log d
n .

Third, for q ∈ (0, 1], the interpretation of the rate Rq
( log d

n

)1−q/2, appearing in parts (a) of The-
orems 1 through 4, is less immediately obvious but can can understood as follows. Suppose that we
choose a subset of size sq of coefficients to estimate, and ignore the remaining d − sq coefficients.
For instance, if we were to choose the top sq coefficients of β∗ in absolute value, then the fast decay
imposed by the #q-ball condition on β∗ would mean that the remaining d− sq coefficients would have
relatively little impact. With this intuition, the rate for q > 0 can be interpreted as the rate that would
be achieved by choosing sq = Rq

( log d
n

)−q/2, and then acting as if the problem were an instance of
a hard-sparse problem (q = 0) with s = sq. For such a problem, we would expect to achieve the
rate sq log d

n , which is exactly equal to Rq
( log d

n

)1−q/2. Of course, we have only made a very heuristic
argument here; this truncation idea is made more precise in Lemma 2 to appear in the sequel.

Fourth, we note that the minimax rates for #2-prediction error and #2-norm error are essentially the
same except that the design matrix structure enters minimax risks in very different ways. In particular,
note that proving lower bounds on prediction risk requires imposing relatively strong conditions on the
design X—namely, Assumptions 1 and 2 as stated in Theorem 3. In contrast, obtaining upper bounds
on prediction risk requires very mild conditions. At the most extreme, the upper bound for q = 0 in
Theorem 3 requires no assumptions on X while for q > 0 only the column normalization condition
is required. All of these statements are reversed for #2-risks, where lower bounds can be proved with
only Assumption 1 on X (see Theorem 1), whereas upper bounds require both Assumptions 1 and 2.

Lastly, in order to appreciate the difference between the conditions for #2-prediction error and #2
error, it is useful to consider a toy but illuminating example. Consider the linear regression problem
defined by a design matrix X =

[
X1 X2 · · · Xd

]
with identical columns—that is, Xj = X̃1 for

all j = 1, . . . , d. We assume that vector X̃1 ∈ Rd is suitably scaled so that the column-normalization
condition (Assumption 1) is satisfied. For this particular choice of design matrix, the linear observation
model (1) reduces to Y = (

∑d
j=1 β

∗
j )X̃1 + w. For the case of hard sparsity (q = 0), an elementary

argument shows that the minimax risk in #2-prediction error scales asΘ( 1
n). This scaling implies that

the upper bound (20) from Theorem 4 holds (but is not tight).2 Consequently, this highly degenerate
design matrix yields a very easy problem for #2-prediction, since the 1/n rate is essentially parametric.
In sharp contrast, for the case of #2-norm error (still with hard sparsity q = 0), the model becomes
unidentifiable. To see the lack of identifiability, let ei ∈ Rd denote the unit-vector with 1 in position
i, and consider the two regression vectors β∗ = c e1 and β̃ = c e2, for some constant c ∈ R. Both
choices yield the same observation vector Y , and since the choice of c is arbitrary, the minimax #2-
error is infinite. In this case, the lower bound (11) on #2-error from Theorem 1 holds (and is tight,
since the kernel diameter is infinite). In contrast, the upper bound (13) on #2-error from Theorem 2
does not apply, because Assumption 2 is violated due to the extreme degeneracy of the design matrix.

3 Some consequences

In this section, we discuss some consequences of our results. We begin by considering the classical
Gaussian sequence model, which corresponds to a special case of our linear regression model, and

2Note that the lower bound (18) on the !2-prediction error from Theorem 3 does not apply to this model, since this
degenerate design matrix with identical columns does not satisfy any version of Assumption 2.
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making explicit comparisons to the results of Donoho and Johnstone [14] on minimax risks over #q-
balls.

3.1 Connections with the normal sequence model

The normal (or Gaussian) sequence model is defined by the observation sequence

yi = θ∗i + εi, for i = 1, . . . , n, (21)

where θ∗ ∈ Θ ⊆ Rn is a fixed but unknown vector, and the noise variables εi ∼ N (0, τ
2

n ) are
i.i.d. normal variates. Many non-parametric estimation problems, including regression and density
estimation, are asymptotically equivalent to an instance of the Gaussian sequence model [28, 27, 5],
where the set Θ depends on the underlying “smoothness” conditions imposed on the functions. For
instance, for functions that have an mth derivative that is square-differentiable (a particular kind of
Sobolev space), the set Θ corresponds to an ellipsoid; on the other hand, for certain choices of Besov
spaces, it corresponds to an #q-ball.

In the case Θ = Bq(Rq), our linear regression model (1) includes the normal sequence model (21)
as a special case. In particular, it corresponds to setting d = n, the design matrix X = In×n, and noise
variance σ2 = τ2

n . For this particular model, seminal work by Donoho and Johnstone [14] derived
sharp asymptotic results on the minimax error for general #p-norms over #q balls. Here we show that
a corollary of our main theorems yields the same scaling in the case p = 2 and q ∈ [0, 1].

Corollary 1. Consider the normal sequence model (21) with Θ = Bq(Rq) for some q ∈ (0, 1]. Then
there are constants c′q ≤ cq depending only on q such that

c′q(
2τ2 log n

n
)1−

q
2 ≤ min

bβ
max

β∗∈Bq(Rq)
E‖β̂ − β∗‖2

2 ≤ cq(
2τ2 log n

n
)1−

q
2 . (22)

These bounds follow from our main theorems, via the substitutions n = d, σ2 = τ2

n , and
κu = κ$ = 1. To be clear, Donoho and Johnstone [14] provide a far more careful analysis that yields
sharper control of the constants than we have provided here.

3.2 Random Gaussian Design

Another special case of particular interest is that of random Gaussian design matrices. A widely
studied instance is the standard Gaussian ensemble, in which the entries of X ∈ Rn×d are i.i.d.
N(0, 1) variates. A variety of results are known for the singular values of random matrices X drawn
from this ensemble (e.g., [2, 3, 12]); moreover, some past work [13, 6] has studied the behavior
of different #1-based methods for the standard Gaussian ensemble, in which entries Xij are i.i.d.
N(0, 1). In modeling terms, requiring that all entries of the design matrix X are i.i.d. is an overly
restrictive assumption, and not likely to be met in applications where the design matrix cannot be
chosen. Accordingly, let us consider the more general class of Gaussian random design matrices
X ∈ Rn×d, in which the rows are independent, but there can be arbitrary correlations between the
columns of X. To simplify notation, we define the shorthand ρ(Σ) := maxj=1,...,dΣjj , corresponding
to the maximal variance of any element of X, and use Σ1/2 to denote the symmetric square root of the
covariance matrix.

In this model, each column Xj , j = 1, . . . , d has i.i.d. elements. Consequently, it is an immediate
consequence of standard concentration results for χ2

n variates (see Appendix I) that

max
j=1,...,d

‖Xj‖2√
n

≤ ρ(Σ)
(
1 +

√
32 log d

n
). (23)
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Therefore, Assumption 1 holds as long as n = Ω(log d) and ρ(Σ) is bounded.
Showing that a version of Assumption 2 holds with high probability requires more work. We

summarize our findings in the following result:

Proposition 1. Consider a random design matrix X ∈ Rn×d formed by drawing each row Xi ∈ Rd

i.i.d. from an N(0,Σ) distribution. Then for some numerical constants ck ∈ (0,∞), k = 1, 2, we
have

‖Xv‖2√
n

≥ 1

2
‖Σ1/2v‖2 − 6

(ρ(Σ) log d

n

)1/2 ‖v‖1 for all v ∈ Rd (24)

with probability 1 − c1 exp(−c2n).

Remarks: Past work by by Amini and Wainwright [1] in the analysis of sparse PCA has established
an upper bound analogous to the lower bound (24) for the special case Σ = Id×d. We provide a
proof of this matching upper bound for general Σ as part of the proof of Proposition 1 in Appendix E.
The argument is based on Slepian’s lemma [12] and its extension due to Gordon [15], combined with
concentration of Gaussian measure results [22]. Note that we have made no effort to obtain sharp
leading constants (i.e., the factors 1/2 and 6 can easily be improved), but the basic result (24) suffices
for our purposes.

Let us now discuss the implications of this result for Assumption 2. First, in the case q = 0, the
bound (13) in Theorem 2 requires that Assumption 2 holds with f$(s, n, d) = 0 for all θ ∈ B0(2s). To
see the connection with Proposition 1, note that if θ ∈ B0(2s), then we have ‖θ‖1 ≤

√
2s‖θ‖2, and

hence

‖Xv‖2√
n

≥
{‖Σ1/2v‖2

2‖v‖2
− 6

√
2
(ρ(Σ)s log d

n

)1/2
}
‖v‖2.

Therefore, as long as ρ(Σ) < ∞, minv∈B0(2s)
‖Σ1/2v‖2

‖v‖2
> 0 and s log d

n = o(1), the condition needed
for the bound (13) will be met.

Second, in the case q ∈ (0, 1], Theorem 2(a) requires that Assumption 2 hold with the residual
term f$(Rq, n, d) = o(Rq

1/2 log d
n )1/2−q/4. We claim that Proposition 1 guarantees this condition, as

long as ρ(Σ) < ∞ and the minimum eigenvalue of Σ is bounded away from zero. In order to verify
this claim, we require the following result:

Lemma 2. For any vector θ ∈ Bq(2Rq) and any positive number τ > 0, we have

‖θ‖1 ≤
√

2Rqτ
−q/2‖θ‖2 + 2Rqτ

1−q. (25)

Although this type of result is standard (e.g, [14]), we provide a proof in Appendix A for completeness.
In order to exploit Lemma 2, let us set τ =

√
log d

n . With this choice, we can substitute the resulting
bound (25) into the lower bound (24), thereby obtaining that

‖Xv‖2√
n

≥
{‖Σ1/2v‖2

2‖v‖2
− 6

√
2 ρ(Σ)

√
Rq

( log d

n

)1/2−q/4}‖v‖2 − 2Rqρ(Σ)1/2
( log d

n

)1−q/2
.

