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Abstmct . We  consider  a zero-su.m  average  cost  stochastic  garne with  the unbounqgd  lower semi-cQptinuous  
cost

     '
funetion, and  by using  the contraction  property ([6, 7] ) for the average  case  we  give sufficient conditipls  

for
 
which

there exists  a  rninimax  stationary  strategy. Also, we  formulate a  minirnax inventory model  as a  stochastic  game  and

show  that for any  e >  O there  exists  an  e-minimax  tandom  (s, S) ordering  policy, which  is a  modification  of  ds, S)

ordering  pelicy, under  sorne weak  conditions.

1. Introduction  and  Notatien

     A zero-surn  stochastic  game  has  been  investigated  by  many  authors  and  the

existenee  of  equilibrivJn  strategies  has  been  discussed.  Foi:  example,  see

[9,11] for  the  diseounted  case  and  [2,13] for  the  average  case.

     In  this  paper  we  consider  an  average  eost  stochastic  game  with  the  un-

bounded  lower  semi-continuous  cost  function,  
'and

 by using  the  contraction

property  ([6,7]) for  the  average  case  we  give  sufficient  conditions  for  which

there  exists  a  minimax  stationary  strategy.  AIso, we  apply  these  results  to

the  inventory  model  with  an  unknown  demand  distribution  and  show  that  for  any

E  >  O there  exists  an  e-minimax  random  (s,S) ordertng  poZiey,  which  is a  rr}odi-

Eication  of  (s,S) erdering  pelicy,  under  some  weak  conditions.

     By  a  Borel  set  we  mean  a  Berel  subset  of  some  complete  separable  metric

space.  Fer  a  Borel  set  
X,.Sx

 denotes  the  Borel  subsets  of  X,  If X  is a  non-

empty  Borel  set,  B+(X)[ Bs+(x) ] denotes  the  set  of  all  non-negative  real

valued  Borel  measurable  [lower semi-continuous]  functions  on  x.  The  product

of
 
the

 
sets

 
DpD2,...

 
will

 
be

 
denoted

 
by

 
DID2..･

 
.

     A  zero-sum  stochastic  game  is  specified  by  five  objects:  S,  {A(x),xES},

                                      232
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B,

 
c,

 Q, where
 
S
 
is

 
any

 
Borel

 set  and  denotes  the  state  E:pace,  for  each  xES,

 A(x)  is a  non-empty  Borel  subset  of  a  BoreZ  set  A  such  that  {(x,a): xES,

 aEA  (x)} is elosed,  and  denotes  the  set  of  actions  available  to pZayer  1 at

 state  x,  B  is a  non-empty  Borel  set  and  denotes  the  set  of  actions  available

 to player  2, cEB+(SAB)  is a  one-step  cost  function  for  player  1 and  Q =

 Q(.ix,a,b)  is the  law  of  motian,  which  is taken  to be  a  stochastic  kernel  
an

 .gsSAB;  i.e., for  each  (x,a,b) eSAB,  Q(']x,a,b)  ±s a probability  measure  on

 .s s;  and,  for  each  Deues,  e(DI･)  gB'(sAB).

     
A
 

strategy
 

of
 player  

1
 

will
 be a  sequence  T 

==

 (To, "1,...)  such  that,  for

 
each

 
t
 
l'O,

 
nt

 is a  stochastic  kernel  on  .sAs(ABs)t  with  Tt(A(xt)lxo,ao,bo,...,

 
at-1,bt-1,Xt)

 
=

 
1
 
for

 all  (xo,ao,bo,･.., atHl,bt-1,xt)Es(ABs)t.  Let  I denote

 
the

 
set

 
of

 
all

 
strategies

 
for

 player  1. A  strategy  m 
=

 (T/o,TTt,,,.) is called

 [analytieally measurable]  stationary  strategy  if there  is a  [analytically
measurable]  measurable  function  f:S  +  A  with  f(x)  eA(x)  for  all  xES  such  that

2t;{A`g.tiIXgAgoLbg,'I''g.ifi-g'k.i:gsi Jtl,fg.r g.ik.iX.g':g'7gr''' 
at-i'bt-i'Xt'

     
A
 

strategy
 

of
 p].ayer  2 is a  sequence  o 

=

 (ao, cr1,...)  such  that,  for  each

 
t
 
l'
 
O,

 
ot

 
is

 
a
 

stochastic
 kernel  on  wE?BSA (BsA)t. We  note  tzhat  the  t-th  aetion

 of  playeT  2 is taken  alter  knowing  the  action  taken  by player  1 at  the  t-th
  '
 
time.

 Let Z denote  the  set  of  all  strategies  for  player  2. Stationary

 strategies  of  player  2 are  defined  analogously.

     
The

 
sample

 
space

 
is

 
the

 product  space  st 
=

 S(ABS)O'.  ILet Xt,  At and  rt be

random
 quantities  

defined
 
by

 
Xt(as)

 
=

 xt,  At(as) 
=
 at  and  ]"t(ua) =

 bt  for tu =

 (xo,ao,bo,xl,al,bl,...) e n.

     
Let

 
Ht

 
E

 (Xo,Ao,ro,..+, At.1,rtNl,Xt).  It is assumed  that,  for each

or
 

=

 (1io,Tl,･･･)En 
and

 a 
=
 (oo,cr1,･･･)eZ, P(AtED"fft)  =  Tt(DlIHt),

p(Fte
 
D2iHt,At)

 
=

 ut  (D2IHt,At) and  P(Xt.1  s D3 Htntt,At-1,rt,-1,Xt=x,At=a,  rtab)

=

 Q(D3jx,a,b)  for  every  Dle  .sA,  D2E  eeB and  D3e  vS 
s･

     Then,  for  each  TEn,  oeZ  and  starting  point  xES,  we  can  define  the

probability  measure  P:,o  on  fi in an  ebvious  way.

