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Abstract

We consider the problem of provably optimal

exploration in reinforcement learning for finite

horizon MDPs. We show that an optimistic

modification to value iteration achieves a regret

bound of Õ(
√
HSAT+H2S2A+H

√
T ) where

H is the time horizon, S the number of states, A
the number of actions and T the number of time-

steps. This result improves over the best previ-

ous known bound Õ(HS
√
AT ) achieved by the

UCRL2 algorithm of Jaksch et al. (2010). The

key significance of our new results is that when

T ≥ H3S3A and SA ≥ H , it leads to a regret of

Õ(
√
HSAT ) that matches the established lower

bound of Ω(
√
HSAT ) up to a logarithmic factor.

Our analysis contains two key insights. We use

careful application of concentration inequalities

to the optimal value function as a whole, rather

than to the transitions probabilities (to improve

scaling in S), and we define Bernstein-based "ex-

ploration bonuses" that use the empirical vari-

ance of the estimated values at the next states (to

improve scaling in H).

1. Introduction

We consider the reinforcement learning (RL) problem of an

agent interacting with an environment in order to maximize

its cumulative rewards through time (Burnetas & Kate-

hakis, 1997; Sutton & Barto, 1998). We model the envi-

ronment as a Markov decision process (MDP) whose tran-

sition dynamics are unknown from the agent. As the agent

interacts with the environment it observes the states, ac-

tions and rewards generated by the system dynamics. This

leads to a fundamental trade off: should the agent explore

poorly-understood states and actions to gain information

and improve future performance, or exploit its knowledge

to optimize short-run rewards.
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The most common approach to this learning problem is

to separate the process of estimation and optimization.

In this paradigm, point estimates of the unknown quanti-

ties are used in place of the unknown parameters and a

plan is made with respect to these estimates. Naive op-

timization with respect to these point estimates can lead

to premature exploitation and so may never learn the op-

timal policy. Dithering approaches to exploration (e.g.,

ǫ-greedy) address this failing through random action se-

lection. However, as this exploration is not directed the

resultant algorithms may take exponentially long to learn

(Kearns & Singh, 2002). In order to learn efficiently it is

necessary that the agent prioritizes potentially informative

states and actions. To do this, it is important that the agent

maintains some notion of its own uncertainty. In some

sense, given any prior belief, the optimal solution to this

exploration/exploitation dilemma is given by the dynamic

programming in the extended Bayesian belief state (Bert-

sekas, 2007). However, the computational demands of this

method become intractable for even small problems (Guez

et al., 2013) while finite approximations can be arbitrarily

poor (Munos, 2014).

To combat these failings, the majority of provably efficient

learning algorithms employ a heuristic principle known as

optimism in the face of uncertainty (OFU). In these algo-

rithms, each state and action is afforded some “optimism”

such that its imagined value is as high as statistically plau-

sible. The agent then chooses a policy under this opti-

mistic view of the world. This allows for efficient explo-

ration since poorly-understood states and actions are af-

forded higher optimistic bonus. As the agent resolves its

uncertainty, the effects of optimism will reduce and the

agent’s policy will approach optimality. Almost all rein-

forcement learning algorithms with polynomial bounds on

sample complexity employ optimism to guide exploration

(Kearns & Singh, 2002; Brafman & Tennenholtz, 2002;

Strehl et al., 2006; Dann et al., 2017).

An alternative principle motivated by the Thompson sam-

pling (Thompson, 1933) has emerged as a practical com-

petitor to optimism. The algorithm posterior sampling re-

inforcement learning (PSRL) maintains a posterior distri-

bution for MDPs and, at each episode of interaction, fol-

lows a policy which is optimal for a single random sample

(Strens, 2000). Previous works have argue for the potential
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benefits of such PSRL methods over existing optimistic ap-

proaches (Osband et al., 2013; Osband & Van Roy, 2016b)

but they come with guarantees on the Bayesian regret only.

However a very recent work (Agrawal & Jia, 2017) have

shown that an optimistic version of posterior sampling (us-

ing a max over several samples) achieves a frequentist re-

gret bound Õ(H
√
SAT ) (for large T ) in the more general

setting of weakly communicating MDPs.

In this paper we present a conceptually simple and com-

putationally efficient approach to optimistic reinforcement

learning in finite-horizon MDPs and report results for the

frequentist regret. Our algorithm, upper confidence bound

value iteration (UCBVI) is similar to model-based inter-

val estimation (MBIE-EB) (Strehl & Littman, 2005) with a

delicate alteration to the form of the “exploration bonus”.

In particular UCBVI replaces the universal scalar of the

bonus in MBIE-EB with the empirical variance of the next-

state value function of each state-action pair. This alter-

ation is essential to improve the regret bound from Õ(H)

to Õ(
√
H).