Recalling that the condition
√

Rq
( log d

n

)1/2−q/4
= o(1) is required for consistency, we see that As-

sumption 2 holds as long as ρ(Σ) < +∞ and the minimum eigenvalue of Σ is bounded away from
zero.
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Lastly, it is also worth noting that we can also obtain the following stronger result for the case
q = 0, in the case that minv∈B0(2s)

‖Σ1/2v‖2

‖v‖2
> 0 and maxv∈B0(2s)

‖Σ1/2v‖2

‖v‖2
< ∞. If the sparse

eigenspectrum is bounded in this way, then as long as n > c3 s log(d/s), we have

3‖Σ1/2v‖2 ≥ ‖Xv‖2√
n

≥ 1

2
‖Σ1/2v‖2 for all v ∈ B0(2s) (26)

with probability greater than 1 − c1 exp(−c2n). This fact follows by applying the union bound over
all

( d
2s

)
subsets of size 2s, combined with standard concentration results for random matrices (e.g.,

see Davidson and Szarek [12] for Σ = I , and Wainwright [33] for the straightforward extensions to
non-identity covariances).

3.3 Comparison to !1-based methods

In addition, it is interesting to compare our minimax rates of convergence for #2-error with known
results for #1-based methods, including the Lasso [31] and the closely related Dantzig method [6].
Here we discuss only the case q = 0 since we are currently unaware of any #2-error bound for #1-based
methods for q ∈ (0, 1]. For the Lasso, past work [37, 26] has shown that its #2-error is upper bounded
by s log d

n under sparse eigenvalue conditions. Similarly, Candes and Tao [6] show the same scaling for
the Dantzig selector, when applied to matrices that satisfy the more restrictive RIP conditions. More
recent work by Bickel et. al [4] provides a simultaneous analysis of the Lasso and Dantzig selector
under a common set of assumptions that are weaker than both the RIP condition and sparse eigenvalue
conditions. Together with our results (in particular, Theorem 1(b)), this body of work shows that under
appropriate conditions on the design X, the rates achieved by #1-methods in the case of hard sparsity
(q = 0) are minimax-optimal.

Given that the rates are optimal, it is appropriate to compare the conditions needed by an “optimal”
algorithm, such as that analyzed in Theorem 2, to those used in the analysis of #1-based methods. One
set of conditions, known as the restricted isometry property [6] or RIP for short, is based on very
strong constraints on the condition numbers of all submatrices of X up to size 2s, requiring that they
be near-isometries (i.e., with condition numbers extremely close to 1). Such conditions are satisfied by
matrices with columns that are all very close to orthogonal (e.g., when X has i.i.d. N(0, 1) entries and
n = Ω(log

( d
2s

)
)), but are violated for many reasonable matrix classes (e.g., Toeplitz matrices) that

arise in statistical practice. Zhang and Huang [37] imposed a weaker sparse Riesz condition, based on
imposing constraints (different from those of RIP) on the condition numbers of all submatrices of X
up to a size that grows as a function of s and n. Meinshausen and Yu [26] impose a bound in terms of
the condition numbers or minimum and maximum restricted eigenvalues for submatrices of X up to
size s log n. It is unclear whether the conditions in Meinshausen and Yu [26] are weaker or stronger
than the conditions in Zhang and Huang [37].

The weakest known sufficient conditions to date are due to Bickel et al. [4], who show that in
addition to the column normalization condition (Assumption 1 in this paper), it suffices to impose a
milder condition, namely a lower bound on a certain type of restricted eigenvalue (RE). They show
that this RE condition is less restrictive than both the RIP condition [6] and the eigenvalue conditions
imposed in Meinshausen and Yu [26]. For a given vector θ ∈ Rd, let θ(j) refer to the jth largest
coefficient in absolute value, so that we have the ordering

θ(1) ≥ θ(2) ≥ . . . ≥ θ(d−1) ≥ θ(d).
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For a given scalar c0 and integer s = 1, 2, . . . , d, let define the set

Γ(s, c0) :=

{
θ ∈ Rd |

d∑

j=s+1

|θ(j)| ≤ c0

s∑

j=1

|θ(j)|
}

.

In words, the set Γ(s, c0) contains all vectors in Rd where the #1-norm of the largest s co-ordinates
provides an upper bound (up to constant c0) to the #1 norm over the smallest d − s co-ordinates. For
example if d = 3, then the vector (1, 1/2, 1/4) ∈ Γ(1, 1) whereas the vector (1, 3/4, 3/4) /∈ Γ(1, 1).

With this notation, the restricted eigenvalue (RE) assumption can be stated as follows:

Assumption 3 (Restricted lower eigenvalues [4]). There exists a function κ(X, c0) > 0 such that

1√
n
‖Xθ‖2 ≥ κ(X, c0)‖θ‖2 for all θ ∈ Γ(s, c0).

Bickel et. al [4] require a slightly stronger condition for bounding the #2-loss in if s depends on n.
However the conditions are equivalent for fixed s and Assumption 3 is much simpler to analyze and
compare to Assumption 2. At this point, we have not seen conditions weaker than Assumption 3.

The following corollary of Proposition 1 shows that Assumption 3 is satisfied with high probability
for broad classes of Gaussian random designs:

Corollary 2. Suppose that ρ(Σ) remains bounded, minv∈B0(2s)
‖Σ1/2v‖2

‖v‖2
> 0 and that n > c3s log d

for a sufficiently large constant. Then a randomly drawn design matrix X ∈ Rn×d with i.i.d. N(0,Σ)
rows satisfies Assumption 3 with probability greater than 1 − c1 exp(−c2n).

Proof. Note that for any vector θ ∈ Γ(s, c0), we have

‖θ‖1 ≤ (1 + c0)
s∑

j=1

|θ(j)| ≤ (1 + c0)
√

s‖θ‖2.

Consequently, if the bound (24) holds, we have

‖Xv‖2√
n

≥
{‖Σ1/2v‖2

2‖v‖2
− 6(1 + c0)

(ρ(Σ)s log d

n

)1/2
}
‖v‖2.

Since we have assumed that n > c3s log d for a sufficiently large constant, the claim follows.

Combined with the discussion following Proposition 1, this result shows that both the conditions
required by Theorem 2 of this paper and the analysis of Bickel et al. [4] (both in the case q = 0) hold
with high probability for Gaussian random designs.

3.3.1 Comparison of RE assumption with Assumption 2

In the case q = 0, the condition required by the estimator that performs least-squares over the #0-ball—
namely, the form of Assumption 2 used in Theorem 2(b)—is not stronger than Assumption 3. This
fact was previously established by Bickel et al. (see p.7, [4]). We now provide a simple pedagogical
example to show that the #1-based relaxation can fail to recover the true parameter while the optimal
#0-based algorithm succeeds. In particular, let us assume that the noise vector w = 0, and consider
the design matrix

X =

[
1 −2 −1
2 −3 −3

]
,

12



corresponding to a regression problem with n = 2 and d = 3. Say that the regression vector β∗ ∈ R3

is hard sparse with one non-zero entry (i.e., s = 1). Observe that the vector ∆ :=
[
1 1/3 1/3

]

belongs to the null-space of X, and moreover ∆ ∈ Γ(1, 1) but ∆ /∈ B0(2). All the 2 × 2 sub-
matrices of X have rank two, we have B0(2) ∩ ker(X) = {0}, so that by known results from Cohen
et. al. [10] (see, in particular, their Lemma 3.1), the condition B0(2) ∩ ker(X) = {0} implies that
the #0-based algorithm can exactly recover any 1-sparse vector. On the other hand, suppose that,
for instance, the true regression vector is given by β∗ =

[
1 0 0

]
, If applied to this problem with

no noise, the Lasso would incorrectly recover the solution β̂ : =
[
0 −1/3 −1/3

]
since ‖β̂‖1 =

2/3 ≤ 1 = ‖β∗‖1. Although this example is low-dimensional ((s, d) = (1, 3)), we suspect that higher
dimensional examples of design matrices that satisfy the conditions required for the minimax rate but
not satisfied for #1-based methods may be constructed using similar arguments. This construction
highlights that there are instances of design matrices X for which #1-based methods fail to recover the
true parameter β∗ for q = 0 while the optimal #0-based algorithm succeeds.

In summary, for the hard sparsity case q = 0, methods based on #1-relaxation can achieve the
minimax rate O

(s log d
n

)
for #2-error, but the current analyses of these #1-methods [6, 26, 4] are based

on imposing stronger conditions on the design matrix X than those required by the “optimal” estimator
that performs least-squares over the #0-ball.

4 Proofs of main results

In this section, we provide the proofs of our main theorems, with more technical lemmas and their
proofs deferred to the appendices. To begin, we provide a high-level overview that outlines the main
steps of the proofs.

Basic steps for lower bounds The proofs for the lower bounds follow an information-theoretic
method based on Fano’s inequality [11], as used in classical work on nonparametric estimation [19,
34, 35]. A key ingredient is a fine characterization of the metric entropy structure of #q balls [20, 8].
At a high-level, the proof of each lower bound follows the following three basic steps:

(1) Let ‖ · ‖∗ be the norm for which we wish to lower bound the minimax risk; for Theorem 1, the
norm ‖ · ‖∗ corresponds to the #p norm, whereas for Theorem 3, it is the #2-prediction norm
(the square root of the prediction loss). We first construct an δn-packing set for Bq(Rq) in the
norm ‖ · ‖∗, where δn > 0 is a free parameter to be determined in a later step. The packing
set is constructed by deriving lower bounds on the packing numbers for Bq(Rq); we discuss the
concepts of packing sets and packing numbers at more length in Section 4.1. For the case of
#q-balls for q > 0, tight bounds on the packing numbers in #p norm have been developed in the
approximation theory literature [20]. For q = 0, we use combinatorial to bound the packing
numbers. We use Assumption 2 in order to relate the packing number in the #2-prediction norm
to the packing number in #2-norm.

(2) The next step is to use a standard reduction to show that any estimator with minimax risk O(δ2
n)

must be able to solve a hypothesis-testing problem over the packing set with vanishing error
probability. More concretely, suppose that an adversary places a uniform distribution over the
δn-packing set in Bq(Rq), and let this random variable be Θ. The problem of recovering Θ
is a multi-way hypothesis testing problem, so that we may apply Fano’s inequality to lower
bound the probability of error. The Fano bound involves the log packing number and the mutual
information I(Y ; Θ) between the observation vector y ∈ Rn and the random parameter Θ
chosen uniformly from the packing set.
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(3) Finally, following a technique introduced by Yang and Barron [34], we derive an upper bound
on the mutual information between Y andΘ by constructing an εn-covering set for Bq(Rq) with
respect to the #2-prediction semi-norm. Using Lemma 4 in Section 4.1.2, we establish a link
between covering numbers in #2-prediction semi-norm to covering numbers in #2-norm. Finally,
we choose the free parameters δn > 0 and and εn > 0 so as to optimize the lower bound.