We  shall  consider  the  following  average  cost  criterion:

     For  any  strategies  TE  II, ueZ  and  xES  let

(i.i) v(x,'n,o) =

 i,im supTp,..  Eli,.[Zf:-8a(xt,At,rt)]IT  ,

where
 
Ef,o

 is the  expectation  operator  w ±th  respect  to  p:,o.  
'

Let  "(x,'ff) =

 supuez  "' (x,r,o). Then  for  any  E)-  O, we  say  that  T*E  II ts E-

minimax
 if "(x,T*) 5 "(x,Tr) +  e for  all  xES  and  "E  II. A  O-minimax  strategy

is simple  called  m ±nimax.
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           In  Section  2, we  give  sufEicient  conditions  for which  a  ninimax  station-        '

      ary  stTategy  exists.  Zn  Section  3, a  minimax  inventory  problem  is formulated

      as  a  stoehast ±c  game  and  it is shown  that  for any  e>O,  there  exists  an

      e-minirnax  random  (s,s) ordering  policy  under  weak  conditions.

                '

      2. Existence  of  Minfimax Strategy  .

                 - -                                      s -                                                - a                                                          - t
           In this  section  we  shall  give  sufficient  conditxons  for  the  existenee  of

      a  rninimax  stationary  policy.

           In  order  to  insur.e the  ergodicity  of  the  process,  we  introduce  the  fol-'
                                                                        '
      lowing  contraction  property  ([6,7]).

           Condition A. There  exist  a  measure  y on  s such  that  O<y(s)<1  and

      gP (Dlx,a,b) ly(D)  for all  DE.{}s,  xES,  aEA(x)  and  bEB.

      Under  Condition  A,  we  define  the  map  u  on  B+(s) by

      (2.1) Uu(x)
 

=
 
inf

 .eA(.)  sup  bEB  LJ(X,a,b,U)

      if this  expression  exists,  where  ･

      (2.2) v(x,a,b,u)  ==  a(x,a,b)  +  fu(y)Q(dylx,a,b) - fu(y)y(dy)

                     
'for

 each  ueB+(S),  xeS,  aEA(x)  ana  beB.

           Condition  B. The  following  Bl-B2  helds:

      Bl.  ceBs+(saB)  and  Q('lx,a,b)  is weakly  continuous  in (x,a,b)EsAB, that  is,

           whenever  xn  t  x,  an  i  a  and  bn  "  b, Q(.Ixn,an,bn)  converges  weakly  to

           Q('lx,a,b).

      
B2.

 
When

 
xnss

 
-+
 
xeS

 
as

 
n+oo,

 
for

 any  sequenee  {an} with  aneA(xn)  for  all

           nl1,  there  exist  a  subsequence  {a } of  {a } and  aEA(x)  such  that
                                             n.                                                      n

           a  -)-aas  j+  co.  
1
 ,

            n,  
'

             J

      We  need  the  following  condition  to  treat  with  the  unbounded  cost.

           Condition  C. There  exists  a i[Bs+(S)  such  that  the  following  Cl-C3  hold

      Cl.  c(x,a,b)  S V(x) for  all  x[S{  aEA(x)  and  beB.

      C2.  vv  S v.

      C3.  JV(y)Q(dylx,a,b)  is uniformly  integrable  for  (x,'q,b)e SveB.

      In  the  next  sec.tion  we  shall  show  that  the  usual  inventory  modeZ'satisfies

      Condition  B and  C.

      Fox any  non-empty  Borel  set  x, we  denote  by Es+(x) the  set  of  all  non-negative

      real-valued,  bounded  lower  semi-continuous  functions  on  X.

NII-Electionic
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     Lemma  2.1, Suppose  that  Con{litions  B and  C hoZd.  Then for any  uEB.+(s)

with  O S u  l V it holds  that  (i) fu(y)Q(dylx,a,b)E  B;(SAB) and  (ii)

 Supb  
e
 B 

U (x ,a  ,b,  u)  e B.+ (SA ).

     PrOOf: From  C3,  for  any  E>O  there  exists  a  eonstant  M  for  which

fD-v (y)D (dy lx ,a  ,b)  E e12  for  all  xe  s,  ae  A  (x) and  be  B,  where  D  =  {y [ slV  (y)

l M}.  Let  uEB.+(s)  with  OEttEil. An6,  for  the  above  M,  let  uM(y)  :=  u(y)  
'if

u(y)  < M, ;M

 if u(y)  l M.  Then  since  uMEB;(S),  it holds  from  Lemma  4.1 of

Maitra  [81 that

 (2.3) fuM (y)Q (dy lx,a ,b)  e g.' (sAB).

Also,  we  obtain

 (2.4) [ fu (y)p (dylx,a,b) 
-
 fuM(y)Q(dy  x,a,b)  1

                S fD-vny (y)Q(dylx,a,b) s E12

                          for  all  (x,a,b)e SAB.
          '

Therefere,  by (2.3) and  (2.4) it holds  that  when  (xn,an,bn) +  (X,a,b),

          1im  infn+.  fU(Y)O(dYIXn,an,bn,)

                
l liM  infn.... fUM(Y)0(dY  "n,an,bn)  

"-
 E!2

                l fuM(y)O(dylx,a,b)  
-
 s12

                l fu (y)Q (dy lx ,a  ,b)  - E.

As  E 
"
 O, lim  inf.... fu(y)Q(dylx.,a.,b.) l fu(y)Q(dy[x,a,b]),  which  means  (D.