Our key contribution is to establish a high probability regret

bound Õ(
√
HSAT+H2S2A+H

√
T ) where S is the num-

ber of states, A is the number of actions, H is the episode

length and T is the total number of time-steps (and where Õ
ignores logarithmic factors). Importantly, for T > H3S3A
and SA ≥ H this bound is Õ(

√
HSAT ), which matches

the established lower bound for this problem, up to loga-

rithmic factors (Osband & Van Roy, 2016a).1 This positive

result is the first of its kind and helps to address an ongoing

question about where the fundamental lower bounds lie for

reinforcement learning in finite horizon MDPs (Bartlett &

Tewari, 2009; Dann & Brunskill, 2015; Osband & Van Roy,

2016a). Our refined analysis contains two key ingredients:

• We use careful application of Bernstein and Freed-

man inequalities (Bernstein, 1927; Freedman, 1975)

to the concentration of the optimal value function di-

rectly, rather than building confidence sets for the

transitions probabilities and rewards, like in UCRL2

(Jaksch et al., 2010) and UCFH (Dann & Brunskill,

2015).

• We use empirical-variance exploration bonuses based

on Bernstein’s inequality, which together with a recur-

sive Bellman-type Law of Total Variance (LTV) pro-

vide tight bounds on the expected sum of the variances

of the value estimates, in a similar spirit to the analysis

from (Azar et al., 2013; Lattimore & Hutter, 2012).

1In fact the lower bound of (Jaksch et al., 2010) is for the more
general setting of the weakly communicating MDPs and it doesn’t
directly apply to our setting. But a similar approach can be used
to prove a lower bound of same order for the finite-horizon MDPs,
as it is already used in (Osband & Van Roy, 2016a).

At a high level, this work addresses the noted shortcomings

of existing RL algorithms (Bartlett & Tewari, 2009; Jaksch

et al., 2010; Osband & Van Roy, 2016b), in terms of de-

pendency on S and H . We demonstrates that it is possible

to design a simple and computationally efficient optimistic

algorithm that simultaneously address both the loose scal-

ing in S and H to obtain the first regret bounds that match

the Ω(
√
HSAT ) lower bounds as T becomes large.

We should be careful to mention the current limitations of

our work, each of which may provide fruitful ground for fu-

ture research. First, we study the setting of episodic, finite

horizon MDPs and not the more general setting of weakly

communicating systems (Bartlett & Tewari, 2009; Jaksch

et al., 2010). Also we assume that the horizon length H
is known to the learner. Further, our bounds only improve

over previous scaling Õ(HS
√
AT ) for T > H3S3A.

We hope that this work will serve to elucidate several of the

existing shortcomings of exploration in the tabular setting

and help further the direction of research towards provably

optimal exploration in reinforcement learning.

2. Problem formulation

In this section, we briefly review some notation, as well as

some standard concepts and definitions from the theory of

Markov decision processes (MDPs).

Markov Decision Problems We consider the problem of

undiscounted episodic reinforcement learning (RL) (Bert-

sekas & Tsitsiklis, 1996), where an RL agent interacts

with a stochastic environment and this interaction is mod-

eled as a discrete-time MDP. An MDP is a quintuple

〈S,A, P,R,H〉, where S and A are the set of states and

actions, P is the state transition distribution, The function

R : S×A → ℜ is a real-valued function on the state-action

space and the horizon H is the length of episode. We de-

note by P (·|x, a) and R(x, a) the probability distribution

over the next state and the immediate reward of taking ac-

tion a at state x, respectively. The agent interacts with the

environment in a sequence of episodes. The interaction be-

tween the agent and environment at every episode2 k ∈ [K]
is as follows: starting from xk,1 ∈ S which is chosen by

the environment, the agent interacts with the environment

for H steps by following a sequence of actions chosen in

A and observes a sequence of next-states and rewards un-

til the end of episode. The initial state xk,1 may change

arbitrarily from one episode to the next. We also use the

notation ‖ · ‖1 for the ℓ1 norm throughout this paper.

Assumption 1 (MDP Regularity). We assume S and A are

finite sets with cardinalities S, A, respectively. We also

assume that the immediate reward R(x, a) is deterministic

2We write [n] for {i ∈ N | 1 ≤ i ≤ n}.
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and belongs to the interval [0, 1].3

In this paper we focus on the setting where the reward func-

tion R is known, but extending our algorithm to unknown

stochastic rewards poses no real difficulty.

The policy during an episode is expressed as a mapping

π : S × [H] → A. The value V π
h : S → R de-

notes the value function at every step h = 1, 2, . . . , H
and state x ∈ S such that V π

h (x) corresponds to the ex-

pected sum of H − h rewards received under policy π,

starting from xh = x ∈ S . Under Assumption 1 there

exists always a policy π∗ which attains the best possible

values, and we define the optimal value function V ∗
h (x)

def
=

supπ V
π
h (x) for all x ∈ S and h ≥ 1. The policy π

at every step h defines the state transition kernel Pπ
h and

the reward function rπh as Pπ
h (y|x)

def
= P (y|x, π(x, h))

and rπh(x)
def
= R(x, π(x, h)) for all x ∈ S . For every

V : S → R the right-linear operators P · and Pπ
h · are

also defined as (PV )(x, a)
def
=

∑
y∈SP (y|x, a)V (y) for

all (x, a) ∈ S ×A and (Pπ
h V )(x)

