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Minimizing Induced Drag with Weight Distribution, Lift 
Distribution, Wingspan, and Wing-Structure Weight 

W. F. Phillips,* D. F. Hunsaker,† and J. D. Taylor‡ 
Utah State University, Logan, Utah 84322-4130 

 Because the wing-structure weight required to support the critical wing section bending 

moments is a function of wingspan, net weight, weight distribution, and lift distribution, 

there exists an optimum wingspan and wing-structure weight for any fixed net weight, 

weight distribution, and lift distribution, which minimizes the induced drag in steady level 

flight.  Analytic solutions for the optimum wingspan and wing-structure weight are presented 

for rectangular wings with four different sets of design constraints.  These design constraints 

are fixed lift distribution and net weight combined with 1) fixed maximum stress and wing 

loading, 2) fixed maximum deflection and wing loading, 3) fixed maximum stress and stall 

speed, and 4) fixed maximum deflection and stall speed.  For each of these analytic solutions, 

the optimum wing-structure weight is found to depend only on the net weight, independent  

of the arbitrary fixed lift distribution.  Analytic solutions for optimum weight and lift 

distributions are also presented for the same four sets of design constraints.  Depending on 

the design constraints, the optimum lift distribution can differ significantly from the elliptic 

lift distribution.  Solutions for two example wing designs are presented, which demonstrate 

how the induced drag varies with lift distribution, wingspan, and wing-structure weight in 

the design space near the optimum solution.  Although the analytic solutions presented here 

are restricted to rectangular wings, these solutions provide excellent test cases for verifying 

numerical algorithms used for more general multidisciplinary analysis and optimization. 

Nomenclature 

A = beam cross-sectional area 

nB  = Fourier coefficients in the lifting-line solution for the dimensionless section-lift distribution, Eq. (1) 

b = wingspan 

b  = characteristic length associated with the deflection-limited design, Eq. (55) 

b  = characteristic length associated with the stress-limited design, Eq. (38) 

iDC  = wing induced drag coefficient 

LC  = wing lift coefficient 

                                                           
* Emeritus Professor, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Senior Member. 
† Assistant Professor, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Senior Member. 
‡ Graduate Student, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Student Member. 
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maxLC  = wing lift coefficient at the onset of flow separation 

,LC  = wing lift slope 

C  = shape coefficient for the deflection-limited design, Eq. (16) 

C  = shape coefficient for the stress-limited design, Eq. (9) 

LC
~

 = airfoil section lift coefficient 

max

~
LC  = airfoil section lift coefficient at the onset of  flow separation 

,
~

LC  = airfoil section lift slope 

c = local wing section chord length 

rootc  = wing section chord length at the wing root 

iD  = wing induced drag 

E = modulus of  elasticity of the beam material 

h = height of the beam cross-section 

I = beam section moment of inertia 

L  = total wing lift 

L
~

 = local wing section lift 

bM
~

 = local wing section bending moment 

an  = load factor, g 

gn  = limiting load factor at the hard-landing design limit 

mn  = limiting load factor at the maneuvering-flight design limit  

S  = wing planform area 

bS  = proportionality coefficient between )(
~

zWs  and )(
~

zMb  having units of length squared 

tmax = maximum thickness of the local airfoil section 

V  = freestream airspeed 

stallV  = freestream airspeed at the onset of flow separation 

W = aircraft gross weight 

nW  = aircraft net weight (i.e., W–Ws) 

rW  = that portion of Wn carried at the wing root 

sW  = total weight of the wing structure required to support the wing bending moment distribution 

nW
~

 = net weight of the wing per unit span (i.e., total wing weight per unit span less sW
~

) 

sW
~

 = weight of the wing structure per unit span required to support the wing bending moment distribution 

z = spanwise coordinate relative to the midspan 

  = specific weight of the beam material 

max  = maximum wing deflection 
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 = change of variables for the spanwise coordinate, Eq. (1) 

W  = weight distribution coefficient, Eq. (8) 

  = air density 

max  = maximum longitudinal stress 

I.   Introduction 

 For a wing with no sweep or dihedral immersed in a uniform flow, Prandtl’s classical lifting-line theory [1,2] 

relates the section-lift distribution to the chord-length and aerodynamic-angle-of-attack distributions.  Additionally, 

for any given wing planform, Prandtl’s lifting-line theory can be used to obtain the geometric- and/or aerodynamic-

twist distribution required to produce any desired section-lift distribution [3–8].  With Prandtl’s lifting-line theory, 

an arbitrary spanwise section-lift distribution is typically written as a Fourier sine series.  Although this Fourier series 

has been written in different forms, here we shall use the form [9] 
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 The classical lifting-line solution for induced drag can be written in terms of the Fourier coefficients in Eq. (1).  

In steady level flight, the total wing lift L must equal the gross weight W.  Thus, the lifting-line solution for the 

induced drag in steady level flight can be written as [9] 
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For a fixed ratio of  gross weight to wingspan, this induced drag is minimized with the section-lift distribution having 

Bn = 0 for all n ≥ 2, which yields the well-known elliptic lift distribution introduced by Prandtl [2].  However, as 

pointed out by Prandtl [10], when designing a wing to minimize the induced drag in steady level flight, imposing the 

constraints of fixed gross weight and wingspan does not yield an absolute minimum in the induced drag.   

For any given lift distribution, weight distribution, and wing structural design, there is an optimum wingspan  

for minimizing the induced drag, which is based on the tradeoff  between wingspan and wing-structure weight.  

Furthermore, any section-lift distribution that produces lower wing section bending moments than those produced by 

the elliptic lift distribution will allow the implementation of a larger wingspan for a given wing-structure weight.  

Because the wing-structure weight required to support the critical wing section bending moments is a function of 

wingspan, net weight, weight distribution, and lift distribution, designing a wing to minimize the induced drag in 

steady level flight requires solving a variational problem in which the weight distribution, lift distribution, wingspan, 

and wing-structure weight are all allowed to vary. 

