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Abstract We consider a zero-sum average cost stochastic game with the unbounded lower semi-continuous cost
function, and by using the contraction property ([6, 71) for the average case we give sufficient conditions for which
there ex1sts a minimax stationary strategy. Also, we formulate a minimax inventory model asa stochastlc game and ‘
show that for any e > 0 there exists an e-minimax random (s, S) ordermg policy, which is a modification of (s, §)

ordering policy, under some weak conditions.

1. Introduction and Notation

A zero—-sum stochastic game has been investigated by many authors and the
existence of equilibrium strategies has been discussed. For example, see
[9,11] for the discounted case and [2,13] for the average case.

In this paper we consider an average cost stochastic game with the un-
bounded lower semi-continuous cost function, -and by using the contraction
property ([6,7]) for the average case we give sufficient conditions for which
there exists a minimax stationary strategy. Also, we apply these results to
the inventory model with an unknown demand distribution and show that for any
€ > 0 there exists an e-minimax random (s,S) ordering policy, which is a modi-
fication of (s,S) ordering policy, under some weak conditions.

By a Borel set we mean a Borel subset of some complete separable metric
space. For a Borel set X’°BX denotes the Borel subsets of X. If X is a non-
empty Borel set, B+(X)[ B;(X) ] denotes the set of all non-negative real
valued Borel measurable [lower semi-continuous] functions on X. The product
of the sets D1,D2,... will be denoted by D1D2... .

A zero-sum stochastic game is specified by five objects: S, {a(x),xeS},
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B, ¢, O, where S is any Borel set and denotes the state spaée, for each xes,
A(x) is a non-empty Borel subset of a Borel set 4 such that {(x,a): xes,
aed(x)} is closed, and denotes the set of actions available to player 1 at
state x, B is a non-empty Borel set and denotes the set of actions available
to player 2, ceB+(SAB) is a one-step cost function for player 1 and Q =

(-
f?SSAB; i.e., for each (x,a,b) S4B, O(-

x,a,b) is the law of motion, which is taken to be a stochastic kernel on

x,a,b) 1s a probability measure on

) €B+(SAB).

8 .3 and, for each De.B g, QD

S
A strategy of player 1 will be a sequence 7 = (ﬂo, n1,...) such that, for

N . . t .
each t 20, m, is a stochastic kernel onuﬁAs(ABS) with Wt(A(Xt)IXO’aO,bO’...,

— N
at—1’bt—1’xt> =1 for all (xo,ao,bo,..., at_1,b Xt) € S(ABS)". Let I denote

t-1’

the set of all strategies for player 1. A strategy n = (ﬂo,ﬂ »ees) 15 called

1
[analytically measurable] stationary strategy if there is a [analytically

measurable] measurable function £:S + 4 with £(x) e4(x) for all xeS such that
ﬂt(f(xt)lxo,ao,bo,..., at—1’bt~1’xt) = 1 for all (xo,ao,bo,..., at—1’bt—1’xt)
€ S(ABS)~ and t z0. Such a strategy will be denoted by £”.

A strategy of player 2 is a sequence o = (OO, 01,...) such that, for each
tz0, o, is a stochastic kernel On.VSBSA(BSA)t. We note that the t-th action
of player 2 is taken after knowing the action taken by player 1 at the t-th
time. Let I denote the set of all strategies for player 2. Stationary
strategies of player 2 are defined analogously.

The sample space is the product space § = S(aBS) . Let Xt’ At and Ft be
random quantities defined by Xt(w) =X, At(w) =a, and F*(w) = bt for w =

(XO’aO’bO’X1’a1’b1"°')E 0.

