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Abstract. We consider the problem of minimising the number of states
in a multiplicity tree automaton over the field of rational numbers. We
give a minimisation algorithm that runs in polynomial time assuming
unit-cost arithmetic. We also show that a polynomial bound in the stan-
dard Turing model would require a breakthrough in the complexity of
polynomial identity testing by proving that the latter problem is logspace
equivalent to the decision version of minimisation. The developed tech-
niques also improve the state of the art in multiplicity word automata:
we give an NC algorithm for minimising multiplicity word automata.
Finally, we consider the minimal consistency problem: does there exist
an automaton with n states that is consistent with a given finite sample
of weight-labelled words or trees? We show that this decision problem is
complete for the existential theory of the rationals, both for words and
for trees of a fixed alphabet rank.

1 Introduction

Minimisation is a fundamental problem in automata theory that is closely related
to both learning and equivalence testing. In this work we analyse the complexity
of minimisation for multiplicity automata, i.e., weighted automata over a field.
We take a comprehensive view, looking at multiplicity automata over both words
and trees and considering both function and decision problems. We also look
at the closely related problem of obtaining a minimal automaton consistent
with a given finite set of observations. We characterise the complexity of these
problems in terms of arithmetic and Boolean circuit classes. In particular, we give
relationships to longstanding open problems in arithmetic complexity theory.

Multiplicity tree automata were first introduced by Berstel and Reutenauer [1]
under the terminology of linear representations of a tree series. They generalise
multiplicity word automata, introduced by Schützenberger [25], which can be
viewed as multiplicity tree automata on unary trees. The minimisation problem
for multiplicity word automata has long been known to be solvable in polynomial
time [25].

In this work, we give a new procedure for computing minimal word automata
and thereby place minimisation in NC improving also on a randomised NC
procedure in [22]. (Recall that NL ⊆ NC ⊆ P, where NC comprises those lan-
guages having L-uniform Boolean circuits of polylogarithmic depth and polyno-
mial size, or, equivalently, those problems solvable in polylogarithmic time on
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parallel random-access machines with polynomially many processors.) By com-
parison, minimising deterministic word automata is NL-complete [12], while
minimising non-deterministic word automata is PSPACE-complete [20].

Over trees, we give what is (to the best of our knowledge) the first complex-
ity analysis of the problem of minimising multiplicity automata. We present an
algorithm that minimises a given tree automaton A in time O

(|A|2 · r) where
r is the maximum alphabet rank, assuming unit-cost arithmetic. This proce-
dure can be viewed as a concrete version of the construction of a syntactic
algebra of a recognisable tree series in [4]. We thus place the problem within
PSPACE in the conventional Turing model. We are moreover able to precisely
characterise the complexity of the decision version of the minimisation problem
as being logspace equivalent to the arithmetic circuit identity testing (ACIT)
problem, commonly also called the polynomial identity testing problem. The lat-
ter problem is very well studied, with a variety of randomised polynomial-time
algorithms, but, as yet, no deterministic polynomial-time procedure. In previ-
ous work we have reduced equivalence testing of multiplicity tree automata to
ACIT [24]; the advance here is to reduce the more general problem of minimi-
sation also to ACIT.

Finally, we consider the problem of computing a minimal multiplicity automa-
ton consistent with a finite set of input-output behaviours. This is a natural
learning problem whose complexity for non-deterministic finite automata was
studied by Gold [17]. For multiplicity word automata over a field F, we show
that the decision version of this problem is logspace equivalent to the problem of
deciding the truth of existential first-order sentences over the field (F,+, ·, 0, 1),
a long-standing open problem in case F = Q. Furthermore we show that the
same result holds for multiplicity tree automata of a fixed alphabet rank, but we
leave open the complexity of the problem for general multiplicity tree automata.

The full version of this paper is available as [21].

Further Related Work. Based on a generalisation of the Myhill-Nerode theo-
rem to trees, one obtains a procedure for minimising deterministic tree automata
that runs in time quadratic in the size of the input automaton [7,11]. There have
also been several works on minimising deterministic tree automata with weights
in a semi-field (that is, a semi-ring with multiplicative inverses). In particular,
Maletti [23] gives a polynomial-time algorithm in this setting, assuming unit
cost for arithmetic in the semi-field. In the non-deterministic case, Carme et
al. [10] define the subclass of residual finite non-deterministic tree automata.
They show that this class expresses the class of regular tree languages and ad-
mits a polynomial-space minimisation procedure.

2 Preliminaries

Let N and N0 denote the set of all positive and non-negative integers, respec-
tively. For every n ∈ N, we write [n] for the set {1, 2, . . . , n}.
Matrices and Vectors. Let n ∈ N. We write In for the identity matrix of
order n. For every i ∈ [n], we write ei for the ith n-dimensional coordinate row
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vector. For any matrix A, we write Ai for its ith row, Aj for its jth column,
and Ai,j for its (i, j)th entry. Given nonempty subsets I and J of the rows and
columns of A, respectively, we write AI,J for the submatrix (Ai,j)i∈I,j∈J of A.

Let A be an m×nmatrix with entries in a field F. The row space of A, written
RS(A), is the subspace of Fn spanned by the rows of A. The column space of A,
written CS (A), is the subspace of Fm spanned by the columns of A.

