
The Annals of Statistics
2014, Vol. 42, No. 6, 2413–2440
DOI: 10.1214/14-AOS1257
© Institute of Mathematical Statistics, 2014

MINIMAX RISK OF MATRIX DENOISING BY SINGULAR
VALUE THRESHOLDING

BY DAVID DONOHO1 AND MATAN GAVISH1,2

Stanford University

An unknown m by n matrix X0 is to be estimated from noisy measure-
ments Y = X0 + Z, where the noise matrix Z has i.i.d. Gaussian entries.
A popular matrix denoising scheme solves the nuclear norm penalization
problem minX ‖Y −X‖2

F /2+λ‖X‖∗, where ‖X‖∗ denotes the nuclear norm
(sum of singular values). This is the analog, for matrices, of �1 penalization
in the vector case. It has been empirically observed that if X0 has low rank, it
may be recovered quite accurately from the noisy measurement Y .

In a proportional growth framework where the rank rn, number of rows
mn and number of columns n all tend to ∞ proportionally to each other
(rn/mn → ρ, mn/n → β), we evaluate the asymptotic minimax MSE
M(ρ,β) = limmn,n→∞ infλ suprank(X)≤rn

MSE(X0, X̂λ). Our formulas in-
volve incomplete moments of the quarter- and semi-circle laws (β = 1, square
case) and the Marčenko–Pastur law (β < 1, nonsquare case). For finite m and
n, we show that MSE increases as the nonzero singular values of X0 grow
larger. As a result, the finite-n worst-case MSE, a quantity which can be eval-
uated numerically, is achieved when the signal X0 is “infinitely strong.”

The nuclear norm penalization problem is solved by applying soft thresh-
olding to the singular values of Y . We also derive the minimax threshold,
namely the value λ∗(ρ), which is the optimal place to threshold the singular
values.

All these results are obtained for general (nonsquare, nonsymmetric) real
matrices. Comparable results are obtained for square symmetric nonnegative-
definite matrices.

1. Introduction. Suppose we observe a single noisy matrix Y , generated by
adding noise Z to an unknown matrix X0, so that Y = X0 + Z, where Z is a noise
matrix. We wish to recover the matrix X0 with some bound on the mean squared er-
ror (MSE). This is hopeless when X0 is a completely general matrix, and the noise
Z is arbitrary; but when X0 happens to be of relatively low rank, and the noise ma-
trix is i.i.d. standard Gaussian, one can indeed guarantee quantitatively accurate
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recovery. This paper provides explicit formulas for the best possible guarantees
obtainable by a popular, computationally practical procedure.

Specifically, let Y , X0 and Z be m-by-n real matrices (a set we denote by
Mm×n), and suppose that Z has i.i.d. entries, Zi,j ∼ N (0,1). Consider the fol-
lowing nuclear-norm penalization (NNP) problem:

(NNP) X̂λ = argmin
X∈Mm×n

1

2
‖Y − X‖2

F + λ‖X‖∗,(1.1)

where ‖X‖∗ denotes the sum of singular values of X ∈ Mm×n, also known as the
nuclear norm, ‖ · ‖F denotes square root of the sum of squared matrix entries, also
known as the Frobenius norm and λ > 0 is a penalty factor. A solution to (NNP)
is efficiently computable by modern convex optimization software [11]; it shrinks
away from Y in the direction of smaller nuclear norm.

Measure performance (risk) by mean-squared error (MSE). When the unknown
X0 is of known rank r and belongs to a matrix class Xm,n ⊂ Mm×n, the minimax
MSE of NNP is

Mm,n(r|X) = inf
λ

sup
X0∈Xm,n

rank(X0)≤r

1

mn
EX0

∥∥X̂λ(X0 + Z) − X0
∥∥2
F ,(1.2)

namely the worst-case risk of X̂λ∗ , where λ∗ is the threshold for which this worst-
case risk is the smallest possible. Here, EX0 denotes expectation with respect to
the random noise matrix Z, conditional on a given value of the signal matrix X0,
and X̂λ(X0 + Z) denotes the denoiser X̂λ acting on the matrix X0 + Z. Note that
the symbol X denotes a matrix class, not a particular matrix. For square matrices,
m = n, we write Mn(r|X) instead of Mn,n(r|X). In a very clear sense Mm,n(r|X)

gives the best possible guarantee for the MSE of NNP, based solely on the rank and
problem size, and not on other properties of the matrix X0.

1.1. Minimax MSE evaluation. In this paper, we calculate the minimax MSE
Mm,n(r|X) for two matrix classes X:

(1) General matrices: X = Matm,n: The signal X0 is a real matrix X0 ∈ Mm×n

(m ≤ n).
(2) Symmetric matrices: X = Symn: The signal X0 is a real, symmetric positive

semidefinite matrix, a set we denote by Sn+ ⊂ Mn×n.

In both cases, the asymptotic MSE (AMSE) in the “large n” asymptotic setting
admits considerably simpler and more accessible formulas than the minimax MSE
for finite n. So in addition to the finite-n minimax MSE, we study the asymptotic
setting where a sequence of problem size triplets (rn,mn,n) is indexed by n → ∞,
and where, along this sequence m/n → β ∈ (0,1) and r/m → ρ ∈ (0,1). We think
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of β as the matrix shape parameter; β = 1 corresponds to a square matrix, and β <

1 to a matrix wider than it is tall. We think of ρ as the fractional rank parameter,
with ρ ≈ 0 implying low rank relative to matrix size. Using these notions we can
define the asymptotic minimax MSE (AMSE)

M(ρ,β|X) = lim
n→∞Mmn,n(rn|X).

We obtain explicit formulas for the asymptotic minimax MSE in terms of in-
complete moments of classical probability distributions: the quarter-circle and
semi-circle laws (square case β = 1) and the Marčenko–Pastur distribution (non-
square case β < 1). Figures 1 and 2 show how the AMSE depends on the matrix
class X, the rank fraction ρ and the shape factor β . We also give explicit formulas
for the optimal regularization parameter λ∗, also as a function of ρ; see Figures 3
and 4.

These minimax MSE results constitute best possible guarantees, in the sense
that for the procedure in question, the MSE is actually attained at some rank r

matrix, so that no better guarantee is possible for the given tuning parameter λ∗;
but also, no other tuning parameter offers a better such guarantee.

1.2. Motivations. We see four reasons to develop these bounds.

1.2.1. Applications. Several important problems in modern signal and image
processing, in network data analysis and in computational biology can be cast as
recovery of low-rank matrices from noisy data, and nuclear norm minimization
has become a popular strategy in many cases; see, for example, [2, 22] and refer-
ences therein. Our results provide sharp limits on what such procedures can hope
to achieve, and validate rigorously the idea that low rank alone is enough to pro-
vide some level of performance guarantee; in fact, they precisely quantify the best
possible guarantee.