Let Ht = (XO,A A Xt)' It is assumed that, for each

O,TO,..., t~1’rt—1’
T = (WO,W1,...)€ I and o = (00,01,...) ex, P(Ats D1lHt) = ﬂt(D1]Ht),
P(T e DZIHt,At) = o, (D2|Ht,At) and P(Xt+1 £ D3[Ht_1,At_1,Ft_1,X =x,0,=a, T =b)

DZELQB and D3€°BS'

t

= Q(D3Ix,a,b) for every D1eU§A,

Then, for each mell, oe I and starting point xe S, we can define the
S b's . : .
probability measure PTT 5 on 0 in an obvious way.
b

We shall consider the following average cost criterion:

For any strategies mell, ce £ and xe S let

b'e -1

(1.1) Vv(x,m,0) = lim SUP g, o Ew,o[zt=0c(xt’At’Ft)]/T s

e . . .
where ETT o 1s the expectation operator with respect to Pi -
b H
Let v (x,m) = SUP_ _ 5 V(x,7,0). Then for any €20, we say that n%e Il is e-
minimax if y(x,n*) £ y(x,n) + ¢ for all xe S and 7e . A O-minimax strategy

is simple called minimax.
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In Section 2, we give sufficient conditions for which a minimax station—
ary strategy exists. In Section 3, a minimax inventory problem is formulated
as a stochastic game and it is shown that for any e > 0, there exists an

e-minimax random (s,S) ordering policy under weak conditions.

2. Existence of Minimax Strategy

In this section we shall give sufficient conditions for the existence of
a minimax stationary policy.
In order to insure the ergodicity of the process, we introduce the fol-

lowing contraction property ([6,7]).

Condition A. There exist a measure y on S such that 0<y(S) <1 and
o|x,a,b) z y(p) for all D eBg, XeS5, a eA(x) and b eB.

Under Condition A, we define the map U on B+(S) by

2.1) vu(x) = inf sup , g U(x,a,b,u)

acea(x)

if this expression exists, where

(2.2) Ux,a,b,u) = clx,a,b) + fu(y)o(dy|x,a,b) - July)y(dy)
for each u eB+(S), xeS, acA(x) and b eB.

Condition B. The following B1-B2 holds:
B1. cs:B;(SAB) and Q(-

x,a,b) 1s weakly continuous in (x,a,b) € SAB, that is,
whenever X, 7%, a, >a and bn -+ b, Q(-lxn,an,bn) converges weakly to
Q(~lx,a,b).

B2. When X €S > xeS as n->=, for any sequence {an} with ans:A(xn) for all
nz1, there exist a subsequence {an } of {an} and ae A(x) such that

a_ +> a as j>oo. J

G

We need the following condition to treat with the unbounded cost.

Condition C. There exists a ve B;(S) such that the following C1-C3 hold:
C1. c(x,a,b) £ v(x) for all xS, aceA(x) and be B,
C2. Uv £ 7.

C3. f?(y)Q(dy[x,a,b) is uniformly integrable for (x,a,b)e SAB,.

In the next section we shall show that the usual inventory model satisfies
Condition B and C.
For any non-empty Borel set X, we denote by E;(X) the set of all non-negative

real-valued, bounded lower semi-continuous functions on X.
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Lemma 2.1. Suppose that Conditions B and C hold. Then for any u EB;(S)
with O £ u = v it holds that (i) fu(y)Q(dylx,a,b)e B;(SAB) and (ii)
U( b,u) B+(SA)
sup, _ o Ulx,a,b,u)eB_ .

Proof: From C3, for any € > 0 there exists a constant M for which
IDG(g)D(dy]x,a,b) £ ¢/2 for all xS, ac A(x) and be B, where D = {ye.S]V(y)
2z M}, Let uce BZ(S) with 0 2u £V. And, for the above M, let uM(y) = u(y) if
uy) <M, =M if u(y) 2 M. Then since u, € B;(S), it holds from Lemma 4.1 of

Maitra [8] that

(2.3) fuM(y)Q(dylx,a,b)E:E;(SAB)-

Also, we obtain
(2.4) | Ju@o@y|x,a,b) - fu, ()0 (dy|x,a,b) |
< fD§(y)Q(dylx,a,b) < e/2
for all (x,a,b)ec SAB.
Therefore, by (2.3) and (2.4) it holds that when (xn,an,bn) -+ (x,a,b),
lim inf  Ju(y)o(dyl|x_,a ,b_,)
2 lim infn+w fuM(y)Q(dylxn,an,bn) - €/2
2 Ju, (v)0(y|x,a,b) - &/2
2 Ju(y)o(dyl|x,a,b) - e.

As ¢ » 0, lim infn_~>Qo fu(y)Q(dylxn,an,bn) 2 fu(y)Q(dylx,a,b), which means (i).