def
=

∑
y∈S Pπ

h (y|s)V (y)
for all x ∈ S , respectively. The Bellman operator for

the policy π, at every step h > 0 and x ∈ S , is defined

as (T π
h V )(x)

def
= rπh(x) + (Pπ

h V )(x). We also define

the state-action Bellman operator for all (x, a) ∈ S ×A
as (T V )(x, a)

def
= R(x, a) + (PV )(x, a) and the opti-

mality Bellman operator for all x ∈ S as (T ∗V )(x)
def
=

maxa∈A(T V )(x, a). For ease of exposition, we remove

the dependence on x and (x, a), e.g., writing PV for

(PV )(x, a) and V for V (x), when there is no possible con-

fusion.

We measure the performance of the learner over T = KH
steps4 by the regret Regret(K), defined as

Regret(K)
def
=

K∑

k=1

V ∗
1 (xk,1)− V πk

1 (xk,1),

where πk is the control policy followed by the learner at

episode k. Thus the regret measures the expected loss of

following the policy produced by the learner instead of the

optimal policy. So the goal of learner is to follow a se-

quence of policies π1, π2, . . . , πK such that Regret(K) is

as small as possible.

3. Upper confidence bound value iteration

In this section we introduce two variants of the algorithm

that we investigate in this paper. We call the algorithm up-

per confidence bound value iteration (UCBVI). UCBVI is

3For rewards in [Rmin, Rmax] simply rescale these bounds.
4In this paper we will often substitute T=KH to highlight

various dependencies relative to the existing literature. This
equivalence should be kept in mind by the reader.

an extension of value iteration which guarantees that the

resultant value function is a (high-probability) upper con-

fidence bound (UCB) on the optimal value function. This

algorithm is related to the model based interval estimation

(MBIE-EB) algorithm (Strehl & Littman, 2008). Our key

contribution is the precise design of the upper confidence

sets, and the analysis which lead to tight regret bounds.

UCBVI, described in Algorithm 1, calls UCB-Q-values

(Algorithm 2) which returns UCBs on the Q-values com-

puted by value iteration using an empirical Bellman opera-

tor to which is added a confidence bonus bonus. We con-

sider two variants of UCBVI depending on the structure of

bonus, which we present in Algorithms 3 and 4.

Algorithm 1 UCBVI

Initialize data H = ∅
for episode k = 1, 2, . . . ,K do

Qk,h = UCB− Q− values(H)
for step h = 1, . . . , H do

Take action ak,h = argmaxa Qk,h(xk,h, a)
Update H = H ∪ (xk,h, ak,h, xk,h+1)

end for

end for

Algorithm 2 UCB-Q-values

Require: Bonus algorithm bonus, Data H
Compute, for all (x,a,y)∈S×A×S ,

Nk(x,a,y)=
∑

(x′,a′,y′)∈HI(x′=x,a′=a,y′=y)

Nk(x,a)=
∑

y∈SNk(x,a,y)
N ′

k,h(x,a)=
∑

(xi,h,ai,h,xi,h+1)∈HI(xi,h=x,ai,h=a)

Let K={(x,a)∈S×A, Nk(x,a)>0}
Estimate P̂k(y|x,a)= Nk(x,a,y)

Nk(x,a)
for all (x,a)∈K

Initialize Vk,H+1(x)=0 for all (x,a)∈S×A
for h=H,H−1,...,1 do

for (x,a)∈S×A do

if (x,a)∈K then

bk,h(x,a)=bonus(P̂k,Vk,h+1,Nk,N
′
k,h)

Qk,h(x,a)=min
(
Qk−1,h(x,a),H,

R(x,a)+(P̂kVk,h+1)(x,a)+bk,h(x,a)
)

else

Qk,h(x,a)=H
end if

Vk,h(x)=maxa∈AQk,h(x,a)
end for

end for

return Q-values Qk,h

The first of these UCBVI-CH is based upon Chernoff-

Hoeffding’s concentration inequality, considers UCBVI

with bonus = bonus_1. bonus_1 is a very simple bound

which only assumes that values are bounded in [0, H]. We
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will see in Theorem 1 that this very simple algorithm can

already achieve a regret bound of Õ(H
√
SAT ), thus im-

proving the best previously known regret bounds from a

S to a
√
S dependence. The intuition for this improved

S-dependence is that our algorithm (as well as our anal-

ysis) does not consider confidence sets on the transition

dynamics P (y|x, a) like UCRL2 and UCFH do, but in-

stead directly maintains confidence intervals on the opti-

mal value function. This is crucial as, for any given (x, a),
the transition dynamics are S-dimensional whereas the Q-

value function is one-dimensional.

