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MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION IN
HIGH DIMENSIONS

BY VINCENT Q. VU1 AND JING LEI2

Ohio State University and Carnegie Mellon University

We study sparse principal components analysis in high dimensions,
where p (the number of variables) can be much larger than n (the number of
observations), and analyze the problem of estimating the subspace spanned
by the principal eigenvectors of the population covariance matrix. We intro-
duce two complementary notions of �q subspace sparsity: row sparsity and
column sparsity. We prove nonasymptotic lower and upper bounds on the
minimax subspace estimation error for 0 ≤ q ≤ 1. The bounds are optimal
for row sparse subspaces and nearly optimal for column sparse subspaces,
they apply to general classes of covariance matrices, and they show that �q

constrained estimates can achieve optimal minimax rates without restrictive
spiked covariance conditions. Interestingly, the form of the rates matches
known results for sparse regression when the effective noise variance is de-
fined appropriately. Our proof employs a novel variational sin� theorem that
may be useful in other regularized spectral estimation problems.

1. Introduction. Principal components analysis (PCA) was introduced in the
early 20th century [Hotelling (1933), Pearson (1901)] and is arguably the most
well known and widely used technique for dimension reduction. It is part of the
mainstream statistical repertoire and is routinely used in numerous and diverse
areas of application. However, contemporary applications often involve much
higher-dimensional data than envisioned by the early developers of PCA. In such
high-dimensional situations, where the number of variables p is of the same order
or much larger than the number of observations n, serious difficulties emerge: stan-
dard PCA can produce inconsistent estimates of the principal directions of varia-
tion and lead to unreliable conclusions [Johnstone and Lu (2009), Nadler (2008),
Paul (2007)].

The principal directions of variation correspond to the eigenvectors of the co-
variance matrix, and in high-dimensions consistent estimation of the eigenvectors
is generally not possible without additional assumptions about the covariance ma-
trix or its eigenstructure. Much of the recent development in PCA has focused
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on methodology that applies the concept of sparsity to the estimation of individ-
ual eigenvectors [examples include d’Aspremont et al. (2007), Jolliffe, Trendafilov
and Uddin (2003), Journée et al. (2010), Shen and Huang (2008), Witten, Tibshi-
rani and Hastie (2009), Zou, Hastie and Tibshirani (2006)]. Theoretical develop-
ments on sparsity and PCA include consistency [Johnstone and Lu (2009), Shen,
Shen and Marron (2013)], variable selection properties [Amini and Wainwright
(2009)], rates of convergence and minimaxity [Vu and Lei (2012a)], but have pri-
marily been limited to results about estimation of the leading eigenvector. Very
recently, Birnbaum et al. (2013) established minimax lower bounds for the esti-
mation of individual eigenvectors. However, an open problem that has remained is
whether sparse PCA methods can optimally estimate the subspace spanned by the
leading eigenvectors, that is, the principal subspace of variation.

The subspace estimation problem is directly connected to dimension reduction
and is important when there may be more than one principal component of in-
terest. Indeed, typical applications of PCA use the projection onto the principal
subspace to facilitate exploration and inference of important features of the data.
In that case, the assumption that there are distinct principal directions of variation
is mathematically convenient but unnatural: it avoids the problem of unidentifiabil-
ity of eigenvectors by imposing an artifactual choice of principal axes. Dimension
reduction by PCA should emphasize subspaces rather than eigenvectors.

An important conceptual issue in applying sparsity to principal subspace esti-
mation is that, unlike the case of sparse vectors, it is not obvious how to formally
define what is meant by a sparse principal subspace. In this article, we present two
complementary notions of sparsity based on �q (pseudo-) norms: row sparsity and
column sparsity. Roughly, a subspace is row sparse if every one of its orthonormal
bases consists of sparse vectors. In the q = 0 case, this intuitively means that a
row sparse subspace is generated by a small subset of variables, independent of
the choice of basis. A column sparse subspace, on the other hand, is one which has
some orthonormal basis consisting of sparse vectors. This means that the choice
of basis is crucial; the existence of a sparse basis is an implicit assumption behind
the frequent use of rotation techniques by practitioners to help interpret principal
components.

In this paper, we study sparse principal subspace estimation in high-dimensions.
We present nonasymptotic minimax lower and upper bounds for estimation of both
row sparse and column sparse principal subspaces. Our upper bounds are construc-
tive and apply to a wide class of distributions and covariance matrices. In the row
sparse case they are optimal up to constant factors, while in the column sparse
case they are nearly optimal. As an illustration, one consequence of our results
is that the order of the minimax mean squared estimation error of a row sparse
d-dimensional principal subspace (for d � p) is

Rq

(
σ 2

n
(d + logp)

)1−q/2

, 0≤ q ≤ 1,
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where σ 2 is the effective noise variance (a function of the eigenvalues of popula-
tion covariance matrix) and Rq is a measure of the sparsity in an �q sense defined
in Section 2. Our analysis allows σ , Rq , and d to change with n and p. When
q = 0, the rate has a very intuitive explanation. There are R0 variables active in
generating the principal subspace. For each active variable, we must estimate the
corresponding d coordinates of the basis vectors. Since we do not know in ad-
vance which variables are active, we incur an additional cost of logp for variable
selection.

To our knowledge, the only other work that has considered sparse principal
subspace estimation is that of Ma (2013). He proposed a sparse principal subspace
estimator based on iterative thresholding, and derived its rate of convergence under
a spiked covariance model (where the covariance matrix is assumed to be a rank-d
perturbation of the identity) similar to that in Birnbaum et al. (2013). He showed
that it nearly achieves the optimal rate when estimating a single eigenvector, but
was not able to track its dependence on the dimension of the principal subspace.

We obtain the minimax upper bounds by analyzing a sparsity constrained prin-
cipal subspace estimator and showing that it attains the optimal error (up to con-
stant factors). In comparison to most existing works in the literature, we show
that the upper bounds hold without assuming a spiked covariance model. This
spiked covariance assumption seems to be necessary for two reasons. The first
is that it simplifies analyses and enables the exploitation of special properties of
the multivariate Gaussian distribution. The second is that it excludes the possibil-
ity of the variables having equal variances. Estimators proposed by Paul (2007),
Johnstone and Lu (2009), and Ma (2013) require an initial estimate based on diag-
onal thresholding—screening out variables with small sample variances. Such an
initial estimate will not work when the variables have equal variances or have been
standardized. The spiked covariance model excludes that case and, in particular,
does not allow PCA on correlation matrices.

A key technical ingredient in our analysis of the subspace estimator is a novel
variational form of the Davis–Kahan sin� theorem (see Corollary 4.1) that may be
useful in other regularized spectral estimation problems. It allows us to bound the
estimation error using some recent advanced results in empirical process theory,
without Gaussian or spiked covariance assumptions. The minimax lower bounds
follow the standard Fano method framework [e.g., Yu (1997)], but their proofs in-
volve nontrivial constructions of packing sets in the Stiefel manifold. We develop
a generic technique that allows us to convert global packing sets without orthog-
onality constraints into local packing sets in the Stiefel manifold, followed by a
careful combinatorial analysis on the cardinality of the resulting matrix class.

The remainder of the paper is organized as follows. In the next section, we in-
troduce the sparse principal subspace estimation problem and formally describe
our minimax framework and estimator. In Section 3, we present our main con-
ditions and results, and provide a brief discussion about their consequences and
intuition. Section 4 outlines the key ideas and main steps of the proof. Section 5
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concludes the paper with discussion of related problems and practical concerns.
Appendices A, B contain the details in proving the lower and upper bounds. The
major steps in the proofs require some auxiliary lemmas whose proofs we defer to
Appendices C, D.

2. Subspace estimation. Let X1, . . . ,Xn ∈ R
p be independent, identically

distributed random vectors with mean μ and covariance matrix �. To reduce the
dimension of the Xi ’s from p down to d , PCA looks for d mutually uncorrelated,
linear combinations of the p coordinates of Xi that have maximal variance. Ge-
ometrically, this is equivalent to finding a d-dimensional linear subspace that is
closest to the centered random vector Xi −μ in a mean squared sense, and it cor-
responds to the optimization problem

minimize E
∥∥(Ip −�G )(Xi −μ)

∥∥2
2

(2.1)
subject to G ∈Gp,d,

where Gp,d is the Grassmann manifold of d-dimensional subspaces of R
p , �G

is the orthogonal projector of G , and Ip is the p × p identity matrix. [For back-
ground on Grassmann and Stiefel manifolds, see Chikuse (2003), Edelman, Arias
and Smith (1999).] There is always at least one d ≤ p for which (2.1) has a unique
solution. That solution can be determined by the spectral decomposition

� =
p∑

j=1

λjvjv
T
j ,(2.2)

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 are the eigenvalues of � and v1, . . . , vp ∈ R
p , or-

thonormal, are the associated eigenvectors. If λd > λd+1, then the d-dimensional
principal subspace of � is

S = span{v1, . . . , vd},(2.3)

and the orthogonal projector of S is given by �S = V V T , where V is the p × d

matrix with columns v1, . . . , vd .
In practice, � is unknown, so S must be estimated from the data. Standard PCA

replaces (2.1) with an empirical version. This leads to the spectral decomposition
of the sample covariance matrix

Sn = 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T ,

where X̄ is the sample mean, and estimating S by the span of the leading d eigen-
vectors of Sn. In high-dimensions however, the eigenvectors of Sn can be incon-
sistent estimators of the eigenvectors of �. Additional structural constraints are
necessary for consistent estimation of S .
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2.1. Subspace sparsity. The notion of sparsity is appealing and has been used
successfully in the context of estimating vector valued parameters such as the
leading eigenvector in PCA. Extending this notion to subspaces requires care be-
cause sparsity is inherently a coordinate-dependent concept while subspaces are
coordinate-independent. For a given d-dimensional subspace G ∈ Gp,d , the set
of orthonormal matrices whose columns span G is a subset of the Stiefel manifold
Vp,d of p×d orthonormal matrices. We will consider two complementary notions
of subspace sparsity defined in terms of those orthonormal matrices: row sparsity
and column sparsity.

Define the (2, q)-norm, q ∈ [0,∞], of a p × d matrix A as the usual �q norm
of the vector of row-wise �2 norms of A:

‖A‖2,q :=
∥∥(‖a1∗‖2 · · · ‖ap∗‖2

)∥∥
q,

where aj∗ denotes the j th row of A. (To be precise, this is actually a pseudonorm
when q < 1.) Note that ‖ · ‖2,q is coordinate-independent, because ‖AO‖2,q =
‖A‖2,q for any orthogonal matrix O ∈R

d×d . We define the row sparse subspaces
using this norm. Let col(U) denotes the span of the columns of U .

DEFINITION (Row sparse subspaces). For 0 ≤ q < 2 and d ≤ Rq ≤ dq/2×
p1−q/2,

Mq(Rq) :=
{{

col(U) :U ∈Vp,d and ‖U‖q
2,q ≤Rq

}
, if 0 < q < 2 and{

col(U) :U ∈Vp,d and ‖U‖2,0 ≤R0
}
, if q = 0.

The constraints on Rq arise from the fact that the vector of row-wise �2 norms
of a p× d orthonormal matrix belongs to a sphere of radius d . Roughly speaking,
row sparsity asserts that there is a small subset of variables (coordinates of R

p)
that generate the principal subspace. Since ‖·‖2,q is coordinate-independent, every
orthonormal basis of a G ∈ Mq(Rq) has the same (2, q)-norm.

Another related notion of subspace sparsity is column sparsity, which asserts
that there is some orthonormal basis of sparse vectors that spans the principal sub-
space. Define the (∗, q)-norm, q ∈ [0,∞], of a p× d matrix A as the maximal �q

norm of its columns:

‖A‖∗,q := max
1≤j≤d

‖a∗j‖q,

where a∗j denotes the j th column of A. This is not coordinate-independent. We
define the column sparse subspaces to be those that have some orthonormal basis
with small (∗, q)-norm.

DEFINITION (Column sparse subspaces). For 0 ≤ q < 2 and 1 ≤ Rq ≤
p1−q/2,

M∗
q(Rq) :=

{{
col(U) :U ∈Vp,d and ‖U‖q∗,q ≤Rq

}
, if 0 < q < 2 and{

col(U) :U ∈Vp,d and ‖U‖∗,0 ≤R0
}
, if q = 0.
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The column sparse subspaces are the d-dimensional subspaces that have some
orthonormal basis whose vectors are �q sparse in the usual sense. Unlike row spar-
sity, the orthonormal bases of a column sparse G do not all have the same (∗, q)-
norm, but if G ∈ M∗

q(Rq), then there exists some U ∈ Vp,d such that G = col(U)

and ‖U‖q∗,q ≤Rq (or ‖U‖∗,q ≤Rq for q = 0).