Clearly (ii) follows. Q.E.D.
Lemma 2.2. Suppose that Conditions A, B and C hold. Then, for any

ue B;(S) with 0sus?v, Uue B;(S).

. + . -
Proof: For any fixed ue BS(S) with 0susv, let U(x,a,u) = Sup, . 5
. + e
U(x,a,b,u). Then since U(x,a,u) e BS(SA), by the definition of Uu, for any
state sequence {xn} with ¥ €S> xeS as n»= and € >0 there exists an action

sequence {an} such that
vulx ) 2 U(x_,a ,u) - ¢ for all nz 1.
n n n

Using the condition B2, there are a subsequence {an } of {an} and ac A(x) for

which a ~>aas j > « and J
J
. o s s _
lim 1nfn_mO Uu(xn) z lim 1nfn_>O° U(xn,an,u) €
= liH3+m U(xn a ,u) = € 2 Ulx,a,u) - ¢
j
2 vulx) - e.
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As £ = 0 in the above, Uu ¢ B;(S) follows. Q.E.D.
We denote by B(s~A4) the set of all Borel measurable functions f:S-A with
f(x) e A(x) for all xe S and by Ba(X—>B) the set of all lower semi-analytic

functions h:X-+B, where X is any Borel set.

Lemma 2.3. Suppose that Conditions A, B and C hold. Then, for any u,
W e B;(S) with OsSu, ws¥ and € > 0 there exist fe B(S+>4) and he Ba(S->B) such

that

(2.5) vu(x) - ow(x) = [(u@y) - wy))o(dy|x,f(x),h(x)) + ¢
for all xe S,

where

(2.6) 0(dy|x,a,b) = 0(dy|x,a,b) - y(dy).

Proof: "By Lemma 2.1 U(x,a,w) ¢ B;(SA), so that it holds from the selec-—
tion theorem ([1,12]) that for any € >0 there exist feB(S~»A4) and he Ba(S‘>B)
such that U(x,f(x),w) = Uw(x) and U(x,f(x),h(x),u) 2 U(x,f(x),u) - ¢ for
all xe S.

Thus, by the definition of U, we have

Uu(x) - vw(x)

1A

U(x,f(x),u) - v(x,f(x),w)
U(x,f(x),h(x),u) - U(x,£(x),h(x),w) + ¢,

A

which implies (2.5). Q.E.D.

Theorem 2.1. Suppose that Conditions A, B and C hold. Then there exist

+ ) -
a constant Y* and a ve BS(S) with 02 v v such that

2.7) v(x) = inf sup, o {c(x,a,b) - v* + fv(y)0(dy|x,a,b)}

ae A(x)

for all xe S,

and if
. X 3
(2.8) llmT_Mo Eﬂ,o [V(XT)]/T =0 for all xe 8, nell and ¢ I,
it holds that
(2.9) y* £ y(x,m) for all xe S and ne I.
Proof: ©Let us define the sequence {;n} and {Zn} respectively by 90 = v,
Vo T 0, Vsl T Uvn and Vo = Uzn for ail nz 1.
Then, from Lemma 2.2 and the monotonicity of U we have ¥V, 2 v_ 2 v zv
+ 0 n n+1 -n+1
2y z0and v. e B (5) (nz1).
-n -n s

Now, we show by induction that there exists a constant M such that
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-1
MBn for all nz 1,

IIA

(2.10) v x) -v (%)
n ~n
where B = 1 = y(s) and 0 <B < 1.

In fact, from C3 there exists some M such that f&(y)Q(dylx,a,b) s M for all

xeS, aclA(x) and beB. For any € >0 from Lemma 2.3 there exist f eB(S~>2)

and h aBa(S-+B) for which

7,60 = v, () 5 @ W) v ()0 @y|x,£G),hG)) + e

1A

f&o(y)Q(dle,f(x),h(x)) +te S M+ e,

so that as € +0 we observe that (2.10) holds for n = 1.