Clearly  (ii) follows.  Q.E.D.

     Lemma 2.2. Suppose  that  Conditions  A,  B and  C hold. :]hen, for any

uE  Bs+ (s) with  os  us  i;, uu e Bli (s) .

     Proof: For  any  fixed  ueB.+(S)  with  OSuSV,  let U(X,Ei,U)  M  SUPbEB

V(x,a,b,u).  Then  since  u(x,a,u)eBs+(SA),  by the  definition  of  Vu,  for  any

state  sequenee  {x } with  x  EJ S+xES  as  n-co  and  E>O  there  exists  an  action
                n n

sequence  {a } such  that
          n

         Vu  (x ) )- V(x  ,a  ,u)  - E  for  all  n).  1.
             n n                       n

Using  the  condition  B2,  there  are  a  subsequence  {a } oi  {a } and  aeA(x)  for
                                               n. n

whiaha  +a  as  j+  co and  J

      
nj

         
liM

 infn-.  UU(Xn)  l liM  infn-+. U(Xn,an,U)  
M
 E

              
=

 limj+.  V(xn  .,an .,u) 
-
 e )- v(x,a,u)  

-
 [

                          Jj
              l Uu  (x) - E.
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     Ase+O  in the  above,  VueBs+(S)  iollows.  . Q.E.D.

          We  denote  by B(S.A)  the  set  of  all  Borel  mEasurable  functions  lf:S-,A  with

     f(x)EA(x)  for  all  xeS  and  by  Ba(X-,B) the  set  of  all  lower  semi-analytic

     functions  h:X"B,  where  x  is any  Borel  set.  .

          Lemma  2.3. Suppose  that  Conditions  A,  B and  C hold.  Then,  for  any  u,

     tai e B.+ (s) with  OS  u,  wS  V and  g>  O there  ex  ist fe  B (S -- A)  and  hE  B. (S .  B) such

     that

     (2.5) IJu(x)  - Vvf(x)  S f(u(y) - vv(y))Z:i(dy]x,f(x),h(x))  +  E

                         for  all  xss,  

'

     where

     (2.6) O(dyix,a,b) 2  Q(dylx,a,b)  
-
 v(dy).

          PrOOf: 
'By

 Lemma  2.G v(x,a,w)  E B.+(SA), so  that  it holds  from the  sel.ec-

     tion  theorem  ([1,12]) that  for  any  E>O  there  exist  fEB(S.A)  and  hEB.(S.B)

     such  that  u(x,f(x),pf)  =  Uw(x)  and  U(x,f(x),h(x),u)  l U(x,f(x),u)  
-
 E for

     all  xE  S.  

'

     Thus,  by the  definition  of  U,  we  have

               Uu(x)  - Vvf(x) 5. V(x,f(x),u)  - V(x,f(x),w)  ･

                             5 V(x,)f(x),h(x),u)  
･-
 IJ(x,f(x),h(x),w)  +  E,

     which  implies  (2.5). Q.E.D-

       
.
 

Theorem
 
2.1.

 
Suppo?e

 
that

 
Conditions

 
A,
 
B
 

and
 
C
 
hold.

 
Then

 
there

 
exist

     a  constant  Vik and  a  veB  (S) with  OSvSV  such  that
                             s

     (2･7) V(X)  
=
 infaeA(.)  supbEB  {c(x,a,b) 

H
 Vk +

 fv(y)Q(dylx,a,b)}

                         for  all  xeS,

                                     '
     and  if

                        x

     (2.8) 1±m
 T..  

ET,ff
 [v(XT)]fT =

 
O
 

for
 
all

 
xE

 
s,

 
TEI

 
and

 
g[

 
Z,

     it holds  that

     (2.9) "ft E V(x,7) for  all  xES  and  
'FrE

 ll.

          Proof: Let  us  define  the  sequence  {vn} and  {yn} respectively  by  vo  
=

 v,

     Yo 
=
 e, V.+1 ==

 UV.  and  Y.+1 
=

 UUn  for  all  n)  1.

     i.iZii:
'fliO:nlle

:;i
aE2gll(g:d(lltleiii?nOtOniCitY

 
ef

 
U

 
we

 
have

 
vo

 
)-

 
vn

 
)-

 
vn+i

 
).

 
yn+i

     Now,  we  show  by induetion  that  there  exists  a  constant  M  sueh  that

                                                                       NII-ElectionicLibiaiy  
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                          n-1

(2.10) V (x) -v
 (x) 5MS  for  all  nl  1,

                 
-n

          n

                  where  S =  1 -
 y(S)  and  O<B<1.

                                                     '

In fact,  from  C3  there  exists  some  M  such  that  f{;(y)Q(dy[x,a,b) --< M  for all

xsS,  aeA(x)  and  bEB.  For  any  E>O  from  Lemma  2.3 there  exist  feB(S+A)

and  hEB  (S.B) for  whieh  .
       a

         ff1 <X) H
 YI (X) !- J' (i}o <y)-yo (y))b (dy x,f

 (x) ,h  (.)) +
 

.

               f-. fVo(y)o(elylx,f(x),h(x))  
+
 E s M

 
+
 

s,

so  that  as  e+O  we  observe  that  (2.10) holds for n  
=
 1.

Suppose  that  (2.10) holds  for n.  Similarly,  for any  E>O  there  exist

f.  EB  (S 'A)
 and  hn E B. (S -B)

 such  that

         
'Vn+1(X)

 
'
 Yn+1(X) S f(Vn(Y) -

 Yn(Y))O(dYIX,f.(X),h.(X))  
'
 
E

                          E- MB"-lo(slx,f.(x),h.(x))  +  e

                              n

                          
==

 MB  +  E,

which  shows  that  (2.10) hoLds for  n+t.  Thus,  if we  Let v  
==

 limn..  