Basic steps for upper bounds The proofs for the upper bounds involve direct analysis of the natural
estimator that performs least-squares over the #q-ball. The proof is constructive and involves two steps,
the first of which is standard while the second step is more specific to the problem at hand:

(1) Since the estimator is based on minimizing the least-squares loss over the ball Bq(Rq), some
straightforward algebra allows us to upper bound the #2-prediction error by a term that measures
the supremum of a Gaussian empirical process over the ball Bq(2Rq). This step is completely
generic and applies to any least-squares estimator involving a linear model.

(2) The second and more challenging step involves computing upper bounds on the supremum of
the Gaussian process over Bq(2Rq). For each of the upper bounds, our approach is slightly
different in the details. Common steps include upper bounds on the covering numbers of the
ball Bq(2Rq), as well as on the image of these balls under the mapping X : Rd → Rn. For the
case q = 1, we make use of Lemma 2 in order to relate the #1-norm to the #2-norm for vectors
that lie in an #q-ball. For q ∈ (0, 1), we make use of some chaining and peeling results from
empirical process theory (e.g., Van de Geer [32]).

4.1 Packing, covering, and metric entropy

The notion of packing and covering numbers play a crucial role in our analysis, so we begin with some
background, with emphasis on the case of covering/packing for #q-balls.
Definition 1 (Covering and packing numbers). Consider a metric space consisting of a set S and a
metric ρ : S × S → R+.

(a) An ε-covering of S in the metric ρ is a collection {β1, . . . , βN} ⊂ S such that for all β ∈ S,
there exists some i ∈ {1, . . . ,N} with ρ(β, βi) ≤ ε. The ε-covering number N(ε;S, ρ) is the
cardinality of the smallest ε-covering.

(b) A δ-packing of S in the metric ρ is a collection {β1, . . . , βM} ⊂ S such that ρ(βi, βj) ≥ δ for
all i $= j. The δ-packing number M(δ;S, ρ) is the cardinality of the largest δ-packing.

In simple terms, the covering number N(ε;S, ρ) is the minimum number of balls with radius ε
under the metric ρ required to completely cover the space, so that every point in S lies in some ball.
The packing number M(δ;S, ρ) is the maximum number of balls of radius δ under metric ρ that can
be packed into the space so that there is no overlap between any of the balls. It is worth noting that
the covering and packing numbers are (up to constant factors) essentially the same. In particular, the
inequalities M(ε;S, ρ) ≤ N(ε;S, ρ) ≤ M(ε/2;S, ρ) are standard (e.g., [29]). Consequently,
given upper and lower bounds on the covering number, we can immediately infer similar upper and
lower bounds on the packing number. Of interest in our results is the logarithm of the covering number
log N(ε;S, ρ), a quantity known as the metric entropy.

A related quantity, frequently used in the operator theory literature [20, 30, 8], are the (dyadic)
entropy numbers εk(S; ρ), defined as follows for k = 1, 2, . . .

εk(S; ρ) = inf
{
ε > 0 | N(ε;S, ρ) ≤ 2k−1

}
. (27)

By definition, note that we have εk(S; ρ) ≤ δ if and only if log N(δ;S, ρ) ≤ k.
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4.1.1 Metric entropies of #q-balls

Central to our proofs is the metric entropy of the ball Bq(Rq) when the metric ρ is the #p-norm,
a quantity which we denote by log Np,q(ε). The following result, which provides upper and lower
bounds on this metric entropy that are tight up to constant factors, is an adaptation of results from the
operator theory literature [20, 17]; see Appendix B for the details. All bounds stated here apply to a
dimension d ≥ 2.

Lemma 3. Assume that q ∈ (0, 1] and p ∈ [1,∞] with p > q. Then there is a constant Uq,p, depending
only on q and p, such that

log Np,q(ε) ≤ Uq,p

[
Rq

p
p−q

(1

ε

) pq
p−q log d

]
for all ε ∈ (0, Rq

1/q). (28)

Conversely, suppose in addition that ε < 1 and εp = Ω
( log d

dν

) p−q
q for some fixed ν ∈ (0, 1), depending

only on q and p. Then there is a constant Lq,p ≤ Uq,p, depending only on q and p, such that

log Np,q(ε) ≥ Lq,p

[
Rq

p
p−q

(1

ε

) pq
p−q log d

]
. (29)

Remark: In our application of the lower bound (29), our typical choice of εp will be of the order
O
( log d

n

)p−q
2 . It can be verified that as long as there exists a κ ∈ (0, 1) such that d

Rqnq/2 = Ω(dκ)

(which is stated at the beginning of Section 2) and p > q, then there exists some fixed ν ∈ (0, 1),
depending only on p and q, such that ε lies in the range required for the lower bound (29) to be valid.

4.1.2 Metric entropy of q-convex hulls

The proofs of the lower bounds all involve the Kullback-Leibler (KL) divergence between the distribu-
tions induced by different parameters β and β′ in Bq(Rq). Here we show that for the linear observation
model (1), these KL divergences can be represented as q-convex hulls of the columns of the design
matrix, and provide some bounds on the associated metric entropy.

For two distributions P and Q that have densities dP and dQ with respect to some base measure
µ, the Kullback-Leibler (KL) divergence is given by D(P ‖Q) =

∫
log dP

dQ
P(dµ). We use Pβ to

denote the distribution of y ∈ R under the linear regression model—in particular, it corresponds to the
distribution of a N(Xβ, σ2In×n) random vector. A straightforward computation then leads to

D(Pβ ‖Pβ′) =
1

2σ2
‖Xβ − Xβ′‖2

2. (30)

Therefore, control of KL-divergences requires understanding of the metric entropy of the q-convex
hull of the rescaled columns of the design matrix X—in particular, the set

absconvq(X/
√

n) :=
{ 1√

n

d∑

j=1

θjXj | θ ∈ Bq(1)
}
. (31)

We have introduced the normalization by 1/
√

n for later technical convenience.
Under the column normalization condition, it turns out that the metric entropy of this set with

respect to the #2-norm is essentially no larger than the metric entropy of Bq(Rq), as summarized in
the following
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Lemma 4. Suppose that X satisfies the column normalization condition (Assumption 1 with constant
κc). Then there is a constant U ′

q,2 depending only on q ∈ (0, 1] such that

log N(ε, absconvq(X/
√

n), ‖ · ‖2) ≤ U ′
q,2

[
Rq

2
2−q

(κc

ε

) 2q
2−q log d

]
.

The proof of this claim is provided in Appendix C. Note that apart from a different constant, this
upper bound on the metric entropy is identical to that for log N2,q(ε/κc) from Lemma 3. Up to
constant factors, this upper bound cannot be tightened in general (e.g., consider n = d and X = I).

4.2 Proof of lower bounds

We begin by proving our main results that provide lower bounds on minimax risks, namely Theorems 1
and 3.

4.2.1 Proof of Theorem 1

Recall that the lower bounds in Theorem 1 are the maximum of two expressions, one corresponding
to the diameter of the set Nq(X) intersected with the #q-ball, and the other correspond to the metric
entropy of the #q-ball.

We begin by deriving the lower bound based on the diameter of Nq(X) = Bq(Rq)∩ ker(X). The
minimax risk is lower bounded as

min
bβ

max
β∈Bq(Rq)

E‖β̂ − β‖p
p ≥ min

bβ
max

β∈Nq(X)
E‖β̂ − β‖p

p,

where the inequality follows from the inclusion Nq(X) ⊆ Bq(Rq). For any β ∈ Nq(X), we have Y =

Xβ + w = w, so that Y contains no information about β ∈ Nq(X). Consequently, once β̂ is chosen,
the adversary can always choose an element β ∈ Nq(X) such that ‖β̂ − β‖p ≥ 1

2 diamp(Nq(X)).
Indeed, if ‖β̂‖p ≥ 1

2 diamp(Nq(X)), then the adversary chooses β = 0 ∈ Nq(X). On the other
hand, if ‖β̂‖p ≤ 1

2 diamp(Nq(X)), then the adversary can choose some β ∈ Nq(X) such that ‖β‖p =

diamp(Nq(X)). By triangle inequality, we then have ‖β − β̂‖p ≥ ‖β‖p −‖β̂‖p ≥ 1
2 diamp(Nq(X)).

Overall, we conclude that

min
bβ

max
β∈Bq(Rq)

E‖β̂ − β‖p
p ≥

(1

2
diamp(Nq(X))

)p
.

In the following subsections, we establish the second terms in the lower bounds via the Fano method,
a standard approach for minimax lower bounds. Our proofs of part (a) and (b) are based on slightly
different arguments.

Proof of Theorem 1(a): Let M = Mp(δn) be the cardinality of a maximal packing of the ball
Bq(Rq) in the #p metric, say with elements {β1, . . . , βM}. A standard argument (e.g., [18, 34, 35])
yields a lower bound on the minimax #p-risk in terms of the error in a multi-way hypothesis testing
problem: in particular, we have

min
bβ

max
β∈Bq(Rq)

E‖β̂ − β‖p
p ≥ 1

2p
δp
n min

eβ
P[β̃ $= B]
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where the random vector B ∈ Rd is uniformly distributed over the packing set {β1, . . . , βM}, and the
estimator β̃ takes values in the packing set. Applying Fano’s inequality [11] yields the lower bound

P[B $= β̃] ≥ 1 − I(B;Y ) + log 2

log Mp(δn)
, (32)

where I(B;Y ) is the mutual information between random parameter B in the packing set and the
observation vector Y ∈ Rn.

It remains to upper bound the mutual information; we do so by following the procedure of Yang
and Barron [34], which is based on covering the model space {Pβ, β ∈ Bq(Rq)} under the square-root
Kullback-Leibler divergence. As noted prior to Lemma 4, for the Gaussian models given here, this
square-root KL divergence takes the form

√
D(Pβ ‖Pβ′) = 1√

2σ2
‖X(β − β′)‖2. Let N = N2(εn) be

the minimal cardinality of an εn-covering of Bq(Rq) in #2-norm. Using the upper bound on the dyadic
entropy of absconvq(X) provided by Lemma 4, we conclude that there exists a set {Xβ1, . . . ,XβN}
such that for all Xβ ∈ absconvq(X), there exists some index i such that ‖X(β−βi)‖2/

√
n ≤ c κc εn.

Following the argument of Yang and Barron [34], we obtain that the mutual information is upper
bounded as

I(B;Y ) ≤ log N(εn) +
c2 n

σ2
κ2

cε
2
n.