Given a set S ⊆ F
n, we use 〈S〉 to denote the vector subspace of Fn that is

spanned by S, where we often omit the braces when denoting S.

Kronecker Product. Let A be an m1 × n1 matrix and B an m2 × n2 matrix.
The Kronecker product of A by B, written as A⊗B, is an m1m2 ×n1n2 matrix
where (A⊗B)(i1−1)m2+i2,(j1−1)n2+j2 = Ai1,j1 ·Bi2,j2 for every i1 ∈ [m1], i2 ∈ [m2],
j1 ∈ [n1], j2 ∈ [n2].

The Kronecker product is bilinear, associative, and has the following mixed-
product property: For any matrices A, B, C, D such that products A · C and
B ·D are defined, it holds that (A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D).

For every k ∈ N0 we define the k-fold Kronecker power of a matrix A, written
as A⊗k, inductively by A⊗0 = I1 and A⊗k = A⊗(k−1) ⊗A for k ≥ 1.

Multiplicity Word Automata. Let Σ be a finite alphabet and ε be the empty
word. The set of all words over Σ is denoted by Σ∗, and the length of a word
w ∈ Σ∗ is denoted by |w|. For any n ∈ N0 we write Σn := {w ∈ Σ∗ : |w| = n},
Σ≤n :=

⋃n
l=0 Σ

l, and Σ<n := Σ≤n \Σn. Given two words x, y ∈ Σ∗, we denote
by xy the concatenation of x and y. Given two sets X,Y ⊆ Σ∗, we define
XY := {xy : x ∈ X, y ∈ Y }.

Let F be a field. A word series over Σ with coefficients in F is a mapping
f : Σ∗ → F. The Hankel matrix of f is the matrix H : Σ∗ × Σ∗ → F such that
Hx,y = f(xy) for all x, y ∈ Σ∗.

An F-multiplicity word automaton (F-MWA) is a 5-tuple A = (n,Σ, μ, α, γ)
which consists of the dimension n ∈ N0 representing the number of states,
a finite alphabet Σ, a function μ : Σ → F

n×n assigning a transition matrix
μ(σ) to each σ ∈ Σ, the initial weight vector α ∈ F

1×n, and the final weight
vector γ ∈ F

n×1. We extend the function μ from Σ to Σ∗ by μ(ε) := In and
μ(σ1 . . . σk) := μ(σ1) · . . . · μ(σk) for any σ1, . . . , σk ∈ Σ. It is easy to see that
μ(xy) = μ(x) · μ(y) for any x, y ∈ Σ∗. Automaton A recognises the word series
‖A‖ : Σ∗ → F where ‖A‖(w) = α · μ(w) · γ for every w ∈ Σ∗.

Finite Trees. A ranked alphabet is a tuple (Σ, rk) where Σ is a nonempty finite
set of symbols and rk : Σ → N0 is a function. Ranked alphabet (Σ, rk) is often
written Σ for short. For every k ∈ N0, we define the set of all k-ary symbols
Σk := rk−1({k}). We say that Σ has rank r if r = max{rk(σ) : σ ∈ Σ}.

The set of Σ-trees (trees for short), written TΣ , is the smallest set T satisfying
(i) Σ0 ⊆ T , and (ii) if σ ∈ Σk, t1, . . . , tk ∈ T then σ(t1, . . . , tk) ∈ T . The height
of a tree t, height(t), is defined by height(t) = 0 if t ∈ Σ0, and height(t) =
1 + maxi∈[k] height(ti) if t = σ(t1, . . . , tk) for some k ≥ 1. For any n ∈ N0 we

write T n
Σ := {t ∈ TΣ : height(t) = n}, T≤n

Σ :=
⋃n

l=0 T
l
Σ, and T<n

Σ := T≤n
Σ \ T n

Σ.
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Let � be a nullary symbol not contained in Σ. The set CΣ of Σ-contexts
(contexts for short) is the set of ({�}∪Σ)-trees in which � occurs exactly once.
Let n ∈ N0. We denote by Cn

Σ the set of all contexts c ∈ CΣ where the distance
between the root and the �-labelled node of c is equal to n. Moreover, we write
C≤n

Σ :=
⋃n

l=0 C
l
Σ and C<n

Σ := C≤n
Σ \ Cn

Σ . A subtree of c ∈ CΣ is a Σ-tree
consisting of a node in c and all of its descendants. Given a set S ⊆ TΣ , we
denote by Cn

Σ,S the set of all contexts c ∈ Cn
Σ where every subtree of c is an

element of S; we moreover write C≤n
Σ,S :=

⋃n
l=0 C

l
Σ,S and C<n

Σ,S := C≤n
Σ,S \ Cn

Σ,S .

Given c ∈ CΣ and t ∈ TΣ ∪̇CΣ , we write c[t] for the tree obtained by sub-
stituting t for � in c. Let F be a field. A tree series over Σ with coefficients in
F is a mapping f : TΣ → F. The Hankel matrix of f : TΣ → F is the matrix
H : TΣ × CΣ → F such that Ht,c = f(c[t]) for every t ∈ TΣ and c ∈ CΣ .