1.2.2. Limits on possible improvements. One might wonder whether some
other procedure offers even better guarantees than NNP. Consider then the min-
imax risk over all procedures, defined by

M∗
m,n(r|X) = inf

X̂

sup
X0∈Xm,n

rank(X0)≤r

1

mn
EX0

∥∥X̂(X0 + Z) − X0
∥∥2
F ,(1.3)

where X̂ = X̂(Y ) is some measurable function of the observations, and its corre-
sponding minimax AMSE

M∗(ρ,β|X) = lim
n→∞M∗

mn,n(rn|X),

where the sequences mn and rn are as above. Here one wants to find the best pos-
sible procedure, without regard to efficient computation. We also prove a lower
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bound on the minimax MSE over all procedures, and provide an asymptotic eval-
uation

M∗(ρ,β|X) ≥ M−(ρ,β) ≡ ρ + βρ − βρ2.

In the square case (β = 1), this simplifies to M∗(ρ|X) ≥M−(ρ) ≡ ρ(2 −ρ). The
NNP-minimax MSE is by definition larger than the minimax MSE, M(ρ,β|X) ≥
M∗(ρ,β|X). While there may be procedures outperforming NNP, the perfor-
mance improvement turns out to be limited. Indeed, our formulas show that

M(ρ,β|X)

M−(ρ,β)
≤ 2

(
1 +

√
β

1 + β

)
,

while

lim
ρ→0

M(ρ,β|X)

M−(ρ,β)
= 2

(
1 +

√
β

1 + β

)
.(1.4)

For square matrices (β = 1), this simplifies to

M(ρ|X)

M−(ρ)
≤ 3, lim

ρ→0

M(ρ|X)

M−(ρ)
= 3.(1.5)

In words, the potential improvement in minimax AMSE of any other matrix de-
noising procedure over NNP is at most a factor of 3; and if any such improvement
were available, it would only be available in extreme low-rank situations. Actu-
ally obtaining such an improvement in performance guarantees is an interesting
research challenge.

1.2.3. Parallels in minimax decision theory. The low-rank matrix denoising
problem stands in a line of now-classical problems in minimax decision theory.
Consider the sparse vector denoising problem, where an unknown vector x of in-
terest yields noisy observations y = x + z with noise z ∼i.i.d. N(0,1); the vector x
is sparsely nonzero—#{i :x(i) �= 0} ≤ ε · n—with z and x independent. In words,
a vector with a fraction ≤ ε of nonzeros is observed with noise. In this setting,
consider the following �1-norm penalization problem:

(P1) x̂λ = argmin
x∈Rn

1

2
‖y − x‖2

2 + λ‖x‖1.(1.6)

The sparse vector denoising problem exhibits several striking structural resem-
blances to low-rank matrix denoising:

• Thresholding representation. For a scalar y, define the soft thresholding nonlin-
earity by

ηλ(y) = sign(y) · (|y| − λ
)
+.

In words, values larger than λ are shifted toward zero by λ, while those smaller
than λ are set to zero. The solution vector x̂λ of (P1) obeys (x̂λ)i = ηλ(yi);
namely, it applies ηλ coordinate wise. Similarly, the solution of (NNP) applies
ηλ coordinate wise to the singular values of the noisy matrix Y .
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REMARK. By this observation, (P1) can also be called “soft thresholding”
or “soft threshold denoising,” and in fact, these other terms are the labels in
common use. Similarly, NNP amounts to “soft thresholding of singular values.”
This paper will henceforth use the term singular value soft thresholding (SVST).

• Sparsity/low rank analogy. The objects to be recovered in the sparse vector de-
noising problem have sparse entries; those to be recovered in the low-rank ma-
trix denoising problem have sparse singular values. Thus the fractional sparsity
parameter ε is analogous to the fractional rank parameter ρ. It is natural to ask
the same questions about behavior of minimax MSE in one setting (say, asymp-
totics as ρ → 0) as in the other setting (ε → 0). In fact, such comparisons turn
out to be illuminating.

• Structure of the least-favorable estimand. Among sparse vectors x of a given
fixed sparsity fraction ε, which of these is the hardest to estimate? This should
maximize the mean-squared error of soft thresholding, even under the most
clever choice of λ. This least-favorable configuration is singled out in the mini-
max AMSE

Mn(ε) = inf
λ

sup
#{i:x(i) �=0}≤ε·n

1

n
E‖x̂λ − x‖2

2.(1.7)

In this min/max, the least favorable situation has all its nonzeros, in some sense,
“at infinity”; that is, all sparse vectors which place large enough values on the
nonzeros are nearly least favorable, that is, essentially make the problem max-
imally difficult for the estimator, even when it is optimally tuned. In complete
analogy, in low-rank matrix denoising we will see that all low-rank matrices,
which are in an appropriate sense “sufficiently large,” are thereby almost least
favorable.

• Structure of the minimax smoothing parameter. In the sparse vector denois-
ing AMSE (1.7) the λ = λ(ε) achieving the infimum is a type of optimal reg-
ularization parameter, or optimal threshold. It decreases as ε increases, with
λ(ε) → 0 as ε → 1. Paralleling this, we show that the low-rank matrix denois-
ing AMSE (1.2) has minimax singular value soft threshold λ∗(ρ) decreasing as
ρ increases, and λ∗(ρ) → 0 as ρ → 1.

Despite these similarities, there is one major difference between sparse vector
denoising and low-rank matrix denoising. In the sparse vector denoising problem,
the soft-thresholding minimax MSE was compared to the minimax MSE over all
procedures by Donoho and Johnstone [8]. Let M(ε) = limn→∞ Mn(ε) denote the
soft thresholding AMSE and define the minimax AMSE over all procedures via

M∗(ε) = lim
n→∞ inf

x̂
sup

#{i:x(i) �=0}≤ε·n
1

n
E‖x̂ − x‖2

2,
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where here x̂ = x̂(y) denotes any procedure which is measurable in the obser-
vations. In the limit of extreme sparsity, soft thresholding is asymptotically mini-
max [8],

M(ε)

M∗(ε)
→ 1 as ε → 0.

Breaking the chain of similarities, we are not able to show a similar asymptotic
minimaxity for SVST in the low rank matrix denoising problem. Although equa-
tion (1.4) says that soft thresholding of singular values is asymptotically not more
than a factor of 3 suboptimal, we doubt that anything better than a factor of 3
can be true; specifically, we conjecture that SVST suffers a minimaxity gap. For
example, for β = 1, we conjecture that

M(ρ|X)

M∗(ρ|X)
→ 3 as ρ → 0.

We believe that interesting new estimators will be found improving upon singular
value soft thresholding by essentially this factor of 3. Namely, there may be sub-
stantially better guarantees to be had under extreme sparsity, than those which can
be offered by SVST. Settling the minimaxity gap for SVST seems a challenging
new research question.

1.2.4. Indirect observations. Evaluating the Minimax MSE of SVST has an
intriguing new motivation [6, 7, 17], arising from the newly evolving fields of
compressed sensing and matrix completion.

Consider the problem of recovering an unknown matrix X0 from noiseless, in-
direct measurements. Let A :Rm×n → R

p be a linear operator, and consider ob-
servations

y =A(X0).

In words, y ∈ R
p contains p linear measurements of the matrix object X0. See

the closely related trace regression model [21] which also includes measurement
noise. Can we recover X0? It may seem that p ≥ mn measurements are required,
and in general this would be true; but if X0 happens to be of low rank, and A has
suitable properties, we may need substantially fewer measurements.