2.2. Parameter space. We assume that there exist i.i.d. random vectors
Z1, . . . ,Zn ∈R

p , with EZ1 = 0 and Var(Z1)= Ip , such that

Xi = μ+�1/2Zi and ‖Zi‖ψ2 ≤ 1(2.4)

for i = 1, . . . , n, where ‖ · ‖ψα is the Orlicz ψα-norm [e.g., van der Vaart and
Wellner (1996), Chapter 2] defined for α ≥ 1 as

‖Z‖ψα := sup
b:‖b‖2≤1

inf
{
C > 0 : E exp

∣∣∣∣〈Z,b〉
C

∣∣∣∣
α

≤ 2
}
.

This ensures that all one-dimensional marginals of Xi have sub-Gaussian tails. We
also assume that the eigengap λd − λd+1 > 0 so that the principal subspace S is
well defined. Intuitively, S is harder to estimate when the eigengap is small. This
is made precise by the effective noise variance

σ 2
d (λ1, . . . , λp) := λ1λd+1

(λd − λd+1)2 .(2.5)

It turns out that this is a key quantity in the estimation of S , and that it is analogous
to the noise variance in linear regression. Let

Pq

(
σ 2,Rq

)
denote the class of distributions on X1, . . . ,Xn that satisfy (2.4), σ 2

d ≤ σ 2, and
S ∈ Mq(Rq). Similarly, let

P∗
q

(
σ 2,Rq

)
denote the class of distributions that satisfy (2.4), σ 2

d ≤ σ 2, and S ∈ M∗
q(Rq).

2.3. Subspace distance. A notion of distance between subspaces is necessary
to measure the performance of a principal subspace estimator. The canonical an-
gles between subspaces generalize the notion of angles between lines and can be
used to define subspace distances. There are several equivalent ways to describe
canonical angles, but for our purposes it will be easiest to describe them in terms
of projection matrices. See Bhatia [(1997), Chapter VII.1] and Stewart and Sun
(1990) for additional background on canonical angles. For a subspace E ∈ Gp,d

and its orthogonal projector E, we write E⊥ to denote the orthogonal projector of
E⊥ and recall that E⊥ = Ip −E.
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DEFINITION. Let E and F be d-dimensional subspaces of R
p with orthogonal

projectors E and F . Denote the singular values of EF⊥ by s1 ≥ s2 ≥ · · · . The
canonical angles between E and F are the numbers

θk(E , F )= arcsin(sk)

for k = 1, . . . , d and the angle operator between E and F is the d × d matrix

�(E , F )= diag(θ1, . . . , θd).

In this paper we will consider the distance between subspaces E , F ∈Gp,d∥∥sin�(E , F )
∥∥
F ,

where ‖ · ‖F is the Frobenius norm. This distance is indeed a metric on Gp,d

[see Stewart and Sun (1990), e.g.], and can be connected to the familiar Frobenius
(squared error) distance between projection matrices by the following fact from
matrix perturbation theory.

PROPOSITION 2.1 [See Stewart and Sun (1990), Theorem I.5.5]. Let E and F
be d-dimensional subspaces of R

p with orthogonal projectors E and F . Then:

1. The singular values of EF⊥ are

s1, s2, . . . , sd,0, . . . ,0.

2. The singular values of E − F are

s1, s1, s2, s2, . . . , sd, sd,0, . . . ,0.

In other words, EF⊥ has at most d nonzero singular values and the nonzero sin-
gular values of E − F are the nonzero singular values of EF⊥, each counted
twice.

Thus, ∥∥sin�(E , F )
∥∥2
F =

∥∥EF⊥∥∥2
F = 1

2‖E − F‖2
F =

∥∥E⊥F
∥∥2
F .(2.6)

We will frequently use these identities. For simplicity, we will overload notation
and write

sin(U1,U2) := sin�
(
col(U1), col(U2)

)
for U1,U2 ∈Vp,d . We also use a similar convention for sin(E,F ), where E,F are
the orthogonal projectors corresponding to E , F ∈ Gp,d The following proposi-
tion, proved in Appendix C, relates the subspace distance to the ordinary Euclidean
distance between orthonormal matrices.

PROPOSITION 2.2. If V1,V2 ∈Vp,d , then

1

2
inf

Q∈Vd,d

‖V1 − V2Q‖2
F ≤

∥∥sin(V1,V2)
∥∥2
F ≤ inf

Q∈Vd,d

‖V1 − V2Q‖2
F .

In other words, the distance between two subspaces is equivalent to the minimal
distance between their orthonormal bases.
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2.4. Sparse subspace estimators. Here we introduce an estimator that achieves
the optimal (up to a constant factor) minimax error for row sparse subspace esti-
mation. To estimate a row sparse subspace, it is natural to consider the empirical
minimization problem corresponding to (2.1) with an additional sparsity constraint
corresponding to Mq(Rq).

We define the row sparse principal subspace estimator to be a solution of the
following constrained optimization problem:

minimize
1

n

n∑
i=1

∥∥(Ip −�G )(Xi − X̄)
∥∥2

2

(2.7)
subject to G ∈ Mq(Rq).

For our analysis, it is more convenient to work on the Stiefel manifold. Let
〈A,B〉 := trace(AT B) for matrices A,B of compatible dimension. It is straight-
forward to show that following optimization problem is equivalent to (2.7):

maximize
〈
Sn,UUT 〉

subject to U ∈Vp,d(2.8)

‖U‖q
2,q ≤Rq (or ‖U‖2,0 ≤R0 if q = 0).

If V̂ is a global maximizer of (2.8), then col(V̂ ) is a solution of (2.7). When
q = 1, the estimator defined by (2.8) is essentially a generalization to subspaces of
the Lasso-type sparse PCA estimator proposed by Jolliffe, Trendafilov and Uddin
(2003). A similar idea has also been used by Chen, Zou and Cook (2010) in the
context of sufficient dimension reduction. The constraint set in (2.8) is clearly non-
convex, however this is unimportant, because the objective function is convex and
we know that the maximum of a convex function over a set D is unaltered if we
replace D by its convex hull. Thus, (2.8) is equivalent to a convex maximization
problem. Finding a global maximum of convex maximization problems is compu-
tationally challenging and efficient algorithms remain to be developed. Neverthe-
less, in the most popular case q = 1, some algorithms have been proposed with
promising empirical performance [Shen and Huang (2008), Witten, Tibshirani and
Hastie (2009)].

We define the column sparse principal subspace estimator analogously to
the row sparse principal subspace estimator, using the column sparse subspaces

M∗
q(Rq) instead of the row sparse ones. This leads to the following equivalent

Grassmann and Stiefel manifold optimization problems:

minimize
1

n

n∑
i=1

∥∥(Ip −�G )(Xi − X̄)
∥∥2

2

(2.9)
subject to G ∈ M∗

q(Rq)
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and

maximize
〈
Sn,UUT 〉

subject to U ∈Vp,d(2.10)

‖U‖q∗,q ≤Rq (or ‖U‖∗,0 ≤R0 if q = 0)

3. Main results. In this section, we present our main results on the mini-
max lower and upper bounds on sparse principal subspace estimation over the row
sparse and column sparse classes.

3.1. Row sparse lower bound. To highlight the key results with minimal as-
sumptions, we will first consider the simplest case where q = 0. Consider the fol-
lowing two conditions.

CONDITION 1. There is a constant M > 0 such that

(Rq − d)

[
σ 2

n

(
d + log

(p− d)1−q/2

Rq − d

)]1−q/2

≤M.

CONDITION 2. 4≤ p− d and 2d ≤Rq − d ≤ (p− d)1−q/2.

Condition 1 is necessary for the existence of a consistent estimator (see Theo-
rems A.1 and A.2). Without Condition 1, the statements of our results would be
complicated by multiple cases to deal with the fact that the subspace distance is
bounded above by

√
d . The lower bounds on p− d and Rq − d are minor techni-

cal conditions that ensure our nonasymptotic bounds are nontrivial. Similarly, the
upper bound on Rq − d is only violated in trivial cases (detailed discussion given
below).

THEOREM 3.1 (Row sparse lower bound, q = 0). If Conditions 1 and 2 hold,
then

inf
Ŝ

sup
P0(σ

2,R0)

E
∥∥sin�(Ŝ, S)

∥∥2
F ≥ c(R0 − d)

σ 2

n

[
d + log

p− d

R0 − d

]
.

Here, as well as in the entire paper, c denotes a universal, positive constant,
not necessarily the same at each occurrence. This lower bound result reflects two
separate aspects of the estimation problem: variable selection and parameter es-
timation after variable selection. Variable selection refers to finding the variables
that generate the principal subspace, while estimation refers to estimating the sub-
space after selecting the variables. For each variable, we accumulate two types
of errors: one proportional to d that reflects the coordinates of the variable in the
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d-dimensional subspace, and one proportional to log[(p − d)/(R0 − d)] that re-
flects the cost of searching for the R0 active variables. We prove Theorem 3.1 in
Appendix A.

The nonasymptotic lower bound for 0 < q < 2 has a more complicated depen-
dence on (n, p, d , Rq , σ 2) because of the interaction between �q and �2 norms.
Therefore, our main lower bound result for 0 < q < 2 will focus on combinations
of (n, p, d , Rq , σ 2) that correspond to the high-dimensional and sparse regime.
(We state more general lower bound results in Appendix A.) Let

T := Rq − d

(p− d)1−q/2 and γ := (p− d)σ 2

n
.(3.1)

The interpretation for these two quantities is natural. First, T measures the relative
sparsity of the problem. Roughly speaking, it ranges between 0 and 1 when the
sparsity constraint in (2.8) is active, though the “sparse” regime generally corre-
sponds to T � 1. The second quantity, γ corresponds to the classic mean squared
error (MSE) of standard PCA. The problem is low-dimensional if γ is small com-
pared to T . We impose the following condition to preclude this case.

CONDITION 3. There is a constant a < 1 such that T a ≤ γ q/2.

This condition lower bounds the classic MSE in terms of the sparsity and is mild
in high-dimensional situations. When a = q/2, for example, Condition 3 reduces
to

Rq − d ≤ σ 2

n
(p− d)2−q/2.

We also note that this assumption becomes milder for larger values of a and it is
related to conditions in other minimax inference problem involving �p and �q balls
[see Donoho and Johnstone (1994), e.g.].

THEOREM 3.2 (Row sparse lower bound, 0 < q < 2). Let q ∈ (0,2). If Con-
ditions 1 to 3 hold, then

inf
Ŝ

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥2
F ≥ c(Rq − d)

{
σ 2

n

[
d + log

(p− d)1−q/2

Rq − d

]}1−q/2

.

This result generalizes Theorem 3.1 and reflects the same combination of vari-
able selection and parameter estimation. When Condition 3 does not hold, the
problem is outside of the sparse, high-dimensional regime. As we show in the
proof, there is actually a “phase transition regime” between the high-dimensional
sparse and the classic dense regimes for which sharp minimax rate remains un-
known. A similar phenomenon has been observed in Birnbaum et al. (2013).
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3.2. Row sparse upper bound. Our upper bound results are obtained by ana-
lyzing the estimators given in Section 2.4. The case where q = 0 is the clearest,
and we begin by stating a weaker, but simpler minimax upper bound for the row
sparse class.

THEOREM 3.3 (Row sparse upper bound, q = 0). Let Ŝ be any global maxi-
mizer of (2.7). If 6

√
R0(d + logp)≤√n, then

sup
P0(σ

2,R0)

E
∥∥sin�(Ŝ, S)

∥∥2
F ≤ cR0

λ1

λd+1

σ 2(d + logp)

n
.

Although (2.7) may not have a unique global optimum, Theorem 3.3 shows that
any global optimum will be within a certain radius of the principal subspace S .
The proof of Theorem 3.3, given in Section 4.2, is relatively simple but still non-
trivial. It also serves as a prototype for the much more involved proof of our main
upper bound result stated in Theorem 3.4 below. We note that the rate given by
Theorem 3.3 is off by a λ1/λd+1 factor that is due to the specific approach taken
to control an empirical process in our proof of Theorem 3.3.

To state the main upper bound result with optimal dependence on (n, p, d ,
Rq , σ 2), we first describe some regularity conditions. Let

εn :=
√

2R1/2
q

(
d + logp

n

)1/2−q/4

.