Multiplicity Tree Automata. Let F be a field. An F-multiplicity tree automa-
ton (F-MTA) is a 4-tupleA = (n,Σ, μ, γ) which consists of the dimension n ∈ N0

representing the number of states, a ranked alphabet Σ, the tree representation

μ = {μ(σ) : σ ∈ Σ} where for every symbol σ ∈ Σ, μ(σ) ∈ F
nrk(σ)×n represents

the transition matrix associated to σ, and the final weight vector γ ∈ F
n×1. We

speak of an MTA if the field F is clear from the context or irrelevant. The size
of A, written as |A|, is the total number of entries in all transition matrices and
the final weight vector of A, i.e., |A| := ∑

σ∈Σ nrk(σ)+1 + n.
We extend the tree representation μ from Σ to TΣ by μ(σ(t1, . . . , tk)) :=

(μ(t1)⊗ · · · ⊗ μ(tk)) · μ(σ) for every σ ∈ Σk and t1, . . . , tk ∈ TΣ. Automaton A
recognises the tree series ‖A‖ : TΣ → F where ‖A‖(t) = μ(t) · γ for every t ∈ TΣ .

We further extend μ from TΣ to CΣ by treating� as a unary symbol and defin-
ing μ(�) := In. This allows to define μ(c) ∈ F

n×n for every c = σ(t1, . . . , tk) ∈
CΣ inductively as μ(c) := (μ(t1)⊗ · · · ⊗ μ(tk)) · μ(σ). It is easy to see that for
every t ∈ TΣ ∪̇CΣ and c ∈ CΣ , μ(c[t]) = μ(t) · μ(c).

MWAs can be seen as a special case of MTAs: An MWA (n,Σ, μ, α, γ) “is” the
MTA (n,Σ ∪̇{σ0}, μ, γ) where the symbols in Σ are unary, symbol σ0 is nullary,
and μ(σ0) = α. That is, we view (Σ ∪̇{σ0})-trees as words over Σ by omitting
the leaf symbol σ0. Hence if a result holds for MTAs, it also holds for MWAs.
Some concepts, such as contexts, would formally need adaptation, however we
omit such adaptations as they are straightforward. Therefore, we freely view
MWAs as MTAs whenever convenient.

Two MTAs A1, A2 are said to be equivalent if ‖A1‖ = ‖A2‖. An MTA is said
to be minimal if no equivalent automaton has strictly smaller dimension. The
following result was first shown by Habrard and Oncina [18], although a closely
related result was given by Bozapalidis and Louscou-Bozapalidou [6].

Theorem 1 ([6,18]). Let Σ be a ranked alphabet, F be a field, and f : TΣ → F.
Let H be the Hankel matrix of f . Then, f is recognised by some MTA if and
only if H has finite rank over F. In case H has finite rank over F, the dimension
of a minimal MTA recognising f is rank(H) over F.

It follows from Theorem 1 that an F-MTA A of dimension n is minimal if and
only if the Hankel matrix of ‖A‖ has rank n over F.
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Remark 2. Theorem 1 specialised to word automata was proved by Carlyle and
Paz [9] and Fliess [16]. Their proofs show that if X,Y ⊆ Σ∗ are such that
rank(HX,Y ) = rank(H), then f is uniquely determined by HX,Y and HXΣ,Y .

The following closure properties for MTAs can be found in [1,3]; see also [21].

Proposition 3. Let A1 = (n1, Σ, μ1, γ1), A2 = (n2, Σ, μ2, γ2) be two F-MTAs.
One can construct an F-MTA A1 − A2, called the difference of A1 and A2,
such that ‖A1 − A2‖ = ‖A1‖ − ‖A2‖. Secondly, one can construct an F-MTA
A1 × A2 = (n1 · n2, Σ, μ, γ1 ⊗ γ2), called the product of A1 by A2, such that
μ(t) = μ1(t)⊗μ2(t) for every t ∈ TΣ, μ(c) = μ1(c)⊗μ2(c) for every c ∈ CΣ , and
‖A1 ×A2‖ = ‖A1‖ · ‖A2‖. When F = Q, both automata A1 −A2 and A1 ×A2

can be computed from A1 and A2 in logarithmic space.

3 Fundamentals of Minimisation

In this section we prepare the ground for minimisation algorithms. Let us fix a
field F for the rest of this section and assume that all automata are over F. We
also fix an MTA A = (n,Σ, μ, γ) for the rest of the section. We will construct
from A another MTA Ã which we show to be equivalent to A and minimal. A
crucial ingredient for this construction are special vector spaces induced by A,
called the forward space and backward space.

3.1 Forward and Backward Space

The forward space F of A is the (row) vector space F := 〈μ(t) : t ∈ TΣ〉 over F.
The backward space B of A is the (column) vector space B := 〈μ(c) · γ : c ∈ CΣ〉
over F. The following Propositions 4 and 5, proved in [21], provide fundamental
characterisations of F and B, respectively.
Proposition 4. The forward space F has the following properties:

(a) The space F is the smallest vector space V over F such that for all k ∈ N0,
v1, . . . , vk ∈ V , and σ ∈ Σk it holds that (v1 ⊗ · · · ⊗ vk) · μ(σ) ∈ V .