 The variational problem associated with designing a wing that yields an absolute minimum in induced drag was 

first considered by Prandtl in 1933 [10].  In this paper, Prandtl obtained an analytic solution for the fixed lift 
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distribution that minimizes the induced drag under the constraints of fixed gross lift and fixed moment of inertia of 

gross lift, but with no constraint placed on the wingspan.  Prandtl’s foundational 1933 paper was originally published 

in German. However, a translation of that paper was recently published in English [11]. Prandtl’s 1933 solution [10] 

for minimizing induced drag under these constraints yields the dimensionless section-lift distribution [9] 
 

 )]3sin()[sin(4)(
~

3
1 


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
L

Lb
 (3) 

By comparison with Eq. (1), Eq. (3) requires B3 = – 1/3 and Bn = 0 for all n ≠ 3.  Using these Fourier coefficients in 

Eq. (2) yields the induced drag in steady level flight for Prandtl’s 1933 lift distribution, i.e., 
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Comparing Eqs. (2) and (4), we see that Prandtl’s 1933 lift distribution produces more induced drag than the elliptic 

lift distribution if the weight and wingspan are fixed. However, under the constraints of Prandtl’s assumptions 

[10,11], including that the wing-structure weight is proportional to the bending moments, Prandtl’s 1933 lift 

distribution allows a 22.5% increase in the wingspan over that allowed by the elliptic lift distribution for the same 

gross weight. Accounting for this wingspan increase in Eq. (4), it can be shown that Prandtl’s 1933 lift distribution 

produces 11.1% less induced drag than the elliptic lift distribution for the same gross weight [9-11]. However, it 

should be emphasized that Prandtl made no claim that the lift distribution in Eq. (3) yields an absolute minimum in 

induced drag for any specific case of a physical wing [10,11].  He claimed only that this lift distribution minimizes 

induced drag under the particular constraints of fixed gross lift and fixed moment of inertia of gross lift. 

 Phillips, Hunsaker, and Joo [9] have shown that Prandtl’s 1933 lift distribution also yields a minimum in 

induced drag for the stress-limited design of  a rectangular wing with fixed weight and chord-length constraints 

combined with the weight distribution constraint given by 
 

 )(
~)(

~
)()(

~
zW

L
zL

WWzW srn   (5) 

Equation (5) alone does not completely specify the weight distribution )(
~

zWn .  It simply provides one relation 

between the five design parameters, )(
~

zWn , W, Wr , )(
~

zWs , and LzL )(
~

.  Equation (5) could be applied in the early stages 

of preliminary design, if  no conflicting constraint is placed on the weight distribution.  However, )(
~

zWn  cannot be 

evaluated from Eq. (5) until the other four parameters in Eq. (5) have been determined from other means. 

 The wing structure at each section of a wing must be sufficient to support the wing bending-moment distribution 

at the design limits for both maneuvering flight and a hard landing.  Because the wing bending-moment distribution 

depends on the weight distribution, the variational problem associated with minimizing induced drag for an 

arbitrarily specified weight distribution, with no constraint placed on the wingspan, will most likely need to be 
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solved numerically.  However, the application of Eq. (5) substantially reduces the constraining wing bending-

moment distribution and simplifies the integration of the governing equations such that the wing-structure weight can 

be found analytically [9]. It has also been shown that applying Eq. (5) along with the additional weight distribution 

constraint given by 
 

 W
nn

n
W

gm

g
r 




1
 (6) 

gives the optimum weight distribution, which minimizes the bending moment required for the constraining design  

limit [9].  Therefore, in this paper, we will use the weight distribution described by Eqs. (5) and (6) to permit analytic 

evaluation of the wing-structure weight and to minimize the wing bending moments. As will be shown later, Eqs. (5) 

and (6) produce weight distributions that exhibit reasonable trends. However, it should be noted that the wing weight 

distribution is typically designed with additional constraints to those used in obtaining Eqs. (5) and (6). Thus, the 

weight distribution described by Eqs. (5) and (6) may not always be practical.  

 Using both Eqs. (5) and (6) yields a bending-moment distribution for the hard-landing design limit that is 

exactly the negative of that required for the maneuvering-flight design limit. If  Wr is larger than the value given by 

Eq. (6), then maneuvering flight provides the structural design limit; and if  Wr is less than the value given by Eq. (6), 

the hard landing provides the structural design limit.  In any case, if  the weight distribution in Eq. (5) is used and the 

lift is positive over the entire semispan, the structural design limit for the wing bending moment can be written as [9] 
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where 
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If  the wing section bending moment is supported by any vertically symmetric beam, for a fixed maximum-stress 

constraint with spanwise-symmetric wing loading, the total weight of the wing structure required to support the 

bending-moment distribution at the design limit can be expressed as [9] 
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 (9) 

Equations for computing values of C  for some common beam cross-sections are presented in Ref. [9]. 

 We see from Eq. (9) that, for any spanwise-symmetric wing loading, the weight of  the wing structure required to 

support a maximum-stress constraint is proportional to the integral of  the bending-moment distribution divided by 
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the chord-length distribution.  Because, in the development of his 1933 lift distribution, Prandtl assumed a 

proportionality coefficient between bM
~

 and sW
~

 that is independent of z [10], the resulting minimum-drag analysis 

may not apply to the stress-limited design of a wing with a chord length and thickness that vary with the spanwise 

coordinate.  However, Prandtl’s 1933 minimum-drag analysis could be applied to the stress-limited design of a 

rectangular wing with the weight distribution specified by Eq. (5). 

 Approaches similar to that of Prandtl have been taken by others to find analytic solutions to this complex, 

variational, optimization problem.  For example, Jones [12] looked at minimizing the induced drag for a given lift 

and root bending moment. Later, Jones and Lasinski [13] added a constraint on the integrated bending moment and 

included the effects of winglets. Klein and Viswanathan have also considered the problem of a given total lift and 

root bending moment [14] and have extended the theory to include a given wing-structure weight [15].  More 

recently, Phillips, Hunsaker, and Joo [9] have presented both stress-limited and deflection-limited solutions for 

minimizing induced drag on a rectangular wing with fixed weight and wing-loading constraints. The work of 

Phillips, Hunsaker, and Joo [9] has also been extended to account for the effects of wing taper by Taylor and 

Hunsaker [16]. Other relevant publications include [17–28]. 