Suppose that (2.10) holds for n. Similarly, for any € >0 there exist
f e¢B(s~+a) and h B (s—+B) such that

n n a

v

n+1(X) —v o = JE ) - yn(y))b(dylx,fn(X),hn(X)) + €

-n+1

IA

A ICPENORNCONEE

n
MB + &,

which shows that (2.10) holds for n+1. Thus, if we let v = 1imn+m ;n’ then

. + : . -
v = lim v and veB (5). Also, since v_ = Uv
n>ro —-n S n n-1

v

2 yv and v_ = Uv s Uv,
-n -n-1

we get v 2 Uv and v 5 Uv, which implies
(2.11) v = Uv.
If we let y* = fv(y)y(dy) in (2.11), (2.11) means (2.7).
For y* and V'EB;(S) as in (2.7), we define

¢ (x,a,b) = c(x,a,b) - y* - v(x) + fv(y)Q(dny,a,b)

for each xe S, aca(x) and b e B.

Then, it holds from (2.7) that SUP, g ¢ (x,a,b) 2 0 for all xeS and acA(x),
so that using the selection theorem ([1,12]) for any e >0 there exists
h sBa(SA~+B) such that ¢ (x,a,h{x,a)) 2 —e for all xeS and acA(x). So, for

this stationary policy h , we have

X
©o > -
E’ﬂ',h [ ¢(Xt’Aat’Tt) ]..— €
for all nmel,

which derives

X

E [}
m,h

[ zz;gj clx, ,0,,0,) 1/T

] [V(XT)])/T - €.

X
z -
2 y* + (v(x) En,h
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Therefore, as T+« and € ~0 in the above, we get Y (x,m) 2y%*, Q.E.D.

The next theorem shows the existence of a minimax stationary strategy in

a stochastic game model.

Theorem 2.2. Suppose that Conditions A, B and C hold. Then it holds
that
(i) there exists £ eB(s~+4) such that

(2.12) sup, _ o ¢ (x,f(x),b) =0 for all xes8

and

o0

(ii) if (2.8) holds, the stationary strategy f is minimax.

Proof: From the selection theorem ([1,11]), (i) follows.
For (ii), from (2.12) it holds that ¢ (x,f(x),b) £ 0 for all beB, so that by
the similar discussion as that of Theorem 2.1 we obtain w(x,fm) < y*, which

implies from (ii) of Theorem 2.1 that £ is minimax. Q.E.D.

3. A Minimax Inventory Model

In this section we consider the single~item stochastic inventory model
whose demand distributions for each period are assumed to be unknown but are
restricted to a class of distributions on rY = (0,x).

And by transforming this model equivalently to a stochastic game between
a decision maker and Nature we shall give a characterization of a minimax
ordering policy which minimizes the maximum average expected cost over the
infinite planning horizon. Here, the demands in successive periods are
assumed to form a sequence of independent random variables whose distributions
can change from period to period in a restricted class of distributions and
any unfilled demand in a period is backlogged. We note that a reader may
refer to Jagannathan [5] for the discounted minimax case.

Let P(R+) be the set of all probability measure or, equivalently, dis-
tributions on R'. Then it is known that P(R+) is a complete separable metric
space with respect to the weak topology (for example, see [1]). Let & be a
Borel subset of P(R+). Define § = (~=,M] and &2 = [0,¥], where M is a capacity
of inventory. For each xeS, A(x) = [OVx,M]C A is the set of actions avail-
able to a decision maker (player 1) at state x and denotes the set of inven-
tory after ordering, where xVy = max {x,y}. And B = & 1is the set of actions
available to player 2.

Then, the stochastic kernel Q is as follows:
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v
Q(Dlx,a,F) = P(a-x e D) for each xeS, acA(x) and Fe &,

o, . . . . .
where x is a random variable with the distribution F. For one-step cost, let,

for each xeS, acA(x) and Fe &,
(3.1) c(x,a,F) = K-I(O oo)(a—x) + c+(a~x) + L(a,F),
b

where L(a,F) is the expected holding and shortage cost at the inventory a after
ordering when the demand distribution is F and K >0 is a set—up cost and ID
is the indicator function of D.

We introduce the following conditions to apply the results of Section 2.

Condition D. The following D1-D2 hold.
D1. There exist k > 0 and § > 0 such that
1

IN

fg y +6dF(y) < x for all Fe &.

RA
t~

D2. L(a,F) is convex in aec A for each Fe % and bounded with 0 < L(a,F)

for some L and all ac 4 and Fe &.