(b) The set of row vectors {μ(t) : t ∈ T<n
Σ } spans F .

Proposition 5. Let S be a set of Σ-trees such that {μ(t) : t ∈ S} spans F . The
backward space B has the following properties:

(a) The space B is the smallest vector space V over F such that γ ∈ V , and for
every v ∈ V and c ∈ C1

Σ,S it holds that μ(c) · v ∈ V .

(b) The set of column vectors {μ(c) · γ : c ∈ C<n
Σ,S} spans B.

3.2 A Minimal Automaton

Let F and B be matrices whose rows and columns span F and B, respectively.
That is, RS (F ) = F and CS (B) = B. We discuss later (Section 4.1) how to
efficiently compute F and B. The following lemma states that rank(F ·B) is the
dimension of a minimal automaton equivalent to A.
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Lemma 6. A minimal automaton equivalent to A has m := rank(F ·B) states.

Proof. Let H be the Hankel matrix of ‖A‖. Define the matrix F ∈ F
TΣ×[n] where

F t = μ(t) for every t ∈ TΣ . Define the matrix B ∈ F
[n]×CΣ where B

c
= μ(c) · γ

for every c ∈ CΣ . For every t ∈ TΣ and c ∈ CΣ we have by the definitions that

Ht,c = ‖A‖(c[t]) = μ(c[t]) · γ = μ(t) · μ(c) · γ = F t · Bc
,

hence H = F · B. Note that

RS (F ) = F = RS (F ) and CS (B) = B = CS (B) . (1)

We now have m = rank(H) = rank(F ·B) = rank(F ·B), where the first equality
is by Theorem 1, and the last equality is by (1) and a general linear-algebra
argument, see [21]. �

By definition, there exist m rows of F · B that span RS(F · B). The corre-
sponding m rows of F form a matrix F̃ ∈ F

m×n with RS (F̃ · B) = RS(F · B).
Define a multiplicity tree automaton Ã = (m,Σ, μ̃, γ̃) with γ̃ = F̃ · γ and

μ̃(σ) · F̃ ·B = F̃⊗k · μ(σ) · B for every σ ∈ Σk. (2)

We show that Ã minimises A:

Proposition 7. The MTA Ã is well defined and is a minimal automaton equiv-
alent to A.

We provide a proof in [21]. Due to the importance of Proposition 7, we sketch
its proof in the rest of this subsection. We do this by proving Proposition 7 for
multiplicity word automata. The main arguments are similar for the tree case.

Let A = (n,Σ, μ, α, γ) be an MWA. The forward and backward space can
then be written as F = 〈α · μ(w) : w ∈ Σ∗〉 and B = 〈μ(w) · γ : w ∈ Σ∗〉,
respectively. The MWA Ã can be written as Ã = (m,Σ, μ̃, α̃, γ̃) with γ̃ = F̃ · γ,

α̃ · F̃ ·B = α · B and (3)

μ̃(σ) · F̃ ·B = F̃ · μ(σ) ·B for every σ ∈ Σ. (4)

First, we show that Ã is a well-defined automaton:

Lemma 8. There exists a unique vector α̃ satisfying Equation (3). For every
symbol σ ∈ Σ, there exists a unique matrix μ̃(σ) satisfying Equation (4).

Proof. Since the rows of F̃ · B form a basis of RS(F · B), it suffices to prove
that α · B ∈ RS(F · B) and RS(F̃ · μ(σ) · B) ⊆ RS(F · B) for every σ ∈ Σ.
By a general linear-algebra argument (see [21]), it further suffices to prove that
α ∈ RS(F ) and RS(F̃ · μ(σ)) ⊆ RS(F ) for every σ ∈ Σ.
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We have α = α · μ(ε) ∈ F = RS (F ). Let i ∈ [m]. Since F̃i ∈ RS (F ) = F , it
follows from Proposition 4 (a) that (F̃ ·μ(σ))i = F̃i ·μ(σ) ∈ F for all σ ∈ Σ. �

We now show that the automaton Ã minimises A:

Lemma 9. Automaton Ã is a minimal MWA equivalent to A.

Proof. First, we show that α̃μ̃(w)F̃B = αμ(w)B for every w ∈ Σ∗. Our proof
is by induction on the length of w. For the base case, we have w = ε and by
definition of Ã it holds that α̃μ̃(ε)F̃B = α̃F̃B = αB = αμ(ε)B.

For the induction step, let l ∈ N0 and assume that α̃μ̃(w)F̃B = αμ(w)B holds
for every w ∈ Σl. Take any w ∈ Σl and σ ∈ Σ. For every b ∈ B we have by
Proposition 5 (a) that μ(σ)b ∈ B, and thus by the induction hypothesis

α̃μ̃(wσ)F̃ b = α̃μ̃(w)μ̃(σ)F̃ b
Eq. (4)
= α̃μ̃(w)F̃ μ(σ)b = αμ(w)μ(σ)b = αμ(wσ)b,

which completes the induction. Now for any w ∈ Σ∗, since γ ∈ B we have

‖Ã‖(w) = α̃ · μ̃(w) · γ̃ = α̃ · μ̃(w) · F̃ · γ = α · μ(w) · γ = ‖A‖(w).