 Combining Eqs. (1), (7), and (9), Phillips, Hunsaker, and Joo [9] have shown that, for the stress-limited design 

of a rectangular wing with any all-positive spanwise-symmetric lift distribution and the weight distribution specified 

by Eq. (5), the required weight of the wing structure is given by [9] 
 

 )1(
32 3

2

B
S

bWW
b

rW
s  

 (10) 

Notice from Eq. (2) that all Fourier coefficients Bn make a positive contribution to the induced drag.  However, we 

see from Eq. (10) that only B3 contributes to the required structure weight of a rectangular wing with any all-positive 

spanwise-symmetric lift distribution and the weight distribution specified by Eq. (5). 

 For the stress-limited design of  a rectangular wing with the weight distribution specified by Eq. (5) and any all-

positive spanwise-symmetric lift distribution, the total weight of the wing structure required to support the bending-

moment distribution at the design limit is given by [9] 
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Under the constraints of a fixed lift distribution, fixed gross weight, fixed maximum stress, and fixed wing loading, 

the induced drag on a rectangular wing is minimized using a lift distribution having 
 

 3for,0;121649833  nBB n  (12) 

which yields the optimum results 
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Taylor and Hunsaker [16] have also shown that for linearly tapered wings, the lift distribution that minimizes 

induced drag is very similar to that shown in Eq. (13), regardless of the degree of taper. 

 For the deflection-limited design of a rectangular wing with the weight distribution specified by Eq. (5) and any 

all-positive spanwise-symmetric lift distribution, the total weight of  the wing structure required to support the 

bending-moment distribution at the design limit is given by [9] 
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Under the constraints of  a fixed lift distribution, fixed gross weight, fixed maximum deflection, and fixed wing 

loading, the induced drag is minimized using a lift distribution having 
 

 3for,0;211499733  nBB n  (17) 

which yields the optimum results 
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Note that although deflection limits may not always be explicitly enforced in practice, some limit on deflection 

should at least be considered to preclude wing strike during a hard landing. Furthermore, excessive wingtip 

deflection during flight can adversely affect the aerodynamics and flight mechanics of an aircraft. For highly flexible 

aircraft, these adverse effects can be very significant [29]. Therefore, in this paper, both stress and deflection limits 

will be considered.  

 The optimum lift distributions given in Eqs. (3), (13), and (18) were all obtained under the constraint that a 

single lift distribution is used during all flight phases, and the same constraint is used for all subsequent results 

presented in this paper. However, in general, the lift distribution for a wing with fixed geometry changes depending 
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on the load factor. Therefore, in order for this constraint to be satisfied, we must assume that wing twist can be 

varied during flight to maintain a single lift distribution at all loading conditions.  This can be done using variable 

geometric and/or aerodynamic twist [30-35]. However, the designer is not always constrained to a single lift 

distribution.  Variable geometric and/or aerodynamic twist can also be used to implement different lift distributions 

during different flight phases [4,5,7,8,30–35].  For example, the lift distribution given by Eq. (13) could be 

implemented during high-load-factor maneuvers; other lift distributions could be implemented during takeoff and 

landing; and the elliptic lift distribution could be implemented during steady level flight.  This would allow an 

increase in the wingspan over that allowed by a fixed elliptic lift distribution, without increasing the gross weight or 

imposing any induced-drag penalty during steady level flight. 

 Although the approximations associated with lifting-line theory were used to obtain the solutions presented here, 

for unswept wings of aspect ratio greater than 4, lifting-line theory has been shown to be in excellent agreement with 

experimental data and grid-resolved CFD solutions, and lifting-line solutions are widely accepted [3–7,36–71]. 

Furthermore, although some important design considerations are neglected when using lifting-line theory, analytic 

solutions such as those presented in this paper provide insight into the relationships between design parameters and 

the relative influence of those parameters on the aerodynamics of a finite wing. In fact, a significant portion of our 

current understanding of finite-wing aerodynamics, including the relationship between lift distribution, twist 

distribution, chord distribution, and induced drag, comes from early analytic solutions based on lifting-line theory. 

Designers often rely on principles based on these solutions during conceptual design phases. Some of these solutions 

are also used for benchmarking numerical tools. The results presented in this paper have the same utility as these 

early analytic solutions. As will be shown, the results in this paper reveal important aspects about the aerodynamic 

and structural coupling involved in designing a wing for minimum induced drag and provide excellent examples for 

benchmarking higher-fidelity multidisciplinary optimization tools.  

II.   Minimizing Induced Drag with Wingspan and Wing-Structure Weight 

 Minimizing induced drag by varying the wingspan and lift distribution while holding gross weight constant is 

not the only variational problem suggested by Eq. (2).  Because the wing-structure weight is proportional to the wing 

bending moments, the wing-structure weight increases with increasing wingspan for any fixed lift and weight 

distributions. Therefore, Eq. (2) also suggests that the induced drag could be minimized by varying the wingspan b 

and allowing the wing-structure weight Ws to change while holding the net weight Wn and lift distribution bL
~

(z)/L 

fixed.  Because the required wing-structure weight depends on both the wingspan and the lift distribution, in general, 

Ws depends on b and all of the Fourier coefficients Bn.  Because gross weight is simply the sum of Wn and Ws, for an 

arbitrary wing design, Eq. (2) can be written  



 
 

 

9 
 

 
 

 

 














  



 2

2
2

2
1

),(2

n
n

nsn
i nB

b
BbW

b
W

V
D


 (21) 

For any fixed Wn, the term bWn  always decreases with increasing wingspan; and for typical design constraints, the 

term bBbW ns ),(  increases with increasing wingspan.  For example, the design constraints that led to Prandtl’s 1933 

lift distribution yield Ws proportional to b2 as given in Eq. (10); the design constraints that led to the lift distribution 

given in Eq. (13) yield Ws proportional to b3 as given in Eq. (11); and the design constraints that led to the lift 

distribution given in Eq. (18) yield Ws proportional to b6 as given in Eq. (16).  For any fixed lift and weight 

distributions, there is an optimum wingspan for minimizing the induced drag, which is based on the tradeoff between 

the wingspan b and the wing-structure weight Ws. 