-vn,
 

then

v  ;  lim.... y. ar}d  vEBg(S).  Also,  since  V.  
='V-V.-1

 l- Uv  and  }In 
==

 VYn-1  5 UV,

we  get  v  l' Uv  and  v  f Uv,  whieh  implies

(2.") v=  Vv.                                            '

If  we  let Vft ;  fv(y)y(dy)  in (2.11), (2.11) means  (2.7).

For "ik and  veB;(S)  as  in  (2.7), we  define

          o(x,a,b) =  c(x,a,b)  - v* - v(x)  +  fv(y)Q(dylx,a,lo)

                   fo: each  xeS,  aEA(x)  and  bEB.

                                             2 O for all  xeS  and  aeA(x),Then,  it holds  from  (2.7) that  supbEB  O(X,a,b) -

so  that  using  the  selection  theorem  ([1,12]) for  any  E >O
 there  exists

heB  (SA .B)  such  .that ¢ (x,a,h(x,a)) l -g for  all  xsS  and  aeA(x).  So, for
    a                       ca

this  stationary  policy  h , we  have  
'

         Eil,hco [ O(Xt,At,rt) ] k 
-E

                   for  all  TEII,

which
 derives  

''
 

'

          E:,heo  [ [:1"6 e(xt,tht,rt)  ]iT

              l vk +  (v (x) -
 E:,hee  [v(XT)])IT - e.

NII-Electionic  
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Therefore,  as  T.Qo  and  E-iO  in the  above,  we  get  e(x,D  )-"ik.

     The  next  theorem  shows  the  existence  of  a  minimax  stationary

a  stochastie  game model.

     Theorem 2.2. Suppose  that  Conditions  A, B  and  C hold.  Then
          '
that

     (i) there  exists  fEB(S+A)  such  that

                                             '

(2･12) supbcB  ¢ (x,f(x),b) =O

 for  all'  xgs

and

                                                   ca

     (ii) if (2.8) holds', the  stationary  strategy  f is minimax.

     ProOf: From  the  seleetion  theorem  ([1,11]), (±) follows.

For  (iD,  from  (2.l2) it holds  that  O(x,f(x),b)  S O for all  bEB,
                                                             oo

the  similar  discussion  as  that  ef  Theorem  2.1 we  obtain  Q(x,f ) E

                                       oo

implies  irom  (ii) of  Theorem  2.1  that  f  is minimax.

      Q.E.D.

strategy  in

it holds

so  that  by

vk, which

      Q.E.D.

3. A Mfinimax Inventory  Model

     In this  section  we  consider  the  single-item  stoehastic  inventory  model'whose

 demand  distributions  for each  period  are  assumed  t:o be  unknown  but are

restricted  to  a  class  of  distributions  on  R+  =  (O,co),

     And  by  transferming  this  medel  equivalently  to  a  st:ochastic  game  between

a  decision  maker  and  Nature  we  shall  give  a  characterization  of  a  minimax

ordering  policy  which  minimizes  the  maximurn  average  expected  cost  over  the

infinite  planning  horizon.  Here,  the  demands  in successive  periods  are

assumed  to  form  a  sequence  of  independent  random  variab].es  whose  distributions

can  change  from  period  to  period  in a  restricted  elass  of  distributions  and

any  unfilled  demand  in a  period  is backlogged.  We note  that  a  reader  may

refer  to  Jagannathan  [5] for the  discounted  minirnax  case.

     Let  P(R+) be  the  set  of  all  probability  measure  or,  equivaZently,  dis-

tributions  on  R+,  Then  it is known  that  P(R+) is a  complete  separable  metric

space  with  respect  to  the  weak  topology  (for example,  see  [1]). Let  .}'  be a

Borel  subset  of  P(R+). Define  s  =:  (-oo,M] and  A ;  [O,M], where  M  is a  capacity

of  inventory.  For  each  xES,  A(x)  =  [Ovx,M]c:A is the  set  of  aations  avail-

able  to  a  decision  maker  (player 1) at  state  x  and  denot/es  the  set  of  inven--

tory  after  ordering,  where  xVy  =  max  {x,y}. And  B  =  8r is the  set  oE  actions

available  to  player  2.

     Then,  the  stochastic  kernel  9 is as  follows:
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          Q(Dix,a,.F)  =P(a-:tt  eD)  for  each  xES,  aEA(x)  and  Fe  s?',

      N
where  x  is a  random  variable  with  the  distribution  F.  For  one-step  cost,  let,

for  each  xES,  aEA  (x) and  FE  pt,

 (3.1) 
c(x,a,F)

 
=K.J(o,.)

 (a--x) +c.(a--x)
 

+L(a,F),
 .

where  L(a,F)  is the  expected  holding  and  shortage  cost  at  the  tnventory  a  after

ordering  when  the  demand  distribution  ts F  and  K>O  is a  set-up  cost  and  J
                                                                          D

 is the  indicator  function  of  D.

         '

     We  mtroduee  the  following  con4itians  to  apply  the  resuZts  of  Section  2.

                                                                      '

     Condit,ion D. The  following  Dl-D2  hold.

     There  exist  K  > e and  6 > O such  thatDl.

       
'

 JoO' yl+6dF  (y) sK  for  al.I  Fe  Gr.
      '

     L(a,F)  is convex  in aEA  for  each  FE  sx and  bounded  with  O SL(a,F)  gLD2.

     for some  L  and  all  aeA  and  FE.r.