Algorithm 3 bonus_1

Require: P̂k(x, a), Nk(x, a)

b(x, a) = 7HL
√

1
Nk(x,a)

where L = ln(5SAT/δ),

return b

However, the loose form of UCB given by UCBVI-CH

does not look at the value function of the next state, and

just consider it as being bounded in [0, H]. However,

much better bounds can be obtained by looking at the vari-

ance of the next state values. Our main result relies upon

UCBVI with bonus = bonus_2, which we refer to as

UCBVI-BF as it relies on Bernstein-Freedman’s concen-

tration inequalities to build the confidence set. UCBVI-BF

builds upon the intuition for UCBVI-CH but also incorpo-

rates a variance-dependent exploration bonus. This leads to

tighter exploration bonuses and an improved regret bound

of Õ(
√
HSAT ).

Algorithm 4 bonus_2

Require: P̂k(x, a), Vk,h+1, Nk, N
′
k,h

b(x,a)=

√
8LVarY∼P̂k(·|x,a)

(Vk,h+1(Y ))

Nk(x,a)
+

14HL

3Nk(x,a)

+

√√√√8
∑

yP̂k(y|x,a)
[
min

(
1002H3S2AL2

N ′

k,h+1
(y) ,H2

)]

Nk(x,a)

where L=ln(5SAT/δ)
return b

Compared to UCBVI-BF here we use a bonus built from

the empirical variance of the estimated next values. The

idea is that if we had knowledge of the optimal value V ∗,

we could build tight confidence bounds using the variance

of the optimal value function at the next state in place of the

loose bound of H . Since however V ∗ is unknown, here we

use as a surrogate the empirical variance of the estimated

values. As more data is gathered, this variance estimate

will converge to the variance of V ∗. Now we need to make

sure our estimates Vk,h are optimistic (i.e., that they upper

bound V ∗
h ) at all times. This is achieved by adding an ad-

ditional bonus (last term in b(x, a)), which guarantees that

we upper bound the variance of V ∗. Now, using an iter-

ative -Bellman-type- Law of Total Variance, we have (see

proof) that the sum of the next-state variances of V ∗ (over

H time steps) (which is related to the sum of the explo-

ration bonuses over H steps) is bounded by the variance

of the H-steps return. Thus the size of the bonuses built

by UCBVI-BF are constrained over the H steps. And we

prove that the sum of those bonuses do not grow linearly

in H but in
√
H only. This is the key for our improved

dependence from H to
√
H .

4. Main results

In this section we present the main results of the paper,

which are upper bounds on the regret of UCBVI-CH and

UCBVI-BF algorithms. We assume Assumption 1 holds.

Theorem 1 (Regret bound for UCBVI-CH ).

Consider a parameter δ > 0. Then the regret of

UCBVI-CH is bounded w.p. at least 1− δ, by

Regret(K) ≤ 20H3/2L
√
SAK + 250H2S2AL2,

where L = ln(5HSAT/δ).

For T ≥ HS3A and SA ≥ H this bound translates to a

regret bound of Õ(H
√
SAT ), where T = KH is the total

number of time-steps at the end of episode K.

Theorem 1 is significant in that, for large T , it improves

the regret dependence from S to
√
S, compared to the best

known bound of (Jaksch et al., 2010). The main intuition

for this improved S-dependence is that we bound the esti-

mation error of the next-state value function directly, in-

stead of the transition probabilities. More precisely, in-

stead of bounding the estimation error (P̂πk

k −Pπk)Vk,h+1

by ‖P̂πk

k − Pπk‖1‖Vk,h+1‖∞ (as is done in (Jaksch et al.,

2010) for example), we bound (P̂πk

k − Pπk)V ∗
h+1 instead

(for which a bound with no dependence on S can be

achieved since V ∗ is deterministic) and handle carefully

the correction term (P̂πk

k − Pπk)(Vk,h+1 − V ∗
h+1).

Our second result, Theorem 2, demonstrates that we can

improve upon the H-dependence by using a more refined,

Bernstein-Friedman-type, exploration bonus.

Theorem 2 (Regret bound for UCBVI-BF ).

Consider a parameter δ > 0. Then the regret of

UCBVI-BF is bounded w.p. 1− δ, by

Regret(K) ≤ 30HL
√
SAK + 2500H2S2AL2

+4H3/2
√
KL,

where L = ln(5HSAT/δ).
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We note that for T ≥ H3S3A and SA ≥ H this bound

translates to a regret bound of Õ(
√
HSAT ). This result

is particularly significant since, for T large enough (i.e.,

T ≥ H3S3A), our bound is Õ(
√
HSAT ) which matches

the established lower bound Ω(
√
HSAT ) of (Jaksch et al.,

2010; Osband & Van Roy, 2016a) up to logarithmic factors.

The key insight is to apply concentration inequalities to

bound the estimation errors and the exploration bonuses in

terms of the variance of V ∗ at the next state. We then use

the fact that the sum of these variances is bounded by the

variance of the return (see e.g., Munos & Moore, 1999;

Azar et al., 2013; Lattimore & Hutter, 2012), which shows

that the estimation errors accumulate as
√
H instead of lin-

early in H , thus implying the improved H-dependence.