Combining this upper bound with the Fano lower bound (32) yields

P[B $= β̃] ≥ 1 −
log N2(εn) + c2 n

σ2 κ2
c ε

2
n + log 2

log Mp(δn)
. (33)

The final step is to choose the packing and covering radii (δn and εn respectively) such that the lower
bound (33) remains strictly above zero, say bounded below by 1/4. In order to do so, suppose that we
choose the pair (εn, δn) such that

c2 n

σ2
κ2

c ε
2
n ≤ log N2(εn), and (34a)

log Mp(δn) ≤ 4 log N2(εn). (34b)

As long as N2(εn) ≥ 2, we are then guaranteed that

P[B $= β̃] ≥ 1 − 2 log N2(εn) + log 2

4 log N2(εn)
≥ 1/4, (35)

as desired.
It remains to determine choices of εn and δn that satisfy the relations (34). From Lemma 3,

relation (34a) is satisfied by choosing εn such that c2 n
σ2 κ2

c ε
2
n = Lq,2

[
Rq

2
2−q

(
1
εn

) 2q
2−q log d

]
, or equiv-

alently such that

(
εn

) 4
2−q = Θ

(
Rq

2
2−q

σ2

κ2
c

log d

n

)
.

In order to satisfy the bound (34b), it suffices to choose δn such that

Uq,p

[
Rq

p
p−q

( 1

δn

) pq
p−q log d

]
≤ 4Lq,2

[
Rq

2
2−q

( 1

εn

) 2q
2−q log d

]
,
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or equivalently such that

δp
n ≥

[ Uq,p

4Lq,2

] p−q
q

{(
εn

) 4
2−q

} p−q
2

Rq

2−p
2−q

=
[ Uq,p

4Lq,2

] p−q
q L

p−q
2

q,2 Rq

[σ2

κ2
c

log d

n

] p−q
2

Combining this bound with the lower bound (35) on the hypothesis testing error probability and sub-
stituting into equation (10), we obtain

min
bβ

max
β∈Bq(Rq)

E‖β̂ − β‖p
p ≥ cq,p Rq

[σ2

κ2
c

log d

n

] p−q
2

,

which completes the proof of Theorem 1(a).

Proof of Theorem 1(b): In order to prove Theorem 1(b), we require some definitions and an auxil-
iary lemma. For any integer s ∈ {1, . . . , d}, we define the set

H(s) :=
{
z ∈ {−1, 0,+1}d | ‖z‖0 = s

}
.

Although the set H depends on s, we frequently drop this dependence so as to simplify notation. We
define the Hamming distance ρH(z, z′) =

∑d
j=1 I[zj $= z′j] between the vectors z and z′. We prove

the following result in Appendix D:

Lemma 5. There exists a subset H̃ ⊂ H with cardinality |H̃| ≥ exp( s
2 log d−s

s/2 ) such that ρH(z, z′) ≥
s
2 for all z, z′ ∈ H̃.

Now consider a rescaled version of the set H̃, say
√

2
sδnH̃ for some δn > 0 to be chosen. For any

elements β, β′ ∈ δn√
s
H̃, we have the following bounds on the #2-norm of their difference:

‖β − β′‖2
2 ≥ δ2

n, and (36a)
‖β − β′‖2

2 ≤ 8δ2
n. (36b)

Consequently, the rescaled set
√

2
sδnH̃ is an δn-packing set in #2 norm with M2(δn) = |H̃| elements,

say {β1, . . . , βM}. Using this packing set, we now follow the same classical steps as in the proof of
Theorem 1(a), up until the Fano lower bound (32).

At this point, we use an alternative upper bound on the mutual information, namely the bound
I(Y ;B) ≤ 1

(M
2 )

∑
i)=j D(βi ‖βj), which follows from the convexity of mutual information [11]. For

the linear observation model (1), we have D(βi ‖βj) = 1
2σ2 ‖X(βi −βj)‖2

2. Since (β−β′) ∈ B0(2s)
by construction, from the assumptions on X and the upper bound bound (36b), we conclude that

I(Y ;B) ≤ 8nκ2
u δ2

n

2σ2
.

Substituting this upper bound into the Fano lower bound (32), we obtain

P[B $= β̃] ≥ 1 −
8 nκ2u
2σ2 δ2

n + log(2)
s
2 log d−s

s/2

.
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Setting δ2
n = 1

32
σ2

κ2u
s
2n log d−s

s/2 ensures that this probability is at least 1/4. Consequently, combined
with the lower bound (10), we conclude that

min
bβ

max
β∈Bq(Rq)

E‖β̂ − β‖p
p ≥ 1

2p

1

4
(

1

32
)p/2

[σ2

κ2
u

s

2n
log

d − s

s/2

] p
2
.

As long as the ratio d/s ≥ 1+δ for some δ > 0 we have log(d/s−1) ≥ c log(d/s) for some constant
c > 0, from which the result follows.

4.2.2 Proof of Theorem 3

We use arguments similar to the proof of Theorem 1 in order to establish lower bounds on prediction
error ‖X(β̂ − β∗)‖2/

√
n.

Proof of Theorem 3(a): For some δ2
n = Ω(Rq ( log d

n )1−q/2), let {β1, . . . , βM} be an δn packing of
the ball Bq(Rq) in the #2 metric, say with a total of M = M(δn/κc) elements. We first show that if
n is sufficiently large, then this set is also a κ$δn/2-packing set in the prediction (semi)-norm. From
Assumption 2, for each i $= j,

‖X(βi − βj)‖2√
n

≥ κ$ ‖βi − βj‖2 − f$(Rq, n, d). (37)

Using the assumed lower bound on δ2
n—namely, δ2

n = Ω
(
Rq(

log d
n )1−

q
2 )—and the initial lower

bound (37), we conclude that ‖X(βi−βj)‖2√
n

≥ κ$δn/2 once n is larger than some finite number.
We have thus constructed a κ$δn/2-packing set in the (semi)-norm ‖X(βi − βj)‖2. As in the

proof of Theorem 2(a), we follow a standard approach to reduce the problem of lower bounding the
minimax error to the error probability of a multi-way hypothesis testing problem. After this step, we
apply the Fano inequality to lower bound this error probability via

P[XB $= Xβ̃] ≥ 1 − I(XBi;Y ) + log 2

log M2(δn)
,

where I(XBi;Y ) now represents the mutual information3 between random parameter XB (uniformly
distributed over the packing set) and the observation vector Y ∈ Rn.

From Lemma 4, the κc ε-covering number of the set absconvq(X) is upper bounded (up to a con-
stant factor) by the ε covering number of Bq(Rq) in #2-norm, which we denote by N2(εn). Following
the same reasoning as in Theorem 2(a), the mutual information is upper bounded as

I(XB;Y ) ≤ log N2(εn) +
n

2σ2
κ2

c ε
2
n.

Combined with the Fano lower bound, we obtain

P[XB $= Xβ̃] ≥ 1 −
log N2(εn) + n

σ2 κ2
c ε

2
n + log 2

log Mp(δn)
. (38)

Lastly, we choose the packing and covering radii (δn and εn respectively) such that the lower bound (38)
remains strictly above zero, say bounded below by 1/4. It suffices to choose the pair (εn, δn) to satisfy
the relations (34a) and (34b). As long as ε2n > log d

n and N2(εn) ≥ 2, we are then guaranteed that

P[XB $= Xβ̃] ≥ 1 − 2 log N2(εn) + log 2

4 log N2(εn)
≥ 1/4,

3Despite the difference in notation, this mutual information is the same as I(B;Y ), since it measures the information
between the observation vector y and the discrete index i.

19



as desired. Recalling that we have constructed a δnκ$/2 covering in the prediction (semi)-norm, we
obtain

min
bβ

max
β∈Bq(Rq)

E‖X (β̂ − β)‖2
2/n ≥ c′2,q Rq κ2

$

[σ2

κ2
c

log d

n

]1−q/2
,

for some constant c′2,q > 0. This completes the proof of Theorem 3(a).

Proof of Theorem 3(b): Recall the assertion of Lemma 5, which guarantees the existence of a set
δ2n
2s H̃ is an δn-packing set in #2-norm with Mp(δn) = |H̃| elements, say {β1, . . . , βM}, such that
the bounds (36a) and (36b) hold, and such that log |H̃| ≥ s

2 log d−s
s/2 . By construction, the difference

vectors (βi − βj) ∈ B0(2s), so that by assumption, we have

‖X(βi − βj)‖/
√

n ≤ κu‖βi − βj‖2 ≤ κu

√
8 δn. (39)

In the reverse direction, since Assumption 2 holds with f$(Rq, n, d) = 0, we have

‖X(βi − βj)‖2/
√

n ≥ κ$δn. (40)

We can follow the same steps as in the proof of Theorem 1(b), thereby obtaining an upper bound the
mutual information of the form I(XB; y) ≤ 8κ2

unδ2
n. Combined with the Fano lower bound, we have

P[XB $= Xβ̃] ≥ 1 −
8 nκ2u
2σ2 δ2

n + log(2)
s
2n log d−s

s/2

.

Remembering the extra factor of κ$ from the lower bound (40), we obtain the lower bound

min
bβ

max
β∈B0(s)

E
1

n
‖X(β̂ − β)‖2

2 ≥ c′0,q κ2
$
σ2

κ2
u

s log
d − s

s/2
.

Repeating the argument from the proof of Theorem 1(b) allows us to further lower bound this quantity
in terms of log(d/s), leading to the claimed form of the bound.

4.3 Proof of achievability results

We now turn to the proofs of our main achievability results, namely Theorems 2 and 4, that provide
upper bounds on minimax risks. We prove all parts of these theorems by analyzing the family of
M -estimators

β̂ ∈ arg min
‖β‖q

q≤Rq

‖Y − Xβ‖2
2.

We begin by deriving an elementary inequality that is useful throughout the analysis. Since the
vector β∗ satisfies the constraint ‖β∗‖q

q ≤ Rq meaning β∗ is a feasible point, we have ‖Y − Xβ‖2
2 ≤

‖Y − Xβ∗‖2
2. Defining ∆̂ = β̂ − β∗ and performing some algebra, we obtain the inequality

1

n
‖X∆̂‖2

2 ≤ 2|wT X∆̂|
n

. (41)

4.3.1 Proof of Theorem 2

We begin with the proof of Theorem 2, in which we upper bound the minimax risk in squared #2-norm.
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Proof of Theorem 2(a): To begin, we may apply Assumption 2 to the inequality (41) to obtain
[
max(0, κ$‖∆̂‖2 − f$(Rq, n, d))

]2 ≤ 2|wT X∆̂|/n

≤ 2

n
‖wT X‖∞‖∆̂‖1.