The regularity conditions are

εn ≤ 1,(3.2)

c1

√
d

n
lognλ1 + c3εn(logn)5/2λd+1 <

1

2
(λd − λd+1),(3.3)

c3εn(logn)5/2λd+1 ≤
√

λ1λd+1
1−q/2

(λd − λd+1)
q/2(3.4)

and

c3ε
2
n(logn)5/2λd+1 ≤

√
λ1λd+1

2−q
(λd − λd+1)

−(1−q),(3.5)

where c1 and c3 are positive constants involved in the empirical process arguments.
Equations (3.2) to (3.5) require that εn, the minimax rate of estimation (except the
factor involving λ), to be small enough, compared to empirical process constants
and some polynomials of λ. Such conditions are mild in the high dimensional,
sparse regime, since to some extent, they are qualitatively similar and analogous
to Conditions 1 to 3 required by the lower bound.

REMARK 1. Conditions (3.2) to (3.5) are general enough to allow Rq , d and
λj (j = 1, d, d + 1) to scale with n. For example, consider the case q = 0, and let
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d = na , R0 = nb, p = nc, λ1 = nr1 , λd = nr2 , λd+1 = nr3 , where 0 < a < b < c,
and r1 ≥ r2 > r3. Note that the rj ’s can be negative. Then it is straightforward to
verify that conditions (3.2) to (3.5) hold for large values of n whenever a + b < 1
and r1 < r2 + (1 − a)/2. Condition (3.2) implies that d cannot grow faster than√

n.

THEOREM 3.4 (Row sparse upper bound in probability). Let q ∈ [0,1] and Ŝ
be any solution of (2.7). If (X1, . . . ,Xn)∼ P ∈ Pq(σ

2,Rq) and (3.2) to (3.5) hold,
then

∥∥sin�(Ŝ, S)
∥∥2
F ≤ cRq

(
σ 2(d + logp)

n

)1−q/2

with probability at least 1− 4/(n− 1)− 6 logn/n− p−1.

Theorem 3.4 is presented in terms of a probability bound instead of an expec-
tation bound. This stems from technical aspects of our proof that involve bound-
ing the supremum of an empirical process over a set of random diameter. For
q ∈ [0,1], the upper bound matches our lower bounds (Theorems 3.1 and 3.2) for
the entire tuple (n, p, d , Rq , σ 2) up to a constant if

R2/(2−q)
q ≤ pc(3.6)

for some constant c < 1. To see this, combining this additional condition and Con-

dition 2, the term log p1−q/2

Rq
in the lower bound given in Theorem 3.2 is within a

constant factor of logp in the upper bound given in Theorem 3.4. It is straight-
forward to check that the other terms in lower and upper bounds agree up to con-
stants with obvious correspondence. Moreover, we note that the additional condi-
tion (3.6) is only slightly stronger than the last inequality in Condition 2. The proof
of Theorem 3.4 is in Appendix B.1.

Using the probability upper bound result and the fact that ‖sin�(Ŝ, S)‖2
F ≤ d ,

one can derive an upper bound in expectation.

COROLLARY 3.1. Under the same condition as in Theorem 3.4, we have for
some constant c,

E
∥∥sin�(Ŝ, S)

∥∥2
F ≤ c

{
Rq

[
σ 2(d + logp)

n

]1−q/2

+ d

(
logn

n
+ 1

p

)}
.

REMARK 2. The expectation upper bound has an additional d(logn/n+1/p)

term that can be further reduced by refining the argument (see Remark 3 below). It
is not obvious if one can completely avoid such a term. But in many situations it is
dominated by the first term. Again, we invoke the scaling considered in Remark 1.
When q = 0, the first term is of order na+b+(r1+r3)/2−r2−1, and the additional term
is na−1 logn+ na−c, which is asymptotically negligible if b > r2 − (r1 + r3)/2+
(1− c)+.
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REMARK 3. Given any r > 0, it is easy to modify the proof of Theorem 3.4
[as well as conditions (3.2) to (3.5)] such that the results of Theorem 3.4 and
Corollary 3.1 hold with c replaced by some constant c(r), and the probability
bound becomes 1− 4/(nr − 1)− 6 logn/nr − 1/pr .

3.3. Column sparse lower bound. By modifying the proofs of Theorems 3.1
and 3.2, we can obtain lower bound results for the column sparse case that are
parallel to the row sparse case. For brevity, we present the q = 0 and q > 0 cases
together. The analog of T , the degree of sparsity, for the column sparse case is

T∗ := d(Rq − 1)

(p− d)1−q/2 ,(3.7)

and the analogs of Conditions 2 and 3 are the following.

CONDITION 4. 4d ≤ p− d and d ≤ d(Rq − 1)≤ (p− d)1−q/2.

CONDITION 5. There is a constant a < 1 such that T a∗ ≤ γ q/2.

THEOREM 3.5 (Column sparse lower bound). Let q ∈ [0,2). If Conditions 4
and 5 hold, then

inf
Ŝ

sup
P∗

q (σ 2,Rq)

E
∥∥sin(Ŝ, S)

∥∥2
F ≥ cd(Rq − 1)

{
σ 2

n

[
1+ log

(p− d)1−q/2

d(Rq − 1)

]}1−q/2
.

For column sparse subspaces, the lower bound is dominated by the variable
selection error, because column sparsity is defined in terms of the maximal �0
norms of the vectors in an orthonormal basis and R0 variables must be selected for
each of the d vectors. So the variable selection error is inflated by a factor of d ,
and hence becomes the dominating term in the total estimation error. We prove
Theorem 3.5 in Appendix A.

3.4. Column sparse upper bound. A specific challenge in analyzing the col-
umn sparse principal subspace problem (2.10) is to bound the supremum of the
empirical process 〈

Sn −�,UUT − V V T 〉
indexed by all U ∈ U (p, d,Rq, ε) where

U (p, d,Rq, ε)≡ {
U : Vp,d,‖U‖q∗,q ≤Rq,

∥∥UUT − V V T
∥∥
F ≤ ε

}
.

Unlike the row sparse matrices, the matrices UUT and V V T are no longer column
sparse with the same radius Rq .

By observing that M∗
q(Rq) ⊆ Mq(dRq), we can reuse the proof of Theo-

rem 3.4 to derive the following upper bound for the column sparse class.
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COROLLARY 3.2 (Column sparse upper bound). Let q ∈ [0,1] and Ŝ be any
solution of (2.9). If (X1, . . . ,Xn) ∼ P ∈ P∗

q (σ 2,Rq) and (3.2) to (3.5) hold with
Rq replaced by dRq , then

∥∥sin�(Ŝ, S)
∥∥2
F ≤ cdRq

(
σ 2(d + logp)

n

)1−q/2

with probability at least 1− 4/(n− 1)− 6 logn/n− p−1.

Corollary 3.2 is slightly weaker than the corresponding result for the row sparse
class. It matches the lower bound in Theorem 3.5 up to a constant if(

d(Rq − 1)
)2/(2−q) ≤ pc

for some constant c < 1, and d < C logp for some other constant C.

3.5. A conjecture for the column sparse case. Note that Theorem 3.5 and
Corollary 3.2 only match when d ≤ C logp. For larger values of d , we believe
that the lower bound in Theorem 3.5 is optimal and the upper bound can be im-
proved.

CONJECTURE (Minimax error bound for column sparse case). Under the
same conditions as in Corollary 3.2, there exists an estimator Ŝ such that

∥∥sin�(Ŝ, S)
∥∥2
F ≤ cdRq

(
σ 2(1+ logp)

n

)1−q/2

with high probability. As a result, the optimal minimax lower and upper bounds
for this case shall be

∥∥sin�(Ŝ, S)
∥∥2
F � dRq

(
σ 2 logp

n

)1−q/2

.

One reason for the conjecture is based on the following intuition. Suppose that
λ1 > λ2 > · · · > λd > λd+1 (there is enough gap between the leading eigenval-
ues) one can recover the individual leading eigenvectors with an error rate whose
dependence on (n,Rq,p) is the same as in the lower bound [cf. Birnbaum et al.
(2013), Vu and Lei (2012a)]. As a result, the estimator V̂ = (v̂1, v̂2, . . . , v̂d) shall
give the desired upper bound. On the other hand, it remains open to us whether the
estimator in (2.10) can achieve this rate for d much larger than logp.

4. Sketch of proofs. For simplicity, we focus on the row sparse case with
q = 0, assuming also the high dimensional and sparse regime. For more general
cases, see Theorems A.1 and A.2 in Appendix A.
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4.1. The lower bound. Our proof of the lower bound features a combination
of the general framework of the Fano method and a careful combinatorial analysis
of packing sets of various classes of sparse matrices. The particular challenge is to
construct a rich packing set of the parameter space Pq(σ

2,Rq). We will consider
centered p-dimensional Gaussian distributions with covariance matrix � given by

�(A)= bAAT + Ip,(4.1)

where A ∈Vp,d is constructed from the “local Stiefel embedding” as given below.
Let 1≤ k ≤ d < p and the function Aε : Vp−d,k �→Vp,d be defined in block form
as

Aε(J )=
⎡
⎣
(
1− ε2)1/2

Ik 0
0 Id−k

εJ 0

⎤
⎦(4.2)

for 0≤ ε ≤ 1. We have the following generic method for lower bounding the min-
imax risk of estimating the principal subspace of a covariance matrix. It is proved
in Appendix A as a consequence of Lemmas A.1 to A.3.

LEMMA 4.1 (Fano method with Stiefel embedding). Let ε ∈ [0,1] and
{J1, . . . , JN } ⊆ Vp−d,k for 1 ≤ k ≤ d < p. For each i = 1, . . . ,N , let Pi be the
n-fold product of the N (0,�(Aε(Ji))) probability measure, where �(·) is defined
in (4.1) and Aε(·) is defined in (4.2). If

min
i �=j

‖Ji − Jj‖F ≥ δN,

then every estimator Â of Ai := col(Aε(Ji)) satisfies

max
i

Ei

∥∥sin�(Â, Ai)
∥∥
F ≥

δNε
√

1− ε2

2

[
1− 4nkε2/σ 2 + log 2

logN

]
,

where σ 2 = (1+ b)/b2.

Note that if ‖J‖2,0 ≤ R0 − d , then ‖Aε(J )‖2,0 ≤ R. Thus Lemma 4.1 with
appropriate choices of Ji can yield minimax lower bounds over p-dimensional
Gaussian distributions whose principal subspace is R0 row sparse.

The remainder of the proof consists of two applications of Lemma 4.1 that cor-
respond to the two terms in Theorem 3.1. In the first part, we use a variation of
the Gilbert–Varshamov bound (Lemma A.5) to construct a packing set in Vp−d,1
consisting of (R0 − d)-sparse vectors. Then we apply Lemma 4.1 with

k = 1, δN = 1/4, ε2 � σ 2R0 logp

n
.

This yields a minimax lower bound that reflects the variable selection complex-
ity. In the second part, we leverage existing results on the metric entropy of the
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Grassmann manifold (Lemma A.6) to construct a packing set of VR0−d,d . Then
we apply Lemma 4.1 with

k = d, δN = c0
√

d/e, ε2 � σ 2R0

n
.

This yields a minimax lower bound that reflects the complexity of post-selection
estimation. Putting these two results together, we have for a subset of Gaussian
distributions G⊆ P0(σ

2,Rq) the minimax lower bound:

max
G

E
∥∥sin�(Â, Ai)

∥∥2
F ≥ cR0

σ 2

n
(logp ∧ d)≥ (c/2)R0

σ 2

n
(d + logp).

4.2. The upper bound. The upper bound proof requires a careful analysis of
the behavior of the empirical maximizer of the PCA problem under sparsity con-
straints. The first key ingredient is to provide a lower bound of the curvature of
the objective function at its global maxima. Traditional results of this kind, such
as Davis–Kahan sin� theorem and Weyl’s inequality, are not sufficient for our
purpose.

The following lemma, despite its elementary form, has not been seen in the
literature (to our knowledge). It gives us the right tool to bound the curvature of
the matrix functional F �→ 〈A,F 〉 at its point of maximum on the Grassmann
manifold.

LEMMA 4.2 (Curvature lemma). Let A be a p×p positive semidefinite matrix
and suppose that its eigenvalues λ1(A) ≥ · · · ≥ λp(A) satisfy λd(A) > λd+1(A)

for d < p. Let E be the d-dimensional subspace spanned by the eigenvectors of
A corresponding to its d largest eigenvalues, and let E denote its orthogonal pro-
jector. If F is a d-dimensional subspace of R

p and F is its orthogonal projector,
then ∥∥sin�(E , F )

∥∥2
F ≤

〈A,E − F 〉
λd(A)− λd+1(A)

.

Lemma 4.2 is proved in Appendix C.2. An immediate corollary is the following
alternative to the traditional matrix perturbation approach to bounding subspace
distances using the Davis–Kahan sin� theorem and Weyl’s inequality.