     Condition E. There  is a  measure  y on  s  such  that  O <  y(S) <  1 and

Q(Dlx,a,F)  l y(D)  for  all  De  Je  
s,

 xES,  aEA(x)  and  fi'E.r.

Examp1e.

     We  denote  by N+(ll,e2)  the  normal  distribution  which  is truncated  at  O on

the  Zeft. For  any  given  di (i=1,2,3,4) with  O<dl<d2  and  O`d3`d4

let

           G?'={  N.(p,u2)  l dt g. vS  d2,  d3 S o2  S d4  }･

In  this  ease,  Dl  holds  foT  6 =  2 and  D2  holde  for  any  linear  holding  and

penalty  cost  functions.  Let  f+(x;u,a2)  be the  density  oi  jv+(v,u2).

We  observe  that

     9(Dix,a,)J+(v,o2) 
=

 fa-y ED  f+(y;u,o2)dy  for any  D E S's  and  a E A(x).

We
 
define

 
a

 
function

 
f(y)

 
bY

 
f(9)

 
=

 
Min

 dl sv  s. d2,d3  s. o2  sd4,a  EA  
f+

 
("-Y;Y'U2)

if yS  O, -O  if O<yl  M.

Then,  it is easily  verified  that  O <  y(S) <  1 and

     Q(D x,a,lv+(p,u2))  l y(D) for  any  De  .es, xES,  aEA(x)  and  N+(v,cr2)  E .y,

                          f(y)dy.          where  y(D)  =f

                         D

That  is, Condition  E holds  for this  ge 
.

     LeMma 3.1. Suppose  that  Conditions  D and  E hold. Then,  Conditions  A,  B

and  C in Section  2 are  satisEied  in a  stoahastic  game  defined  above.

     PrOof: For  any  integer  m  and  real  number  B' such  that
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O<B'  s- 'r (s) - c.K･{K+L+c･(M+ni)}-1,  let  define  a  function  V on  s  by

          {}(x) =  (K +  L  +  c･(M+m))!B'  if x  E  (-ni,M],

               =  (K +  L +  c.(M+j+1))!B'  if x  e  (-j-1,-j] Eor  j -2 m.

                                                 '

Then,  it holds  that  V(x,a,F,v)  S V(x) for  all  xES,  aEA(x)  and  F[sr,  where

u(x,a,F,v)  is defined  in (2.2). '

In [act,  for  example,  when  xE  (-m,M], we  have

          u(x,a,F,V)  :=  a(x,a,F)  +  f{}(y)Q(dy[x,a,F)

                     ! K  + L + c'(M+m)  +  {(1-y(S))(K+i]+c･(M+m)) +  cK}!es'

                     s V(x),

where  O is defined  in (2.6). Thus  we  get  Uv  S v.

A].so, it is easily  verified  that  other  conditions  in Conditlons  A,  B and  C

hold.  
'
 Q.E.D

                                                                   '

Before  stating  the  theorem,  we  give  the  £ ollowing  lernma.
                     '
                                                        +

     Lemma 3.2. Suppose  that  g(x,A)  .is 
K-convex  in xER  for  each  

X
 ,t r.

                                        +
Then, supxer  g(x,X)  is K-convex  

in
 
xER

 
.

     Proof: Let  g(x)  
=

 supx!l･,  g(X,X)･

For any  e>O  and  xES,  g<x)  !-g(x,k)  +E  for  some  Xer.  Thus,

          K  +  g(x+d)  - g(x)  - d{  (g(x) -
 g(x-e))le}

               =  K  +  g(x+d)  +  dg  (x-e)le - ('1 +d!e)g(x)  .

               I K  + g(x+d,X)  + fig(x-e,X)lc 
-
 (1+dle)g(x,>,) 

--
 (1+dle)E

               l -(1+dle)E  from  the  hypothesis  of  K-convexity.
                   '                                     '
As  e  -  O in the  above,  we  have

          K  +  g(x+d)  - gCx)  - d{(g(x)  
-
 g(x-e))le}  l O                                                     '

                    for  all  xES,  d>O  and  e>O,

whieh  implies  K-conve>city  of  g. Q･E･D

     Theorem 3.1. under  Conditions  D and  E,  a  minimax  (s,S) ordering  policy

  .exlsts.  . ･ .

     PrOof: By  Theorern  2.1,  there  eKist  a  constant  W* and  v[B;(S)  such  that

                                           (x-a) + c.(a-x)                                  {K･I          v(x)  = inf                         sup
                                      (o,co)                            Fe  tir                    aEx

                      +  L(a,F)  - "* +  fv(a-y)dF(y)}  .                                                                      '                                  '

     Now,  we  show  that  v  is K-convex.  Fo:  the  operator  U  defined  in  (2.1),
                                       - t - -
let  uo  

=O

 and  un  
=
 
Vun.1

 
for

 
n
 
Z-
 
1..

 
First,

 
we

 
show

 
by

 
mduction

 
that

 
un

 
is

.

-.
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       K-eonvex  for  all  n  )-O. If we  define  G(x,a,F,u)  =  c.a  +  L(a,F)  +  fu (a-y)Q(dy[

       x,a,F)  for eaeh  xES,  aeA(x),  FE  gr and  uEB;(S),  we  ean  write

           U(x,a,F,u)  =  
-c.x

 +  min{G(x,x,F,u),  K  +  G(x,a,F,u)J                                                                (a)} -
 fu(y)y(dy)

                                                            (x,M]

       Fro[n the  results  of  Iglehart  [3,4], G(x,a,F,u  ) is K-convex  in aeA  iE u  is
                                                 n n
                               '
       K-convex.

           SinCe SUPFEsx  G(X,a,F,un)  i$ K-convex  in aeA  for LemimG 3.2, by using

       the  results  of  Iglehart  again  it holds that  un+1  
=

 Uun  is K'convex.
 