Consider reconstruction by nuclear norm minimization,

(Pnuc) min‖X‖∗ subject to y =A(X).(1.8)

Recht and co-authors found that when the matrix representing the operator A
has i.i.d. N (0,1) entries, and the matrix is of rank r , the matrix X0 is recoverable
from p < nm measurements for certain combinations of p and r [18]. The op-
erator A offers so-called Gaussian measurements when the representation of the
operator as a matrix has i.i.d. Gaussian entries. Empirical work by Recht, Xu and
Hassibi [19, 20], Fazel, Parillo and Recht [18], Tanner and Wei [24] and Oymak
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and Hassibi [16] documented for Gaussian measurements a phase transition phe-
nomenon, that is, a fairly sharp transition from success to failure as r increases,
for a given p. Putting ρ = r/m and δ = p/(mn) it appears that there is a criti-
cal sampling rate δ∗(ρ) = δ∗(ρ;β), such that, for δ > δ∗(ρ), NNM is successful
for large m,n, while for δ < δ∗(ρ), NNM fails. δ∗(ρ) provides a sharp “sampling
limit” for low rank matrices, that is, a clear statement of how many measurements
are needed to recover a low rank matrix, by a popular and computationally tractable
algorithm.

In very recent work, [6, 7, 17], it has been shown empirically that the precise
location of the phase transition coincides with the minimax MSE

δ∗(ρ;β) = M(ρ,β|X), ρ ∈ (0,1), β ∈ (0,1);(1.9)

a key requirement for discovering and verifying (1.9) empirically was to obtain an
explicit formula for the right-hand side; that explicit formula is derived and proven
in this paper. Relationship (1.9) connects two seemingly unrelated problems: ma-
trix denoising from direct observations and matrix recovery from incomplete mea-
surements. Both problems are attracting a large and growing research literature.
Equation (1.9) demonstrates the importance of minimax MSE calculations even in
a seemingly unrelated setting where there is no noise and no statistical decision to
be made!

2. Results.

2.1. Least-favorable matrix. We start by identifying the least-favorable situa-
tion for matrix denoising by SVST.

THEOREM 1 (The worst-case matrix for SVST has its principal subspace “at
∞”). Define the risk function of a denoiser X̂ :Mm×n → Mm×n at X0 ∈ Mm×n

by

R(X̂,X0) := 1

m
E

∥∥∥∥X̂
(
X0 + 1√

n
Z

)
− X0

∥∥∥∥2

F

.(2.1)

Let λ > 0, m ≤ n ∈ N and 1 ≤ r ≤ m. For the worst-case risk of X̂λ on m × n

matrices of rank at most r , we have

sup
X0∈Mm×n

rank(X0)≤r

R(X̂λ,X0) = lim
μ→∞R(X̂λ,μC),(2.2)

where C ∈ Mm×n is any fixed matrix of rank exactly r .
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2.2. Minimax MSE. Let Wi(m,n) denote the marginal distribution of the ith
largest eigenvalue of a standard central Wishart matrix Wm(I,n), namely, the ith
largest eigenvalue of the random matrix 1

n
ZZ′ where Z ∈ Mm×n has i.i.d. N (0,1)

entries. Define for 	 > 0 and α ∈ {1/2,1}

Mn(	; r,m,α) = r

m
+ r

n
− r2

mn
+ r(n − r)

mn
	2

(2.3)

+ α
(n − r)

mn

m−r∑
i=1

wi(	;m − r;n − r),

where

wi(	;m,n) =
∫ ∞
	2

(
√

t − 	)2 dWi(m,n)(t)(2.4)

is a combination of the complementary incomplete moments of standard central
Wishart eigenvalues ∫ ∞

	2
tk/2 dWi(m,n)(t)

for k = 0,1,2.

THEOREM 2 (An implicit formula for the finite-n minimax MSE). The mini-
max MSE of SVST over m-by-n matrices of rank at most r is given by

Mn(r,m|Mat) = min
	≥0

Mn(	; r,m,1) and

Mn(r|Sym) = min
	≥0

Mn(	; r, n,1/2),

where the minimum on the right-hand sides is unique.

In fact, we will see that Mn(	; r,m,α) is convex in 	. As the densities of
the standard central Wishart eigenvalues Wi(m,n) are known [25], this makes it
possible, in principle, to tabulate the finite-n minimax risk.

2.3. Asymptotic minimax MSE. A more accessible formula is obtained by cal-
culating the large-n asymptotic minimax MSE, where r = r(n) and m = m(n)

both grow proportionally to n. Let us write minimax AMSE for asymptotic min-
imax MSE. For the case Xm,n = Matm,n we assume a limiting rank fraction
ρ = limn→∞ r/m and limiting aspect ratio β = limn→∞ m/n and consider

M(ρ,β|Mat) = lim
n→∞Mn(r,m|Mat)

(2.5)

= lim
n→∞ inf

λ
sup

X0∈M�βn�×n

rank(X0)≤ρβn

1

mn
E‖X̂λ − X0‖2

F .



MINIMAX RISK OF MATRIX DENOISING 2421

Similarly, for the case Xm,n = Symn, we assume a limiting rank fraction ρ =
limn→∞ r/n and consider

M(ρ|Sym) = lim
n→∞Mn(r|Sym)

(2.6)

= lim
n→∞ inf

λ
sup

X0∈Sn+
rank(X0)≤ρn

1

n2E‖X̂λ − X0‖2
F .

The Marc̆enko–Pastur distribution [15] gives the asymptotic empirical distribu-
tion of Wishart eigenvalues. It has density

pγ (t) = 1

2πγ t

√
(γ+ − t)(t − γ−) · 1[γ−,γ+](t),(2.7)

where γ± = (1 ± √
γ )2. Define the complementary incomplete moments of the

Marc̆enko–Pastur distribution

Pγ (x;k) =
∫ γ+

x
tkpγ (t) dt.(2.8)

Finally, let

M(	;ρ, ρ̃, α)

= ρ + ρ̃ − ρρ̃ + (1 − ρ̃)
(2.9)

×
[
ρ	2

+ α(1 − ρ)

(
Pγ

(
	2;1

) − 2	Pγ

(
	2; 1

2

)
+ 	2Pγ

(
	2;0

))]
,

with γ = γ (ρ, ρ̃) = (ρ̃ − ρρ̃)/(ρ − ρρ̃).

THEOREM 3 (An explicit formula for the minimax AMSE). For the minimax
AMSE of SVST we have

M(ρ,β|Mat) = min
0≤	≤γ+

M(	;ρ,βρ,1),(2.10)

M(ρ|Sym) = min
0≤	≤γ+

M(	;ρ,ρ,1/2),(2.11)

with γ+ = (1 + √
(β − βρ)/(1 − βρ))2, where the minimum on the right-hand

sides is unique. Moreover, for any 0 < β ≤ 1, the function ρ �→ M(ρ,β|Mat) is
continuous and increasing on ρ ∈ [0,1], with M(0, β|Mat) = 0 and
M(1, β|Mat) = 1. The same is true for M(ρ|Sym).

The curves ρ �→M(ρ,β|Mat), for different values of β , are shown in Figure 1.
The curves ρ �→M(ρ,β|Mat) and ρ �→ M(ρ,β|Mat) are shown in Figure 2.
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FIG. 1. The minimax AMSE curves for case Mat, defined in (2.10), for a few values of β .