Computational efficiency

Theorems 1 and 2 guarantee the statistical efficiency of

UCBVI. In addition, both UCBVI-CH and UCBVI-BF

are computationally tractable. Each episode both algo-

rithms perform an optimistic value iteration with compu-

tational cost of the same order as solving a known MDP. In

fact, the computational cost of these algorithms can be fur-

ther reduced by only selectively recomputing UCBVI af-

ter sufficiently many observations. This technique is com-

mon to the literature (Jaksch et al., 2010; Dann & Brunskill,

2015) and would not affect the Õ statistical efficiency. The

computational cost of this variant of UCBVI then amounts

to Õ(SAmin(SA, T )min(T, S)) as it only needs to up-

date the model Õ(SA) times (Jaksch et al., 2010).

Weakly communicating MDPs

In this short paper we focus on the setting of finite horizon

MDPs. By comparison, previous optimistic approaches to

exploration, such as UCRL2, provide bounds for the more

general setting of weakly communicating MDPs (Jaksch

et al., 2010; Bartlett & Tewari, 2009). However, we believe

that much of the insight from the UCBVI algorithm (and

its analysis) will carry over to this more general setting us-

ing existing techniques such as ‘the doubling trick‘ (Jaksch

et al., 2010).

5. Proof sketch

Here we provide the sketch proof of our results. The full

proof is deferred to the appendix.

5.1. Sketch Proof of Theorem 1

Let Ω = {Vk,h ≥ V ∗
h , ∀k, h} be the event under which

all computed Vk,h values are upper bounds on the optimal

value function. Using backward induction on h (and stan-

dard concentration inequalities) one can prove that Ω holds

with high probability (see Lem. 18 in the appendix). To

simplify notations in this sketch of proof we will not make

the numerical constants explicit, and instead we will de-

note by � a numerical constant which can vary from line

to line. The exact values of these constants are provided

in the full proof. We will also make use of simplified no-

tations, such as using L to represent the logarithmic term

L = ln(�HSAT/δ).

The cumulative regret at episode K is Regret(K)
def
=

∑
1≤k≤K V ∗

1 (xk,1) − V πk

1 (xk,1). Define R̃egret(K)
def
=∑

1≤k≤K Vk,1(xk,1) − V πk

1 (xk,1). Under Ω we have

Regret(K) ≤ R̃egret(K), so we now bound R̃egret(K).

Define ∆k,h
def
= V ∗

h −V πk

h and ∆̃k,h
def
= Vk,h−V πk

h . Thus

∆k,h ≤ ∆̃k,h = P̂πk

k Vk,h+1 + bk,h − PπkV πk

h+1

= (P̂πk

k − Pπk)Vk,h+1 + Pπk∆̃k,h+1 + bk,h.

The difficulty in bounding (P̂πk

k −Pπk)Vk,h+1 is that both

Vk,h+1 and P̂πk

k are random variables and are not inde-

pendent (the value function Vk,h+1 computed at h + 1
may depend on the samples collected from state xh,k),

thus a straightforward application of Chernoff-Hoeffding

(CH) inequality does not work here. In (Jaksch et al.,

2010), this issue is addressed by bounding it by ‖P̂πk

k −
Pπk‖1‖Vk,h+1‖∞ at the price of an additional

√
S.

The main contribution of our Õ(H
√
SAT ) bound (which

removes a
√
S factor compared to the previous bound of

(Jaksch et al., 2010)) is to handle this term more properly.

Instead of directly bounding (P̂πk

k −Pπk)Vk,h+1, we bound

(P̂πk

k −Pπk)V ∗
h+1, using straightforward application of CH

(which removes the
√
S factor since V ∗

h+1 is deterministic),

and deal with the correction term (P̂πk

k − Pπk)(Vk,h+1 −
V ∗
h+1). We have

∆̃k,h = (P̂πk

k − Pπk)(Vk,h+1 − V ∗
h+1)

+Pπk∆̃k,h+1 + bk,h + ek,h,

where ek,h
def
= (P̂πk

k − Pπk)V ∗
h+1(xk,h) is the estimation

error of the optimal value function at the next state. Defin-

ing δ̃k,h
def
= ∆̃k,h(xk,h), we have

δ̃k,h ≤ (P̂πk

k − Pπk)∆k,h+1(xk,h) + δ̃k,h+1

+ǫk,h + bk,h + ek,h,

where ǫk,h
def
= Pπk∆k,h+1(xk,h)−∆k,h+1(xk,h+1).