 For example, for the stress-limited design of a rectangular wing with the weight distribution specified by  

Eq. (5) and any all-positive spanwise-symmetric lift distribution, the total weight of the wing structure required to 

support the bending-moment distribution at the design limit is given by Eq. (11).  The gross weight is the sum 

sn WWW  .  Hence, using Eq. (11) in Eq. (21), the induced drag can be written as 
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For any given value of the ratio rWW W, the function in the square brackets of Eq. (22) can be minimized with 

respect to b, based on the tradeoff  between wingspan and wing-structure weight. 

 To minimize the ratio rWW W for any given wingspan, the weight distribution given by Eq. (6) can be used.  

Hence, using Eq. (6) in Eqs. (8) and (11) yields mW n  and 
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From Eqs. (6), (8), and (22) the induced drag is 
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The wingspan that minimizes this induced drag for a fixed lift distribution and fixed wing loading is 
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Using Eq. (25) in Eq. (23), the wing-structure weight that minimizes this induced drag for any fixed value of B3 is 
 

 ns WW
2
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  Using Eq. (25) in Eq. (24), the associated minimum induced drag is 
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 It should be emphasized that the wing-structure weight is not an independent variable, but rather a dependent 

variable, related to the wingspan, lift distribution, load factor, and other independent design variables, as shown in 

Eq. (23). Therefore, the relation shown in Eq. (26) results from the optimum solution, and requires that the optimum 

net weight distribution and wingspan are used in accordance with the design constraints.  

 Equation (27) gives the minimum possible induced drag for the stress-limited design of a rectangular wing  

with fixed wing loading, the weight distribution specified by Eq. (5), and any fixed all-positive spanwise-symmetric 

lift distribution.  However, even though Eq. (6) was used to minimize the ratio WWrW  in Eq. (22), Eq. (27) does 

not provide an absolute minimum in induced drag for the specified design constraints and weight distribution,  

unless the optimum lift distribution is also used.  From Eq. (27), we see that the variation of this drag with the 

Fourier coefficients Bn is proportional to (1+n 2
nB )(1+B3)2/3.  Minimizing this function yields the Fourier 

coefficients given in Eq. (12) and the optimum lift distribution given in Eq. (13).  

 The optimum wing-structure weight given in Eq. (26) and the optimum lift distribution given in Eq. (13) are for 

the stress-limited design of a rectangular wing with fixed wing loading. However, Taylor and Hunsaker [16] have 

shown that the solution given in Eq. (26) also holds for the stress-limited design of a tapered wing with fixed wing 

loading. Furthermore, the reader is reminded that the optimum lift distribution that minimizes induced drag for 

tapered wings does not deviate significantly from that given in Eq. (13), regardless of the degree of taper [16].  

 For the deflection-limited design of a rectangular wing with any fixed all-positive spanwise-symmetric lift 

distribution and the weight distribution specified by Eqs. (5) and (6), the total weight of the wing structure required 

to support the bending-moment distribution at the design limit is given by Eq. (16).  Hence, using Eqs. (6), (8), and 

(16) with the relation sn WWW   yields 
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Equation (28) is easily solved for the gross weight, and using the relation ns WWW   yields 
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Using this wing-structure weight with the relation sn WWW   in Eq. (2) gives 



 
 

 

11 
 

 
 

 

 

























 


 2

2

2

4

max
2

max

2
3

2

2

2
1

)1(

)(32

)()1(

42
2

n
n

gm

gmnn
i nBb

nn
nn

ctEC

SWB

b

W
b

W

V
D





 (30) 

The wingspan that minimizes this induced drag for any fixed nW , fixed lift distribution, and fixed wing loading is 
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Using Eq. (31) in Eq. (29), the wing-structure weight that minimizes this induced drag for any fixed value of B3 is 
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Using Eq. (31) in Eq. (30), the associated minimum induced drag is 
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 Here again, even though Eq. (6) was used to minimize Ws for any given wingspan, Eq. (33) does not provide an 

absolute minimum in induced drag for the specified design constraints and weight distribution, unless the optimum 

lift distribution is also used.  From Eq. (33), we see that the variation of this drag with the Fourier coefficients Bn is 

proportional to (1+n 2
nB )(1+B3)1/3.  Minimizing this function yields the Fourier coefficients given in Eq. (17) and 

the optimum lift distribution given in Eq. (18).  

 The optimum wing-structure weights shown in Eqs. (26) and (32) are typical of those seen in many sailplanes 

[72]. This should not be surprising, since sailplanes are designed to operate with maximum efficiency at conditions 

where induced drag is a significant portion of the total drag. However, for other aircraft types, these results may not 

be practical due to additional constraints. Moreover, the results shown in Eqs. (23)–(27) and (29)–(33) are for a 

rectangular wing with the weight distribution given in Eqs. (5) and (6), which minimizes the bending moment 

required for any given wingspan at the constraining design limit.  However, the reader is reminded that this weight 

distribution is not always practical due to other design constraints.  Numerical methods can be used to evaluate the 

optimum wingspan and wing-structure weight required to minimize induced drag for other weight distributions 

and/or wing planforms [16]. 

III.   Minimum Induced Drag for Fixed Net Weight, Maximum Stress, and Stall Speed 

 Minimizing induced drag for a rectangular wing with spanwise-symmetric lift and the weight distribution 

specified by Eq. (5) requires a lift distribution having Bn = 0 for all n ≠ 3 with –1/ 3 ≤ B3 ≤ 0.  Using these constraints 

in Eq. (1) yields 
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For a rectangular wing with –1/ 3 ≤ B3 ≤ 0, the maximum section lift coefficient always occurs at the wing root, i.e., 

 =/2.  From Eq. (34), the maximum wing lift coefficient is related to the maximum section lift coefficient by 
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At the stall speed, Eq. (35) requires 
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 For the stress-limited design of  a rectangular wing with any fixed all-positive spanwise-symmetric lift 

distribution and the weight distribution specified by Eq. (5), the total weight of  the wing structure required to support 

the bending-moment distribution at the design limit is given by Eq. (11).  To minimize the ratio rWW W for any 

given wingspan, the optimum weight distribution given in Eq. (6) can be used as well.  Thus, using Eqs. (6) and (8) 

in Eq. (11) and rearranging yields 
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At this point it is convenient to define an important characteristic length associated with this stress-limited design 
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Using Eqs. (36) and (38) to eliminate the planform area from Eq. (37) yields 
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Using this wing-structure weight with the relation sn WWW   in Eq. (2) gives 
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The wingspan that minimizes this induced drag for any fixed lift distribution and net weight is 
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Using Eq. (41) to eliminate b from Eq. (39), the wing-structure weight that minimizes the induced drag for fixed  