2.4. Computing the minimax AMSE. To compute M(ρ,β|Mat) and
M(ρ|Sym) we need to minimize (2.9). Define

	∗(ρ,β,α) = argmin
	

M(	;ρ, ρ̃, α).(2.12)

FIG. 2. The minimax AMSE curves for case Mat with β = 1 and case Sym.
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THEOREM 4 (A characterization of the minimax AMSE for general β). For
any α ∈ {1/2,1} and β ∈ (0,1], the function ρ �→ 	∗(ρ,β,α) is decreasing on
ρ ∈ [0,1] with

lim
ρ→0

	∗(ρ,β,α) = 	∗(0, β,α) = 1 + √
β and(2.13)

lim
ρ→1

	∗(ρ,β,α) = 	∗(1, β,α) = 0.(2.14)

For ρ ∈ (0,1), the minimizer 	∗(ρ,β,α) is the unique root of the equation in 	

Pγ

(
	2; 1

2

)
− 	 · Pγ

(
	2;0

) = 	ρ

α(1 − ρ)
,(2.15)

where the left-hand side of (2.15) is a decreasing function of 	.

The minimizer 	∗(ρ,β,α) can therefore be determined numerically by bi-
nary search. [In fact, we will see that 	∗ is the unique minimizer of the convex
function 	 �→ M(	;ρ, ρ̃, α).] Evaluating M(ρ,β|Mat) and M(ρ|Sym) to pre-
cision ε thus requires O(log(1/ε)) evaluations of the complementary incomplete
Marc̆enko–Pastur moments (2.8).

For square matrices (β = 1), this computation turns out to be even simpler, and
only requires evaluation of elementary trigonometric functions.

THEOREM 5 (A characterization of the minimax AMSE for β = 1). We have

M(	;ρ,ρ,α) = ρ(2 − ρ)

(2.16) + (1 − ρ)
[
ρ	2 + α(1 − ρ)

(
Q2(	) − 2λQ1(	) + 	2Q0(	)

)]
,

where

Q0(x) = 1

π

∫ 2

x

√
4 − t2 dt

(2.17)

= 1 − x

2π

√
4 − x2 − 2

π
a tan

(
x√

4 − x2

)
,

Q1(x) = 1

π

∫ 2

x
t

√
4 − t2 dt = 1

3π

(
4 − x2)3/2

,(2.18)

Q2(x) = 1

π

∫ 2

x
t2

√
4 − t2 dt

(2.19)

= 1 − 1

4π
x

√
4 − x2

(
x2 − 2

) − 2

π
a sin

(
x

2

)



2424 D. DONOHO AND M. GAVISH

are the complementary incomplete moments of the quarter circle law. Moreover,
for α ∈ {1/2,1}

	∗(ρ,ρ,α) = 2 · sin
(
θα(ρ)

)
,(2.20)

where θα(ρ) ∈ [0, π/2] is the unique solution to the transcendental equation

θ + cot(θ) ·
(

1 − 1

3
cos2(θ)

)
= π(1 + α−1ρ − ρ)

2(1 − ρ)
.(2.21)

The left-hand side of (2.21) is a decreasing function of θ .

In [4] we make available a Matlab script, and a web-based calculator for eval-
uating M(ρ,β|Mat) and M(ρ|Sym). The implementation provided employs bi-
nary search to solve (2.15) [or (2.21) for β = 1] and then feeds the minimizer 	∗
into (2.9) [or into (2.16) for β = 1].

2.5. Asymptotically optimal tuning for the SVST threshold λ. The crucial
functional 	∗, defined in (2.12), can now be explained as the optimal (minimax)
threshold of SVST in a special system of units. Let λ∗(m,n, r|X) denote the min-
imax tuning threshold, namely

λ∗(m,n, r|X) = argmin
λ

sup
X0∈Xm,n

rank(X0)≤r

1

mn
EX0

∥∥X̂λ(X0 + Z) − X0
∥∥2
F .

THEOREM 6 (Asymptotic minimax tuning of SVST). Consider again a se-
quence n �→ (m(n), r(n)) with a limiting rank fraction ρ = limn→∞ r/m and a
limiting aspect ratio β = limn→∞ m/n. For the asymptotic minimax tuning thresh-
old we have

lim
n→∞

1√
n
λ∗(m,n, r|Mat) =

√
(1 − βρ) · 	∗(ρ,β,1) and

lim
n→∞

1√
n
λ∗(n, r|Sym) = √

(1 − ρ) · 	∗(ρ,1,1/2).

The curves ρ �→ limn→∞ λ∗(m,n, r|Mat)/
√

n, namely the scaled asymp-
totic minimax tuning threshold for SVST, are shown in Figure 3 for dif-
ferent values of β . The curves ρ �→ limn→∞ λ∗(n,n, r|Mat)/

√
n and ρ �→

limn→∞ λ∗(n, r|Sym)/
√

n are shown in Figure 4.

2.6. Parametric representation of the minimax AMSE for square matrices. For
square matrices (ρ = ρ̃, β = 1) the minimax curves M(ρ,1|Mat) and M(ρ|Sym)

admit a parametric representation in the (ρ,M) plane using elementary trigono-
metric functions.
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FIG. 3. (Nonsquare cases.) The scaled asymptotic minimax tuning threshold for SVST,
ρ �→ limn→∞ λ∗(m,n, r|Mat)/

√
n, when m/n → β and r/m → ρ, for a few values of β .

FIG. 4. (Square case.) The scaled asymptotic minimax tuning threshold for SVST,
ρ �→ limn→∞ λ∗(n,n, r|Mat)/

√
n and ρ �→ limn→∞ λ∗(n, r|Sym)/

√
n, when r/m → ρ.
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THEOREM 7 (Parametric representation of the minimax AMSE curve for
β = 1). As θ ranges over (0, π/2),

ρ(θ) = 1 − π/2

θ + (cot(θ) · (1 − (1/3) cos2(θ)))
,

M(θ) = 2ρ(θ) − ρ2(θ) + 4ρ(θ)
(
1 − ρ(θ)

)
sin2(θ)

+ 4

π
(1 − ρ)2

[
(π − 2θ)

(
5

4
− cos(θ)2

)
+ sin(2θ)

12

(
cos(2θ) − 14

)]
is a parametric representation of ρ �→ M(ρ,ρ|Mat), and similarly

ρ(θ) = 1 − θ + (cot(θ) · (1 − (1/3) cos2(θ))) − π/2

θ + (cot(θ) · (1 − (1/3) cos2(θ))) + π/2
,

M(θ) = 2ρ(θ) − ρ2(θ) + 4ρ(θ)
(
1 − ρ(θ)

)
sin2(θ)

+ 2

π
(1 − ρ)2

[
(π − 2θ)

(
5

4
− cos(θ)2

)
+ sin(2θ)

12

(
cos(2θ) − 14

)]
is a parametric representation of ρ �→ M(ρ|Sym).

2.7. Minimax AMSE in the low-rank limit ρ ≈ 0.

THEOREM 8 (Minimax AMSE to first order in ρ near ρ = 0). For the behavior
of the minimax curves near ρ = 0, we have

M(ρ,β|Mat) = 2(1 + √
β + β) · ρ + o(ρ)

and in particular

M(ρ,1|Mat) = 6ρ + o(ρ).

Moreover,

M(ρ|Sym) = 6ρ + o(ρ).