Hence, automata Ã and A are equivalent. Minimality follows from Lemma 6. �

By a result of Bozapalidis and Alexandrakis [5, Proposition 4], all equivalent
minimal MTAs are equal up to a change of basis. Thus the MTA Ã is “canonical”
in the sense that any minimal MTA equivalent to A can be obtained from Ã via a
linear transformation: any m-dimensional MTA Ã′ = (m,Σ, μ̃′, γ̃′) is equivalent
toA if and only if there exists an invertible matrix U ∈ F

m×m such that γ̃′ = U ·γ̃
and μ̃′(σ) = U⊗rk(σ) · μ̃(σ) · U−1 for every σ ∈ Σ.

3.3 Spanning Sets for the Forward and Backward Spaces

The minimal automaton Ã from Section 3.2 is defined in terms of matrices
F and B whose rows and columns span the forward space F and the backward
space B, respectively. In fact, the central algorithmic challenge for minimisation
lies in the efficient computation of those matrices. In this section we prove a key
proposition, Proposition 10 below, suggesting a way to compute F and B, which
we exploit in Sections 4.2 and 5.

Propositions 4 and 5 and their proofs already suggest an efficient algorithm for
iteratively computing bases of F and B. We make this algorithm more explicit
and analyse its unit-cost complexity in Section 4.1. The drawback of the resulting
algorithm will be the use of “if-conditionals”: the algorithm branches according
to whether certain sets of vectors are linearly independent. Such conditionals
are ill-suited for efficient parallel algorithms and also for many-one reductions.
Thus it cannot be used for an NC-algorithm nor for a reduction to ACIT.

The following proposition exhibits polynomial-size sets of spanning vectors
for F and B, which, as we will see later, can be computed efficiently without
branching. The proposition is based on the product automaton A × A defined
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in Proposition 3. It defines a sequence (f(l))l∈N of row vectors and a sequence
(b(l))l∈N of square matrices. Part (a) states that the vector f(n) and the ma-
trix b(n) determine matrices F and B, whose rows and columns span F and B,
respectively. Part (b) gives a recursive characterization of the sequences (f(l))l∈N

and (b(l))l∈N . This allows for an efficient computation of f(n) and b(n).

Proposition 10. Let Σ have rank r. Let MTA A×A = (n2, Σ, μ′, γ⊗2) be the

product of A by A. For every l ∈ N, define f(l) :=
∑

t∈T<l
Σ

μ′(t) ∈ F
1×n2

and

b(l) :=
∑

c∈C<l

Σ,T<n
Σ

μ′(c) ∈ F
n2×n2

.

(a) Let F ∈ F
n×n be the matrix with Fi,j = f(n)·(ei⊗ej)

�. Let B ∈ F
n×n be the

matrix with Bi,j = (ei ⊗ ej) · b(n) · γ⊗2. Then, RS(F ) = F and CS (B) = B.
(b) We have f(1) =

∑
σ∈Σ0

μ′(σ), b(1) = In2 , and for all l ∈ N:

f(l + 1) =

r∑

k=0

f(l)⊗k
∑

σ∈Σk

μ′(σ)

b(l + 1) = In2 +

r∑

k=1

k∑

j=1

(
f(n)⊗(j−1) ⊗ b(l)⊗ f(n)⊗(k−j)

) ∑

σ∈Σk

μ′(σ)

Proof (sketch). We provide a proof in [21]. Here we only prove the statement

RS(F ) = F from part (a). Let F̂ ∈ F
T<n
Σ ×[n] be the matrix such that F̂t = μ(t)

for every t ∈ T<n
Σ . From Proposition 4 (b) it follows that RS(F̂ ) = F . By

a general linear-algebra argument (see [21]) we have RS(F̂�F̂ ) = RS (F̂ ) and

hence RS(F̂�F̂ ) = F . Thus in order to prove that RS (F ) = F , it suffices to

show that F̂�F̂ = F . Indeed, using the mixed-product property of the Kronecker
product, we have for all i, j ∈ [n]:

(F̂�F̂ )i,j = (F̂�)i · (F̂ )j =
∑

t∈T<n
Σ

μ(t)i · μ(t)j =
∑

t∈T<n
Σ

(μ(t) · e�i )⊗ (μ(t) · e�j )

=

⎛

⎝
∑

t∈T<n
Σ

(μ(t)⊗ μ(t))

⎞

⎠ (ei ⊗ ej)
� Prop. 3

=

⎛

⎝
∑

t∈T<n
Σ

μ′(t)

⎞

⎠ (ei ⊗ ej)
�

= f(n) · (ei ⊗ ej)
�. �

Loosely speaking, Proposition 10 says that the sum over a small subset of the
forward space of the product automaton encodes a spanning set of the whole
forward space of the original automaton, and similarly for the backward space.

4 Minimisation Algorithms

In this section we devise algorithms for minimising a given multiplicity automa-
ton: Section 4.1 considers general MTAs, while Section 4.2 considers MWAs. For
the sake of a complexity analysis in standard models, we fix the field F = Q.
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4.1 Minimisation of Multiplicity Tree Automata

In this section we describe an implementation of the algorithm implicit in Sec-
tion 3.2, and analyse the number of operations. We denote by r the rank of Σ.