Since wi ∼ N(0, σ2) and the columns of X are normalized, each entry of 2
nwT X is zero-mean

Gaussian with variance at most 4σ2κ2
c/n. Therefore, by union bound and standard Gaussian tail

bounds, we obtain that the inequality

[
max(0, κ$‖∆̂‖2 − f$(Rq, n, d))

]2 ≤ 2σκc

√
3 log d

n
‖∆̂‖1 (42)

holds with probability greater than 1 − c1 exp(−c2n). Consequently, we may conclude that at least
one of the two following alternatives must hold

‖∆̂‖2 ≤ 2f$(Rq, n, d)

κ$
, or (43a)

‖∆̂‖2
2 ≤ 2σκc

κ2
$

√
3 log d

n
‖∆̂‖1. (43b)

Suppose first that alternative (43a) holds. Consequently for we have

‖∆̂‖2
2 ≤ o

(
Rq

( log d

n

)1−q/2
)

,

which is the same up to constant rate than claimed in Theorem 2(a).
On the other hand, suppose that alternative (43b) holds. Since both β̂ and β∗ belong to Bq(Rq), we

have ‖∆̂‖q
q =

∑d
j=1 |∆̂j |q ≤ 2Rq . Therefore we can exploit Lemma 2 by setting τ = 2σκc

κ2!

√
3 log d

n ,

thereby obtaining the bound ‖∆̂‖2
2 ≤ τ‖∆̂‖1, and hence

‖∆̂‖2
2 ≤

√
2Rqτ

1−q/2‖∆̂‖2 + 2Rqτ
2−q.

Viewed as a quadratic in the indeterminate x = ‖∆̂‖2, this inequality is equivalent to the constraint
f(x) = ax2 + bx + c ≤ 0, with a = 1,

b = −
√

2Rqτ
1−q/2, and c = −2Rqτ

2−q.

Since f(0) = c < 0 and the positive root of f(x) occurs at x∗ = (−b +
√

b2 − 4ac)/(2a), some
algebra shows that we must have

‖∆̂‖2
2 ≤ 4max{b2, |c|} ≤ 24Rq

[κ2
c

κ2
$

σ2

κ2
$

log d

n

]1−q/2
,

with high probability (stated in Theorem 2(a) which completes the proof of Theorem 2(a).

Proof of Theorem 2(b): In order to establish the bound (13), we follow the same steps with f$(s, n, d) =
0, thereby obtaining the following simplified form of the bound (42):

‖∆̂‖2
2 ≤ κc

κ$

σ

κ$

√
3 log d

n
‖∆̂‖1.

21



By definition of the estimator, we have ‖∆̂‖0 ≤ 2s, from which we obtain ‖∆̂‖1 ≤
√

2s‖∆̂‖2.
Canceling out a factor of ‖∆̂‖2 from both sides yields the claim (13).

Establishing the sharper upper bound (14) requires more precise control on the right-hand side of
the inequality (41). The following lemma, proved in Appendix F, provides this control:

Lemma 6. If ‖Xθ‖2√
n‖θ‖2

≤ κu for all θ ∈ B0(2s), then for any r > 0, we have

sup
‖θ‖0≤2s,‖θ‖2≤r

1

n

∣∣wT Xθ
∣∣ ≤ 6 σ r κu

√
s log(d/s)

n
(44)

with probability greater than 1 − c1 exp(−c2 min{n, s log(d − s)}).

Let us apply this lemma to the basic inequality (41). We may upper bound the right-hand side as

∣∣w
T X∆

n

∣∣ ≤ ‖∆‖2 sup
‖θ‖0≤2s,‖θ‖2≤1

1

n

∣∣wT Xθ
∣∣ ≤ 6 ‖∆‖2 σ κu

√
s log(d/s)

n
.

Consequently, we have

1

n
‖X∆̂‖2

2 ≤ 12 σ ‖∆̂‖2 κu

√
s log(d/s)

n
,

with high probability. By Assumption 2, we have ‖X∆̂‖2
2/n ≥ κ2

$‖∆̂‖2
2. Cancelling out a factor of

‖∆̂‖2 and re-arranging yields ‖∆̂‖2 ≤ 12 κuσ
κ2!

√
s log(d/s)

n with high probability as claimed.

4.3.2 Proof of Theorem 4

We again make use of the elementary inequality (41) to establish upper bounds on the prediction risk.

Proof of Theorem 4(a): So as to facilitate tracking of constants in this part of the proof, we consider
the rescaled observation model, in which w̃ ∼ N(0, In) and X̃ : = σ−1X. Note that if X satisfies
Assumption 1 with constant κc, then X̃ satisfies it with constant κ̃c = κc/σ. Moreover, if we establish
a bound on ‖X̃(β̂−β∗)‖2

2/n, then multiplying by σ2 recovers a bound on the original prediction loss.
We first deal with the case q = 1. In particular, we have

∣∣ 1
n

w̃T X̃θ
∣∣ ≤ ‖w̃T X̃

n
‖∞‖θ‖1 ≤

√
3κ̃c

2σ2 log d

n
(2R1),

where the second inequality holds with probability 1 − c1 exp(−c2 log d), using standard Gaussian
tail bounds. (In particular, since ‖X̃i‖2/

√
n ≤ κ̃c, the variate w̃T X̃i/n is zero-mean Gaussian with

variance at most κ̃c
2/n.) This completes the proof for q = 1.

Turning to the case q ∈ (0, 1), in order to establish upper bounds over Bq(2Rq), we require the
following analog of Lemma 6, proved in Appendix G.1. So as to lighten notation, let us introduce the
shorthand g(Rq, n, d) :=

√
Rq ( log d

n )
1
2−

q
4 .

Lemma 7. For q ∈ (0, 1), suppose that g(Rq, n, d) = o(1) and d = Ω(n). Then for any fixed radius
r such that r ≥ c3κ̃c

q
2 g(Rq, n, d) for some numerical constant c3 > 0, we have

sup
θ∈Bq(2Rq),

‖ eXθ‖2√
n

≤r

1

n

∣∣w̃T X̃θ
∣∣ ≤ c4r κ̃c

q
2
√

Rq (
log d

n
)

1
2−

q
4 ,

with probability greater than 1 − c1 exp(−c2 n g2(Rq, n, d)).
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Note that Lemma 7 above holds for any fixed radius r ≥ c3κ̃c
q
2 g(Rq, n, d). We would like the

apply the result of Lemma 7 to r = ‖X∆‖2√
n

, which is a random quantity. In Appendix H, we state
and prove a “peeling” result that allows us to strengthen Lemma 7 in a way suitable for our needs. In
particular, if we define the event

E : =
{
∃ θ ∈ Bq(2Rq) such that

1

n

∣∣w̃T X̃θ
∣∣ ≥ c4

‖X̃θ‖2√
n

κ̃c
q
2
√

Rq (
log d

n
)

1
2−

q
4
}
, (45)

then we claim that

P[E ] ≤ 2 exp(−c n g2(Rq, n, d))

1 − exp(−c n g2(Rq, n, d))
.

This claim follows from Lemma 9 in Appendix H by making the choices fn(v;Xn) = 1
n |w

T Xv|,
ρ(v) = ‖Xv‖2√

n
, and g(r) = c3 r κ̃c

q
2
√

Rq ( log d
n )

1
2−

q
4 .

Returning to the main thread, from the basic inequality (41), when the event E from equation (45)
holds, we have

‖X̃∆‖2
2

n
≤ ‖X̃∆‖2√

n

√

κ̃c
qRq

( log d

n

)1−q/2
.

Canceling out a factor of ‖X∆‖2√
n

, squaring both sides, multiplying by σ2 and simplifying yields

‖X∆‖2
2

n
≤ c2 σ2

(κc

σ

)q
Rq

( log d

n

)1−q/2
= c2 κ2

c Rq
(σ2

κ2
c

log d

n

)1−q/2
,

as claimed.

Proof of Theorem 4(b): For this part, we require the following lemma, proven in Appendix G.2:

Lemma 8. Suppose that d
2s ≥ 2. Then for any r > 0, we have

sup
θ∈B0(2s),

‖Xθ‖2√
n

≤r

1

n

∣∣wT Xθ
∣∣ ≤ 9 r σ

√
s log(d

s )

n

with probability greater than 1 − exp
(
− 10s log( d

2s)
)
.

Consequently, combining this result with the basic inequality (41), we conclude that

‖X∆‖2
2

n
≤ 9

‖X∆‖2√
n

σ

√
s log(d

s )

n
,

with high probability, from which the result follows.

5 Discussion

The main contribution of this paper was to analyze minimax rates of convergence for the linear
model (1) under high-dimensional scaling, in which the sample size n and problem dimension d
tend to infinity. We provided lower bounds for the #p-norm for all p ∈ [1,∞] with p $= q, as well
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as for the #2-prediction loss. In addition, for both the #2-loss and #2-prediction loss, we derived a set
of upper bounds that match our lower bounds up to constant factors, so that the minimax rates are
exactly determined in these cases. The rates may be viewed as an extension of the rates for the case
of #2-loss from Donoho and Johnstone [14] on the Gaussian sequence model to more general design
matrices X. In particular substituting X = I and d = n into Theorems 1 and 2, yields the same rates
as those expressed in Donoho and Johnstone [14] (see Corollary 1), although they provided much
sharper control of the constant pre-factors than the analysis given here.

Apart from the rates themselves, our analysis highlights how conditions on the design matrix X
enter in complementary manners for different loss functions. On one hand, it is possible to obtain
lower bounds on #2-risk (see Theorem 1) or upper bounds on #2-prediction risk (see Theorem 4) under
very mild assumptions on X—in particular, our analysis requires only that the columns of X/

√
n

have bounded #2-norms (see, in particular, Assumption 1). On the other hand, in order to obtain
upper bounds on #2 risk (Theorem 2) or lower bound on #2-norm prediction risk (Theorem 3), the
design matrix X must satisfy, in addition to column normalization, other more restrictive conditions.
In particular, our analysis was based on imposed on a certain type of lower bound on the curvature
of XT X measured over the #q-ball (see Assumption 2). As shown in Lemma 1, this lower bound is
intimately related to the degree of non-identifiability over the #q-ball of the high-dimensional linear
regression model .