COROLLARY 4.1 (Variational sin�). In addition to the hypotheses of Lem-
ma 4.2, if B is a symmetric matrix and F satisfies

〈B,E〉 − g(E)≤ 〈B,F 〉 − g(F )(4.3)

for some function g : Rp×p �→R, then

∥∥sin�(E , F )
∥∥2
F ≤

〈B −A,F −E〉 − [g(F )− g(E)]
λd(A)− λd+1(A)

.(4.4)
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The corollary is different from the Davis–Kahan sin� theorem because the or-
thogonal projector F does not have to correspond to a subspace spanned by eigen-
vectors of B . F only has to satisfy

〈B,E〉 − g(E)≤ 〈B,F 〉 − g(F ).

This condition is suited ideally for analyzing solutions of regularized and/or con-
strained maximization problems where E and F are feasible, but F is optimal.
In the simplest case, where g ≡ 0, combining (4.4) with the Cauchy–Schwarz in-
equality and (2.6) recovers a form of the Davis–Kahan sin� theorem in the Frobe-
nius norm:

1√
2

∥∥sin�(E , F )
∥∥
F ≤

‖B −A‖F

λd(A)− λd+1(A)
.

In the upper bound proof, let V ∈ Vp,d be the true parameter, and V̂ be a solu-
tion of (2.8). Then we have 〈

Sn, V̂ V̂ T − V V T 〉≥ 0.

Applying Corollary 4.1 with B = Sn, A=�, E = V V T , F = V̂ V̂ T , and g ≡ 0,
we have

∥∥sin�(V, V̂ )
∥∥2
F ≤

〈Sn −�, V̂ V̂ T − V V T 〉
λd(�)− λd+1(�)

.(4.5)

Obtaining a sharp upper bound for 〈S −�, V̂ V̂ T − V V T 〉 is nontrivial. First,
one needs to control supF∈F 〈S−�,F 〉 for some class F of sparse and symmetric
matrices. This requires some results on quadratic form empirical process. Second,
in order to obtain better bounds, we need to take advantage of the fact that V̂ V̂ T −
V V T is probably small. Thus, we need to use a peeling argument to deal with
the case where F has a random (but probably) small diameter. These details are
given in Appendices B.1 and D. Here we present a short proof of Theorem 3.3 to
illustrate the idea.

PROOF OF THEOREM 3.3. By (4.5), we have

ε̂2 := ∥∥sin�(Ŝ, S)
∥∥2
F ≤

〈Sn −�, V̂ V̂ T − V V T 〉
λd − λd+1

and

ε̂2 ≤
√

2

λd − λd+1

〈
Sn −�

V̂ V̂ T − V V T

‖V̂ V̂ T − V V T ‖F

〉
ε̂,(4.6)

because ‖V̂ V̂ T − V V T ‖2
F = 2ε̂2 by (2.6). Let

�= V̂ V̂ T − V V T

‖V̂ V̂ T − V V T ‖F

.
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Then ‖�‖2,0 ≤ 2R0, ‖�‖F = 1, and � has at most d positive eigenvalues and at
most d negative eigenvalues (see Proposition 2.1). Therefore, we can write � =
AAT − BBT where ‖A‖2,0 ≤ 2R0, ‖A‖F ≤ 1, A ∈ R

p×d , and the same holds
for B . Let

U (R0)= {
U ∈R

p×d :‖U‖2,0 ≤ 2R0 and ‖U‖F ≤ 1
}
.

Equation (4.6) implies

Eε̂ ≤ 2
√

2

λd − λd+1
E sup

U∈U (R0)

∣∣〈Sn −�,UUT 〉∣∣.
The empirical process 〈Sn − �,UUT 〉 indexed by U is a generalized quadratic
form, and a sharp bound of its supremum involves some recent advances in em-
pirical process theory due to Mendelson (2010) and extensions of his results. By
Corollary 4.1 of Vu and Lei (2012b), we have

E sup
U∈U (R0)

∣∣〈Sn −�,UUT 〉∣∣

≤ cλ1

{
E supU∈U (R0)

〈Z,U〉√
n

+
(

E supU∈U (R0)
〈Z,U〉√

n

)2}
,

where Z is a p × d matrix of i.i.d. standard Gaussian variables. To control
E supU∈U 〈Z,U〉, note that

〈Z,U〉 ≤ ‖Z‖2,∞‖U‖2,1 ≤ ‖Z‖2,∞
√

2R0,

because U ∈ U (R0). Using a standard δ-net argument (see Propositions D.1
and D.2), we have, when p > 5,∥∥‖Z‖2,∞

∥∥
ψ2
≤ 4.15

√
d + logp(4.7)

and hence

E sup
U∈U

〈Z,U〉 ≤ 6
√

R0(d + logp).

The proof is complete since we assume that 6
√

R0(d + logp)≤√n. �

5. Discussion. There is a natural correspondence between the sparse principal
subspace optimization problem (2.7) and some optimization problems considered
in the sparse regression literature. We have also found that there is a correspon-
dence between minimax results for sparse regression and those that we presented
in this article. In spite of these connections, results on computation for sparse prin-
cipal subspaces (and sparse PCA) are far less developed than for sparse regression.
In this final section, we will discuss the connections with sparse regression, both
optimization and minimax theory, and then conclude with some open problems for
sparse principal subspaces.
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5.1. Connections with sparse regression. Letting X̃i =Xi − X̄ denote a cen-
tered observation, we can write (2.7) in the d = 1 case as an equivalent penalized
regression problem:

minimize
1

n

n∑
i=1

∥∥X̃i − uuT X̃i

∥∥2
2 + τq‖u‖q

q

subject to u ∈R
p and ‖u‖2 = 1

for 0 < q ≤ 1 and similarly for q = 0. The penalty parameter τq ≥ 0 plays a similar
role as Rq . When q = 1 this is equivalent to a penalized form of the sparse PCA
estimator considered in Jolliffe, Trendafilov and Uddin (2003) and it also bears
similarity to the estimator considered by Shen and Huang (2008). It is also similar
to the famous �1-penalized optimization often used in high-dimensional regres-
sion [Tibshirani (1996)]. In the subspace case d > 1, one can write an analogous
penalized multivariate regression problem:

minimize
1

n

n∑
i=1

∥∥X̃i −UUT X̃i

∥∥2
2 + τq‖U‖q

2,q

subject to U ∈Vp,d

for 0 < q ≤ 1 and similarly for q = 0. When q = 1, this corresponds to a “group
Lasso” penalty where entries in the same row of U are penalized simultaneously
[Yuan and Lin (2006), Zhao, Rocha and Yu (2009)]. The idea being that as τq

varies, a variable should enter/exit all d coordinates simultaneously. In the column
sparse case, when q = 1 the analogous penalized multivariate regression problem
has a penalty which encourages each column of U to be sparse, but does not require
that the pattern of sparsity to be the same across columns.

The analogy between row sparse principal subspace estimation and sparse re-
gression goes beyond the optimization problems formulated above—it is also re-
flected in terms of the minimax rate. In the sparse regression problem, we assume
an i.i.d. sample (Xi, Yi) ∈R

p ×R for 1≤ i ≤ n satisfying

Yi = βT Xi + εi,

where εi is mean zero, independently of Xi , and β ∈ R
p is the regression coef-

ficient vector. Raskutti, Wainwright and Yu (2011) showed (with some additional
conditions on the distribution of Xi ) that if ‖β‖q

q ≤ Rq and Var εi ≤ σ 2, then the
minimax rate of estimating β in �2 norm is (ignoring constants)

√
Rq

(
σ 2 logp

n

)1/2−q/4

.

The estimator that achieves this error rate is obtained by solving the �q constrained
least square problem. The d > 1 case corresponds to the multivariate regression
model, where Yi ∈ R

d , β ∈ R
p×d , and Var εi = σ 2Id . The results of Negahban
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et al. (2012), with straightforward modifications, imply that if ‖β‖q
2,q ≤ Rq , then

a penalized least squares estimator can achieve the �2 error rate

√
Rq

(
σ 2(d + logp)

n

)1/2−q/4

,

agreeing with our minimax lower and upper bounds for the row sparse principal
subspace problem.

5.2. Practical concerns. The nature of this work is theoretical and it leaves
open many challenges for methodology and practice. The minimax optimal es-
timators that we present appear to be computationally intractable because they
involve convex maximization rather than convex minimization problems. Even in
the case q = 1, which corresponds to a subspace extension of �1 constrained PCA,
the optimization problem remains challenging as there are no known algorithms to
efficiently compute a global maximum.

Although the minimax optimal estimators that we propose do not require knowl-
edge of the noise-to-signal ratio σ 2, they do require knowledge of (or an upper
bound on) the sparsity Rq . It is not hard to modify our techniques to produce an
estimator that gives up adaptivity to σ 2 in exchange for adaptivity to Rq . One
could do this by using penalized versions of our estimators with a penalty factor
proportional to σ 2. An extension along this line has already been considered by
Lounici (2013) for the d = 1 case. A more interesting question is whether or not
there exist fully adaptive principal subspace estimators.

Under what conditions can one find an estimator that achieves the minimax op-
timal error without requiring knowledge of either σ 2 or Rq? Works by Paul (2007)
and Ma (2013) on refinements of diagonal thresholding for the spiked covariance
model seems promising on this front, but as we mentioned in the Introduction,
the spiked covariance model is restrictive and necessarily excludes the common
practice of standardizing variables. Is it possible to be adaptive outside the spiked
covariance model? One possible approach can be described in the following three
steps. (1) use a conservative choice of Rq (say, pa , for some 0 < a < 1); (2) es-
timate σ 2 using eigenvalues obtained from the sparsity constrained principal sub-
space estimator; and (3) use a sparsity penalized principal subspace estimator with
σ 2 replaced by its estimate. We will pursue this idea in further detail in future
work.

APPENDIX A: LOWER BOUND PROOFS

Theorems 3.1, 3.2 and 3.5 are consequences of three more general results stated
below. An essential part of the strategy of our proof is to analyze the variable selec-
tion and estimation aspects of the problem separately. We will consider two types
of subsets of the parameter space that capture the essential difficulty of each as-
pect: one where the subspaces vary over different subsets of variables, and another
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where the subspaces vary over a fixed subset of variables. The first two results give
lower bounds for each aspect in the row sparse case. Theorems 3.1 and 3.2 follow
easily from them. The third result directly addresses the proof of Theorem 3.5.

THEOREM A.1 (Row sparse variable selection). Let q ∈ [0,2) and (p, d,Rq)

satisfy

4≤ p− d and 1≤Rq − d ≤ (p− d)1−q/2.

There exists a universal constant c > 0 such that every estimator Ŝ satisfies the
following. If T < γ q/2, then

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F

(A.1)

≥ c

{
(Rq − d)

[
σ 2

n

(
1− log

(
T/γ q/2))]1−q/2

∧ 1
}1/2

.

Otherwise,

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥ c

{
(p− d)σ 2

n
∧ 1

}1/2
.(A.2)

The case q = 0 is particularly simple, because T < γ q/2 = 1 holds trivially. In
that case, Theorem A.1 asserts that

sup
P0(R0,σ

2)

E
∥∥sin�(Ŝ, S)

∥∥
F

(A.3)

≥ c

{
(R0 − d)

σ 2

n

(
1+ log

p− d

Rq − d

)
∧ 1

}1/2

.

When q ∈ (0,2) the transition between the T < γ q/2 and T ≥ γ q/2 regimes in-
volves lower order (log log) terms that can be seen in (A.15). Under Condition 3,
(A.1) can be simplified to

sup
P0(R0,σ

2)

E
∥∥sin�(Ŝ, S)

∥∥
F

(A.4)

≥ c

{
(Rq − d)

σ 2

n

(
1+ (1− a) log

(p− d)1−q/2

Rq − d

)
∧ 1

}1/2−q/2

.

THEOREM A.2 (Row sparse parameter estimation). Let q ∈ [0,2) and
(p, d,Rq) satisfy

2≤ d and 2d ≤Rq − d ≤ (p− d)1−q/2,
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and let T and γ be defined as in (3.1). There exists a universal constant c > 0 such
that every estimator Ŝ satisfies the following. If T < (dγ )q/2, then

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥ c

{
(Rq − d)

(
dσ 2

n

)1−q/2

∧ d

}1/2

.(A.5)

Otherwise,

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥ c

{
d(p− d)σ 2

n
∧ d

}1/2

.(A.6)

This result with (A.3) implies Theorem 3.1, and with (A.4) it implies Theo-
rem 3.2.

THEOREM A.3 (Column sparse estimation). Let q ∈ [0,2) and (p, d,Rq) sat-
isfy

4≤ (p− d)/d and d ≤ d(Rq − 1)≤ (p− d)1−q/2,

and recall the definition of T∗ in (3.7). There exists a universal constant c > 0 such
that every estimator Ŝ satisfies the following. If T∗ < γ q/2, then

sup
P∗

q (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F

(A.7)

≥ c

{
d(Rq − 1)

[
σ 2

n

(
1− log

(
T∗/γ q/2))]1−q/2

∧ d

}1/2

.