Step 1 “Forward”. The first step is to compute a matrix F whose rows form
a basis of F . Seidl [26] outlines a saturation-based algorithm for that and proves
that the algorithm takes polynomial time assuming unit-cost arithmetic. Based
on Proposition 4 (a) we give in [21] an explicit version of Seidl’s algorithm. This
allows for the following lemma:

Lemma 11. There is an algorithm that, given a Q-MTA (n,Σ, μ, γ), computes
a matrix F whose rows span the forward space F . Each row of F equals μ(t) for
some tree t ∈ T<n

Σ . The algorithm executes O
(∑r

k=0 |Σk| · n2k+1
)
operations.

Step 2 “Backward”. The next step suggested in Section 3.2 is to compute a
matrix B whose columns form a basis of B. Each row of the matrix F computed
by the algorithm from Lemma 11 equals μ(t) for some tree t ∈ T<n

Σ . Let S denote
the set of those trees. By Proposition 5 (a) we have that B is the smallest vector
space V ⊆ Q

n such that γ ∈ V andM ·v ∈ V for allM ∈ M := {μ(c) : c ∈ C1
Σ,S}

and v ∈ V . Tzeng [27] shows, for an arbitrary column vector γ ∈ Q
n and an

arbitrary finite set of matrices M ⊆ Q
n×n, how to compute a basis of V in time

O(|M| · n4). This can be improved to O(|M| · n3) (see, e.g., [14]). This leads to
the following lemma (full proof in [21]):

Lemma 12. Given the matrix F from Lemma 11, a matrix B whose columns
span B can be computed with O

(∑r
k=1 |Σk| · (kn2k + knk+2)

)
operations.

Step 3 “Solve”. The final step suggested in Section 3.2 has two substeps. The
first substep is to compute a matrix F̃ ∈ Q

m×n, where m = rank(F · B) and
RS(F̃ ·B) = RS (F ·B). Matrix F̃ can be computed from F by going through the
rows of F one by one and including only those rows that are linearly independent
of the previous rows when multiplied by B. This can be done in time O(n3), e.g.,
by transforming matrix F ·B into a triangular form using Gaussian elimination.

The second substep is to compute the minimal MTA Ã. The vector γ̃ = F̃ · γ
is easy to compute. Solving Equation (2) for each μ̃(σ) can be done via Gaus-
sian elimination in time O(n3), however, the bottleneck is the computation
of F̃⊗k · μ(σ) for every σ ∈ Σk, which takes O

(∑r
k=0 |Σk| · nk · nk · n) =

O
(∑r

k=0 |Σk| · n2k+1
)
operations. Combining the results of this section, we get:

Theorem 13. There is an algorithm that transforms a given Q-MTA A into an
equivalent minimal Q-MTA. Assuming unit-cost arithmetic, the algorithm takes
time O

(∑r
k=0 |Σk| · (n2k+1 + kn2k + knk+2)

)
, which is O

(|A|2 · r).
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4.2 Minimisation of Multiplicity Word Automata in NC

In this section we consider the problem of minimising a given Q-MWA A =
(n,Σ, μ, α, γ). We prove the following result:

Theorem 14. There is an NC algorithm that transforms a given Q-MWA into
an equivalent minimal Q-MWA. In particular, given a Q-MWA and a number
d ∈ N0, one can decide in NC whether there exists an equivalent Q-MWA of
dimension at most d.

Theorem 14 improves on two results of [22]. First, [22, Theorem 4.2] states that
deciding whether aQ-MWA is minimal is inNC. Second, [22, Theorem 4.5] states
the same thing as our Theorem 14, but with NC replaced with randomised NC.

Proof (of Theorem 14). The algorithm relies on Propositions 7 and 10. Let A =
(n,Σ, μ, α, γ) be the given Q-MWA. In the notation of Proposition 10, we have
for all l ∈ N that b(l + 1) = In2 + b(l) · ∑σ∈Σ μ′(σ). From here one can easily

show, using an induction on l, that b(n) =
∑n−1

k=0

(∑
σ∈Σ μ′(σ)

)k
. It follows for

the matrix B ∈ Q
n×n from Proposition 10 that for all i, j ∈ [n]:

Bi,j = (ei ⊗ ej) ·
(

n−1∑

k=0

( ∑

σ∈Σ

μ′(σ)
)k

)

· γ⊗2

Similarly, we have for the matrix F ∈ Q
n×n from Proposition 10 and all i, j ∈ [n]:

Fi,j = α⊗2 ·
(

n−1∑

k=0

( ∑

σ∈Σ

μ′(σ)
)k

)

· (ei ⊗ ej)
�.