There-

       fore,  since  v  
=

 limn  -..  un  by the  similar  discussion  
as

 TheoTem  
2.1,

 
v
 
is

 
K-

       eonvex.  By  Theorem  2.2, the  minimax  stationary  strategy  fco exists.  Since

               G(x,a,F,v)  is K-convex  in aEA,  we  can  prove,  by  the  same  way  as  used       sup
         F  E  S?'                              co

       in lglehart  [3,4], that  f  is an  (s,S) ordering  poZicy.  . Q.E.D.

           We  say  that  Tr 
=

 (Tro,Trl,...)EII is a  :andom  (s,S) ordering  poliey  if theTe

       exist  el(O  
<
 el  

<
 1) and  a  map  

f:S
 
-,
 
A
 satisfying  

that
 
f(x)tSl,

 
if'x

 
S
 

sl,
 

=x

       if x  
>
 Sl  for  some  sl  

<
 Sl  such  that  

'rrt
 seleats  the  action  At 

=

 
f(xt)

 with

       probability  1-El  
and

 the  action  xt  V  sl  
with

 probability  E/1･

           Then  we  can  state  the  rnain  theorem.                                                               '

           Theorem 3.2. Suppose  that  Condition  D holds and  L(a,F)  is linear in

      F  E  P(R+) for  each  a  e A.

           Then  for  any  E  >  O there  exists  a  random  (s,S) ordering  policy  which  is

       E-minimax.

           In  order  to  prove  Theorem  3.2, zge shall  introduce  a  subsidiary  stochastic

       game  for  which  Condition  E holds.

           Let  O E P(R+) be  sueh  that  O has  density  
¢ (x) with  "(x) =  (2M)-1 if

      
M
 
t.
 
xs

 
3M

 
and

 
;O

 
otherwise.

 
For

 
this

 
O
 9nd El

 
(O･

 ̀
El
 

<
 
1),

 PUt  4tl 
'

       {EIO 
'
 (1-El)F:F e  .9'}.

       ..,,.:Z".::,1::,Sid:g  ;,:Yi2:i:':.IY,,'.':i
e:.t:rl,:Ogzk,g`,c9,

'

ggg lx,":kgh,g:e.;et 
of

      actions  available  to  a  decisien  maker  (player 1) at  state  x  are  respectively

      S=(-co,M]  and  A(x)=[OVx,M].
                                                                  oo

           Notiee  that  the  sample  space  of  G(sr  ) is n'  =s(A  Si' s)  . In  G(c?' ),
                                                                            El                                             El                                                             el

      we  denote  respectively  by  XL,  Ai and  { the  state  and  the  a.ctlons  at  the  t-th

       time  taken  by  players  1 and  2 (t l O). Also,  in G(.ST ) let  ll' and  Z' be
                                                        El

      respectively  the  classes  of  strategies  fo'r pZayers  1 and  2 and  V  (x,T',o') the

      average  eost  defined  by･(1.1)  for  any  x  e  S,  T'  e  ll' and  g'  e  Z'. In  the

      pToof  of  TheoTem  3.2  given  later  tt is shown  that  Condition.  E holds  for                                                                             '

      G(si  ), so  that  applyimg  Theorem  3.1 rmder  Condi.tion  D there  exists  a  minimax

          El

       (s,s) ordering  poliey  for  G(eihl)･

NII-Electionic
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     To  investigate  the  relation  between  n (Z) and  ][' (Z'), we  introduce  the

following  transformation.

     Let  {Yt} be  a sequence  of  independent  random  variables  such  that  
for

 each

t l O Yt  is uniformly  distxibuted  on  (O,1).

     For any  t l o and  the  random  quantity  HL'  
==

 (X6,A6,F6, -･･, AL-1,rL-1,XL)

            t . .N

 Es(A  grEls)  , we  
defme

 
a
 

random
 quantity  

Ht
 

=

 (3fo,?lo,rio, 
...,

 
trt-1,?t-1,ift)

          t
 es(A  sr s)  by

          
tv  N  N

          
Xo

 
=

 
x'o,

 
rj

 
==

 (r;. 
-
 
elo)!ll-el),

 
Aj

 
--
 
LJ,

          and  >j.1 ==

 Xti L"
 7Y,1 (yj) for each  j l o,

     where  for  any  F  E P(R+) F-1  is a  left  continuous  inverse  and  F-1(t)  =

     inf {x: F(x)  l t}.
             N
L"e note  that  r E.r  because  r!g  sx .
              j J el

     using  the  above  transformation,  from  v 
=

 (To,Tl, ---) E I and  a  
=

 (go,gl,

...)  e  Z we  construct  T'  
=

 (v6,Ti, ...)  e  II' and  u'  
=
 (o6,ol, ...)  E E' by

          "L  (' [HE) =  T,  (" l"H,) and

          oL(D]Hi,AL)  =  Prob(elO  +  (1-El)?S E D)  for  any  Borel  stibset  D  of

               gr and  tl  O,
                 

El

                N N

          where  F  is distributed  with  at('  Ht,Xt)･

     To  make  the  above  definition  possible,  we  only  need  to  show  that

･fft(A
 (xi)[iHVt) 

=1

 for  an  tl  o. In fact,  sinee  xL  

'=
 AL-.1  

-'
 PfL-1  and  l?t =

AL-1  
-
 "t-1  and  vaLhl and  Wt-1  are  respectively  distributed  with  I'L-1 

=

 [lo  
+

(lmEl)Yt-1 and  ?it"1, it holds  from  the  property  of  O that  Prob  (xL !- Max{3}t,O})

=

 1. Thus  Prob  (A (xL)]A(1\t)) =1
 so  that  by  Tt(A  (l\t)I?'tt) =1  we  get  Tt(A  (XL)

]Pt) #1  for  all  tl  o.