Otherwise,

sup
P∗

q (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥ c

{
(p− d)σ 2

n
∧ d

}1/2

.(A.8)

In the next section we setup a general technique, using Fano’s inequality and
Stiefel manifold embeddings, for obtaining minimax lower bounds in princi-
pal subspace estimation problems. Then we move on to proving Theorems A.1
and A.3.

A.1. Lower bounds for principal subspace estimation via Fano method.
Our main tool for proving minimax lower bounds is the generalized Fano method.
We quote the following version from Yu (1997), Lemma 3.

LEMMA A.1 (Generalized Fano method). Let N ≥ 1 be an integer and
{θ1, . . . , θN } ⊂� index a collection of probability measures Pθi

on a measurable
space (X , A). Let d be a pseudometric on � and suppose that for all i �= j

d(θi, θj )≥ αN
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and, the Kullback–Leibler (KL) divergence

D(Pθi
‖Pθj

)≤ βN.

Then every A-measurable estimator θ̂ satisfies

max
i

Eθi
d(θ̂ , θi)≥ αN

2

[
1− βN + log 2

logN

]
.

The calculations required for applying Lemma A.1 are tractable when {Pθi
} is

a collection of multivariate Normal distributions. Let A ∈ Vp,d and consider the
mean zero p-variate Normal distribution with covariance matrix

�(A)= bAAT + Ip = (1+ b)AAT + (
Ip −AAT ),(A.9)

where b > 0. The noise-to-signal ratio of the principal d-dimensional subspace of
these covariance matrices is

σ 2 = 1+ b

b2

and can choose b to achieve any σ 2 > 0. The KL divergence between these multi-
variate Normal distributions has a simple, exact expression given in the following
lemma. The proof is straightforward and contained in Appendix C.1.

LEMMA A.2 (KL divergence). For i = 1,2, let Ai ∈Vp,d , b ≥ 0,

�(Ai)= (1+ b)AiA
T
i +

(
Ip −AiA

T
i

)
,

and Pi be the n-fold product of the N (0,�(Ai)) probability measure. Then

D(P1‖P2)= nb2

1+ b

∥∥sin(A1,A2)
∥∥2
F .

The KL divergence between the probability measures in Lemma A.2 is equiva-
lent to the subspace distance. In applying Lemma A.1, we will need to find packing
sets in Vp,d that satisfy the sparsity constraints of the model and have small diam-
eter according to the subspace Frobenius distance. The next lemma, proved in the
Appendix, provides a general method for constructing such local packing sets.

LEMMA A.3 (Local Stiefel embedding). Let 1≤ k ≤ d < p and the function
Aε : Vp−d,k �→Vp,d be defined in block form as

Aε(J )=
⎡
⎣
(
1− ε2)1/2

Ik 0
0 Id−k

εJ 0

⎤
⎦(A.10)

for 0≤ ε ≤ 1. If J1, J2 ∈Vp−d,k , then

ε2(1− ε2)‖J1 − J2‖2
F ≤

∥∥sin
(
Aε(J1),Aε(J2)

)∥∥2
F ≤ ε2‖J1 − J2‖2

F .
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This lemma allows us to convert global O(1)-separated packing sets in Vp−d,k

into O(ε)-separated packing sets in Vp,d that are localized within a O(ε)-
diameter. Note that

‖Ji − Jj‖F ≤ ‖Ji‖F + ‖Jj‖F ≤ 2
√

k.

By using Lemma A.3 in conjunction with Lemmas A.1 and A.2, we have the fol-
lowing generic method for lower bounding the minimax risk of estimating the
principal subspace of a covariance matrix.

LEMMA A.4. Let ε ∈ [0,1] and {J1, . . . , JN } ⊆ Vp−d,k for 1 ≤ k ≤ d < p.
For each i = 1, . . . ,N , let Pi be the n-fold product of the N (0,�(Aε(Ji))) prob-
ability measure, where �(·) is defined in (A.9) and Aε(·) is defined in (A.10). If

min
i �=j

‖Ji − Jj‖F ≥ δN,

then every estimator Â of Ai := col(Aε(Ji)) satisfies

max
i

Ei

∥∥sin�(Â, Ai)
∥∥
F ≥

δNε
√

1− ε2

2

[
1− 4nkε2/σ 2 + log 2

logN

]
,

where σ 2 = (1+ b)/b2.

A.2. Proofs of the main lower bounds.

PROOF OF THEOREM A.1. The following lemma, derived from Massart
[(2007), Lemma 4.10], allows us to analyze the variable selection aspect.

LEMMA A.5 (Hypercube construction). Let m be an integer satisfying e ≤m

and let s ∈ [1,m]. There exists a subset {J1, . . . , JN } ⊆Vm,1 satisfying the follow-
ing properties:

1. ‖Ji‖2,0 ≤ s for all i,
2. ‖Ji − Jj‖2

2 ≥ 1/4 for all i �= j , and
3. logN ≥ max{cs[1 + log(m/s)], log(m)}, where c > 1/30 is an absolute con-

stant.

PROPOSITION A.1. If J ∈Vm,d and q ∈ (0,2], then ‖J‖q
2,q ≤ dq/2‖J‖1−q/2

2,0 .

Let ρ ∈ (0,1] and {J1, . . . , JN } ⊆Vm,1 be the subset given by Lemma A.5 with
m= p− d and s =max{1, (p− d)ρ}. Then

logN ≥max
{
cs
(
1+ log

[
(p− d)/s

])
, log(p− d)

}
≥max

{
(1/30)(p− d)ρ(1− logρ), log(p− d)

}
.
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Applying Lemma A.4, with k = 1, δN = 1/2, and b chosen so that (1+ b)/b2 =
σ 2, yields

max
i

Ei

∥∥sin�(Â, Ai)
∥∥
F

≥ ε

4
√

2

[
1− 4nε2/σ 2

(1/30)(p− d)ρ(1− logρ)
− log 2

log(p− d)

]
(A.11)

= ε

4
√

2

[
1− 120ε2

γρ(1− logρ)
− log 2

log(p− d)

]

≥ ε

4
√

2

[
1

2
− 120ε2

γρ(1− logρ)

]

for every estimator Â and all ε ∈ [0,1/
√

2], because p − d ≥ 4 by assumption.
Since Ji ∈Vp−d,1, Proposition A.1 implies

∥∥Aε(Ji)
∥∥

2,q ≤
{

d + s, if q = 0 and(
d + εqs(2−q)/2)1/q

, if 0 < q < 2.
(A.12)

For every q ∈ [0,2)

d + εqs(2−q)/2 ≤Rq ⇐⇒ ε2q ≤ (Rq − d)2

s2−q
= (Rq − d)2

max{1, (p− d)ρ}2−q
.

Thus, (A.12) implies that the constraint

ε2q ≤min
{
(T /ρ)2ρq, (Rq − d)2}(A.13)

is sufficient for Ai ∈ Mq(Rq) and hence Pi ∈ Pq(σ
2,Rq). Now fix

ε2 = 1
480γρ(1− logρ)∧ 1

2 .

If we can choose ρ ∈ (0,1] such that (A.13) is satisfied, then by (A.11),

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥max

i
Ei

∥∥sin�(Â, Ai)
∥∥
F ≥

ε

16
√

2
.

Choose ρ ∈ (0,1] to be the unique solution of the equation

ρ =
{

T
[
γ (1− logρ)

]−q/2
, if T < γ q/2 and

1, otherwise.
(A.14)

We will verify that ε and ρ satisfy (A.13). The assumption that 1≤ Rq − d guar-
antees that ε2q ≤ (Rq − d)2, because ε2q ≤ 1. If T < γ q/2, then

(T /ρ)2ρq = [
γρ(1− logρ)

]q ≥ ε2q .

If T ≥ γ q/2, then ρ = 1 and

(T /ρ)2ρq = T 2 ≥ γ q ≥ ε2q .
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Thus, (A.13) holds and so

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥

ε

16
√

2
≥ 1

496

[
γρ(1− logρ)

]1/2 ∧ 1

32
.

Now we substitute (A.14) and the definitions of γ and T into the above inequality
to get the following lower bounds. If T < γ q/2, then

γρ(1− logρ)= T γ 1−q/2{1− logρ}1−q/2

= T γ 1−q/2
{

1− log
(
T/γ q/2)+ q

2
log(1− logρ)

}1−q/2

(A.15)

≥ T γ 1−q/2{1− log
(
T/γ q/2)}1−q/2

and so

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F

≥ c0

{
(Rq − d)

[
σ 2

n

(
1− log

(
T/γ q/2))]1−q/2

∧ 1
}1/2

.

If T ≥ γ q/2, then γρ(1− logρ)= γ and

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥ c0(γ ∧ 1)1/2 = c0

{
(p− d)σ 2

n
∧ 1

}1/2

.
�

PROOF OF THEOREM A.2. For a fixed subset of s variables, the challenge in
estimating the principal subspace of these variables is captured by the richness of
packing sets in the Stiefel manifold Vs,d . A packing set in the Stiefel manifold can
be constructed from a packing set in the Grassman manifold by choosing a single
element of the Stiefel manifold as a representative for each element of the packing
set in the Grassmann manifold. This is well defined, because the subspace distance
is invariant to the choice of basis. The following lemma specializes known results
Pajor [(1998), Proposition 8] for packing sets in the Grassman manifold.

LEMMA A.6 [See Pajor (1998)]. Let k and s be integers satisfying 1≤ k ≤ s−
k, and let δ > 0 There exists a subset {J1, . . . , JN } ⊆Vs,k satisfying the following
properties:

1. ‖ sin(Ji, Jj )‖F ≥
√

kδ for all i �= j , and
2. logN ≥ k(s − k) log(c2/δ), where c2 > 0 is an absolute constant.

To apply this result to Lemma A.4 we will use Proposition 2.2 to convert the
lower bound on the subspace distance into a lower bound on the Frobenius distance
between orthonormal matrices. Thus,

‖Ji − Jj‖F ≥
∥∥sin�(Ji, Jj )

∥∥
F ≥

√
kδ.(A.16)
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Let ρ ∈ (0,1] and s = max{2d, �(p − d)ρ�}. Invoke Lemma A.6 with k = d and
δ = c2/e, where c2 > 0 is the constant given by Lemma A.6. Let {J1, . . . , JN } ⊆
Vp−d,d be the subset given by Lemma A.6 after augmenting with rows of zeroes
if necessary. Then

logN ≥ d(s − d)≥max
{
d(s/2), d2}≥max

{
(d/4)(p− d)ρ, d2}

and by (A.16),

‖Ji − Jj‖2
F ≥ d(c2/e)

2

for all i �= j . The rest of this proof mirrors that of Theorem A.1. Let ε ∈ [0,1/
√

2]
and apply Lemma A.4 to get

max
i

E
∥∥sin�(Â, Ai)

∥∥
F ≥

c2
√

dε

2
√

2e

[
1− 4ndε2/σ 2

(d/4)(p− d)ρ
− log 2

d2

]
(A.17)

≥ c1
√

dε

[
1

2
− 16ε2

γρ

]
,

where γ is defined in (3.1) and we used the assumption that d ≥ 2. Since Ji ∈
Vp−d,d , Proposition A.1 implies

∥∥Aε(Ji)
∥∥

2,q ≤
{

d + s, if q = 0 and(
d + dq/2εqs(2−q)/2)1/q

, if 0 < q < 2.

For every q ∈ (0,2]
d + dq/2εqs(2−q)/2 ≤ Rq ⇐⇒

dqε2q ≤ (Rq − d)2

s2−q
= (Rq − d)2

max{2d, (p− d)ρ}2−q
.

So ε and ρ must satisfy the constraint

dqε2q ≤min
{
(T /ρ)2ρq,

(Rq − d)2

(2d)2−q

}
(A.18)

to ensure that Pi ∈ Pq(σ
2,Rq). Fix

ε2 = 1
64γρ ∧ 1

2(A.19)

and

ρ =
{

T (dγ )−q/2, if T < (dγ )q/2 and
1, otherwise.

(A.20)

Since ε2 ≤ 1/2,

dqε2q ≤ (Rq − d)2

(2d)2−q
⇐⇒ 2qε2q ≤ (Rq − d)2

4d2 ⇐� 2d ≤Rq − d,
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where the right-hand side is an assumption of the lemma. That verifies one of the
inequalities in (A.18). If T < (dγ )q/2, then

(T /ρ)2ρq = (dγρ)qρq ≥ dqε2q .