In addition, we showed that Assumption 2 is not unreasonable—in particular, it is satisfied with
high probability for broad classes of Gaussian random matrices, in which each row is drawn in an i.i.d.
manner from a N(0,Σ) distribution (see Proposition 1). This result applies to Gaussian ensembles
with much richer structure than the standard Gaussian case (Σ = Id×d). Finally, we compared to the
weakest known sufficient conditions for #1-based relaxations to be consistent in #2-norm for q = 0—
namely, the restricted eigenvalue (RE) condition, of Bickel et al. [4] and showed that the oracle least-
squares over the #0-ball method can succeed with even milder conditions on the design. In addition, we
also proved that the RE condition holds with high probability for broad classes for Gaussian random
matrices, as long as the covariance matrix Σ is not degenerate. The analysis highlights how the
structure of X determines whether #1-based relaxations achieve the minimax optimal rate.

The results and analysis from our paper can be extended in a number of ways. First, the assump-
tion of independent Gaussian noise is somewhat restrictive and it would be interesting to analyze the
model under different noise assumption, either noise with heavier tails or some degree of dependency.
In addition, we are currently working on extending our analysis to non-parametric sparse additive
models.
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A Proof of Lemma 2

Defining the set S = {j | |θj| > τ}, we have

‖θ‖1 = ‖θS‖1 +
∑

j /∈S

|θj| ≤
√

|S|‖θ‖2 + τ
∑

j /∈S

|θj|
τ

.

Since |θj|/τ < 1 for all i /∈ S, we obtain

‖θ‖1 ≤
√

|S|‖θ‖2 + τ
∑

j /∈S

(
|θi|/τ

)q

≤
√

|S|‖θ‖2 + 2Rqτ
1−q.

Finally, we observe 2Rq ≥
∑

j∈S |θj |q ≥ |S|τ q, from which the result follows.

B Proof of Lemma 3

The result is obtained by inverting known results on (dyadic) entropy numbers of #q-balls; there are
some minor technical subtleties in performing the inversion. For a d-dimensional #q ball with q ∈
(0, p), it is known [30, 20, 17] that for all integers k ∈ [log d, d], the dyadic entropy numbers εk of the
ball Bq(1) with respect to the #p-norm scale as

εk(#q, ‖ · ‖p) = Cq,p

[
log(1 + d

k )

k

]1/q−1/p

. (46)

Moreover, for k ∈ [1, log d], we have εk(#q) ≤ Cq,p.
We first establish the upper bound on the metric entropy. Since d ≥ 2, we have

ek(#q) ≤ Cq,p

[
log(1 + d

2)

k

]1/q−1/p

≤ Cq,p

[
log d

k

]1/q−1/p

.

Inverting this inequality for k = log Np,q(ε) and allowing for a ball radius Rq yields

log Np,q(ε) ≤
(
Cq,p

Rq
1/q

ε

) pq
p−q log d, (47)

as claimed.
We now turn to proving the lower bound on the metric entropy, for which we require the existence

of some fixed ν ∈ (0, 1) such that k ≤ d1−ν . Under this assumption, we have 1 + d
k ≥ d

k ≥ dν , and
hence

Cq,p

[
log(1 + d

k )

k

]1/q−1/p

≥ Cq,p

[
ν log d

k

]1/q−1/p

Accounting for the radius Rq as was done for the upper bound yields

log Np,q(ε) ≥ ν
(Cq,pRq

1/q

ε

) pq
p−q log d,

as claimed.
Finally, let us check that our assumptions on k needed to perform the inversion are ensured by

the conditions that we have imposed on ε. The condition k ≥ log d is ensured by setting ε < 1.
Turning to the condition k ≤ d1−ν , from the bound (47) on k, it suffices to choose ε such that
(Cq,p

ε

) pq
p−q log d ≤ d1−ν . This condition is ensured by enforcing the lower bound εp = Ω

( log d
d1−ν

)p−q
q

for some ν ∈ (0, 1).
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C Proof of Lemma 4

We deal first with (dyadic) entropy numbers, as previously defined (27), and show that

ε2k−1(absconvq(X/
√

n), ‖ · ‖2) ≤ c κc min

{
1,

( log(1 + d
k )

k

) 1
q −

1
2

}
. (48)

We prove this intermediate claim by combining a number of known results on the behavior of dyadic
entropy numbers. First, using Corollary 9 from Guédon and Litvak [17], for all k = 1, 2, . . ., we have

ε2k−1(absconvq(X/
√

n), ‖ · ‖2) ≤ c εk(absconv1(X), ‖ · ‖2) min

{
1,

( log(1 + d
k )

k

) 1
q−1

}
.

Using Corollary 2.4 from Carl and Pajor [7], we obtain

εk(absconv1(X/
√

n), ‖ · ‖2) ≤ c√
n
|||X|||1→2 min

{
1,

( log(1 + d
k )

k

)1/2
}

,

where |||X|||1→2 denotes the norm of X viewed as an operator from #d1 → #n2 . More specifically, we
have

1√
n
|||X|||1→2 =

1√
n

sup
‖u‖1=1

‖Xu‖2

=
1√
n

sup
‖v‖2=1

sup
‖u‖1=1

vT Xu

= max
i=1,...,d

‖Xi‖2/
√

n ≤ κc.

Overall, we have shown that ε2k−1(absconvq(X/
√

n), ‖ · ‖2) ≤ c κc min

{
1,

( log(1+ d
k )

k

) 1
q−

1
2

}
,

as claimed. Finally, under the stated assumptions, we may invert the upper bound (48) by the same
procedure as in the proof of Lemma 3 (see Appendix B), thereby obtaining the claim.

D Proof of Lemma 5

In this appendix, we prove Lemma 5. Our proof is inspired by related results from the approximation
theory literature (see, e.g., Kühn [20]). For each even integer s = 2, 4, 6, . . . , d, let us define the set

H : =
{
z ∈ {−1, 0,+1}d | ‖z‖0 = s

}
. (49)

Note that the cardinality of this set is |H| =
(d
s

)
2s, and moreover, we have ‖z− z′‖0 ≤ 2s for all pairs

z, z′ ∈ H. We now define the Hamming distance ρH on H×H via ρH(z, z′) =
∑d

j=1 I[zj $= z′j ]. For
some fixed element z ∈ H, consider the set {z′ ∈ H | ρH(z, z′) ≤ s/2}. Note that its cardinality is
upper bounded as

∣∣{z′ ∈ H | ρH(z, z′) ≤ s/2}
∣∣ ≤

(
d

s/2

)
3s/2.

To see this, note that we simply choose a subset of size s/2 where z and z′ agree and then choose the
other s/2 co-ordinates arbitrarily.
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Now consider a set A ⊂ H with cardinality at most |A| ≤ m : =
(d

s)
( d

s/2)
. The set of elements z ∈ H

that are within Hamming distance s/2 of some element of A has cardinality at most

|{z ∈ H | : ρH(z, z′) ≤ s/2 for some z′ ∈ A}| ≤ |A|
(

d

s/2

)
3s/2 < |H|,

where the final inequality holds since m
( d
s/2

)
3s/2 < |H|. Consequently, for any such set with cardi-

nality |A| ≤ m, there exists a z ∈ H such that ρH(z, z′) > s/2 for all z′ ∈ A. By inductively adding
this element at each round, we then create a set with A ⊂ H with |A| > m such that ρH(z, z′) > s/2
for all z, z′ ∈ A.

To conclude, let us lower bound the cardinality m. We have

m =

(d
s

)
( d
s/2

) =
(d − s/2)! (s/2)!

(d − s)! s!
=

s/2∏

j=1

d − s + j

s/2 + j
≥

(d − s

s/2

)s/2
,

where the final inequality uses the fact that the ratio d−s+j
s/2+j is decreasing as a function of j.

E Proof of Proposition 1

In this appendix, we prove both parts of Proposition 1. In addition to proving the lower bound (24),
we also prove the analogous upper bound

‖Xv‖2√
n

≤ 3‖Σ1/2v‖2 + 6

[
ρ(Σ) log d

n

]1/2

‖v‖1 for all v ∈ Rd. (50)

Our approach to proving the bounds (24) and (50) is based on Slepian’s lemma [23, 12] as well as
an extension thereof due to Gordon [15]. For the reader’s convenience, we re-state versions of this
lemma here. Given some index set U × V , let {Yu,v, (u, v) ∈ U × V } and {Zu,v, (u, v) ∈ U × V }
be a pair of zero-mean Gaussian processes. Given the semi-norm on these processes defined via
σ(X) = E[X2]1/2, Slepian’s lemma asserts that if

σ(Yu,v − Yu′,v′) ≤ σ(Zu,v − Zu′,v′) for all (u, v) and (u′, v′) in U × V , (51)

then

E[ sup
(u,v)∈U×V

Yu,v] ≤ E[ sup
(u,v)∈U×V

Zu,v]. (52)

One version of Gordon’s extension [15, 23] asserts that if the inequality (51) holds for (u, v) and
(u′, v′) in U × V , and holds with equality when v = v′, then

E[sup
u∈U

inf
v∈V

Yu,v] ≤ E[sup
u∈U

inf
v∈V

Zu,v]. (53)

Turning to the problem at hand, any random matrix X from the given ensemble can be written as
WΣ1/2, where W ∈ Rn×d is a matrix with i.i.d. N(0, 1) entries, and Σ1/2 is the symmetric matrix
square root. We choose the set U as the unit ball Sn−1 = {u ∈ Rn | ‖u‖2 = 1}, and for some radius
r, we choose V as the set

V(r) := {v ∈ Rd | ‖Σ1/2v‖2 = 1, ‖v‖q
q ≤ r}.
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(Although this set may be empty for certain choices of r, our analysis only concerns those choices for
which it is non-empty.) For a matrix M , we define the associated Frobenius norm |||M |||F = [

∑
i,j M2

ij]
1/2,

and for any v ∈ V(r), we introduce the convenient shorthand ṽ = Σ1/2 v.
With these definition, consider the centered Gaussian process Yu,v = uT Wv indexed by Sn−1 ×

V(r). Given two pairs (u, v) and (u′, v′) in Sn−1 × V(r), we have

σ2(Yu,v − Yu′,v′) = |||u ṽT − u′(ṽ′)T |||2F
= |||uṽT − u′ ṽT + u′ ṽT − u′(ṽ′)T |||2F
= ‖ṽ‖2

2 ‖u − u′‖2
2 + ‖u′‖2

2‖ṽ − ṽ′‖2
2 + 2(uT u′ − ‖u′‖2

2)(‖ṽ‖2
2 − ṽT ṽ′)(54)

Now by the Cauchy-Schwarz inequality and the equalities ‖u‖2 = ‖u′‖2 = 1 and ‖ṽ‖2 = ‖ṽ′‖2, we
have uT u′ − ‖u‖2

2 ≤ 0, and ‖ṽ‖2
2 − ṽT ṽ′ ≥ 0. Consequently, we may conclude that

σ2(Yu,v − Yu′,v′) ≤ ‖u − u′‖2
2 + ‖ṽ − ṽ′‖2

2. (55)

We claim that the Gaussian process Yu,v satisfies the conditions Gordon’s lemma in terms of the zero-
mean Gaussian process Zu,v given by

Zu,v = gT u + hT (Σ1/2 v), (56)

where g ∈ Rn and h ∈ Rd are both standard Gaussian vectors (i.e., with i.i.d. N(0, 1) entries). To
establish this claim, we compute

σ2(Zu,v − Zu′,v′) = ‖u − u′‖2
2 + ‖Σ1/2 (v − v′)‖2

2

= ‖u − u′‖2
2 + ‖ṽ − ṽ′‖2

2.