     For  convenience,  we  say  
'r"

 E  Ei (ot e ZT)  a  strategy  constructed  from

'r] e  n (u E  Z) using  the  random  transforTnation  (p). 
'

                                                                            '

     Conversely,  we  t'ry to  eonstruct  T  E  ff and  a  e  E from  T'  e  l[' and  oT  E  ZS.

     Let  {nt} and  {Zt} be  sequences  of  independent  randoin  variables  wtth

Prob(nt  
=:

 1) =1
 
-
 Prob(nt  

=
 O) ==

 El  and  Zt is distributed  with  O for all

t ). o.                             '

     For  any  t l O and  the  random  quantity  Et  
'

 (Xo,Ao,To, ..., At-1,rt-1,Xt)

E s(A  .r  s)?  we  define  a  random  quantity  2fL =
 (Sf6,X6 36, ･･･, ?{L-t,?L-1,XL) e

         t
S(A  S?' S)           by

     
El

          tr6 
==

 Xo,  X; =

 b.r "} ==

 Eltp  + (1-el)rj and

'
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                  N N

                  
X;,+1

 
="

 
Aj

 
-
 
Zj

 
if

 nj  
=

 
1,
 

=

 
Xj.1

 
if

 nj  
-L
 O

                  for each  J' ) O.
                                         '

        
And

 
for

 
any

 (s,s) ordering
 

strategy
 T'  

tr

 (T6,i/I, ...) E fi' and  any  strategy

        
ur

 
tr

 
(o6,ul,

 
...)

 
E
 
E',

 
we

 
eonstruct

 
T
 

=

 (Tio,'nl, -..) E ]I ancl  O 
=:

 (Uo,Ul, ･..)

        cZby

                  
']Tt('IHt)

 =  TTi('1ftt)  and

                 at  (DIHt) =  aL  (D']2iL,7ft) for  each  t o and  any  Borel  subset  D of  s]' ,

                 
where

 
D'

 
=

 {elO +
 (1-El)F :FE  D}.  .

       We  say  T  e  1'L (u E  E) a  strategy  constructed  from  n'  E ll' (o' E  Z')  using  the

       random  transformatien  (v). ･

        In this  case,  sinee  T'  is an  (s,S) ordering  policy,  T  beeomes  a  random  (s,S)

       
ordering

 policy.  

'
 ,

        . LemMa 3.3. Suppose  that  Conditions  in Theorem  3.2 holLd. Then  for  any

       
e
 

>
 
O
 
there

 
exists

 
El

 
>
 
O
 satisEy ±ng  the  fo]]owing:  For  any  v  E  I[, there  is

       T'  e n' sueh  that  for  any  o  E  Z there  exists  ut  E Z' for  whi'ch

        (3.2) "(x,T,u)  - "' (x,r',a') l< Ef2  

'

       and  conversely  for any  o'  E X' there  exists  o  e  Z satisfying  (3.2).

            
PrOOf:

 For  any  given  TE  fl and  El  >O  let T'  E r[' be a  strategy  con-

       
strueted

 
from

 T using  
the

 
'random

 transformation  (p). Then  when  el is suffi-

       eiently  small,  we  will  show  that  this  
'[r'

 E  rr' is  the  desired  strategy.

            For  any  o E Z, let g'  E E' be  a  strategy  constructed  f'rom,o' e Z using  the

       random  transformation  (p). Then, by the  method  of  construction  we  observe

       that  Ptiiir,oT(fHVt e D)  
=
 P:,u(fft  e P) fQr  all  t l" O and  any  Borel  subset  D  of

       S(A  j?'S)t,  so  that

       (3'3) E:,o[c  (Xt,(St,rt)] '

 Eif,,,eT[C (3?t'7(t'?(t)]'

       From  the  property  of  O we  can  assume  that  L(a,O)  E L' for  all  a  E  A  and  some

       L'.  Thus  we  get,  by the  linearity  of  L,  
'

       (3.4) [L(a,F) 
-
 
L(a,EIO

 
+
 (1-El)F) ;' El(I]  +L')･

       Also,  by  the  definition  we  have

       (3'S) 
EllT,,,[KJ(o,..)(AL

 
-3t)

 
'
 Kr(o,.,)(A!  

-
 XL)]  S' 2EtK

       and

       (3.6) iEil,,.,[c･(Xit 
-
 Xl)]  S EI(3M  + rc)-

       Thus,  we  have

NII-Electionic  Libiaiy  
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     1E:1,,,,[c(lll,,tr,,ri,) 
-
 c(xL,AL,rp  i

         
=
 IEi,,oi[c(trt,At,rit) 

-
 a(xl,Al,rL)]I,  from  the  definition  of  7It,

         s IEII,,.,[L(Al,T`,) 
-
 L(At,r;)]1  

+
 IEI:t,.,[c'(1}, 

-
 xl)][

                " IEIIT,,,[KJ(o,.)(AL 
-
 Slt) -

 Kr(o,..)(AE  
-
 xL)li,  frem  (3.1),

         g [1 (L +L')  +  2EIK  
+
 Et(3M  

+
 K),  from  (3.4) 

-
 (3.6).

Therefore,  for  any  g 
>
 O there  exists  tl  

>
 O such  that

(3･7) Efl,,,,[c(litt,INt,T`t)]  
-
 Ei,i,,,.,[c<xi,AL,rL)l  s ef2･

                                                '                              '

By  (3.3) and  (3.7), we  get  [w･ (s,T,u) -- v'(x,Ti',g')L S E12.  .