The matrices F,B can be computed in NC since sums and matrix powers can
be computed in NC [13]. Next we show how to compute in NC the matrix F̃ ,
which is needed to compute the minimal Q-MWA Ã from Section 3.2. Our NC
algorithm includes the ith row of F (i.e., Fi) in F̃ if and only if rank(F[i],[n] ·B) >
rank(F[i−1],[n] · B). This can be done in NC since the rank of a matrix can be

computed in NC [19]. It remains to compute γ̃ := F̃ γ and solve Equations (3)
and (4) for α̃ and μ̃(σ), respectively. Both are easily done in NC. �

5 Decision Problem

In this section we characterise the complexity of the following decision problem:
Given a Q-MTA and a number d ∈ N0, the minimisation problem asks whether
there is an equivalent Q-MTA of dimension at most d. We show, in Theorem 15
below, that this problem is interreducible with the ACIT problem.

The latter problem can be defined as follows. An arithmetic circuit is a finite
directed acyclic vertex-labelled multigraph whose vertices, called gates, have
indegree 0 or 2. Vertices of indegree 0, called input gates, are labelled with a non-
negative integer or a variable from the set {xi : i ∈ N}. Vertices of indegree 2 are
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labelled with one of the arithmetic operations +, ×, or −. One can associate, in
a straightforward inductive way, each gate with the polynomial it computes. The
Arithmetic Circuit Identity Testing (ACIT) problem asks, given an arithmetic
circuit and a gate, whether the polynomial computed by the gate is equal to the
zero polynomial. We show:

Theorem 15. Minimisation is logspace interreducible with ACIT.

We consider the lower and the upper bound separately.

Lower Bound. Given a Q-MTA A, the zeroness problem asks whether
‖A‖(t) = 0 for all trees t. Observe that ‖A‖(t) = 0 for all trees t if and only
if there exists an equivalent automaton of dimension 0. Therefore, zeroness is a
special case of minimisation. We prove:

Proposition 16. There is a logspace reduction from ACIT to zeroness.

This implies ACIT-hardness of minimisation.

Proof (of Proposition 16). It is shown in [24] that the equivalence problem for Q-
MTAs is logspace equivalent to ACIT. This problems asks, given two Q-MTAs
A1 and A2, whether ‖A1‖(t) = ‖A2‖(t) holds for all trees t. By Proposition 3
one can reduce this problem to zeroness in logarithmic space. �

Upper Bound. We prove:

Proposition 17. There is a logspace reduction from minimisation to ACIT.

Proof. Let A = (n,Σ, μ, γ) be the Q-MTA, and d ∈ N0 the given number. In our
reduction to ACIT we allow input gates with rational labels as well as division
gates. Rational numbers and division gates can be eliminated in a standard
way by constructing separate gates for the numerators and denominators of the
rational numbers computed by the original gates.

By Lemma 6, the dimension of a minimal automaton equivalent to A is m :=
rank(F · B) where F,B are matrices with RS (F ) = F and CS (B) = B. Thus
we have m ≤ d if and only if rank(F · B) ≤ d. The recursive characterisation
of F and B from Proposition 10 allows us to compute in logarithmic space an
arithmetic circuit for F ·B. Thus, the result follows from Lemma 18 below. �

The following lemma follows easily from the well-known NC procedure for
computing matrix rank [15].

Lemma 18. Let M ∈ Q
m×n. Let d ∈ N0. The problem of deciding whether

rank(M) ≤ d is logspace reducible to ACIT.

Proof. We have rank(M) ≤ d if and only if dim ker(M) ≥ n− d. As ker(M) =
ker(MTM), this is equivalent to dim ker (MTM) ≥ n− d. Now MTM is Hermi-
tian, so dim ker(MTM) ≥ n− d if and only if the n− d lowest-order coefficients
of the characteristic polynomial of MTM are all zero [19]. But these coefficients
are representable by arithmetic circuits with inputs from M (see [15]). �
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We emphasise that our reduction to ACIT is a many-one reduction, thanks
to Proposition 10: our reduction computes only a single instance of ACIT; there
are no if-conditionals.

6 Minimal Consistent Multiplicity Automaton

Fix a field F of characteristic 0. A natural computational problem is to compute
an F-MWA A of minimal dimension that is consistent with a given finite set of
F-weighted words S = {(w1, r1), . . . , (wm, rm)}, where wi ∈ Σ∗ and ri ∈ F for
every i ∈ [m]. Here consistency means that ‖A‖(wi) = ri for every i ∈ [m].

The above problem can be studied in the Blum-Shub-Smale model [2] of com-
putation over a field F. Since we wish to stay within the conventional Turing
model, we consider instead a decision version of the problem, which we call
minimal consistency problem, in which the output weights ri are all rational
numbers and we ask whether there exists an F-MWA consistent with the set of
input-output behaviours S that has dimension at most some non-negative inte-
ger bound n. We show that the minimal consistency problem is logspace equiv-
alent to the problem of deciding the truth of first-order sentences over the field
(F,+, ·, 0, 1). In case F = R the latter problem is in PSPACE [8], whereas over Q
decidability is open. This should be compared with the result that the problem
of finding the smallest deterministic automaton consistent with a set of accepted
or rejected strings is NP-complete [17].