Condition E. There is a measure y on S such that 0 < y(S) < 1 and
Q(Dlx,a,F) z y(D) for all D¢ “85’ xeS, acd(x) and Fe & .

Example.
We denote by N+(u,02) the normal distribution which is truncated at 0 on
the left. For any given di (1=1,2,3,4) with 0 <d1 <d, and 0 <d3 <d4
let
F=1{ N _(n,0°) ld1 S wsd,, d3§02 =4, }
In this case, D1 holds for § = 2 and D2 holde for any linear holding and
penalty cost functions. Let f (x;u,0?) be the density of N+(u,02).

We observe that

Q(Dlx,a,N+(u,02) =/ f+(y;u,02)dy for any D ¢ B o and a ¢ A(x).

a-yebD

. . s . 2
We define a function f(y) by f(y) = min d1 <u §d2,d3 < g2 éda,a ca f+(a Yiu,o°)
if y=s0, =04if 0 < y = M.

Then, it is easily verified that 0 < y(S) < 1 and
Q(Dix,a,N+(u,02)) 2 y(D) for any D €8, Xe5, a eA(x) and N+(u,02) e,
where v (D) = fo(y)dy.
That is, Condition E holds for this & .

Lemma 3.1. Suppose that Conditions D and E hold. Then, Conditions A, B

and C in Section 2 are satisfied in a stochastic game defined above.

Proof: For any integer m and real number B' such that
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0<B'" £ v(5) - c'K‘{K+L+c-(M+m)}_1, let define a function v on S by

v(x) (k + L + c+(m+m)) /B’ if x ¢ (-m,M],

Y

(k + L + c+M+5+1)) /" if x ¢ (-j-1,-7] for j z m.

Then, it holds that U(x,a,F,v) £ v(x) for all xe S, acd(x) and Fe ¥, where
U(x,a,F,v) is defined in (2.2).

In fact, for example, when x ¢ (-m,M], we have

Ulx,a,F,v) = c(x,a,F) + [v(y)o(dy|x,a,F)

A

K+ L + co(m+m) + {(1-y(S)) (K+L+c* (M+m)) + cx}/B'

IA

v(x),

where O is defined in (2.6). Thus we get UV £ v.
Also, it is easily verified that other conditions in Conditions A, B and C

hold. Q.E.D.
Before stating the theorem, we give the following lemma.

' . . +
Lemma 3.2. Suppose that g(x,A) is K-convex in x eR for each » g I.

. . +
Then, SUp, g(x,\) is K-convex in xeR .

Proof: Let g(x) = Sup, ¢ g(x,\).

For any € >0 and xe S, g(x) sg(x,1) + ¢ for some Ael. Thus,

K + glxt+d) - gx) = dl(gx) - glx-e))/e}
K + g(x+d) + dg(x-e)/e ~ (1+d/e)g(x)
K + g(x+d,\) + dg(x—e,%)/e - (1+d/e)g(x,)) - (1+d/e)e

v I

v

-(1+d/e)e from the hypothesis of K-convexity.
As € - 0 in the above, we have
K+ glx+d) - g(x) - d{(g(x) - g(x-e))/e} 2 0
for all xe 8, d>0 and e >0,
which implies K-convexity of g. Q.E.D.

Theorem 3.1. Under Conditions D and E, a minimax (s,S) ordering policy
exists.

) +
Proof: By Theorem 2.1, there exist a constant y* and VE:BS(S) such that

vi(x) = 1nfa

ey SWPp . o {K-I(O,w)(x—a) + ¢+ (a-x)

+ L(a,F) - y* + fv(a~-y)drF(y)}
Now, we show that v is K-convex. For the operator U defined in (2.1),

let uy = 0 and u_ = vu__, for n z 1. First, we show by induction that u_ is
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K-convex for all nz0. If we define G(x,a,F,u) = c+a + L(a,F) + fu(a—y)Q(dyl

+ .
x,a,F) for each xeS, acd(x), Fe & and u eBS(S), we can write

(@)} - Su(y)y(dy).

U(x,a,F,u) = —c+x + min{G(x,x,F,u), K + G(X,a,F,u)I(X ]
bl

From the results of Iglehart [3,4], G(x,a,F,un) is kK-convex in aeAa if u is
K-convex.