    Conversely,  for  any  a'  e Z', let  o  E  Z be  a  strategy  constructed  from  u'
  '[
 Zr using  the  random  transformation  (v). Then,  similarly  as  the  above  dis-                                                                         '

cuss'ion  we  can  prove  that  for any  E > O theTe  is El  > O such  that  LW(x,T,u) 
-

                                                                   '
"' (x,'ff',o')1$E!2, which  completes  the  proof.  . 

Q･E･D.

     Lemma 3.4. Suppose  that  Cenditions  in theorem  3.2 holdi. Then  for  any

c >
 O there  exist  k  

>
 
O
 satisfying  

the
 
lollowing:

    For  any  (s,S) ordering  policy  T'  E  "',  there  exists  a  random  (s,S)

ordering  policy  v  e  ll sueh  that  for any  a E Z there  is o'  E  Z' for  which  (3.2)

holds  and  conversely  for  any  o'  e  Z' there  existe  a e Z satisfying  (3.2).

     ProOf: For  any  (s,S) ordering  poliay  T'  E  E',  we  construct  a random

(s,S) ordering  policy  fi from  T'  using  the  random  transformation  (v). Then,

similarly  as  the  proof  of  Lemrna  3.3  we  can  prove  that  this  
'ff
 has  the  desired

property.  1 Q.E･D.

     PROOF OF THEOREM 3.2. 
'we

 try  to  approximate  the  inventory  game  model  by

a
 

subsidiary
 
invento:y

 
model

 
G(srel).

 
For

 
any

 
e
 

>
 
O,

 
let

 -  
be

 
such

 
that

Lemma  3.3 and  3.14  hold.  In G(srel),  if we  define  v(')  by 
'y
 (D) `.Elv(Dn

[-2M,-M])12M for  D  E bE9  s, 
we  observe  that  for x

 E S, a
 E 

A(x)
 

and
 
F'

 
E
 Sr el,

                                     '

         O(D x,a,F')  =  O(D  x,a,F')  
-
 v(D)

                                       -1

                     
l
 

ElfD(O(a--y)
 
-
 (2M) J[-2M,-M]

 (y))dv

                     
=

 el!2  
>
 o,

         where  p is the  Lebesque  measure.

This  means  that  Condition  E hoZds  [or G(Jr  ).
                                       e1  

oz

Thereiore,  by  Theorem  3.1 there  exists  a  Tninimax  (s,S) orde/ring  policy  f  E  I'

for which

                                                           ca

(3.8) inf,i/, 
E
 i, 

supu,  
E
 E, V'(x,x',o') 

=:

 supu,  
E
 z, vi(x,f  ,g').
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      Applying  Lenima  3.4,  there  exists  a  random  (s,S) ordering  po!icy  Tft  e "

 for  which  the  properties  in  Lemma  3.4 hold.  
'

 For  this  x*,  we  have

           
SUPo

 E z Vi (X,irik,g) !' SuPuT,e  it "'(x,fan,u') +'E12,'

                                                    '

                                            from  Lemma  3.4
                                                           T･.

                 
t

 
±nfiTT

 E IIe 
SUPo',  

E
 zi V'(X,Ti',u') 

+  sf2,  from  (3.8),
                                           '
                   '
                

5
 

Mf
 "[ E R 

SUPo
 

e
 z "(X,Tr,O) 

+
 e,

                                            from  Lenmia  3.3,
                                                                  

tt t                                                                        tt
whiah  imp!ies  ehat the  random  (s,S) ordering  poliey  Tth  is E-minimax,  Q.E.D.
                                                                                   '

      Remark: ･Let sf (p,g2) be  the  class  of  distribution  functions  F 
on

 R+  
such

that  fxdF (x) =  v and  Xx2dF(x) =  p2  +  o2  where  u and  g2  
aTe

 finite  
constants.

LOE suppoSe  that  the  holding  and  penalty  cost  functions  are  both  linear. 
'Then

                                                                                   ,

since  g  (v,o2) is a  Borel'set  and'  Conditlon  D is satisfield,  it heZds  'from

Theorem  3.2 that  for any  E  >  O an  !-minimax  random'  (s,S) ordering-policy

exists  for gr =sx  (y,u2); ･
 

-
 

･
 .

                            t t

     We  note  that  Nakagami  [10] has  studied  the  inventory  

'pro61em
 with  the  un-

bounded  lower  sem ±-co]tinuous  cost  function  and  by  us/Lng  weighted  sup'femum     'notms
 and  ttie Bantich  eontraetion  prineiple  derived  the  optirnal  inventory

eqtiation  for  the  discounted  case.
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ア ブ ス　ト ラ ク　ト

平均 コ ス ト確率 ゲ ー
ム の ミ ニ マ ッ ク ス 戦 略 と

　　　　　　　　在庫 モ デ ル へ の 応 用

千葉大学　蔵　野　 正 　 美

　非有界な下半連 続関数 を コ ス ト関数に もつ 零和 2人確率ゲ
ー

ム を平均 コ ス ト基準 の もとで 考察 して

い る 。 平均基準に対す る縮小性を用い て こ の モ デ ル に対する最適方程式を導 き，MINIMAX 定常戦

略 の 存在 が示 され る 。

　さ らに ，こ れ らの 結果を利用 して 需要分布が未知の 場合の 最適在庫問題が解析され　 SET − UP コ

ス トが存在す る場合， 任意 ε ＞ 0 に 対 して 平均 コ ス ト基準に 於 ける E − MINIMAX 　 RANDOM （s ，

S ）発注政策の 存在が 示 され る 。
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