Thus, from equation (55), we see that Slepian’s condition (51) holds. On the other hand, when v = v′,
we see from equation (54) that

σ2(Yu,v − Yu′,v) = ‖u − u′‖2
2 = σ2(Zu,v − Zu,v′),

so that the equality required for Gordon’s inequality is also satisfied.

Establishing an upper bound: We begin by exploiting Slepian’s inequality (52) to establish the
upper bound (50). We have

E
[

sup
v∈V(r)

‖Xv‖2
]

= E
[

sup
(u,v)∈Sn−1×V(r)

uT Xv]

≤ E
[

sup
(u,v)∈Sn−1×V(r)

Zu,v
]

= E[ sup
‖u‖2=1

gT u] + E[ sup
v∈V(r)

hT (Σ1/2v)]

≤ E[‖g‖2] + E[ sup
v∈V(r)

hT (Σ1/2v)].

By convexity, we have E[‖g‖2] ≤
√

E[‖g‖2
2] =

√
n, from which we can conclude that

E
[

sup
v∈V(r)

‖Xv‖2
]

≤
√

n + E[ sup
v∈V(r)

hT (Σ1/2v)]. (57)
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Turning to the remaining term, we have

sup
v∈V(r)

|hT (Σ1/2v)| ≤ sup
v∈V(r)

‖v‖1 ‖Σ1/2h‖∞ ≤ r‖Σ1/2h‖∞.

Since each element (Σ1/2h)i is zero-mean Gaussian with variance at most ρ(Σ) = maxiΣii, standard
results on Gaussian maxima (e.g., [23]) imply that E[‖Σ1/2h‖∞] ≤

√
3ρ(Σ) log d. Putting together

the pieces, we conclude that for q = 1

E
[

sup
v∈V(r)

‖Xv‖2/
√

n
]

≤ 1 +
[
3ρ(Σ)

log d

n

]1/2
r

︸ ︷︷ ︸
. (58)

tu(r)

Having controlled the expectation, it remains to establish sharp concentration. Let f : RD → R be
Lipschitz function with constant L with respect to the #2-norm. Then if w ∼ N(0, ID×D) is standard
normal, we are guaranteed [22] that for all t > 0,

P
[
|f(w) − E[f(w)]| ≥ t] ≤ 2 exp(− t2

2L2
). (59)

Note the dimension-independent nature of this inequality. We apply this result to the random matrix
W ∈ Rn×d, viewed as a standard normal random vector in D = n d dimensions. First, letting
f(W ) = supv∈V(r) ‖WΣ1/2v‖2/

√
n, we find that

√
n
[
f(W )− f(W ′)

]
= sup

v∈V(r)
‖WΣ1/2v‖2 − sup

v∈V(r)
‖W ′Σ1/2v‖2

≤ sup
v∈V(r)

‖Σ1/2v‖2|||(W − W ′)|||F

= |||W − W ′|||F
since ‖Σ1/2v‖2 = 1 for all v ∈ V(r). We have thus shown that the Lipschitz constant L ≤ 1/

√
n.

Recalling the definition of tu(r) from the upper bound (58), we set t = tu(r)/2 in the tail bound (59),
thereby obtaining

P
[

sup
v∈V(r)

‖Xv‖2 ≥ 3

2
tu(r; q)

]
≤ 2 exp(−n

tu(r)2

8
). (60)

We now exploit this family of tail bounds to upper bound the probability of the event

T : =
{
∃ v ∈ Rd s.t. ‖Σ1/2v‖2 = 1 and ‖Xv‖2 ≥ 3tu(‖v‖1)

}
.

We do so using Lemma 9 from Appendix H. In particular, for the case E = T , we may apply this
lemma with the objective functions f(v;X) = ‖Xv‖2, sequence an = n, the constraint ρ(·) = ‖ · ‖1,
the set S = {v ∈ Rd | ‖Σ1/2v‖2 = 1}, and g(r) = 3tu(r)/2. Note that the bound (60) means
that the tail bound (65) holds with c = 4/72. Therefore, by applying Lemma 9, we conclude that
P[T ] ≤ c1 exp(−c2n) for some numerical constants ci.

Finally, in order to extend the inequality to arbitrary v ∈ Rd, we note that the rescaled vector
v̆ = v/‖Σ1/2v‖2 satisfies ‖Σ1/2v̆‖2 = 1. Consequently, conditional on the event T c, we have

‖Xv̆‖2/
√

n ≤ 3 + 3
[√

(3ρ(Σ) log d)/n
]
‖v̆‖1,

or equivalently, after multiplying through by ‖Σ1/2v‖2, the inequality

‖Xv‖2/
√

n ≤ 3‖Σ1/2v‖2 + 3(
√

(3ρ(Σ) log d)/n)‖v‖1,

thereby establishing the claim (50).
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Establishing the lower bound (24): We now exploit Gordon’s inequality in order to establish the
lower bound (24). We have

− inf
v∈V(r)

‖Xv‖2 = sup
v∈V

−‖Xv‖2 = sup
v∈V(r)

inf
u∈U

uT Xv.

Applying Gordon’s inequality, we obtain

E[ sup
v∈V(r)

−‖Xv‖2] ≤ E
[

sup
v∈V(r)

inf
u∈Sn−1

Zu,v
]

= E[ inf
u∈Sn−1

gT u] + E[ sup
v∈V(r)

hTΣ1/2v]

≤ −E[‖g‖2] +
[
3ρ(Σ) log d

]1/2
r.

where we have used our previous derivation to upper bound E[supv∈V(r) hTΣ1/2v]. Noting4 that
E[‖g‖2] ≥

√
n/2 for all n ≥ 1, we divide by

√
n and add 1 to both sides so as to obtain

E
[

sup
v∈V(r)

(
1 − ‖Xv‖2/

√
n
)]

≤ 1/2 +
[
3ρ(Σ) log d

]1/2
r

︸ ︷︷ ︸
(61)

t$(r)

Next define the function f(W ) = supv∈V(r)

(
1 − ‖WΣ1/2v‖2/

√
n
)
. The same argument as

before shows that its Lipschitz constant is at most 1/
√

n. Setting t = t$(r)/2 in the concentration
statement (59) and combining with the lower bound (61), we conclude that

P
[

sup
v∈V(r)

(
1 − ‖Xv‖2

)
≥ 3

2
t$(r)

]
≤ 2 exp

(
− n

t2$(r)

8

)
. (62)

Define the event

T̃ : =
{
∃ v ∈ Rd s.t. ‖Σ1/2v‖2 = 1 and

(
1 − ‖Xv‖2) ≥ 3t$(‖v‖1)

}
.

We can now apply Lemma 9 with an = n, g(r) = 3t$(r)/2 and µ = 1/2 to conclude that there exist
constants ci such that P[T̃ ] ≤ c1 exp(−c2n).

Finally, to extend the claim to all vectors v, we consider the rescaled vector v̆ = v/‖Σ1/2v‖2.
Conditioned on the event T̃ c, we have for all v ∈ Rd,

1 − ‖Xv̆‖2/
√

n ≤ 3

2
+ 3 (

√
(3ρ(Σ) log d)/n) ‖v̆‖1,

or equivalently, after multiplying through by ‖Σ1/2v‖2 and re-arranging,

‖Xv‖2/
√

n ≥ 1

2
‖Σ1/2v‖2 − 3 (

√
(3ρ(Σ) log d)/n) ‖v‖1,

as claimed.
4In fact, |E[‖g‖2] −

√
n| = o(

√
n), but this simple bound is sufficient for our purposes.
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F Proof of Lemma 6

For a given radius r > 0, define the set

S(s, r) :=
{
θ ∈ Rd | ‖θ‖0 ≤ 2s, ‖θ‖2 ≤ r

}
,

and the random variables Zn = Zn(s, r) given by

Zn : = sup
θ∈S(s,r)

1

n
|wT Xθ|.

For a given ε ∈ (0, 1) to be chosen, let us upper bound the minimal cardinality of a set that covers
S(s, r) up to (rε)-accuracy in #2-norm. We claim that we may find such a covering set {θ1, . . . , θN} ⊂
S(s, r) with cardinality N = N(s, r, ε) that is upper bounded as

log N(s, r, ε) ≤ log

(
d

2s

)
+ 2s log(1/ε).

To establish this claim, note that here are
( d
2s

)
subsets of size 2s within {1, 2, . . . , d}. Moreover, for

any 2s-sized subset, there is an (rε)-covering in #2-norm of the ball B2(r) with at most 22s log(1/ε)

elements (e.g., [24]).
Consequently, for each θ ∈ S(s, r), we may find some θk such that ‖θ − θk‖2 ≤ rε. By triangle

inequality, we then have

1

n
|wT Xθ| ≤ 1

n
|wT Xθk| + 1

n
|wT X(θ − θi)|

≤ 1

n
|wT Xθk| + ‖w‖2√

n

‖X(θ − θk)‖2√
n

.

Given the assumptions on X, we have ‖X(θ − θk)‖2/
√

n ≤ κur‖θ − θk‖2 ≤ κu ε. Moreover,
since the variate ‖w‖2

2/σ
2 is χ2 with n degrees of freedom, we have ‖w‖2√

n
≤ 2σ with probability

1 − c1 exp(−c2n), using standard tail bounds (see Appendix I). Putting together the pieces, we
conclude that

1

n
|wT Xθ| ≤ 1

n
|wT Xθk| + 2κu σ r ε

with high probability. Taking the supremum over θ on both sides yields

Zn ≤ max
k=1,2,...,N

1

n
|wT Xθk| + 2κu σ r ε.