Wn, fixed max, fixed Vstall, and any fixed value of B3 is 
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Using Eq. (41) to eliminate b from Eq. (40) with Bn = 0 for all n ≠ 3, the minimum induced drag for a fixed lift 

distribution, fixed Wn, fixed max, and fixed Vstall can be written as 
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 The variation of this drag with B3 is proportional to [(1+3 2
3B )3(1+B3)2/(1–B3)2]1/3.  Thus, for fixed Wn, fixed 

max, and fixed Vstall, the value of B3 that minimizes the induced drag predicted from Eq. (43) is obtained from 
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The roots of this cubic equation are 
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Using the only root in the range –1/ 3 ≤ B3 ≤ 0, Eqs. (1), (41), (36), and (43) result in 
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For a fixed elliptic lift distribution, Eqs. (41), (36), and (43) result in 
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 In summary, under the constraints of a fixed lift distribution, fixed net weight, fixed maximum stress, and 

fixed stall speed, minimizing induced drag for a rectangular wing with spanwise-symmetric lift and the optimum 

weight distribution specified by Eqs. (5) and (6) requires a lift distribution having Bn = 0 for all n ≠ 3 with  

–1/ 3 ≤ B3 ≤ 0.  With these constraints and any fixed value of B3, the induced drag is minimized using a wing-

structure weight equal to one half the net weight as given in Eq. (42).  This induced drag is further minimized by 
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using the lift distribution given in Eq. (46), which is exactly Prandtl’s 1933 lift distribution as given in Eq. (3).  

Comparing Eqs. (47)–(49) with Eqs. (50)–(52), we see that, for this wing geometry, weight distribution, and design 

constraints, the fixed lift distribution given in Eq. (46) results in a 25.99% increase in the wingspan, a 33.33% 

increase in the planform area, and a 16.01% decrease in the induced drag over those obtained for a fixed elliptic lift 

distribution with the same net weight, maximum stress, and stall speed. 

IV.   Minimum Induced Drag for Fixed Net Weight, Maximum Deflection, and Stall Speed 

 For the deflection-limited design of a rectangular wing with any fixed all-positive spanwise-symmetric lift 

distribution and the weight distribution specified by Eq. (5), the total weight of  the wing structure required to support 

the bending-moment distribution at the design limit is given by Eq. (16), which can be rearranged as 
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Using Eq. (36) to eliminate the planform area from Eq. (53) and applying Eq. (6) to minimize Ws for any given 

wingspan yields 
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where b  is an important characteristic length associated with this deflection-limited design, 
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Equation (54) can be rearranged as a quadratic equation in Ws to give 
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The only positive root of Eq. (56) is given by 
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Using this wing-structure weight with the relation sn WWW   in Eq. (2) gives 
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The wingspan that minimizes this induced drag for any fixed lift distribution and net weight is 
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Using Eq. (59) to eliminate b from Eq. (57), the wing-structure weight that minimizes the induced drag for fixed Wn, 

fixed max, fixed Vstall, and any fixed value of B3 is 
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Using Eq. (59) to eliminate b from Eq. (58) with Bn = 0 for all n ≠ 3, the minimum induced drag for a fixed lift 

distribution, fixed Wn, fixed max, and fixed Vstall can be written as 
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 The variation of this drag with B3 is proportional to [(1+3 2
3B )3(1+B3)/(1–B3)2]1/3.  Thus, for fixed Wn, fixed 

max, and fixed Vstall, the value of B3 that minimizes the induced drag predicted from Eq. (61) is obtained from 
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The roots of this cubic equation are 
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Using the only root in the range –1/ 3 ≤ B3 ≤ 0, Eqs. (1), (59), (36), and (61) result in 
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For a fixed elliptic lift distribution, Eqs. (59), (36), and (61) result in 
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 In summary, under the constraints of a fixed lift distribution, fixed net weight, fixed maximum deflection, and 

fixed stall speed, minimizing induced drag for a rectangular wing with spanwise-symmetric lift and the optimum 

weight distribution specified by Eqs. (5) and (6) requires a lift distribution having Bn = 0 for all n ≠ 3 and  

–1/ 3 ≤ B3 ≤ 0.  With these constraints and any fixed value of B3, induced drag is minimized using a wing-structure 

weight equal to one fourth the net weight as given in Eq. (60).  This induced drag is further minimized by using the 

lift distribution given in Eq. (64).  Comparing Eqs. (65)–(67) with Eqs. (68)–(70), we see that, for this wing 

geometry, weight distribution, and design constraints, the fixed lift distribution given in Eq. (64) results in a 9.07% 

increase in the wingspan, a 17.71% increase in the planform area, and an 8.03% decrease in the induced drag over 

those obtained for a fixed elliptic lift distribution with the same net weight, maximum deflection, and stall speed.  

 It should be noted that for both the stress-limited design and the deflection-limited design of a rectangular wing 

with fixed stall speed, the optimum solution requires an increase in planform area over a wing designed with a fixed 

elliptic lift distribution. Because the viscous drag is related to the planform area, the designs that minimize induced 

drag may not be the designs that minimize total drag. The same is true for the case of fixed wing loading, where a 

change in wing-structure weight requires a corresponding change in the wing area. Moreover, in order to obtain the 

optimum lift distributions given in Eqs. (13), (18), (46) and (64) on a rectangular planform, the wing must be twisted. 

As shown by Stewart and Hunsaker [73], the viscous drag introduced by this twist can reduce the benefits of using 

the minimum-induced-drag solution. Therefore, when designing a wing for minimum total drag, viscous effects 

should be considered. Although viscous effects are not considered in this study, the optimum solutions presented 

here provide valuable insight into the coupling between lift distribution, wingspan, and wing-structure weight and 

their effect on induced drag. 