The minimax AMSE curves ρ �→ M(ρ,β|Mat) for small values of ρ, and the
corresponding approximation slopes 2(1 + √

β + β) are shown in Figure 5 for
several values of β . We find it surprising that asymptotically, symmetric positive
definite matrices are no easier to recover than general square matrices. This phe-
nomenon is also seen in the case of sparse vector denoising, where in the limit of
extreme sparsity, the nonnegativity of the nonzeros does not allow one to reduce
the minimax MSE.3 We note that this first-order AMSE near ρ = 0 agrees with a
different asymptotic model for minimax MSE of SVST over large low-rank matri-
ces [10]. There, the asymptotic prediction for AMSE near ρ = 0 is found to be in
agreement with the empirical finite-n MSE.

3Compare results in [8] with [9]. To be clear, in both matrix denoising and vector denoising, there
is an MSE advantage for each fixed positive rank fraction/sparsity fraction. It is just that the benefit
goes away as either fraction tends to 0.
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FIG. 5. The minimax AMSE curves ρ �→ M(ρ,β|Mat) for small values of ρ (dashed lines) and
the corresponding approximation slopes 2(1 + √

β + β) (solid lines).

2.8. AMSE vs. the asymptotic global minimax MSE. In (1.3) we have intro-
duced global minimax MSE M∗

m,n(r|X), namely the minimax risk over all mea-

surable denoisers X̂ :Mm×n → Mm×n. To define the large-n asymptotic global
minimax MSE analogous to (2.5), consider sequences where r = r(n) and m =
m(n) both grow proportionally to n, such that both limits ρ = limn→∞ r/m and
β = limn→∞ m/n exist. Define the asymptotic global minimax MSE

M∗(ρ,β|X) = lim
n→∞M∗

m,n(r|X).(2.22)

THEOREM 9. (1) For the global minimax MSE we have

M∗
m,n(r|X) ≥ r

m
+ r

n
− r2 + r

mn
(2.23)

for case Mat, and if m = n, for case Sym.
(2) For the asymptotic global minimax MSE we have

M∗(ρ,β|X) ≥ ρ + ρ̃ − ρρ̃(2.24)

for case Mat, and if β = 1, for case Sym. Here ρ̃ = βρ.
(3) Let

M−(ρ,β) = ρ + ρ̃ − ρρ̃(2.25)

denote our lower bound on asymptotic global minimax MSE. Then

M(ρ,β|X)

M−(ρ,β)
≤ 2

(
1 +

√
β

1 + β

)
(2.26)
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and

lim
ρ→0

M(ρ,β|X)

M−(ρ,β)
= 2

(
1 +

√
β

1 + β

)
.(2.27)

2.9. Outline of this paper. The body of the paper proves the above results.
Section 3 introduces notation, and proves auxiliary lemmas. In Section 4 we char-
acterize the worst-case MSE of SVST for matrices of a fixed size (Theorem 1). In
Section 5 we derive formula (2.3) for the worst-case MSE, and prove Theorem 2.
In Section 6 we pass to the large-n limit and derive formula (2.9), which provides
the worst-case asymptotic MSE in the large-n limit (Theorem 3). In Section 7 we
investigate the minimizer of the asymptotic worst-case MSE function, and its min-
imum, namely the minimax AMSE, and prove Theorem 4. In Section 8 we extend
our scope from SVST denoisers to all denoisers, investigate the global minimax
MSE and prove Theorem 9. In the interest of space, Theorems 5, 6 7 and 8 are
proved in the supplemental article [5]. The supplemental article also contains a
derivation of the Stein unbiased risk estimate for SVST, which is instrumental in
the proof of Theorem 1, and other technical auxiliary lemmas.

3. Preliminaries.

3.1. Scaling. Our main object of interest, the worst-case MSE of SVST,

sup
X0∈Mm×n

rank(X0)≤ρm

1

mn
E‖X̂ − X0‖2

F ,(3.1)

is more conveniently expressed using a specially calibrated risk function. Since the
SVST denoisers are scale-invariant, namely

EX

∥∥X − X̂(X + σZ)
∥∥2
F = σ 2

EX

∥∥∥∥X

σ
− X̂

(
X

σ
+ Z

)∥∥∥∥
2

F

,

we are free to introduce the scaling σ = n−1/2 and define the risk function of a
denoiser X̂ :Mm×n → Mm×n at X0 ∈ Mm×n by

R(X̂,X0) := 1

m
E

∥∥∥∥X̂
(
X0 + 1√

n
Z

)
− X0

∥∥∥∥
2

F

.(3.2)

Then, the worst-case MSE of X̂ at X0 is given by

sup
X0∈Mm×n

rank(X0)≤ρm

1

mn
E‖X̂ − X0‖2

F = sup
X0∈Mm×n

rank(X0)≤ρm

R(X̂,X0).(3.3)

To vary the SNR in the problem, it will be convenient to vary the norm of the
signal matrix X0 instead, namely, to consider Y = μX0 + 1√

n
Z with 1

m
‖X0‖2

F = 1.
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3.2. Notation. Vectors are denoted by boldface lowercase letters, such as v,
and their entries by vi . Matrices are denoted by uppercase letters, such as A,
and their entries by Ai,j . Throughout this text, Y will denote the data matrix
Y = μX0 + 1√

n
Z. We use Mm×n and Om to denote the set of real-valued m-by-n

matrices, and group of m-by-m orthogonal matrices, respectively. ‖ · ‖F denotes
the Frobenius matrix norm on Mm×n, namely the Euclidean norm of a matrix
considered as a vector in R

mn. We denote matrix multiplication by either AB or
A · B . We use the following convenient notation for matrix diagonals: for a matrix
X ∈ Mm×n, we denote by X� ∈ R

m its main diagonal,

(X�)i = Xi,i, 1 ≤ i ≤ m.(3.4)

Similarly, for a vector x ∈ R
m, and n ≥ m that we suppress in our notation, we

denote by x� ∈ Mm×n the “diagonal” matrix

(x�)i,j =
{

xi, 1 ≤ i = j ≤ m,

0, otherwise.
(3.5)

We use a “fat” singular value decomposition (SVD) of X ∈ Mm×n X = UX ·
x� · V ′

X , with UX ∈ Mm×m and VX ∈ Mn×n. Note that the SVD is not uniquely
determined, and in particular x can contain the singular values of X in any order.
Unless otherwise noted, we will assume that the entries of x are nonnegative and
sorted in nonincreasing order, x1 ≥ · · · ≥ xm ≥ 0. When m < n, the last n − m

columns of VY are not uniquely determined; we will see that our various results
do not depend on this choice. Note that with the “fat” SVD, the matrices Y and
U ′

Y · Y · VY have the same dimensionality, which simplifies the notation we will
need.

When appropriate, we let univariate functions act on vectors entry-wise, namely,
for x ∈ R

n and f :R→R, we write f (x) ∈R
n for the vector with entries f (x)i =

f (xi).