Step 1: bound on the correction term (P̂πk

k −
Pπk)∆k,h+1(xk,h). Using Bernstein’s inequality (B),

this term is bounded by

∑

y

Pπk(y|xk,h)

√
�L

Pπk(y|xk,h)nk,h
∆k,h+1(y) +

�SHL

nk,h
,
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where nk,h
def
= Nk(xk,h, πk(xk,h)). Now considering only

the y such that Pπk(y|xk,h)nk,h ≥ �H2L, and since

0 ≤ ∆k,h+1 ≤ ∆̃k,h+1, then (P̂πk

k −Pπk)∆k,h+1(xk,h) is

bounded by

ǭk,h +

√
�L

Pπk(xk,h+1|xk,h)nk,h
δ̃k,h+1 +

�SHL

nk,h

≤ ǭk,h +
1

H
δ̃k,h+1 +

�SHL

nk,h
,

where ǭk,h
def
=

√
�L
nk,h

(∑
y P

πk(y|xk,h)
∆̃k,h+1(y)√
Pπk (y|xk,h)

−
δ̃k,h+1√

Pπk (xk,h+1|xk,h)

)
.

The sum over the neglected y such that Pπk(y|xk,h)nk,h <
�H2L contributes to an additional term

∑

y

√
�Pπk(y|xk,h)nk,hL

n2
k,h

∆k,h+1(y) ≤ �SH2L

nk,h
.

Neglecting this term (and the smaller order term

�SHL/nk,h) for now (by the pigeon-hole principle we

can prove that these terms contribute to the final regret by

a constant at most �S2AH2L2), we have

δ̃k,h ≤
(
1 +

1

H

)
δ̃k,h+1 + ǫk,h + ǭk,h + bk,h + ek,h

≤
(
1 +

1

H

)H

︸ ︷︷ ︸
≤e

H−1∑

i=h

(
ǫk,i + ǭk,i + bk,i + ek,i

)
.

The regret is thus bounded by

R̃egret(K) ≤ �

∑

k,h

(ǫk,h + ǭk,h + bk,h + ek,h). (1)

We now bound those 4 terms. It is easy to check that∑
k,h ǫk,h and

∑
k,h ǭk,h are sums of martingale differ-

ences, which are bounded using Azuma’s inequality, and

lead to a regret of Õ(H
√
T ) without dependence on the

size of state and action space. The leading terms in the re-

gret bound comes from the sum of the exploration bonuses∑
k,h bk,h and the estimation errors

∑
k,h ek,h.

Step 2: Bounding the martingales
∑

k,h ǫk,h and∑
k,h ǭk,h. Using Azuma’s inequality we deduce

∑

k,h

ǫk,h
(Az)

≤ �H
√
TL,

∑

k,h

ǭk,h
(Az)

≤
√
�TL. (2)

Step 3: Bounding the exploration bonuses
∑

k,h bk,h:

Using the pigeon-hole principle, we have

∑

k,h

bk,h = �HL
∑

k,h

√
1

nk,h

= �HL
∑

x,a

NK(x,a)∑

n=1

√
1

n

≤ �HL
√
SAT . (3)

Step 4: Bounding on the estimation errors
∑

k,h ek,h.

Using CH, w.h.p. we have ek,h = (P̂πk

k − Pπk)V ∗
h+1

(CH)

≤
�H

√
L

nk,h
. Thus this bound on the estimation errors are

of the same order as the exploration bonuses (which is the

reason we choose those bonuses...).

Putting everything together: Plugging (2) and (3) into

(1) (and adding the smaller order term) we deduce

Regret(K)≤ R̃egret(K)≤�
(
H

3
2L

√
SAK +H2S2AL2

)
.

5.2. Sketch Proof of Theorem 2

The proof of Theorem 1 relied on proving by a straightfor-

ward induction over h that Ω = {Vk,h ≥ V ∗
h , ∀k, h} hold

with high probability. In the case of exploration bonuses

defined by:

bk,h(x, a)=

√
�LVY∼P̂

πk
k

(·|x,a)

(
Vk,h+1(Y )

)

Nk(x, a)
+

�HL

Nk(x, a)︸ ︷︷ ︸
empirical Bernstein

+

√√√√min
(
�H3S2AL2

∑
y

P̂k(y|x,a)
N ′

k,h+1
(y) , H

2
)

Nk(x, a)︸ ︷︷ ︸
additional bonus

,

(4)

the backward induction over h is not straightforward. In-

deed, if the Vk,h+1 are upper bounds on V ∗
h+1, it is not nec-

essarily the case that the empirical variance of Vk,h+1 are

upper bound on the empirical variance of V ∗
h+1. However

we can prove by (backward) induction over h that Vk,h+1 is

sufficiently close to V ∗
h+1 to guarantee that the variance of

those terms are sufficiently close to each other so that the

additional bonus (additional bonus in (4)) will make sure

that Vk,h is still an upper-bound on V ∗
h . More precisely,

define the set of indices:

[k, h]hist
def
= {(i, j), s.t.(1 ≤ i ≤ k ∧ 1 ≤ j ≤ H)

∨(i = k ∧ h < j ≤ H)},
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and the event Ωk,h
def
= {Vi,j ≥ V ∗

h , (i, j) ∈ [k, h]hist}.

Our induction is the following:

• Assume that Ωk,h holds. Then we prove that

(Vk,h+1 − V ∗
h+1)(y) ≤ �H

√
SAL

N ′

k,h+1
(y) .