It remains to bound the finite maximum over the covering set. We begin by observing that each
variate wT Xθk/n is zero-mean Gaussian with variance σ2‖Xθi‖2

2/n
2. Under the given conditions on

θk and X, this variance is at most σ2κ2
ur2/n, so that by standard Gaussian tail bounds, we conclude

that

Zn ≤ σ r κu

√
3 log N(s, r, ε)

n
+ 2κu σr ε

= σ r κu

{√
3 log N(s, r, ε)

n
+ 2ε

}
. (63)
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with probability greater than 1 − c1 exp(−c2 log N(s, r, ε)).

Finally, suppose that ε =
√

s log(d/2s)
n . With this choice and recalling that n ≤ d by assumption,

we obtain

log N(s, r, ε)

n
≤

log
( d
2s

)

n
+

s log n
s log(d/2s)

n

≤
log

( d
2s

)

n
+

s log(d/s)

n

≤ 2s + 2s log(d/s)

n
+

s log(d/s)

n
,

where the final line uses standard bounds on binomial coefficients. Since d/s ≥ 2 by assumption, we
conclude that our choice of ε guarantees that log N(s,r,ε)

n ≤ 5 s log(d/s). Substituting these relations
into the inequality (63), we conclude that

Zn ≤ σ r κu

{
4

√
s log(d/s)

n
+ 2

√
s log(d/s)

n

}
,

as claimed. Since log N(s, r, ε) ≥ s log(d − 2s), this event occurs with probability at least 1 −
c1 exp(−c2 min{n, s log(d − s)}), as claimed.

G Proofs for Theorem 4

This appendix is devoted to the proofs of technical lemmas used in Theorem 4.

G.1 Proof of Lemma 7

For q ∈ (0, 1), let us define the set

Sq(Rq, r) := Bq(2Rq) ∩
{
θ ∈ Rd | ‖X̃θ‖2/

√
n ≤ r

}
.

We seek to bound the random variable Z(Rq, r) := supθ∈Sq(Rq ,r)
1
n |w̃

T X̃θ|, which we do by a chain-
ing result—in particular, Lemma 3.2 in van de Geer [32]). Adopting the notation from this lemma, we
seek to apply it with ε = δ/2, and K = 4. Suppose that ‖Xθ‖2√

n
≤ r, and

√
nδ ≥ c1r (64a)

√
nδ ≥ c1

∫ r

δ
16

√
log N(t; Sq)dt = : J(r, δ). (64b)

where N(t; Sq) is the covering number for Sq in the #2-prediction norm (defined by ‖Xθ‖/
√

n). As
long as ‖ ew‖2

2
n ≤ 16, Lemma 3.2 guarantees that

P
[
Z(Rq, r) ≥ δ,

‖w̃‖2
2

n
≤ 16] ≤ c1 exp (−c2

nδ2

r2
).

By tail bounds on χ2 random variables (see Appendix I), we have P[‖w̃‖2
2 ≥ 16n] ≤ c4 exp(−c5n).

Consequently, we conclude that

P
[
Z(Rq, r) ≥ δ] ≤ c1 exp (−c2

nδ2

r2
) + c4 exp(−c5n)
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For some c3 > 0, let us set

δ = c3 r κ̃c
q
2
√

Rq (
log d

n
)

1
2−

q
4 ,

and let us verify that the conditions (64a) and (64b) hold. Given our choice of δ, we find that

δ

r

√
n = Ω(nq/4(log d)1/2−q/4),

and since d, n → ∞, we see that condition (64a) holds. Turning to verification of the inequality (64b),
we first provide an upper bound for log N(Sq, t). Setting γ =

eXθ√
n

and from the definition (31) of
absconvq(X/

√
n), we have

sup
θ∈Sq(Rq ,r)

1

n
|w̃T X̃θ| ≤ sup

γ∈absconvq(X/
√

n),‖γ‖2≤r

1√
n
|w̃T γ|.

We may apply the bound in Lemma 4 to conclude that log N(ε; Sq) is upper bounded by c′ Rq
2

2−q
(

fκc
ε

) 2q
2−q log d.

Using this upper bound, we have

J(r, δ) :=

∫ r

δ/16

√
log N(Sq, t)dt ≤

∫ r

0

√
log N(Sq, t)dt

≤ c Rq
1

2−q κ̃c

q
2−q

√
log d

∫ r

0
t−q/(2−q)dt

= c′Rq
1

2−q κ̃c

q
2−q

√
log d r1− q

2−q .

Using this upper bound, let us verify that the inequality (64b) holds as long as r = Ω(κ̃c
q
2
√

Rq ( log d
n )

1
2−

q
4 ),

as assumed in the statement of Lemma 7. With our choice of δ, we have

J√
n δ

≤
c′Rq

1
2−q κ̃c

q
2−q

√
log d

n r1− q
2−q

c3 r κ̃c
q
2
√

Rq ( log d
n )

1
2−

q
4

=
c′Rq

1
2−q−

1
2−

q
2 (2−q) κ̃c

q
2−q−

q
2

q
2−q −

q
2
( log d

n

) q
4−

q
2−q

(
1
2−

q
4

)

c3

=
c′

c3
,

so that condition (64b) will hold as long as we choose c3 > 0 large enough. Overall, we conclude that
P[Z(Rq, r) ≥ c3 r κ̃c

q
2
√

Rq ( log d
n )

1
2−

q
4 ] ≤ c1 exp(−Rq(log d)1−

q
2 n

q
2 ), which concludes the proof.

G.2 Proof of Lemma 8

First, consider a fixed subset S ⊂ {1, 2, . . . , d} of cardinality |S| = s. Applying the SVD to the
sub-matrix XS ∈ Rn×s, we have XS = V DU , where V ∈ Rn×s has orthonormal columns, and
DU ∈ Rs×s. By construction, for any ∆S ∈ Rs, we have ‖XS∆S‖2 = ‖DU∆S‖2. Since V has
orthonormal columns, the vector w̃S = V T w ∈ Rs has i.i.d. N(0, σ2) entries. Consequently, for any
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∆S such that ‖XS∆S‖2√
n

≤ r, we have

∣∣∣
wT XS∆S

n

∣∣∣ =
∣∣∣
w̃T

S√
n

DU∆S√
n

∣∣∣

≤ ‖w̃S‖2√
n

‖DU∆S‖2√
n

≤ ‖w̃S‖2√
n

r.

Now the variate σ−2‖w̃S‖2
2 is χ2 with s degrees of freedom, so that by standard χ2 tail bounds (see

Appendix I), we have

P
[‖w̃S‖2

2

σ2s
≥ 1 + 4δ

]
≤ exp(−sδ), valid for all δ ≥ 1.

Setting δ = 20 log( d
2s) and noting that log( d

2s) ≥ log 2 by assumption, we have (after some algebra)

P

[
‖w̃S‖2

2

n
≥ σ2s

n

(
81 log(d/s)

)]
≤ exp(−20s log(

d

2s
)).

We have thus shown that for each fixed subset, we have the bound

∣∣∣
wT XS∆S

n

∣∣∣ ≤ r

√
81σ2s log( d

2s)

n
,

with probability at least 1 − exp(−20s log( d
2s)).

Since there are
( d
2s

)
≤

(
de
2s)

2s subsets of size s, applying a union bound yields that

P
[

sup
θ∈B0(2s),

‖Xθ‖2√
n

≤r

|w
T Xθ

n
| ≥ r

√
81σ2s log( d

2s )

n

]
≤ exp

(
− 20s log(

d

2s
) + 2s log

de

2s

)

≤ exp
(
− 10s log(

d

2s
)
)
,

as claimed.

H Large deviations for random objectives

In this appendix, we state a result on large deviations of the constrained optimum of random objective
functions of the form f(v;X), where v ∈ Rd is the optimization vector, and X is some random vector.
Of interest is the optimization problem supρ(v)≤r, v∈S f(v;Xn), where ρ : Rd → R+ is some non-
negative and increasing constraint function, and S is a non-empty set. With this set-up, our goal is to
bound the probability of the event defined by

E : =
{
∃ v ∈ S such that f(v;X) ≥ 2g(ρ(v)))

}
,

where g : R → R is non-negative and strictly increasing.
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Lemma 9. Suppose that g(r) ≥ µ for all r ≥ 0, and that there exists some constant c > 0 such that
for all r > 0, we have the tail bound

P
[

sup
v∈S, ρ(v)≤r

fn(v;Xn) ≥ g(r)] ≤ 2 exp(−c an g2(r)), (65)

for some an > 0. Then we have

P[En] ≤ 2 exp(−canµ2)

1 − exp(−canµ2)
. (66)

Proof. Our proof is based on a standard peeling technique (e.g., see van de Geer [32] pp. 82). By
assumption, as v varies over S, we have g(r) ∈ [µ,∞). Accordingly, for m = 1, 2, . . ., defining the
sets

Sm : =
{
v ∈ S | 2m−1µ ≤ g(ρ(v)) ≤ 2mµ

}
,

we may conclude that if there exists v ∈ S such that f(v,X) ≥ 2h(ρ(v)), then this must occur for
some m and v ∈ Sm. By union bound, we have

P[E ] ≤
∞∑

m=1

P
[
∃ v ∈ Sm such that f(v,X) ≥ 2g(ρ(v))

]
.

If v ∈ Sm and f(v,X) ≥ 2g(ρ(v)), then by definition of Sm, we have f(v,X) ≥ 2 (2m−1)µ = 2mµ.
Since for any v ∈ Sm, we have g(ρ(v)) ≤ 2mµ, we combine these inequalities to obtain

P[E ] ≤
∞∑

m=1

P
[

sup
ρ(v)≤g−1(2mµ)

f(v,X) ≥ 2mµ
]

≤
∞∑

m=1

2 exp
(
− can [g(g−1(2mµ))]2

)

= 2
∞∑

m=1

exp
(
− can 22mµ2

)
,

from which the stated claim follows by upper bounding this geometric sum.

I Some tail bounds for χ2-variates

The following large-deviations bounds for centralized χ2 are taken from Laurent and Massart [21].
Given a centralized χ2-variate Z with m degrees of freedom, then for all x ≥ 0,

P
[
Z − m ≥ 2

√
mx + 2x

]
≤ exp(−x), and (67a)

P
[
Z − m ≤ −2

√
mx

]
≤ exp(−x). (67b)

The following consequence of this bound is useful: for t ≥ 1, we have

P
[Z − m

m
≥ 4t

]
≤ exp(−mt). (68)

Starting with the bound (67a), setting x = tm yields P
[

Z−m
m ≥ 2

√
t + 2t

]
≤ exp(−tm), Since

4t ≥ 2
√

t + 2t for t ≥ 1, we have P[Z−m
m ≥ 4t] ≤ exp(−tm) for all t ≥ 1.
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