If T ≥ (dγ )q/2, then ρ = 1 and

(T /ρ)2ρq = T 2 ≥ (dγ )q ≥ dqε2q .

Thus, (A.18) holds and by (A.17),

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥max

i
Ei

∥∥sin�(Â, Ai)
∥∥
F

≥ c1
√

dε

[
1

2
− 16ε2

γ (2−q)/qρ

]

≥ c1

4

√
dε

≥ c0(dγρ ∧ d)1/2.

Finally, we substitute the definition of γ and (A.20) into the above inequality to
get the following lower bounds. If T < (dγ )q/2, then

sup
Pq (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥ c0

{
T (dγ )1−q/2 ∧ d

}1/2

= c0

{
(Rq − d)

(
dσ 2

n

)1−q/2

∧ d

}1/2

.

If T ≥ (dγ )q/2, then

sup
Pq (σ 2,Rq)

E
∥∥sin(V̂ ,V )

∥∥
F ≥ c0(dγ ∧ d)1/2 = c0

{
d(p− d)σ 2

n
∧ d

}1/2

.
�

PROOF OF THEOREM A.3. The proof is a modification of the proof of The-
orem A.1. The difficulty of the problem is captured by the difficulty of variable
selection within each column of V . Instead of using a single hypercube construc-
tion as in the proof of Theorem A.1, we apply a hypercube construction on each of
the d columns. We do this by dividing the (p − d)× d matrix into d submatrices
of size �(p− d)/d� × d , that is, constructing matrices of the form[

BT
1 BT

2 · · · BT
d 0 · · · ]T

and confining the hypercube construction to the kth column of each �(p−d)/d�×
d matrix Bk , k = 1, . . . , d . This ensures that the resulting (p − d)× d matrix has
orthonormal columns with disjoint supports.

Let ρ ∈ (0,1] and s ∈max{1, �(p − d)/d�ρ}. Applying Lemma A.5 with m=
�(p− d)/d�, we obtain a subset {J1, . . . , JM} ⊆Vm,1 such that:
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1. ‖Ji‖0 ≤ s for all i,
2. ‖Ji − Jj‖2

2 ≥ 1/4 for all i �= j , and
3. logM ≥ max{cs(1 + log(m/s)), logm}, where c > 1/30 is an absolute con-

stant.

Next we will combine the elements of this packing set in Vm,1 to form a packing
set in Vp−d,d . A naive approach takes the d-fold product {J1, . . . , JM}d , however
this results in too small a packing distance because two elements of this product
set may differ in only one column.

We can increase the packing distance by requiring a substantial number of
columns to be different between any two elements of our packing set without much
sacrifice in the size of the final packing set. This is achieved by applying an addi-
tional combinatorial round with the Gilbert–Varshamov bound on M-ary codes
of length d with minimum Hamming distance d/2 [Gilbert (1952), Varšamov
(1957)]. The kth coordinate of each code specifies which element of {J1, . . . , JM}
to place in the kth column of Bk , and so any two elements of the resulting pack-
ing set will differ in at least d/2 columns. Denote the resulting subset of Vp−d,d

by Hs . We have:

1. ‖H‖∗,0 ≤ s for all H ∈ Hs .
2. ‖H1 −H2‖2

2 ≥ d/8 for all H1,H2 ∈ Hs such that H1 �=H2.
3. logN := log |Hs | ≥max{cds(1+ log(m/s)), logm}, where c > 0 is an absolute

constant.

Note that the lower bound of logm in the third item arises by considering the
packing set whose N elements consist of matrices whose columns in B1, . . . ,Bd

are all equal to some Ji for i = 1, . . . ,M . This ensures that logN ≥ logM ≥ logm.
From here, the proof is a straightforward modification of proof of Theorem A.1
with the substitution of p − d by (p − d)/d . For brevity we will only outline the
major steps.

Recall the definitions of T∗ and γ in (3.7). Apply Lemma A.4 with the subset
Hs , k = d , δN =√d/

√
8, and b chosen so that (1+ b)/b2 = σ 2. Then

max
i

E
∥∥sin�(Â, Ai)

∥∥
F ≥ c0

√
dε

[
1− 4nε2/σ 2

cmρ(1− logρ)
− log 2

logm

]

≥ c0
√

dε

[
1

4
− (8/c)dε2

γρ(1− logρ)

]

by the assumption that (p− d)/d ≥ 4, and

‖Ai‖∗,q ≤
{

1+ s, if q = 0 and(
1+ εqs(2−q)/2)1/q

, if 0 < q < 2.

The constraint

dqε2q ≤min
{
(T∗/ρ)2ρq, dq(Rq − 1)2}
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ensures that Pi ∈ P∗
q (σ 2,Rq). It is satisfied by choosing ε so that

dε2 = c1γρ(1− logρ)∧ 1
2 ,

where c1 > 0 is a sufficiently small constant, the assumption that d < d(Rq − 1),
and letting ρ be the unique solution of the equation

ρ =
{

T∗
[
γ (1− logρ)

]−q/2
, if T∗ < γ q/2 and

1, otherwise.

We conclude that every estimator V̂ satisfies

sup
P∗

q (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥ c2

{
γρ(1− logρ)∧ d

}1/2
,

and we have the following explicit lower bounds. If T∗ < γ q/2, then

sup
P∗

q (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F

≥ c3

{
d(Rq − 1)

[
σ 2

n

(
1− log

(
T∗/γ q/2))]1−q/2

∧ d

}1/2

.

If T∗ ≥ γ q/2, then

sup
P∗

q (σ 2,Rq)

E
∥∥sin�(Ŝ, S)

∥∥
F ≥ c3

{
(p− d)σ 2

n
∧ d

}1/2

.
�

APPENDIX B: UPPER BOUND PROOFS

B.1. Proofs of the main upper bounds. � and Sn are both invariant un-
der translations of μ. Since our estimators only depend on X1, . . . ,Xn only
through Sn, we will assume without loss of generality that μ= 0 for the remainder
of the paper. The sample covariance matrix can be written as

Sn = 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T = 1

n

n∑
i=1

XiX
T
i − X̄X̄T .

It can be show that X̄X̄T is a higher order term that is negligible [see the proofs in
Vu and Lei (2012a), for an example of such arguments]. Therefore, we will ignore
this term and focus on the dominating 1

n

∑n
i=1 XiX

T
i term in our proofs below.

PROOF OF THEOREM 3.4. Again, we start from Corollary 4.1, which gives

ε̂2 := ∥∥sin�(Ŝ, S)
∥∥2
F ≤

〈Sn −�, V̂ V̂ T − V V T 〉
λd − λd+1

.
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To get the correct dependence on λi and for general values of q , we need a more
refined analysis to control the random variable 〈Sn −�, V̂ V̂ T − V V T 〉. Let

W := Sn −�, � := V V T and �̂ := V̂ V̂ T .

Recall that for an orthogonal projector � we write �⊥ := I − �. By Proposi-
tion C.1 we have

〈W,�̂−�〉 = −〈W,��̂⊥�
〉+ 2

〈
W,�⊥�̂�

〉+ 〈
W,�⊥�̂�⊥〉(B.1)

=: −T1 + 2T2 + T3.(B.2)

We will control T1 (the upper-quadratic term), T2 (the cross-product term), and T3

(the lower-quadratic term) separately.

Controlling T1.

|T1| =
∣∣〈W,��̂⊥�

〉∣∣= ∣∣〈�W�,��̂⊥�
〉∣∣

≤ ‖�W�‖2
∥∥��̂⊥�

∥∥∗ = ‖�W�‖2
∥∥��̂⊥�̂⊥�

∥∥∗(B.3)

= ‖�W�‖2
∥∥��̂⊥∥∥2

F ≤ ‖�W�‖2ε̂
2,

where ‖ · ‖∗ is the nuclear norm (�1 norm of the singular values) and ‖ · ‖2 is the
spectral norm (or operator norm). By Lemma D.5, we have (recall that we assume
‖Z‖ψ2 ≤ 1 and εn ≤ 1 for simplicity)

∥∥‖�W�‖2
∥∥
ψ1
≤ c1λ1

√
d/n,(B.4)

where c1 is a universal constant. Define

�1 =
{
|T1| ≥ c1

√
d

n
lognλ1ε̂

2
}
.

Then, when n≥ 2 we have

P(�1)≤ P
(‖�W�‖2 ≥ c1λ1 logn

√
d/n

)≤ (n− 1)−1.(B.5)

Controlling T2.

T2 = 〈
W,�⊥�̂�

〉= 〈
�⊥W�,�⊥�̂

〉
(B.6)

≤ ∥∥�⊥W�
∥∥

2,∞
∥∥�⊥�̂

∥∥
2,1.

To bound ‖�⊥�̂‖2,1, let the rows of �⊥�̂ be denoted by φ1, . . . , φp and t > 0.
Using a standard argument of bounding �1 norm by the �q and �2 norms [e.g.,
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Raskutti, Wainwright and Yu (2011), Lemma 5], we have for all t > 0, 0 < q ≤ 1,

∥∥�⊥�̂
∥∥

2,1 =
p∑

i=1

‖φi‖2

≤
[ p∑

i=1

‖φi‖q
2

]1/2[ p∑
i=1

‖φi‖2
2

]1/2

t−q/2 +
[ p∑

i=1

‖φi‖q
2

]
t1−q

(B.7)
= ∥∥�⊥�̂

∥∥q/2
2,q

∥∥�⊥�̂
∥∥
F t−q/2 + ∥∥�⊥�̂

∥∥q
2,q t1−q

≤√2R1/2
q t−q/2ε̂+ 2Rqt1−q,

where the last step uses the fact that∥∥�⊥�̂
∥∥q

2,q =
∥∥�⊥V̂

∥∥q
2,q = ‖V̂ −�V̂ ‖q

2,q ≤ ‖V̂ ‖q
2,q +

∥∥V V T V̂
∥∥q

2,q

≤ ‖V̂ ‖q
2,q + ‖V ‖q

2,q ≤ 2Rq.

Combining (B.6) and (B.7) we obtain, for all t > 0, 0 < q < 1,

T2 ≤
∥∥�⊥W�

∥∥
2,∞

(√
2R1/2

q t−q/2ε̂+ 2Rqt1−q).(B.8)

The case where q = 0 is simpler and omitted. Now define

�2 := {
T2 ≥ 20

(√
λ1λd+1

1−q/2
(λd − λd+1)

q/2εnε̂

+√
λ1λd+1

2−q
(λd − λd+1)

−(1−q)ε2
n

)}
= {

T2 ≥ t2,1
(√

2Rqt
−q/2
2,2 ε̂+ 2Rqt

1−q
2,2

)}
,

t2,1 = 20
√

λ1λd+1

√
d + logp

n
,

t2,2 =
√

λ1λd+1

λd − λd+1

√
d + logp

n
.

Taking t = t2,2 in (B.8) and using the tail bound result in Lemma D.1, we have

P(�2)≤ P
(∥∥�⊥W�

∥∥
2,∞ ≥ t2,1

)

≤ 2p5d exp
(
− t2

2,1/8

2λ1λd+1/n+ t2,1
√

λ1λd+1/n

)
(B.9)

≤ p−1.

Controlling T3. The bound on T3 involves a quadratic form empirical process
over a random set. Let ε ≥ 0 and define

φ(Rq, ε) := sup
{〈
W,�⊥UUT �⊥〉 :U ∈Vp,d,‖U‖q

2,q ≤Rq,
∥∥�⊥U

∥∥
F ≤ ε

}
.
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Then by Lemma D.4, we have, with some universal constants c3, for x > 0

P
(
φ(Rq, ε)≥ c3xλd+1

(
εnε

2 + ε2
nε+ ε4

n

))≤ 2 exp
(−x2/5).

Let T3(U)= 〈W,�⊥UUT �⊥〉, for all U ∈ Up(Rq), where

Up(Rq) := {
U ∈Vp,d : col(U) ∈ Mp(Rq)

}
.

Define function g(ε)= εnε
2 + ε2

nε + ε4
n. Then for all ε ≥ 0, we have g(ε)≥ ε4

n ≥
4d3/n2. On the other hand, if ε = ‖sin�(U,V )‖F , then ε2 ≤ 2d and hence g(ε)≤
g(
√

2d)= 2d +√2d + 1. Let μ= ε4
n and J = �log2(g(

√
2d)/μ)�. Then we have

J ≤ 3 logn+ 6/5.
Note that g is strictly increasing on [0,

√
2d]. Then we have the following peel-

ing argument:

P
[∃U ∈ Up(Rq) :T3(U)≥ 2c3λd+1(logn)5/2g

(∥∥sin(U,V )
∥∥
F

)]
≤ P

[∃1≤ j ≤ J,U ∈ Up(Rq) : 2j−1μ≤ g
(∥∥sin�(U,V )

∥∥
F

)≤ 2jμ,

T3(U)≥ 2c3λd+1(logn)5/2g
(∥∥sin�(U,V )

∥∥
F

)]

≤
J∑

j=1

P
[
φ
(
Rq,g

−1(2jμ
))≥ c3λd+1(logn)5/22jμ

]

≤ J2n−1 ≤ 6 logn

n
+ 3

n
.