Since SUPL _ o G(x,a,F,un) is K-convex in a ¢A for Lemma 3.2, by using
the results of Iglehart again it holds that u = Uun is K-convex. There-

n+1

fore, since v = 1imn—+m u by the similar discussion as Theorem 2.1, v is K-

© . .
convex. By Theorem 2.2, the minimax stationary strategy f exists. Since

sup G(x,a,F,v) is K-convex in a c¢A, we can prove, by the same way as used

FeX&
in Iglehart [3,4], that £ is an (s,S) ordering policy. , Q.E.D.

We say that 7 = (ﬂo,ﬂ y...) €Il is a random (s,8) ordering policy if there

1

< 1) and a map f:5 > A satisfying that f(X)=S1, if x £ s> =X

if x > S1 for some s, < S1 such that'ﬂt selects the action At = f(Xt) with

' and the action X, \Y S, with probability e

Then we can state the main theorem.

exist 81(0 < g

probability 1 -¢ 1
Theorem 3.2. Suppose that Condition D holds and L(a,F) is linear in

F e P(R+) for each a ¢ 4.
Then for any € > 0 there exists a random (s,8) ordering policy which 1is

e-minimax.

In order to prove Theorem 3.2, we shall introduce a subsidiary stochastic
game for which Condition E holds.
Let ¢ ¢ P@®") be such that ¢ has density ¢ (x) with ¢ (x) = (ZM)—1 if

M £ x £ 34 and = 0 otherwise. For this ¢ and ¢, (0. < e, < 1), put Fo=

1 1

1
{€1® + (1—61)F:F e F}.

Now we consider a subsidiary inventory model G(57€ ) in which the set of
actions available to player 2 is 57€ but the state space and the set of
actions available to a decision maker (player 1) at state x are respectively
S=(-w,M] and a(x)=[0V x,M].

Notice that the sample space of G(57€1) is Q' = S(A<3761 S)w. In G($781),
we denote respectively by x', Aé and Fé the state and the actions at the t-th
time taken by players 1 and 2 (¢t 2 0). Also, in G(57€1) let ' and &' be
respectively the classes of strategies for players 1 and 2 and y'(x,n',0') the
average cost defined by (1.1) for any x ¢ S, n' ¢ II' and ¢' ¢ £'. In the
proof of Theorem 3.2 given later it is shown that Condition E holds for
G(éf6 ), so that applying Theorem 3.1 under Condition D there exists a minimax

(s,S8) ordering policy for G(5%1).
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To investigate the relation between I (Z) and II' (£'), we introduce the
following transformation.
Let {Yt} be a sequence of independent random variables such that for each
tzo0 Y, is uniformly distributed on (0,1).
> . L ' ' v, ' ' '
For any t 2z 0 and the random quantity H] (XO,AO,TO, R At—1’Ft—1’Xt)

Ny Y v

@z s)F defi d ey ¥ = (3K XY %)
€S 7o, , we define a random quantity e = 0 b0 T e B leo Xy

eS(A .578)t by

oy R N _ v _ v _ At
X X' I, (Fj e1©)/(1 31), Aj Aj

0 J
n o -1 ,
nd X, =£X.-%" (v.) for each 7 z 0,
a G4+ 3 3 ( J) J
where for any F ¢ P(R+) F_1 is a left continuous inverse and F_1(t) =
inf {x: F(x) z t}.
We note that %j € & because P} € 5’€1
Using the above transformation, from 7 = (ﬂo,ﬂ1, v..) € I and ¢ = (00,01,
...) € I we construct m' = (wé,ﬂ;, ...) € II' and o' = (06,0;, ...) e &' by
y
' - ' —3 L]
Wt( Ht) ﬂt( Ht) and

Oé(DIHé’Aé) = Prob(e1© + (1—51)% e D) for any Borel subset D of

g and t 2 0,
€1
where F is distributed with Ot(.l%t’kt)'
To make the above definition possible, we only need to show that
o o
' - > 0. . v At - ! -
ﬂt(A(Xt)}Ht) 1 for all £t 2 0 In fact, since Xt At—1 Wt—1 and Xt X
' _ . . . . . . _
At~1 Wt—1 andmwt_1 and Wt—1 are respectively distributed with Ft—1 Eéé +
(1“&1)%t_1 and Ft~1’ it holds from the property of & that Prob(Xé < Max{Xt,O})
n N
= 1. P Ax!)oaA = ; = !
N1 Thus Prob (A ( t) (Xt)) 1 so that by nt(A(Xt)[Ht) 1 we get wt(A(Xt)
[£) =1 for all t z 0.
For convenience, we say n' ¢ II' (0' ¢ I') a strategy constructed from

m e I (0 € ) using the random transformation (p).