V.   Results 

 The optimum wingspans given in Eqs. (25), (31), (41), and (59) all minimize induced drag for a rectangular 

wing with fixed net weight and any fixed all-positive spanwise-symmetric lift distribution combined with other 

design constraints.  Equation (25) is for a stress-limited design with fixed wing loading; Eq. (31) is for a deflection-

limited design with fixed wing loading; Eq. (41) is for a stress-limited design with fixed stall speed; and Eq. (59) is 

for a deflection-limited design with fixed stall speed.  The optimum wing-structure weights corresponding to the 

optimum wingspans given in Eqs. (25), (31), (41), and (59) are respectively given in Eqs. (26), (32), (42), and (60).  

Although induced drag depends on all of the Fourier coefficients Bn in Eq. (1), for an arbitrary lift distribution, the 

optimum wingspans computed from Eqs. (25), (31), (41), and (59) depend only on the single Fourier coefficient B3. 

 Although the wingspans from Eqs. (25), (31), (41), and (59) give the minimum possible induced drag for the 

specified design constraints and any fixed all-positive spanwise-symmetric lift distribution, these optimum wingspans 

do not provide an absolute minimum in induced drag for the specified design constraints unless the optimum lift 
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distribution is also used.  The optimum lift distributions corresponding to the optimum wingspans given in  

Eqs. (25), (31), (41), and (59) are respectively given in Eqs. (13), (18), (46), and (64).  Figure 1 shows each of these 

four lift distributions compared with the elliptic lift distribution and the lift distribution produced by an untwisted 

rectangular wing.  The distribution labeled (a) is the elliptic lift distribution, and that labeled (b) is Prandtl’s 1933 lift 

distribution, which is also the lift distribution given in Eq. (46) that minimizes induced drag for a stress-limited 

design with fixed stall speed.  The lift distribution labeled (c) is that produced by an untwisted rectangular wing of 

aspect ratio 8.  Lift distribution (d) is that from Eq. (13), which minimizes induced drag for a stress-limited design 

with fixed wing loading, (e) is the lift distribution from Eq. (18) that minimizes induced drag for a deflection-limited 

design with fixed wing loading, and (f) is the lift distribution from Eq. (64) that minimizes induced drag for a 

deflection-limited design with fixed stall speed.  
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Fig. 1  Lift distributions from Eqs. (13), (18), (46), and (64) compared with the elliptic distribution and that 
for an untwisted rectangular wing of aspect ratio 8. 
 

 For any given lift distribution, the wingspan that minimizes induced drag depends on B3 and the design 

constraints. For each of the design constraints considered in this paper, the nature of this dependence can be seen in 

Fig. 2, which shows the ratio of the optimum wingspan for any given value of B3 in the range 031 3  B  to the 

optimum wingspan for the fixed elliptic lift distribution with the same set of design constraints. The wingspan ratios 

corresponding to the optimum lift distributions (a), (b), (d), (e), and (f) from Fig. 1 are labeled in Fig. 2 for reference.  
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Fig. 2 Ratio of the optimum wingspan, as a function of B3, to the optimum wingspan for the fixed elliptic lift 
distribution for the stress- and deflection-limited design of a wing with fixed wing loading or fixed stall speed.  

 For any acceptable design, both the stress and deflection constraints must be satisfied. For the stress-limited 

design with fixed wing loading, combining Eqs. (23) and (2) yields the following relations for the wingspan and 

induced drag expressed as a function of  the wing-structure weight 
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Similarly, for the deflection-limited design with fixed wing loading, combining Eqs. (29) and (2) results in 
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For the stress-limited design with fixed stall speed, combining Eqs. (39) and (2) yields 
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and for the deflection-limited design with fixed stall speed, combining Eqs. (57) and (2) gives 
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 The allowable wingspans obtained from Eqs. (71), (73), (75), and (77) always increase with increasing wing-

structure weight.  However, the increase in wing-structure weight with respect to wingspan is greater for the 

deflection-limited solutions than for the stress-limited solutions.  If  the wingspan is low enough, the wing-structure 

weight required for the deflection-limited design is less than the wing-structure weight required for the stress-limited 

design, and the wing design will be stress limited.  On the other hand, if  the wingspan is high enough, the wing-

structure weight required for the stress-limited design will be less than that required for the deflection-limited design, 

and the wing design will be deflection limited.  For the case of fixed wing loading, combining Eqs. (71) and (73), the 

wing-structure weight that results when the wingspan is the same for both the stress-limited and deflection-limited 

designs is obtained from the relation 
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Similarly, for the case of fixed stall speed, combining Eqs. (75) and (77), the wing-structure weight that results when 

the wingspan for both the stress-limited and deflection-limited designs is the same is obtained from 
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and after applying the definitions of b  and b  from Eqs. (38) and (55), we obtain 
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which is identical to Eq. (79) obtained for fixed wing loading.  Because all acceptable designs must satisfy both the 

stress-limited and deflection-limited constraints, the wing-structure weight given by Eq. (79) is an important 

parameter in this design space.  Optimal designs resulting in a wing-structure weight less than that given by Eq. (79) 

will be stress limited and those resulting in a greater wing-structure weight will be deflection limited. 

 As an example of minimizing induced drag with fixed net weight and wing loading, consider an airplane with a 

rectangular wing.  The net weight is fixed at Wn=2600 lbf and the wing loading is fixed at W/S =15 lbf/ft2.  To 

minimize the critical wing bending moment distribution, the weight distributions given by Eqs. (5) and (6) are used. 

The typical maneuvering-flight load limit for a civil aircraft is 2.5 g. However, it is common to include a safety 

factor of 1.5 for the load limit. Therefore, in this example, we will use  gm nn 3.75. Additional parameters for this 

design are C 0.165, C 0.653, ctmax 0.12, 3
max 100.15  psi, max 4.5 ft,  0.10 lbf/in3, 

6100.10 E psi, V 200 ft/s, and  0.0023769 slug/ft3. 
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 From this example, solutions for the wingspan and induced drag obtained from Eqs. (71)–(74) are shown in Fig. 

3, plotted as a function of wing-structure weight for several different lift distributions.  The lift distributions used to 

generate this figure are five of those shown in Fig. 1.  The solution labels, a–e, used in Fig. 3 correspond to the lift-

distribution labels used in Fig. 1.  The solid curves in Fig. 3 correspond to the stress-limited solutions and the dashed 

curves are for the deflection-limited solutions.  The black portion of each curve in Fig. 3 indicates the region where 

that solution provides the constraining limit.  Each curve is shaded gray in the region where that solution does not 

provide the constraining limit.  The solid vertical line shows the wing-structure weight Ws = Wn/2, which 

corresponds to the minimum induced drag for the stress-limited solutions as given in Eq. (26).  The dashed vertical 

line marks the wing-structure weight Ws = Wn/4, which gives minimum induced drag for the deflection-limited 

solutions as given in Eq. (32). 
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Fig. 3  Wingspan and induced-drag solutions for the fixed-wing-loading example. 
 