Define

�3 := {
φ(Rq, ε̂)≥ c3(logn)5/2λd+1

(
εnε̂

2 + ε2
nε̂+ ε4

n

)}
.

Then we have proved that

P(�3)≤ 6 logn

n
+ 3

n
.

Putting things together. Now recall the conditions in (3.2) to (3.5). On �c
1 ∩

�c
2 ∩�c

3, we have, from (B.1) that

(λd − λd+1)ε̂
2 ≤

(
c1

√
d

n
lognλ1 + c3εn(logn)5/2λd+1

)
ε̂2

+ 41
√

λ1λd+1
1−q/2

(λd − λd+1)
q/2εnε̂

+ 41
√

λ1λd+1
2−q

(λd − λd+1)
−(1−q)ε2

n �⇒
1

2
(λd − λd−1)ε̂

2 ≤ 41
√

λ1λd+1
1−q/2

(λd − λd+1)
q/2εnε̂

+ 41
√

λ1λd+1
2−q

(λd − λd+1)
−(1−q)ε2

n �⇒

ε̂ ≤ 83
( √

λ1λd+1

λd − λd+1

)1−q/2

εn. �
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APPENDIX C: ADDITIONAL PROOFS

PROOF OF PROPOSITION 2.2. Let γi be the cosine of the ith canonical angle
between the subspaces spanned by V1 and V2. By Theorem II.4.11 of Stewart and
Sun (1990),

inf
Q∈Vk,k

‖V1 − V2Q‖2
F = 2

∑
i

(1− γi).

The inequalities

1− x ≤ (
1− x2)≤ 2(1− x)

hold for all x ∈ [0,1]. So

1

2
inf

Q∈Vk,k

‖V1 − V2Q‖2
F ≤

∑
i

(
1− γ 2

i

)≤ inf
Q∈Vk,k

‖V1 − V2Q‖2
F .

Apply the trigonometric identity sin2 θ = 1 − cos2 θ to the preceding display to
conclude the proof. �

C.1. Proofs related to the lower bounds.

PROOF OF LEMMA A.2. Write �i =�(Ai) for i = 1,2. Since �1 and �2 are
nonsingular and have the same determinant,

D(P1‖P2)= nD
(

N (0,�1)‖N (0,�2)
)

= n

2

{
trace

(
�−1

2 �1
)− p− log det

(
�−1

2 �1
)}

= n

2
trace

(
�−1

2 (�1 −�2)
)
.

Now

�−1
2 = (1+ b)−1A2A

T
2 +

(
Ip −A2A

T
2
)

and

�1 −�2 = b
(
A1A

T
1 −A2A

T
2
)
.

Thus,

trace
(
�−1

2 (�1 −�2)
)

= b

1+ b

{
(1+ b)

〈
Ip −A2A

T
2 ,A1A

T
1
〉− 〈

A2A
T
2 ,A2A

T
2 −A1A

T
1
〉}

= b− 1

b

{
b
〈
Ip −A2A

T
2 ,A1A

T
1
〉− 〈

Ip,A2A
T
2 −A2A

T
2 A1A

T
1
〉}
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= b

1+ b

{
(1+ b)

〈
Ip −A2A

T
2 ,A1A

T
1
〉− 〈

A2A
T
2 , Ip −A1A

T
1
〉}

= b2

1+ b

∥∥sin(A1,A2)
∥∥2
F

by Proposition 2.1. �

PROOF OF LEMMA A.3. By Proposition 2.1 and the definition of Aε(·),∥∥sin
(
Aε(J1),Aε(J2)

)∥∥2
F =

1

2

∥∥[Aε(J1)
][

Aε(J1)
]T − [

Aε(J2)
][

Aε(J2)
]T ∥∥2

F

= ε2(1− ε2)‖J1 − J2‖2
F +

ε4

2

∥∥J1J
T
1 − J2J

T
2
∥∥2
F

≥ ε2(1− ε2)‖J1 − J2‖2
F .

The upper bound follows from Proposition 2.2:∥∥sin
(
Aε(J1),Aε(J2)

)∥∥2
F ≤

∥∥Aε(J1)−Aε(J2)
∥∥2
F = ε2‖J1 − J2‖2

F . �

PROOF OF LEMMA A.5. Let s0 = �min(m/e, s)�. The assumptions that
m/e ≥ 1 and s ≥ 1 guarantee that s0 ≥ 1. According to Massart [(2007), Lem-
ma 4.10] [with α = 7/8 and β = 8/(7e)], there exists a subset �

s0
m ⊆ {0,1}m satis-

fying the following properties:

1. ‖ω‖0 = s0 for all ω ∈�
s0
m ,

2. ‖ω−ω′‖0 > s0/4 for all distinct pairs ω,ω′ ∈�
s0
m , and

3. log |�s0
m | ≥ cs0 log(m/s0), where c > 0.251.

Let

{J1, . . . , JN } := {
s
−1/2
0 ω :ω ∈�s0

m

}
.

Clearly, {J1, . . . , JN } ⊆Vm,1 and

‖Ji‖(2,0) = ‖ω‖0 = s0 ≤ s

for every i. If i �= j , then

‖Ji − Jj‖2
F = s−1

0 ‖ωi −ωj‖0 > 1/4.

The cardinality of {J1, . . . , JN } satisfies

logN = log
∣∣�s0

m

∣∣≥ cs0 log(m/s0).

As a function of s0, the above right-hand side is increasing on the interval [0,m/e].
Since min(m/e, s)/2≤ s0 belongs to that interval

logN ≥ c
(
min(m/e, s)/2

)
log

[
m/

(
min(m/e, s)/2

)]
≥ (c/2)min(m/e, s) log

[
m/min(m/e, s)

]
.
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It is easy to see that

min(m/e, s) log
[
m/min(m/e, s)

]≥max
{
s log(m/s), s/e

}
for all s ∈ [1,m]. Thus,

min(m/e, s) log[m/min(m/e, s)≥ (1+ e)−1s + (1+ e)−1s log(m/s)

and

logN ≥ (c/2)(1+ e)−1s
(
1+ log(m/s)

)
,(C.1)

where (c/2)(1 + e)−1 > 1/30. If the above right-hand side is ≤ logm, then we
may repeat the entire argument from the beginning with {J1, . . . , JN } taken to
be the N = m vectors {(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)} ⊆ {0,1}m.
That yields, in combination with (C.1),

logN ≥max
{
(1/30)s

[
1+ log(m/s)

]
, logm

}
. �

C.2. Proofs related to the upper bounds.

PROOF OF LEMMA 4.2. For brevity, denote the eigenvalues of A by λd :=
λd(A). Let A = ∑p

i=1 λiuiu
T
i be the spectral decomposition of A so that E =∑d

i=1 uiu
T
i and E⊥ =∑p

i=d+1 uiu
T
i . Then

〈A,E − F 〉 = 〈
A,E(I − F)− (I −E)F

〉
= 〈

EA,F⊥〉− 〈
E⊥A,F

〉

=
d∑

i=1

λi

〈
uiu

T
i ,F⊥〉− p∑

i=d+1

λi

〈
uiu

T
i ,F

〉

≥ λd

d∑
i=1

〈
uiu

T
i ,F⊥〉− λd+1

p∑
i=d+1

〈
uiu

T
i ,F

〉

= λd

〈
E,F⊥〉− λd+1

〈
E⊥,F

〉
.

Since orthogonal projectors are idempotent,

λd

〈
E,F⊥〉− λd+1

〈
E⊥,F

〉= λd

〈
EF⊥,EF⊥〉− λd+1

〈
E⊥F,E⊥F

〉
= λd

∥∥EF⊥∥∥2
F − λd+1

∥∥E⊥F
∥∥2
F .

Now apply Proposition 2.1 to conclude that

λd

∥∥EF⊥∥∥2
F − λd+1

∥∥E⊥F
∥∥2
F = (λd − λd+1)

∥∥sin�(E , F )
∥∥2
F . �

PROPOSITION C.1. If W is symmetric, and E and F are orthogonal projec-
tors, then

〈W,F −E〉 = 〈
E⊥WE⊥,F

〉− 〈
EWE,F⊥〉+ 2

〈
E⊥WE,F

〉
.(C.2)
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PROOF. Using the expansion

W =E⊥WE⊥ +EWE +EWE⊥ +E⊥WE

and the symmetry of W , F and E, we can write

〈W,F −E〉 = 〈
E⊥WE⊥,F −E

〉+ 〈EWE,F −E〉
+ 2

〈
E⊥WE,F −E

〉
= 〈

E⊥WE⊥,E⊥(F −E)
〉+ 〈

EWE,E(F −E)
〉

+ 2
〈
E⊥WE,E⊥(F −E)

〉
= 〈

E⊥WE⊥,F
〉+ 〈

EWE,E(F −E)
〉+ 2

〈
E⊥WE,F

〉
.

Now note that

E(F −E)=EF −E =−EF⊥. �

APPENDIX D: EMPIRICAL PROCESS RELATED PROOFS

D.1. The cross-product term. This section is dedicated to proving the fol-
lowing bound on the cross-product term.

LEMMA D.1. There exists a universal constant c > 0 such that

P
(∥∥�⊥W�

∥∥
2,∞ > t

)≤ 2p5d exp
(
− t2/8

2λ1λd+1/n+ t
√

λ1λd+1/n

)
.

The proof of Lemma D.1 builds on the following two lemmas. They are adapted
from Lemmas 2.2.10 and 2.2.11 of van der Vaart and Wellner (1996).

LEMMA D.2 (Bernstein’s inequality). Let Y1, . . . , Yn be independent random
variables with zero mean. Then

P

(∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣> t

)
≤ 2 exp

(
− t2/2

2
∑n

i=1 ‖Yi‖2
ψ1
+ t maxi≤n ‖Yi‖ψ1

)

LEMMA D.3 (Maximal inequality). Let Y1, . . . , Ym be arbitrary random vari-
ables that satisfy the bound

P
(|Yi |> t

)≤ 2 exp
(
− t2/2

b+ at

)

for all t > 0 (and i) and fixed a, b > 0. Then∥∥∥ max
1≤i≤m

Yi

∥∥∥
ψ1
≤ c

(
a log(1+m)+

√
b log(1+m)

)
for a universal constant c > 0.
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We bound ‖�⊥(Sn −�)�‖2,∞ by a standard δ-net argument.

PROPOSITION D.1. Let A be a p × d matrix, (e1, . . . , ep) be the canonical
basis of R

p and Nδ be a δ-net of S
d−1
2 for some δ ∈ [0,1). Then

‖A‖2,∞ ≤ (1− δ)−1 max
1≤j≤p

max
u∈Nδ

〈ej ,Au〉.

PROOF. By duality and compactness, there exists u∗ ∈ S
d−1 and u ∈ Nδ such

that

‖A‖2,∞ = max
1≤j≤p

∥∥eT
j A

∥∥
2 = max

1≤j≤p
〈ej ,Au∗〉

and ‖u∗ − u‖2 ≤ δ. Then by the Cauchy–Schwarz inequality,

‖A‖2,∞ = max
1≤j≤p

〈ej ,Au〉 + 〈
ej ,A(u∗ − u)

〉
≤ max

1≤j≤p
〈ej ,Au〉 + δ

∥∥eT
j A

∥∥
2

≤ max
1≤j≤p

max
u∈Nδ

〈ej ,Au〉 + δ‖A‖2,∞.

Thus,

‖A‖2,∞ ≤ (1− δ)−1 max
1≤j≤p

max
u∈Nδ

〈ej ,Au〉. �

The following bound on the covering number of the sphere is well known [see,
e.g., Ledoux (2001), Lemma 3.18].

PROPOSITION D.2. Let Nδ be a minimal δ-net of S
d−1
2 for δ ∈ (0,1). Then

|Nδ| ≤ (1+ 2/δ)d .

PROPOSITION D.3. Let X and Y be random variables. Then

‖XY‖ψ1 ≤ ‖X‖ψ2‖Y‖ψ2 .

PROOF. Let A=X/‖X‖ψ2 and Y/‖Y‖ψ2 . Using the elementary inequality

|ab| ≤ 1
2

(
a2 + b2)

and the triangle inequality we have that

‖AB‖ψ1 ≤ 1
2

(∥∥A2∥∥
ψ1
+ ∥∥B2∥∥

ψ1

)= 1
2

(‖A‖2
ψ2
+ ‖B‖2

ψ2

)= 1.