• We deduce that V
Y ∼P̂k(·|x,a)

(
Vk,h+1(Y )

)
+

�H3S2AL2 ∑

y

P̂k(y|x,a)
N′

k,h+1
(y)

≥ V
Y ∼P̂k(·|x,a)

(
V ∗
h+1(Y )

)
,

so the additional bonus compensates for the possible

variance difference. Thus Vk,h ≥ V ∗
h and Ωk,h−1

holds.

So in order to prove that all values computed by the

algorithm are upper bounding V ∗, we just need to

prove that under Ωk,h, we have (Vk,h+1 − V ∗
h+1)(y) ≤

min(�H1.5SL
√

A
N ′

k,h+1
(y) , H), which is obtained by de-

riving the following regret bound on

R̃k,h(y)
def
=

∑

i≤k

(Vi,h+1 − V πi

h+1)(xi,h+1)I{xi,h+1 = y}

≤ �HL
√

SAN ′
k,h+1(y). (5)

Indeed, since {Vi,h}i is a decreasing sequence in i, we have

(Vk,h+1 − V ∗
h+1)(y) ≤ R̃k,h+1(y)/N

′
k,h+1(y)

≤ �HL
√

SA/N ′
k,h+1(y).

Once we have proven that w.h.p., all computed values are

upper bounds on V ∗ (i.e. event Ω), then we prove that under

Ω, the following regret bound holds:

Regret(K) ≤ R̃egret(K) ≤ �(HL
√
SAK +H2S2AL2).

(6)

The proof of (5) relies on the same derivations as those

used for proving (6). The only two differences being that

(i) HK is replaced by N ′
k,h+1(y), the number of times a

state y was reached at time h+ 1, up to episode k, and (ii)

the additional
√
H factor which comes from the fact that

at any episode, N ′
k,h+1(y) can only tick once, whereas the

total number of transitions from y during any episode can

be as large as H . The full proof of (5) will be given in

details in the appendix. We now give a proof sketch of (6)

under Ω.

Similar steps used for proving Theorem 1 apply. The main

difference compared to Theorem 1 is the bound on the sum

of the exploration bonuses and the estimation errors (which

we consider in Steps 3’ and 4’ below). This is where we can

remove the
√
H factor. The use of the Bernstein inequal-

ity makes it possible to bound both of those terms in terms

of the expected sum of variances (under the current policy

πk at any episode k) of the next-state values (for that pol-

icy), and then using recursively the Law of Total Variance

to conclude that this quantity is nothing but the variance of

the returns. This step is detailed now. For simplicity of the

exposition of this sketch we neglect second order terms.

Step 3’: Bounding the sum of exploration bonuses bk,h.

We have

∑

k,h

bk,h = �

√
L
∑

k,h

√
VY∼P̂

πk
h

(·|xk,h)

(
Vk,h+1(Y )

)

nk,h

︸ ︷︷ ︸
main term

+

√
√
√
√

min
(

�H3S2AL2
∑

y

P̂k(y|x,a)
N′

k,h+1
(y)

, H2
)

Nk(x, a)
+

∑

k,h

�L

Nk(x, a)
︸ ︷︷ ︸

second order term

.

By Cauchy-Schwarz, the main term is bounded by(∑
k,h V̂k,h+1

∑
k,h

1
nk,h

)1/2

, where V̂k,h+1
def
=

VY∼P̂
πk
h

(·|xk,h)

(
Vk,h+1(Y )

)
. Since

∑
k,h

1
nk,h

≤
�SA ln(T ) by the pigeon-hole principle, we now focus on

the term
∑

k,h V̂k,h+1.

We now prove that V̂k,h+1 is close to Vπk

k,h+1
def
=

VY∼P
πk
h

(·|xk,h)

(
V πk

h+1(Y )
)

by bounding the following

quantity:

V̂k,h+1 − Vπk

k,h+1

= P̂πkV 2
k,h+1 − (P̂πkVk,h+1)

2

−Pπk(V πk

h+1)
2 + (PπkV πk

h+1)
2

(i)

≤ P̂πkV 2
k,h+1 − Pπk(V πk

h+1)
2 + 2H(Pπk − P̂πk)V ∗

h+1

(ii)

≤ (P̂πk − Pπk)V 2
k,h+1︸ ︷︷ ︸

(ak,h)

+Pπk(V 2
k,h+1 − (V πk

h+1)
2)

︸ ︷︷ ︸
(a′

k,h
)

+�H2

√
L

nk,h
, (7)

where (i) holds since under Ωk,h, Vk,h ≥ V ∗
h ≥ V πk

h and

(ii) holds due to Chernoff Hoeffding.

Step 3’-a: bounding
∑

k,h V̂k,h+1−Vπk

k,h+1. Using sim-

ilar argument as those used in (Jaksch et al., 2010), we have

that

ak,h ≤ H2‖P̂πk − Pπk‖1 ≤ �H2
√

SL/nk,h,

(where nk,h
def
= Nk(xk,h, πk(xk,h))). Thus from the

pigeon-hole principle,
∑

k,h ak,h ≤ �H2S
√
ATL.
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Now a′k,h is bounded as

a′k,h ≤ 2HPπk(Vk,h − V πk

h )

= 2HPπk∆̂k,h.