The reduction of the minimal consistency problem to the decision problem
for existential sentences is immediate. The idea is to represent an F-MWA A =
(n,Σ, μ, α, γ) “symbolically” by introducing separate variables for each entry of
the initial weight vector α, final weight vector γ, and each transition matrix μ(σ),
σ ∈ Σ. Then, consistency of automaton A with a given finite sample S ⊆ Σ∗×Q

can directly be written as an existential sentence.
Conversely, we reduce the decision problem for sentences of the form

∃x1 . . . ∃xn

m∧

i=1

fi(x1, . . . , xn) = 0 , (5)

where fi(x1, . . . , xn) =
∑li

j=1 ci,jx
ki,j,1

1 · · ·xki,j,n
n is a polynomial with rational

coefficients, to the minimal consistency problem. It suffices to consider conjunc-
tions of positive atoms in the matrix of (5) since f = 0 ∨ g = 0 is equivalent to
∃x (x2 − x = 0 ∧ xf = 0 ∧ (1 − x)g = 0) and f �= 0 is equivalent to ∃x (fx = 1)
for polynomials f and g.

Define an alphabet Σ = {s, t}∪{#i, c̄i,j , x̄k : i ∈ [m], j ∈ [li], k ∈ [n]}, includ-
ing symbols c̄i,j and x̄k for each coefficient ci,j and variable xk respectively. Over
alphabet Σ we consider the 3-dimensional F-MWA A, depicted in Figure 1 (b).
The transitions in this automaton are annotated by label-weight pairs in Σ × F

or simply by labels from Σ, in which case the weight is assumed to be 1. Recall
that the weights ci,j are coefficients of the polynomials fi. For each k ∈ [n], the
weight ak is a fixed but arbitrary element of F.
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st t ε

ε 1 0 0
s 0 1 0
st 0 0 1

#i 1 1 0
s#i 0 0 1
st#i 0 0 1

c̄i,j 1 0 0
sc̄i,j 0 ci,j 0
stc̄i,j 0 0 1

x̄k 1 0 0
sx̄k 0 ak 0
stx̄k 0 0 1

t 0 0 0
stt 0 0 0
ss 0 0 0
sts 0 0 0

1

#i

c̄i,j
x̄k

#i

s

(c̄i,j ,ci,j)
(x̄k,ak)

#i

t

#i

c̄i,j
x̄k

(a) (b)

Fig. 1. The left figure (a) shows a Hankel-matrix fragment H̃ , where i ∈ [m], j ∈ [li],
k ∈ [n]. The right figure (b) shows a graph representation of the automaton A.

Define X,Y ⊆ Σ∗ by X = {ε, s, st} and Y = {st, t, ε}, and consider the
fragment H̃ = HX∪XΣ,Y , shown in Figure 1 (a), of the Hankel matrix H of A.

Since rank(H̃) = 3 = rank(H), from Remark 2 it follows that any 3-dimensional
F-MWA A′ that is consistent with H̃ is equivalent to A.

Now for every i ∈ [m], we encode polynomial fi by the word

wi := #ic̄i,1x̄
ki,1,1

1 . . . x̄ki,1,n
n . . .#ic̄i,li x̄

ki,li,1

1 . . . x̄
ki,li,n
n #i

over alphabet Σ. Note that wi comprises li ‘blocks’ of symbols, corresponding
to the li monomials in fi, with each block enclosed by two #i symbols. From
the definition of wi it follows that ‖A‖(wi) = fi(a1, . . . , an).

Define the set S ⊆ Σ∗×Q of weighted words as S := S1 ∪S2, where S1 is the
set of all pairs (uv, H̃u,v) with u ∈ X ∪XΣ, v ∈ Y , and uv �∈ {sx̄kt : k ∈ [n]},
and S2 := {(wi, 0) : i ∈ [m]}.

Any 3-dimensional F-MWA A′ consistent with S1 is equivalent to an automa-
ton of the form A for some a1, . . . , an ∈ F. If A′ is moreover consistent with
S2, then fi(a1, . . . , an) = 0 for every i ∈ [m]. From this observation we have the
following proposition (proof in [21]).

Proposition 19. The sample S is consistent with a 3-dimensional F-MWA if
and only if the sentence (5) is true in F.
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From Proposition 19 we derive the main result of this section:

Theorem 20. The minimal consistency problem for F-MWAs is logspace equiv-
alent to the decision problem for existential first-order sentences over F.

Theorem 20 also holds for F-MTAs of a fixed alphabet rank, because the min-
imal consistency problem can be reduced to the decision problem for existential
first-order sentences over F in similar manner to the case for words. Here, fixing
the alphabet rank keeps the reduction in polynomial time.

7 Conclusions and Future Work

We have looked at the problem of minimising a given multiplicity tree automaton
from several angles. Specifically, we have analysed the complexity of computing a
minimal automaton in the unit-cost model, of the minimisation decision problem,
and of the minimal consistency problem. One of the key technical contributions
of our work is Proposition 10, which, based on the product of a given automaton
by itself, provides small spanning sets for forward space F and backward space B.
This technology also led us to an NC algorithm for minimising multiplicity word
automata, thus improving the best previous algorithms (polynomial time and
randomised NC).

It is an open question whether the complexity of the minimal consistency
problem for F-MTAs is higher if the alphabet rank is not fixed. We also plan
to investigate probabilistic tree automata, a class that lies strictly between
deterministic and multiplicity tree automata.
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reconnaissables. RAIRO-Theoretical Informatics and Applications-Informatique
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