3.3. X̂λ acts by soft thresholding of the data singular values. By orthogonal
invariance of the Frobenius norm, (1.1) is equivalent to

x̂λ = argmin
x∈Rn

1
2‖y − x‖2

2 + λ‖x‖1,(3.6)

through the relation X̂λ(Y ) = UY · (x̂λ)� · V ′
Y . It is well known that the solution

to (3.6) is given by x̂λ = yλ, where yλ = (y − λ)+ denotes coordinate-wise soft
thresholding of y with threshold λ. The SVST estimator (1.1) is therefore given
by [12]

X̂λ :Y �→ UY · (yλ)� · V ′
Y .(3.7)

Note that (3.7) is well defined, that is, X̂λ(Y ) does not depend on the particular
SVD Y = UY · (y)� · V ′

Y chosen.
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In case Sym, observe that the solution to (1.1) is constrained to lie in the linear
subspace of symmetric matrices. The solution is the same whether the noise matrix
Z ∈ Mn×n has i.i.d. standard normal entries, or whether Z is a symmetric Wigner
matrix 1

2(Z1 +Z′
1) where Z1 ∈ Mn×n has i.i.d. standard normal entries. Below, we

assume that the data in case Sym is of the form Y = μX0 +Z/
√

n where X0 ∈ Sn+
and Z has this Wigner form, namely, the singular values y are the absolute values
of eigenvalues of the symmetric matrix Y .

4. The least-favorable matrix for SVST is at ‖X‖ = ∞. We now prove
Theorem 1, which characterizes the worst-case MSE of the SVST denoiser X̂λ for
a given λ. The theorem follows from a combination of two classical gems of the
statistical literature. The first is Stein’s unbiased risk estimate (SURE) from 1981,
which we specialize to the SVST estimator; see also [2]. The second is Ander-
son’s celebrated monotonicity property for the integral of a symmetric unimodal
probability distribution over a symmetric convex set [1], from 1955, and more
specifically its implications for monotonicity of the power function of certain tests
in multivariate hypothesis testing [3]. To simplify the proof, we introduce the fol-
lowing definitions, which will be used in this section only.

DEFINITION 1 (A weak notion of matrix majorization based on singular values).
Let A,B ∈ Mm×n have singular value vectors a,b ∈ R

m, respectively, which as
usual we assume are sorted in nonincreasing order: 0 ≤ am ≤ · · · ≤ a1 and 0 ≤
bm ≤ · · · ≤ b1. If ai ≤ bi for i = 1, . . . ,m, we write A � B .

We note that by rescaling an arbitrary rank-r matrix, it is always possible to
majorize any fixed matrix of rank at most r (in the sense of Definition 1).

LEMMA 1. Let C ∈ Mm×n be a matrix of rank r , and let X ∈ Mm×n be a
matrix of rank at most r . Then there exists μ > 0 for which X � μC.

PROOF. Let c,x be the vectors of singular values of C,X, respectively, each
sorted in nonincreasing order. Then cr > 0. Take μ = x1/cr . For 1 ≤ i ≤ r we have
xi ≤ x1 = μcr ≤ μci , and for r + 1 ≤ i ≤ m we have μci = xi = 0. �

The above weak notion of majorization gives rise to a weak notion of mono-
tonicity:

DEFINITION 2 (Orthogonally invariant function of a matrix argument). We
say that f :Mm×n → R is an orthogonally invariant function if f (U · A · V ′) =
f (A) for all A ∈ Mm×n and all orthogonal U ∈ Om and V ∈ On.



MINIMAX RISK OF MATRIX DENOISING 2431

DEFINITION 3 (SV-monotone increasing function of a matrix argument). Let
f :Mm×n →R be orthogonally invariant. If, whenever A � B and σ > 0, f satis-
fies

Ef (A + Z) ≤ Ef (B + Z),(4.1)

for Z ∈ Mm×n and Zi,j
i.i.d.∼ N (0, σ 2), we say that f is singular-value-monotone

increasing, or SV-monotone increasing.

We now provide a sufficient condition for SV-monotonicity, which follows from
Anderson’s seminal monotonicity result [1]. The following lemma is proved in the
supplemental article [5].

LEMMA 2. Assume that f :Mm×n →R can be decomposed as f = ∑s
k=1 fk ,

where for each 1 ≤ k ≤ s, fk :Mm×n → R is a bounded, orthogonally invari-
ant function. Further assume that for each 1 ≤ k ≤ s, fk is quasi-convex, in the
sense that for all c ∈ R, the set f −1

k ((−∞, c]) is convex in Mm×n. Then f is SV-
monotone increasing.

The second key ingredient in the proof of Theorem 1 is the Stein unbiased risk
estimate for SVST. Let X̂ be a weakly differentiable estimator of X0 from data
Y = X0 + σZ, where Z has i.i.d. standard normal entries. The Stein unbiased risk
estimate [23] is a function of the data, Y �→ SURE(Y ), for which ESURE(Y ) =
E‖X̂ −X0‖2

2. In our case, X0,Z and Y are matrices in Mm×n, and Stein’s theorem
([23], Theorem 1) implies that for

SURE(Y ) = mnσ 2 + ∥∥X̂(Y ) − Y
∥∥2
F + 2σ 2

∑
i,j

∂(X̂(Y ) − Y)i,j

∂Yi,j

,

we have

‖X̂ − X0‖2
F = EX0 SURE(Y ).

In the supplemental article [5], we derive SURE for a large class of invariant
matrix denoisers. As a result, we prove:

LEMMA 3 (The Stein unbiased risk estimate for SVST). For each λ > 0, there
exists an event S ⊂ Mm×n and a function, SUREλ :S → R which maps a matrix
Y with singular values y to

SUREλ(Y ) = m +
m∑

i=1

[(
min{yi, λ})2 − 1{yi<λ} − (n − m) · min{yi, λ}

yi

]

− 2

n

∑
1≤i �=j≤m

min{yj , λ}yj − min{yi, λ}yj

y2
j − y2

i

,

enjoying the following properties:
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(1) P(S) = 1, where P is the distribution of the matrix Z with Zi,j
i.i.d.∼ N (0,1).

(2) SUREλ is a finite sum of bounded, orthogonally invariant, quasi-convex
functions.

(3) Denoting as usual Y = X0 + Z/
√

n ∈ Mm×n, where X0,Z ∈ Mm×n and

Zi,j
i.i.d.∼ N (0,1), we have

R(X̂λ,X0) = 1

m
EX0 SUREλ(Y ).

Putting together Lemmas 2 and 3, we come to a crucial property of SVST.

LEMMA 4 (The risk of SVST is monotone nondecreasing in the signal singular
values). For each λ > 0, the map X �→ R(X̂λ,X) is a bounded, SV-monotone
increasing function. In particular, let A,B ∈ Mm×n with A � B . Then

R(X̂λ,A) ≤ R(X̂λ,B).(4.2)

PROOF. By Lemma 3, the function SUREλ :Mm×n → R satisfies the condi-
tions of Lemma 2 and is therefore SV-monotone increasing. It follows that

R(X̂λ,A) = 1

m
EA SUREλ(A + Z/

√
n)

≤ 1

m
EB SUREλ(B + Z/

√
n) = R(X̂λ,B).