 Figure 3 illustrates the tradeoff between the stress-limited design and the deflection-limited design for this 

example. Notice from Fig. 3 that Prandtl’s 1933 lift distribution (b) performs worse than the elliptic lift distribution 

(a), the lift distribution (c) produced by an untwisted rectangular wing, and the lift distributions (d) and (e), despite 

allowing the highest wingspan of the five lift distributions for any given wing-structure weight. This is, in part, 

because when Prandtl’s 1933 lift distribution is used in conjunction with the wing parameters of this example, the 

design becomes deflection-limited at a lower wing-structure weight than any of the other four lift distributions. 

Prandtl’s 1933 lift distribution gives minimum induced drag at Ws = Wn/4, which is the minimum-drag point on the 

deflection-limited curve.  For this example, even an untwisted rectangular wing (c) has a lower minimum-drag point 

than that produced by Prandtl’s 1933 lift distribution.  However, the minimum-drag point for this lift distribution is 

not found at the minimum-drag point for either the stress-limited or deflection-limited curve.  This lift distribution 

yields minimum induced drag at the wing-structure weight given by Eq. (79), which is the point where the stress-
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limited curve crosses the deflection-limited curve.  In fact, all lift distributions used to generate Fig. 3, except 

Prandtl’s 1933 lift distribution, have minimum-drag points at the wing-structure weight given by Eq. (79).  If  the 

wing-structure weight computed from Eq. (79) is less than or equal to Ws = Wn/4, then minimum induced drag is 

always obtained at Ws = Wn/4. If  the wing-structure weight computed from Eq. (79) is greater than Ws = Wn/4 and 

less than Ws = Wn/2, then minimum induced drag is always obtained at the wing-structure weight computed from Eq. 

(79). If  the wing-structure weight computed from Eq. (79) is greater than or equal to Ws = Wn/2, then minimum 

induced drag is always obtained at Ws = Wn/2. 

 Notice that the lowest minimum-drag point shown in Fig. 3 is for the lift distribution (e) given in Eq. (18), which 

minimizes induced drag for the deflection-limited solution.  However, the lift distribution given in Eq. (18) does not 

provide an absolute minimum in the induced drag for this example, because this minimum-drag point occurs at the 

wing-structure weight given by Eq. (79).  Using the wing-structure weight from Eq. (79) in either  

Eq. (72) or (74), together with the other parameters specified for this example, allows us to obtain the induced drag 

with Bn = 0 for all n ≠ 3 as a function of the single design parameter B3.  The minimum in this function gives us the 

lift distribution and wing-structure weight that yield the absolute minimum induced drag for this example, i.e., 

Di = 16.53413 lbf at B3 = –0.07245516 and Ws = 774.1117 lbf.  The wingspan for this optimal solution is 

b = 68.43317 ft.  For this example, this corresponds to an induced drag coefficient of 
iDC 0.001546 at a lift 

coefficient of LC 0.3155 and an aspect ratio of AR 20.82. Constant induced-drag contours for the design space 

near this optimal solution are shown in Fig. 4. It should be emphasized that the results shown in Figs. 3 and 4 are 

only valid for one example aircraft configuration. Different results may be obtained by changing any of the design 

parameters C , C , ctmax , max , max ,  , or E, or by changing the design constraints.   
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Fig. 4  Constant induced-drag contours for the fixed-wing-loading example. 

 As an example of minimizing induced drag with fixed net weight and stall speed, consider an airplane with a 

rectangular wing.  The net weight is fixed at Wn=2600 lbf and the stall speed is fixed at Vstall =110 ft/s.  Again  

we shall use the weight distributions given by Eqs. (5) and (6) and the values  gm nn 3.75, C 0.165, C 0.653, 

ctmax 0.12, 3
max 100.15  psi, max 4.5 ft,  0.10 lbf/in3, 6100.10 E psi, V 200 ft/s, and 

 0.0023769 slug/ft3. 

 Solutions for the wingspan and induced drag obtained from Eqs. (75)–(78) are shown in Fig. 5.  The lift 

distributions used to generate this figure are four of those shown in Fig. 1.  The labels, a–c and f, correspond to the 

lift-distribution labels used in Fig. 1.  The solid curves correspond to the stress-limited solutions and the dashed 

curves are for the deflection-limited solutions.  The black portion of each curve indicates the region where that 

solution provides the constraining limit.  Each curve is shaded gray in the region where that solution does not 

provide the constraining limit.  The solid vertical line is the wing-structure weight Ws = Wn/2, which gives minimum 

induced drag for the stress-limited solutions as given in Eq. (42).  The dashed vertical line is the wing-structure 

weight Ws = Wn/4, which gives minimum induced drag for the deflection-limited solutions as given in Eq. (60). 
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Fig. 5  Wingspan and induced-drag solutions for the fixed-stall-speed example. 
 

 From Fig. 5 we see that for Prandtl's 1933 lift distribution (b), minimum induced drag is obtained at the 

minimum-drag point on the deflection-limited curve.  All other lift distributions used in Fig. 5 have minimum-drag 

points at the wing-structure weight given by Eq. (79), which is the point where the stress-limited curve crosses the 

deflection-limited curve.  The lowest minimum-drag point shown in Fig. 5 is for the lift distribution (f) given in  

Eq. (64), which minimizes induced drag for the deflection-limited solution.  However, the lift distribution given in 

Eq. (64) does not provide an absolute minimum in the induced drag for this example, because this minimum-drag 

point occurs at the wing-structure weight given by Eq. (79).  Using the wing-structure weight from Eq. (79) in either  

Eq. (76) or (78), together with the other parameters specified for this example, we obtain the induced drag with 

Bn = 0 for all n ≠ 3 as a function of the single design parameter B3.  The minimum in this function gives the lift 

distribution and wing-structure weight that yield the absolute minimum induced drag for this example, i.e., 

Di = 15.83315 lbf at B3 = –0.17889675 and Ws = 662.6372 lbf.  The wingspan for this optimal solution is 

b = 70.24208 ft. For this example, the optimal solution has an induced drag coefficient of 
iDC 0.001369 at a lift 

coefficient of LC 0.2821 and an aspect ratio of AR 20.28.  Constant induced-drag contours for the design space 

near this optimal solution are shown in Fig. 6.  Note from Figs. 4 and 6 that for the range of B3 values shown here, 

the optimum wingspan is either deflection-limited or follows Eq. (79). In this way, the deflection limit discourages 

designs with excessive wingspans and excessive wingtip deflection. 
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Fig. 6  Constant induced-drag contours for the fixed-stall-speed example. 