Conversely, we try to construct m € Il and ¢ ¢ £ from 7' ¢ 1I' and ¢' ¢ ¢'.

Let {nt} and {Zt} be sequences of independent random variables with

Prob(nt =1) =1 - Prob(nt =0) = € and z, is distributed with ¢ for all
t 2 0.
For any t z 0 and the random quantity H = (XO,AO,FO, cees B gsTL 16X )
t . L noon Iy ny
S (A S |- T At DI H A\l 1
e S(& & S), we define a random quantity H! (XO,AO,FO, s At—1’rt-1’Xt) £

t

S(Ayg S) by
1

Iy

X =€, + (1-¢ )T, and
1777

' ' '
0 0’ 75 b 7 1

NI | -El ectronic Library Service



The Operations Research Society of Japan

Average Cost Stochastic Games 243

Xt =% Z. if =1, =X if =0
S T T T e By T

J
for each j z 0.

And for any (s,S) ordering strategy n' = (né,n;, ...) ¢ I' and any strategy
o' = (06,0;, ...) € L', we construct T = (ﬂo,ﬂ1, ...) €Il and ¢ = (00,01, ced)
€ X by
. = ! a(\Jv
wt( IHt) ﬂt( Ht) and
ot(D‘Ht) = oé(D']%é,X&)‘for each t 0 and any Borel subset D of 7 ,
where D' = {€1© + (1—51)F : F ¢ D}.

We say m e II (0 € ) a strategy constructed from n' ¢ II' (¢' € I') using the

random transformation (v).
In this case, since 7' is an (s,S) ordering policy, m becomes a random (s,5)

ordering policy.

Lemma 3.3. Suppose that Conditions in Theorem 3.2 hold. Then for any
e > 0 there exists e > 0 satisfying the following: For any m e II, there is

n' € II' such that for any ¢ € I there exists o' ¢ &' for which
(3.2) ] y(x,m,0) = p'(x,1",0") { < gf2

and conversely for any o' € I' there exists o ¢ I satisfying (3.2).

Proof: For any given 7 ¢ II and €y > 0 let 7' ¢ 1" be a strategy con-
structed from m using the random transformation (p). Then when €4 is suffi-
ciently small, we will show that this 7' ¢ II' is the desired strategy.

For any o ¢ I, let ¢' € L' be a strategy constructed from ¢ € I using the
random transformation (p). Then, by the method of construction we observe
that P (E e p) =P~

m',o' e

3 b

s@ & s)t, so that

O(Ht e D) for all £ 2 0 and any Borel subset D of

e

X X MY
G.3) 7 fet,0,T 0] = B L [e@ K LT

IA

From the property of ¢ we can assume that L(a,?) L' for all a ¢ & and some

L'. Thus we get, by the linearity of I,

(3.4) |z(a,F) - L(a,e, o + (1-e )F) | = e, @ +1").

1

Also, by the definition we have

X v Y _ VYo ot
(3.5) Eﬂ,,o,[KI(O’m)(At Xt) KI(O’m)(At Xt)] < 2€1K
and

[ X 0y
(3.6) ‘EW"O'[C-(Xt - Xé)]] < 81(3M + K).

Thus, we have
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X A Y _ toar oo
By grle@0,,T0) e(x!,0;,T )|
X Y . e By
= |E cX, ,A',T.) —cx',A,ThH from the definition of A
l Tr', l[ t’ t’ t t’ t’ t ]l’ t’
x v : X Y
s B, QLT - 2GLrDT] 5, e - x D]
X v _ i - 1wt
+ |Eﬂ,,0,[KI(O’m) ! - %) KT (0 ) (! Xt)]l, from (3.1),

178}

81(L + L') + 2¢ K + 51(3M + k), from (3.4) - (3.6).