Multiplying both sides of the inequality by ‖X‖ψ2‖Y‖ψ2 gives the desired result.
�
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PROOF OF LEMMA D.1. Let Nδ be a minimal δ-net in S
d−1
2 for some δ ∈

(0,1) to be chosen later. By Proposition D.1 we have

∥∥�⊥W�
∥∥

2,∞ ≤ 1

1− δ
max

1≤j≤p
max
u∈Nδ

〈
�⊥ej ,WV u

〉
,

where ej is the j th column of Ip×p . Taking δ = 1/2, by Proposition D.2 we have
|Nδ| ≤ 5d .

Now �⊥�V = 0 and so

〈
�⊥ej ,WV u

〉= 1

n

n∑
i=1

〈
Xi,�

⊥ej

〉〈Xi,V u〉

is the sum of independent random variables with mean zero. By Proposition D.3,
the summands satisfy∥∥〈Xi,�

⊥ej

〉〈Xi,V u〉∥∥ψ1
≤ ∥∥〈Xi,�

⊥ej

〉∥∥
ψ2

∥∥〈Xi,V u〉∥∥ψ2

= ∥∥〈Zi,�
1/2�⊥ej

〉∥∥
ψ2

∥∥〈Zi,�
1/2V u

〉∥∥
ψ2

≤ ‖Z1‖2
ψ2

∥∥�1/2�⊥ej

∥∥
2

∥∥�1/2V u
∥∥

2

≤ ‖Z1‖2
ψ2

√
λ1λd+1.

Recall that ‖Z‖2
ψ2
= 1. Then Bernstein’s inequality (Lemma D.2) implies that for

all t > 0 and every u ∈ Nδ

P
(∥∥�⊥W�

∥∥
2,∞ > t

)≤ P

(
max

1≤j≤p
max
u∈Nδ

〈
�⊥ej ,WV u

〉
> t/2

)

≤ p5d
P
(∣∣〈�⊥ej ,WV u

〉∣∣> t/2
)

≤ 2p5d exp
(
− t2/8

2λ1λd+1/n+ t
√

λ1λd+1/n

)
. �

D.2. The quadratic terms.

LEMMA D.4. Let ε ≥ 0, q ∈ (0,1], and

φ(Rq, ε)= sup
{〈
Sn −�,�⊥UUT �⊥〉 :U ∈Vp,d,‖U‖q

2,q ≤Rq,∥∥�⊥U
∥∥
F ≤ ε

}
.

There exist constants c > 0 and c1 such that for all x ≥ c1,

P

[
φ(Rq, ε)≥ cx‖Z1‖2

ψ2
λd+1

{
ε
E(Rq, ε)√

n
+ E2(Rq, ε)

n

}]
≤ 2 exp

(−x2/5),
where

E(Rq, ε)= E sup
{〈Z,U〉 :U ∈R

p×d,‖U‖q
2,q ≤ 2Rq,‖U‖F ≤ ε

}
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and Z is a p×d matrix with i.i.d. N (0,1) entries. As a consequence, we have, for
another constant c2

Eφ(Rq, ε)≤ c2‖Z1‖2
ψ2

λd+1

{
ε
E(Rq, ε)√

n
+ E2(Rq, ε)

n

}
.

Moreover, we have, for another numerical constant c′,
E(Rq, ε)√

n
≤ c′

(
R1/2

q t1−q/2ε+Rqt2−q)(D.1)

with t =
√

d+logp
n

.

PROOF. The first part follows from Corollary 4.1 of Vu and Lei (2012b). It
remains for us to prove the “moreover” part. By the duality of the (2,1)- and
(2,∞)-norms,

〈Z,U〉 ≤ ‖Z‖2,∞‖U‖2,1

and so

E(Rq, ε)≤ E‖Z‖2,∞ sup
{‖U‖2,1 :U ∈R

p×d,‖U‖q
2,q ≤ 2Rq,‖U‖F ≤ ε

}
.

By (4.7) and the fact that the Orlicz ψ2-norm bounds the expectation,

E‖Z‖2,∞ ≤ c′
√

d + logp.

Now ‖U‖2,1 is just the �1 norm of the vector of row-wise norms of U . So we use
a standard argument to bound the �1 norm in terms of the �2 and �q norms for
q ∈ (0,1] [e.g., Raskutti, Wainwright and Yu (2011), Lemma 5], and find that for
every t > 0

‖U‖2,1 ≤ ‖U‖q/2
2,q ‖U‖2,2t

−q/2 + ‖U‖q
2,q t1−q

= ‖U‖q/2
2,q ‖U‖F t−q/2 + ‖U‖q

2,q t1−q .

Thus,

sup
{‖U‖2,1 :U ∈R

p×d,‖U‖q
2,q ≤ 2Rq,‖U‖F ≤ ε

}≤R1/2
q t−q/2 +Rqt

1−q .

Letting t = E‖Z‖2,∞/
√

n, and combining the above inequalities completes the
proof. �

LEMMA D.5. There exists a constant c > 0 such that∥∥∥∥�(Sn −�)�
∥∥

2

∥∥
ψ1
≤ c‖Z1‖2

ψ2
λ1(

√
d/n+ d/n).



MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION 2945

PROOF. Let Nδ be a minimal δ-net of S
d−1
2 for some δ ∈ (0,1) to be chosen

later. Then∥∥�(Sn −�)�
∥∥

2 =
∥∥V T (Sn −�)V

∥∥
2 ≤ (1− 2δ)−1 max

u∈Nδ

∣∣〈V u, (Sn −�)V u
〉∣∣.

Using a similar argument as in the proof of Lemma D.1, for all t > 0 and every
u ∈ Nδ

P
(∣∣〈V u, (Sn −�)V u

〉∣∣> t
)≤ 2 exp

(
− t2/2

2σ 2/n+ tσ/n

)
,

where σ = 2‖Z1‖2
ψ2

λ1. Then Lemma D.3 implies that

∥∥∥∥�(Sn −�)�
∥∥

2

∥∥
ψ1
≤ (1− 2δ)−1

∥∥∥max
u∈Nδ

∣∣〈V u, (Sn −�)V u
〉∣∣∥∥∥

ψ1

≤ (1− 2δ)−1Cσ

(√
log(1+ |Nδ|)

n
+ log(1+ |Nδ|)

n

)
,

where C > 0 is a constant. Choosing δ = 1/3 and applying Proposition D.2 yields
|Nδ| ≤ 7d and

log
(
1+ |Nδ|)≤ log(8) log(d).

Thus, ∥∥∥∥�(Sn −�)�
∥∥

2

∥∥
ψ1
≤ 7Cσ(

√
d/n+ d/n). �
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in Probability 66 327–356. Springer, Basel.

MA, Z. (2013). Sparse principal component analysis and iterative thresholding. Ann. Statist. 41 772–
801. MR3099121

MASSART, P. (2007). Concentration Inequalities and Model Selection. Lecture Notes in Math. 1896.
Springer, Berlin. MR2319879

MENDELSON, S. (2010). Empirical processes with a bounded ψ1 diameter. Geom. Funct. Anal. 20
988–1027. MR2729283

NADLER, B. (2008). Finite sample approximation results for principal component analysis: A matrix
perturbation approach. Ann. Statist. 36 2791–2817. MR2485013

NEGAHBAN, S. N., RAVIKUMAR, P., WAINWRIGHT, M. J. and YU, B. (2012). A unified frame-
work for high-dimensional analysis of M-estimators with decomposable regularizers. Statist. Sci.
27 538–557. MR3025133

PAJOR, A. (1998). Metric entropy of the Grassmann manifold. In Convex Geometric Analysis (Berke-
ley, CA, 1996). Mathematical Sciences Research Institute Publications 34 181–188. Cambridge
Univ. Press, Cambridge. MR1665590

PAUL, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance
model. Statist. Sinica 17 1617–1642. MR2399865

PEARSON, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical
Magazine 2 559–572.

RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2011). Minimax rates of estimation for
high-dimensional linear regression over �q -balls. IEEE Trans. Inform. Theory 57 6976–6994.
MR2882274

SHEN, H. and HUANG, J. Z. (2008). Sparse principal component analysis via regularized low rank
matrix approximation. J. Multivariate Anal. 99 1015–1034. MR2419336

SHEN, D., SHEN, H. and MARRON, J. S. (2013). Consistency of sparse PCA in high dimension,
low sample size contexts. J. Multivariate Anal. 115 317–333. MR3004561

STEWART, G. W. and SUN, J. G. (1990). Matrix Perturbation Theory. Academic Press, Boston,
MA. MR1061154

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat.
Methodol. 58 267–288. MR1379242

VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes.
Springer, New York. MR1385671

VARŠAMOV, R. R. (1957). The evaluation of signals in codes with correction of errors. Dokl. Akad.
Nauk SSSR (N.S) 117 739–741. MR0095090

http://www.ams.org/mathscinet-getitem?mr=1646856
http://www.ams.org/mathscinet-getitem?mr=2751448
http://www.ams.org/mathscinet-getitem?mr=2002634
http://www.ams.org/mathscinet-getitem?mr=2600619
http://www.ams.org/mathscinet-getitem?mr=1849347
http://www.ams.org/mathscinet-getitem?mr=3099121
http://www.ams.org/mathscinet-getitem?mr=2319879
http://www.ams.org/mathscinet-getitem?mr=2729283
http://www.ams.org/mathscinet-getitem?mr=2485013
http://www.ams.org/mathscinet-getitem?mr=3025133
http://www.ams.org/mathscinet-getitem?mr=1665590
http://www.ams.org/mathscinet-getitem?mr=2399865
http://www.ams.org/mathscinet-getitem?mr=2882274
http://www.ams.org/mathscinet-getitem?mr=2419336
http://www.ams.org/mathscinet-getitem?mr=3004561
http://www.ams.org/mathscinet-getitem?mr=1061154
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=0095090


MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION 2947

VU, V. Q. and LEI, J. (2012a). Minimax rates of estimation for sparse PCA in high dimensions.
In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics
(AISTATS). JMLR Workshop and Conference Proceedings Volume 22.

VU, V. Q. and LEI, J. (2012b). Squared-norm empirical process in Banach space. Available at
arXiv:1312.1005.

WITTEN, D. M., TIBSHIRANI, R. and HASTIE, T. (2009). A penalized matrix decomposition, with
applications to sparse principal components and canonical correlation analysis. Biostatistics 10
515–534.

YU, B. (1997). Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam (D. Pollard, E. Torg-
ersen and G. L. Yang, eds.) 423–435. Springer, New York.

YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped variables.
J. R. Stat. Soc. Ser. B Stat. Methodol. 68 49–67. MR2212574

ZHAO, P., ROCHA, G. and YU, B. (2009). The composite absolute penalties family for grouped and
hierarchical variable selection. Ann. Statist. 37 3468–3497. MR2549566

ZOU, H., HASTIE, T. and TIBSHIRANI, R. (2006). Sparse principal component analysis. J. Comput.
Graph. Statist. 15 265–286. MR2252527

DEPARTMENT OF STATISTICS

OHIO STATE UNIVERSITY

COLUMBUS, OHIO 43210
USA
E-MAIL: vqv@stat.osu.edu

DEPARTMENT OF STATISTICS

CARNEGIE MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213
USA
E-MAIL: jinglei@andrew.cmu.edu

http://arxiv.org/abs/1312.1005
http://www.ams.org/mathscinet-getitem?mr=2212574
http://www.ams.org/mathscinet-getitem?mr=2549566
http://www.ams.org/mathscinet-getitem?mr=2252527
mailto:vqv@stat.osu.edu
mailto:jinglei@andrew.cmu.edu

	Introduction
	Subspace estimation
	Subspace sparsity
	Parameter space
	Subspace distance
	Sparse subspace estimators

	Main results
	Row sparse lower bound
	Row sparse upper bound
	Column sparse lower bound
	Column sparse upper bound
	A conjecture for the column sparse case

	Sketch of proofs
	The lower bound
	The upper bound

	Discussion
	Connections with sparse regression
	Practical concerns

	Appendix A: Lower bound proofs
	Lower bounds for principal subspace estimation via Fano method
	Proofs of the main lower bounds

	Appendix B: Upper bound proofs
	Proofs of the main upper bounds
	Controlling T1
	Controlling T2
	Controlling T3
	Putting things together


	Appendix C: Additional proofs
	Proofs related to the lower bounds
	Proofs related to the upper bounds

	Appendix D: Empirical process related proofs
	The cross-product term
	The quadratic terms

	Acknowledgments
	References
	Author's Addresses