Thus using Azuma’s inequality,

∑

k,h

a′k,h
(Az)

≤ 2H
∑

k,h

δ̂k,h+1 +�H2
√
TL

≤ 2H2U +�H2
√
TL,

where U is defined as an upper-bound on the pseudo regret:

U
def
=

∑
k,h(bk,h+ek,h)+�H

√
T (an upper bound on the

r.h.s. of (1)).

Step 3’-b: bounding
∑

k,h V
πk

k,h+1. (Dominant term)

For any episode k, E[
∑

h V
πk

k,h+1|Hk] is the expected sum

of variances of the value function V π
k (y) at the next state

y ∼ Pπk(·|xk,h) under the true transition model for the

current policy. A recursive application of the law of to-

tal variance (see e.g., Munos & Moore, 1999; Azar et al.,

2013; Lattimore & Hutter, 2012) shows that this quantity is

nothing else than the variance of the return (sum of H re-

wards) under policy πk: V
(∑

h r(xk,h, πk(xk,h))
)
, which

is thus bounded by H2. Finally, using Freedman’s (Fr) in-

equality to bound
∑

k,h V
πk

k,h+1 by its expectation (see the

exact derivation in the appendix), we deduce

∑

k,h

Vπk

k,h+1

(Fr)

≤
∑

k

E
[∑

h

Vπk

k,h+1|Hk

]
+�H2

√
TL

≤ TH +�H2
√
TL. (8)

Thus, using (8), (7) and the bounds on
∑

ak,h and
∑

a′k,h,

we deduce that

∑

k,h

bk,h ≤ �L
√
(TH +H2U)SA.

Step 4’: Bounding the sum of estimation errors∑
k,h ek,h. We now use Bernstein inequality to bound the

estimation errors

∑

k,h

ek,h =
∑

k,h

(P̂πk

k − Pπk)V ∗
h+1(xk,h)

≤
∑

k,h

�

√
V∗

k,h+1

nk,h
+�

HL

nk,h
,

where V∗
k,h+1

def
= VY∼Pπk (·|xk,h)

(
V ∗
h+1(Y )

)
. Now, in a

very similar way as in Step 3’ above, we relate V∗
k,h+1

to Vπk

k,h+1 and use the Law of total variance to bound∑
k,h V

πk

k,h+1 by HT and deduce that

∑

k,h

ek,h ≤ �L
√
(TH +H2U)SA.

From (1) we see that U ≤ �L
√
(TH +H2U)SA thus

U ≤ �(L
√
HSAT +H2SAL2). This implies (6).

So the reason we are able to remove the
√
H factor from

the regret bound comes from the fact that the sum, over H
steps, of the variances of the next state values (which de-

fine the amplitude of the confidence intervals) is at most

bounded by the variance of the return. Intuitively this

means that the size of the confidence intervals do not add

up linearly over H steps but grows as
√
H only. Although

the sequence of estimation errors are not independent over

time, we are able to demonstrate a concentration of mea-

sure phenomenon that shows that those estimation errors

concentrate as if they were independent.

6. Conclusion

In this paper we refine the familiar concept of optimism

in the face of uncertainty. Our key contribution is the de-

sign and analysis of the algorithm UCBVI-BF , which ad-

dresses two key shortcomings in existing algorithms for op-

timistic exploration in finite MDPs. First we apply a con-

centration to the value as a whole, rather than the transition

estimates, this leads to a reduction from S to
√
S. Next we

apply a recursive law of total variance to couple estimates

across an episode, rather than at each time step individu-

ally, this leads to a reduction from H to
√
H .

Theorem 2 provides the first regret bounds which, for suf-

ficiently large T , match the lower bounds for the problem

Õ(
√
HSAT ) up to logarithmic factors. It remains an open

problem whether we can match the lower bound using this

approach for small T . We believe that the higher order term

can be improved from Õ(H2S2A) to Õ(HS2A) by a more

careful analysis, i.e., a more extensive use of Freedman-

Bernstein inequalities. The same applies to the term of or-

der H
√
T which can be improved to

√
HT .

These results are particularly significant because they help

to estabilish the information-theoretic lower bound of rein-

forcement learning at Ω(
√
HSAT ) (Osband & Van Roy,

2016a), whereas it was suggested in some previous work

that lower-bound should be of Ω(H
√
SAT ). Moving from

this big-picture insight to an analytically rigorous bound is

non-trivial. Although we push many of the technical details

to the appendix, our paper also makes several contributions

in terms of analytical tools that may be useful in subsequent

work. In particular we believe that the way we construct the

exploration bonus and confidence intervals in UCBVI-CH

is novel to the literature of RL. Also the constructive ap-

proach in the proof of UCBVI-CH, which bootstraps the

regret bounds to prove that Vk,hs are ucbs, is another ana-

lytical contribution of this paper.
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