1
Therefore, for any e > 0 there exists €4 > 0 such that

N x
)] - Eﬂt ,[C(X;:,At':,I'i_)] < e/2.

X v n
(3.7) IEW,,O,[C(Xt,At,Tt .

By (3.3) and (3.7), we get 1w(s,ﬂ,o) - w'(x,ﬂ',o')l < e/2.

Conversely, for any o' ¢ %', let ¢ € % be a strategy constructed from ¢’
€ Z"using the random transformation (v). Then, similarly as the above dis-
cussion we can prove that for any € > O there is €y > 0 such that |y (x,m,0) -

w'(x,ﬂ',c')}é €/2, which completes the proof. Q.E.D.

Lemma 3.4. Suppose that Conditions in theorem 3.2 hold. Then for any
e > 0 there exist ey > 0 satisfying the following :

For any (s,S) ordering policy wn' ¢ II', there exists a random (s,S)
ordering policy 7 e Il such that for any o € I there is o' ¢ I' for which (3.2)
holds and conversely for any o' ¢ I' there existe ¢ ¢ I satisfying (3.2).

Proof: For any (s,S) ordering policy 7' ¢ II', we construct a random
(s,S) ordering policy w from w' using the random transformation (v). Then,

similarly as the proof of Lemma 3.3 we can prove that this © has the desired

property. ~ : Q.E.D.

PROOF OF THEOREM 3.2. We try to approximate the inventory game model by

a subsidiary inventory model G(;7€1). For any ¢ > 0, let €, be such that
Lemma 3.3 and 3.14 hold. 1In 6(3’51), if we define v () by vy (D) = e1u(Dﬂ

[-2M,-M])/2M for D ¢ JQS, we observe that for x € S, a ¢ A(x) and F' ¢ 9’31,

0(|x,a,F') = 0@|x,a,F') - v (D)

i
I[_ZMa_M]

v

e,/ 0y} - (2m)” (y))du

51/2 > 0,

where u is the Lebesque measure.
This means that Condition E holds for G(£7E ).
1
1

Therefore, by Theorem 3.1 there exists a minimax (s,S) ordering policy £oe T

for which

(3.8) infﬂ, SUP 1 g y'(x,n',0') = SUP v _ g w'(x,fm,o').

e I’ o
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Applying Lemma 3.4, there exists a random (s,S) ordering. policy m* ¢ II
for which the properties in Lemma 3.4 hold.

For this 7m%, we have

A

; v w \
sup e 3 Yy (x,m%,0) & supq, R w'(x,f',o') +'e/2,
from Lemma 3.4,
= infﬂ' e 1t SUPLr o g p'(x,m',0") + /2, from (3.8),
< i
< 1nfﬂ e T sgpo e 3 y(x,m,0) + €,
from Lemma 3.3,
which implies that the random (s,S) ordering policy 7% is e-minimax. Q.E.D.

Remark: . Let & (u,0%) be the class of distribution functions F on RT such
that fxdF(x) = u and fxzdF(x) = % + g2 where u and o2 are finite constants.
We suppose that the holding and penalty cost functions are both linear. Then,
since & (1,0%) is a Borel set and Condition D is satisfied, it holds ‘from
Theorem 3.2 that for any ¢ > 0 an e-minimax random (s,S) ordering policy

exists for & = 7 (u,0%).

We note that Nakagami [10] has studied the inventory problem“with the un-
bounded lower semi-continuous cost function and by using weighted supremum
norms and the Banach contraction pr1nc1ple derived the optimal inventory

equatlon £0r the discounted case.
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7T A bM3 B

FH a2 RS — LD =<y 7 AW
TEE € 7~k H

TERE B ¥ E %

FHERQTHEGERISE 2 2 FBIIC O OB 2 ABER S — A2 R N EED S ETERLT
Voo FHEEEICHT AR/IMEEAVTCDEFLVICHT ARBEHERSEE, MINIMAX 5
BOBEENRENS,

S5, INoOFEREFAL TRENHVRMOBA ORBEEMEI TS SET-UP=o
ATDRESTB5EG, £ > 0ic L TPEga R P REZRG S e~MINIMAX RANDOM (s,
S) REBROBEANRENS,
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