  

 It should be emphasized that the optimum solutions shown in Fig. 4 for the fixed-wing-loading example and in 

Fig. 6 for the fixed-stall-speed example are only valid for rectangular wings with the optimum net-weight distribution 

given by Eqs. (5) and (6). Figure 7 shows the net-weight distribution from Eq. (5) as a function of the normalized 

spanwise coordinate for each of the example optimum solutions. In order to understand whether the optimum root 

weight and net-weight distribution are reasonable, it is helpful to compare them to those of an airframe that may have 

been optimized under similar constraints. A schematic of the spanwise fuel tank and engine layout in a Boeing 777 

wing [74,75] is included in Fig. 7. Note that for this wing, the engine is located near the juncture of the inboard and 

outboard fuel tanks. For a transport aircraft such as the 777, fuel is first burned from the inboard tanks. Once the fuel 

in the inboard tanks is depleted, the fuel in the outboard tanks is used [76]. Due to wing dihedral, the fuel in the 

outboard tanks burns from the outboard regions first. Thus, as fuel is burned, the weight distribution tends to peak 

near the engine location. As shown in Fig. 7, the optimum weight distributions given by Eq. (5) for the example 

optimum solutions given in Figs. 4 and 6 reasonably reflect this trend. At maximum takeoff weight, the Boeing 777 

has a ratio of root weight to gross weight of about 0.44 [75]. For sailplanes, this ratio typically ranges between about 
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0.35 and 0.72 [72]. In the two examples shown above, 75.3 gm nn . Applying this to Eq. (6) results in an optimum 

ratio of root weight to gross weight of 0.37. 

 The reader is reminded that although the optimal net-weight distribution minimizes the wing bending moments, 

it may not always be practical due to additional design constraints. Nevertheless, the solutions presented in this paper 

are valuable for understanding the aerodynamic and structural coupling involved in designing a wing for minimum 

induced drag, and the reader is reminded that results for tapered planforms do not deviate significantly from many of 

the solutions shown here [16]. 
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Fig. 7 Net-weight distributions corresponding to the optimum solutions for the fixed-wing-loading and fixed-
stall-speed examples. 

  

VI.   Conclusions 

 As shown in Eq. (2), Prandtl’s classical lifting-line theory predicts that the induced drag acting on the wing  

of an airplane in steady level flight is directly proportional to the square of the ratio of  gross weight to wingspan.  

For any fixed weight distribution and lift distribution, the critical wing section bending moments increase with 

increasing wingspan and the wing-structure weight required to support these bending moments also increases with 

wingspan.  Hence, there exists an optimum wingspan and wing-structure weight that minimizes the induced drag in 

steady level flight for any fixed net weight, weight distribution, and lift distribution.  However, this optimum 

wingspan and wing-structure weight do not provide an absolute minimum in induced drag unless the optimum weight 

distribution and lift distribution are also used.  The optimum weight distribution is obtained by enforcing both Eqs. 

(5) and (6).  The optimum lift distribution depends on both the wing planform and the weight distribution.  For the 

special case of a rectangular wing with spanwise-symmetric lift and the weight distribution specified by  

Eq. (5), the optimum lift distribution is given by Eq. (34) with –1/ 3 ≤ B3 ≤ 0.  The precise value of B3 that provides 

the absolute minimum in induced drag depends on the design constraints. 
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 For any wing planform and wing structural design the wing-structure weight can be determined as a function of 

the wingspan, maximum allowable stress, maximum allowable deflection, and other design constraints.  Because 

gross weight is the sum of the net weight and the wing-structure weight, for any wing design, the ratio of  gross 

weight to wingspan can be written as bWbWbW sn  .  For any fixed net weight, the term bWn  always 

decreases with increasing wingspan; and for typical design constraints, the term bWs  increases with increasing 

wingspan.  Thus, for typical design constraints, there is an optimum wingspan that minimizes the ratio of gross weight 

to wingspan based on the tradeoff  between wingspan and wing-structure weight.  Example analytic solutions that 

demonstrate this tradeoff are presented in the previous sections.  It is shown that under certain constraints, induced-

drag reductions in excess of 16% relative to a fixed elliptic lift distribution are possible. 

 Optimum solutions for two example wing designs are presented in the Results section.  Figures 4 and 6 show 

how the induced drag varies with lift distribution, wingspan, and wing-structure weight near the optimum solution for 

each example.  In each case, the optimum design produces a decrease in induced drag relative to the case of a fixed 

elliptic lift distribution. 

 For the analytic examples presented here, we have considered only rectangular wings with the optimum weight 

distribution specified by Eq. (5).  This provided the great simplification of allowing us to carry out the integration in 

Eq. (9) for the arbitrary lift distribution given in Eq. (1) to produce the analytic results for the wing-structure weights 

given in Eqs. (11) and (16).  When the airfoil chord length and thickness vary with the spanwise coordinate, we can 

no longer use Eqs. (11) and (16) to compute the wing-structure weights for the stress-limited and deflection-limited 

solutions.  Instead, we must return to the more general relation given in Eq. (9).  For arbitrary wing planforms and 

weight distributions, Eq. (9) could be integrated numerically.  Hence, for many practical applications, numerical 

methods may be required to obtain optimum lift distributions, wingspans, and wing-structure weights that minimize 

induced drag.  Nevertheless, the analytic solutions presented in this work provide significant insight into the 

aerodynamic and structural coupling associated with designing wings for minimum induced drag. 
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