To see that the risk is bounded, note that for any X ∈ Mm×n, we have by Lemma 3

∞ < inf
Y∈Mm×n

ESUREλ(Y ) ≤ R(X̂λ,X) ≤ sup
Y∈Mm×n

ESUREλ(Y ) < ∞. �

PROOF OF THEOREM 1. By Lemma 4, the map μ → R(X̂λ,μC) is bounded
and monotone nondecreasing in μ. Hence limμ→∞ R(X̂λ,μC) exists and is finite,
and

R(X̂λ,μ0C) ≤ lim
μ→∞R(X̂λ,μC)(4.3)

for all μ0 > 0. Since rank(C) = r , obviously

sup
rank(X0)≤r

R(X̂λ,X0) ≥ lim
μ→∞R(X̂λ,μC),

and we only need to show the reverse inequality. Let X0 ∈ Mm×n be an arbitrary
matrix of rank at most r . By Lemma 1 there exists μ0 such that X0 � μ0C. It now
follows from Lemma 4 and (4.3) that

R(X̂λ,X0) ≤ R(X̂λ,μ0C) ≤ lim
μ→∞R(X̂λ,μC). �
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5. Worst-case MSE. Let λ and r ≤ m ≤ n, and consider them fixed for the
remainder of this section. Our second main result, Theorem 2, follows immediately
from Theorem 1, combined with the following lemma, which is proved in the
supplemental article [5].

LEMMA 5. Let X0 ∈ Mm×n be of rank r . Then

lim
μ→∞R(X̂λ,μX0) = Mn

(
λ√

1 − r/n
; r,m,α

)
,

as defined in (2.3), with α = 1 for case Mat and α = 1/2 for case Sym.

In the supplemental article [5] we prove the following lemma:

LEMMA 6. The function 	 �→ Mn(	; r,m,α), defined in (2.3) on 	 ∈ [0,∞),
is convex and obtains a unique minimum.

Our second main result is an immediate consequence:

PROOF OF THEOREM 2. Let C ∈ Mm×n be an arbitrary fixed matrix of rank r .
For case Mat, by Theorem 1 and Lemma 5,

Mn(r,m|Mat) = inf
λ

sup
X0∈Mm×n

rank(X0)≤r

R(X̂λ,X0) = inf
λ>0

lim
μ→∞R(X̂λ,μC)

= inf
λ>0

Mn

(
λ√

1 − r/n
; r,m,1

)

= min
	>0

Mn(	; r,m,1),

where we have used Lemma 6, which also asserts that the minimum is unique.
Now let C ∈ Sn+ be an arbitrary, fixed symmetric positive semidefinite matrix of

rank r . For case Sym, by the same lemmas,

Mn(r|Sym) = inf
λ

sup
X0∈Mm×n

rank(X0)≤r

R(X̂λ,X0) = inf
λ

lim
μ→∞R(X̂λ,μC)

= inf
λ

Mn

(
λ√

1 − r/n
; r,1/2

)
= min

	
Mn(	; r,1/2). �

6. Worst-case AMSE. Toward the proof of our third main result, Theorem 3,
let λ be fixed. We first show that in the proportional growth framework, where
the rank r(n), number of rows m(n) and number of columns n all tend to ∞
proportionally to each other, the key quantity in our formulas can be evaluated by
complementary incomplete moments of a Marc̆enko–Pastur distribution, instead
of a sum of complementary incomplete moments of Wishart eigenvalues.
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DEFINITION 4. For a pair of matrices X0,Z ∈ Mm×n, we denote by ζ(X0,

Z|Mat) = (ζ1, . . . , ζm−r ) the singular values, in nonincreasing order, of

�m · Z · �′
n ∈ M(m−r)×(n−r),(6.1)

where �m :Rm → R
m−r is the projection of R

m on null(X′
0) = Im(X0)

⊥ and
�n :Rn → R

n−r is the projection on null(X0). Similarly, for a pair of matrices
X0,Z ∈ Mn×n, denote by ζ(X0,Z|Sym) = (ζ1, . . . , ζm−r ) the eigenvalues, in non-
increasing order, of

�m · 1
2

(
Z + Z′) · �′

n ∈ M(n−r)×(n−r).(6.2)

LEMMA 7. Consider sequences n �→ r(n) and n �→ m(n) and numbers 0 <

β ≤ 1 and 0 ≤ ρ ≤ 1 such that limn→∞ r(n)/m(n) = ρ and limn→∞ m(n)/n = β .
Let (ζ1(n), . . . , ζm−r (n)) = ζ(X0,Z|X), as in Definition 4, where Z ∈ Mm×n has
i.i.d. N (0,1) entries. Define γ = (β −ρβ)/(1 −ρβ) and γ± = (1 ±√

γ )2, and let
0 ≤ 	 ≤ √

γ+. Then

lim
n→∞

1

m

m−r∑
i=1

E

(
ζi√
n − r

− 	

)2

+
= (1 − ρ)

∫ γ+

	2
(
√

t − 	)2
√

(γ+ − t)(t − γ−)

2πtγ
dt.

PROOF. Write ξi = ζ 2
i /(n − r), and recall that by the Marc̆enko–Pastur

law [15],

lim
n→∞

1

m − r

m−r∑
i=1

δξi

w= Pγ ,

in the sense of weak convergence of probability measures, where Pγ is the
Marc̆enko–Pastur probability distribution with density pγ = dPγ /dt given
by (2.7). Now,

lim
n→∞

1

m

m−r∑
i=1

(
√

ξi − 	)2+ = lim
n→∞

1

m

m−r∑
i=1

∫ ∞
0

(
√

t − 	)2+δξi
(t) dt

= lim
n→∞

(
1 − r

m

)∫ ∞
0

(
√

t − 	)2+
1

m − r

m−r∑
i=1

δξi
(t) dt

= (1 − ρ)

∫ γ+

0
(
√

t − 	)2+pγ (t) dt

as required. �

LEMMA 8. Let m(n) and r(n) such that limn→∞ m/n = β and
limn→∞ r/m = ρ, and set ρ̃ = βρ. Then

lim
n→∞ sup

X0∈Mm×n

rank(X0)≤r

R(X̂λ,X0) = M
(

λ√
1 − ρ̃

;ρ, ρ̃, α

)
,
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where the right-hand side is defined in (2.9), with α = 1 for case Mat and α = 1/2
for case Sym.

PROOF. For case Mat, let C(n) ∈ Mm×n be an arbitrary fixed matrix of rank
r . For case Sym, C(n) ∈ Sn+ an arbitrary, fixed symmetric positive semidefinite
matrix of rank r . By Theorem 1 and Lemma 5,

lim
n→∞ sup

X0∈Mm×n

rank(X0)≤r

R(X̂λ,X0)

= lim
n→∞ lim

μ→∞R
(
X̂λ,μC(n)

)

= lim
n→∞

[
r

m
+ r

n
− r2

mn
+ r

m
λ2

+ α
n − r

mn

m−r∑
i=1

E

(
ζi√
n − r

− λ√
1 − r/n

)2

+

]

= ρ + ρ̃ − ρρ̃ + (1 − ρ̃)ρ	2

+ α(1 − ρ)(1 − ρ̃)

∫ γ+

	2
(
√

t − 	)2MPγ (t) dt

= M
(

λ√
1 − ρ̃

;ρ, ρ̃, α

)
,

where we have used Lemma 7 and set 	 = λ/
√

1 − ρ̃. �

In the supplemental article we prove a variation of Lemma 6 for the asymptotic
setting:

LEMMA 9. The function 	 �→ M(	;ρ, ρ̃, α), defined in (2.9) on 	 ∈ [0, γ+],
where γ+ = (1 + √

(ρ̃ − ρρ̃)/(ρ − ρρ̃))2, is convex and obtains a unique mini-
mum.

This allows us to the prove our third main result.

PROOF OF THEOREM 3. By Lemma 8,

M(ρ,β|X) = lim
n→∞ inf

λ
sup

X0∈Mm×n

rank(X0)≤r

R(X̂λ,X0)

= inf
λ

lim
n→∞ sup

X0∈Mm×n

rank(X0)≤r

R(X̂λ,X0)

= inf
λ

M
(

λ√
1 − ρ̃

;ρ, ρ̃, α

)
= min

	
M(	;ρ, ρ̃, α),
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with α = 1 for case Mat and α = 1/2 for case Sym, where we have used Lemma 9,
which also asserts that the minimum is unique. �

7. Minimax AMSE. Having established that the asymptotic worst-case
MSE (2.9) satisfies (2.10) and (2.11), we turn to its minimizer 	∗. The notation
follows (2.12).

PROOF OF THEOREM 4. By equation (4.2) in the supplemental article [5], the
condition

dM(	;ρ, ρ̃, α)

d	
= 0

is thus equivalent, for any ρ ∈ [0,1], to

f (	,ρ) := ρ	 − α(1 − ρ)

∫ γ+

	2
(
√

t − 	)pγ (t) dt = 0,(7.1)

establishing (2.15) in particular for 0 < ρ < 1. By Lemma 9, the minimum exists
and is unique; namely this equation has a unique root in 	. One directly verifies
that f (1 + √

β,0) = f (0,1) = 0. The limits (2.13) and (2.14) follow from the
fact that ρ �→ 	∗(ρ, ·) is decreasing. To establish this, it is enough to observe that
∂f/∂ρ > 0 for all (	,ρ), which can be verified directly. �

Theorem 5, which provides more a explicit formula for the minimax AMSE in
square matrix case (β = 1), is proved in the supplemental article [5].

8. Global minimax MSE and AMSE. In this section we prove Theorem 9,
which provides a lower bound on the minimax risk of the family of all measurable
matrix denoisers (as opposed to the family of SVST denoisers considered so far)
over m-by-n matrices of rank at most r . Consider the class of singular-value matrix
denoisers, namely all mappings Y �→ X̂(Y ) that act on the data Y only through
their singular values. More specifically, consider all denoisers X̂ :Mm×n → Mm×n

of the form

X̂(Y ) = UY · x̂(y)� · V ′
Y ,(8.1)

where Y = UY · y� · V ′
Y and x̂ : [0,∞)m → [0,∞)m. (Note that this class con-

tains SVST denoisers but does not exhaust all measurable denoisers.) The mapping
in (8.1) is not well defined in general, since the SVD of Y , and in particular the
order of the singular values in the vector y, is not uniquely determined. However,
(8.1) is well defined when each function x̂i : [0,∞) → [0,∞) is invariant under
permutations of its coordinates. Since the equality Y = UY · y� · V ′

Y may hold for
vectors y with negative entries, we are led to the following definition.
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DEFINITION 5. By singular-value denoiser we mean any measurable map-
ping X̂ :Mm×n → Mm×n which takes the form (8.1), where each entry of x̂ is a
function x̂i :Rm → R that is invariant under permutation and sign changes of its
coordinates. We let D denote the class of such mappings.

For a detailed introduction to real-valued or matrix-valued functions which de-
pend on a matrix argument only through its singular values, see [13, 14]. The
following lemma is proved in the supplemental article [5].

LEMMA 10 (Singular-value denoisers can only improve in worst-case). Let
X̂1 :Mm×n → Mm×n be an arbitrary measurable matrix denoiser. There exists a
singular-value denoiser X̂ such that

sup
X0∈Mm×n

rank(X0)≤r

R(X̂,X0) ≤ sup
X0∈Mm×n

rank(X0)≤r

R(X̂1,X0).

PROOF OF THEOREM 9. We consider the case X = Matm,n. By Lemma 10, it
is enough to show that

r

m
+ r

n
− r2 + r

mn
≤ sup

X0∈Xm,n

rank(X0)≤r

R(X̂,X0),

where X̂ ∈ D is an arbitrary singular-value denoiser. Indeed, let X0 ∈ Mm×n be a
fixed arbitrary matrix of rank r . The calculation leading to equation (3.9) in the
supplemental article [5] is valid for any rule in D, and implies that R(X̂(Y ),X0) ≥
1 − 1

m
E‖z‖2

2, where Y = UY · y� · V ′
Y and

z = 1√
n

(
U ′

Y · Z · V )
�.(8.2)

Write Yμ = μX0 + Z/
√

n = Uμ · (yμ)� · V ′
μ, and let zμ = 1√

n
(U ′

μ · Z · Vμ)�. We
therefore have

sup
X0∈Xm,n

rank(X0)≤r

R(X̂,X0) ≥ lim
μ→∞R(X̂,μX0) ≥ 1 − 1

m
lim

μ→∞E‖zμ‖2
2.

Combining equations (3.17) and (3.15) in the supplemental article [5], we have

1

m

m∑
i=r+1

lim
μ→∞E(zμ,i)

2 = 1 − r

m
− r

n
+ r2

mn
.

A similar argument yields 1
m

∑r
i=1 limμ→∞E(zμ,i)

2 = r
mn

, and the first part of
the theorem follows. The second part of the theorem follows since, taking the limit
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n → ∞ as prescribed, we have r/m → ρ, r/n → ρ̃ and r/mn → 0. For the third
part of the theorem, we have by Theorem 8,

lim
ρ→0

M(ρ,β|X)

M−(ρ,β)
= lim

ρ→0

M(ρ,β|X)

ρ + βρ + βρ2 = 2(1 + √
β + β)

1 + β

= 2
(

1 +
√

β

1 + β

)
. �

9. Discussion. In the Introduction, we pointed out several ways that these ma-
trix denoising results for SVST estimation of low-rank matrices parallel results for
soft thresholding of sparse vectors. Our derivation of the minimax MSE formulas
exposed two more parallels:

• Common structure of minimax MSE formulas. The minimax MSE formula vec-
tor denoising problem involves certain incomplete moments of the standard
Gaussian distribution [7]. The matrix denoising problem involves completely
analogous incomplete moments, only replacing the Gaussian by the Marčenko–
Pastur distribution or (in the square case β = 1) the quarter-circle law.

• Monotonicity of SURE. In both settings, the least-favorable estimand places the
signal “at ∞,” which yields a convenient formula for Minimax MSE [7]. In each
setting, validation of the least-favorable estimation flows from monotonicity,
in an appropriate sense, of Stein’s unbiased risk estimate within that specific
setting.

Acknowledgments. We thank Iain Johnstone, Andrea Montanari and Art
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SUPPLEMENTARY MATERIAL

Proofs and additional discussion (DOI: 10.1214/14-AOS1257SUPP; .pdf). In
this supplementary material we prove Theorems 5, 6, 7, 8 and other lemmas. We
also derive the Stein unbiased risk Estimate (SURE) for SVST, which is instru-
mental in the proof of Theorem 1. Finally, we discuss similarities between singular
value thresholding and sparse vector thresholding.
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